1
|
Baixinho JP, Cardeira M, Bento-Silva A, Partidário AMC, Serra AT, Bronze MDR, Fernández N. Optimization of Supercritical Fluid Extraction for the Recovery of γ-Oryzanol-Rich Extracts with Improved Bioactivity from Rice Bran. Antioxidants (Basel) 2025; 14:206. [PMID: 40002392 PMCID: PMC11852124 DOI: 10.3390/antiox14020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Rice bran (RB) is a rice processing by-product recognized to be a source of bioactive compounds, including γ-oryzanol and fatty acids, which have interesting bioactivities such as antioxidant and anti-inflammatory effects. This study aims to optimize the supercritical fluid extraction process for recovering these high-value compounds from rice bran with improved bioactivity. A Central Composite Face-Centered Design was employed to optimize the extraction process by varying the temperature (40-80 °C) and pressure (200-500 bar). The optimal extraction conditions were identified at 500 bar and 62 °C that led to the extraction of 17.3% mass yield with 784.5 mg of fatty acids and 36.6 mg of γ-oryzanol per gram of extract, striking a balance between extraction yield and bioactive concentrations. When compared with conventional extractions with n-hexane, supercritical fluid extraction showed similar global yield (18.0 vs. 17.3%) and FA concentration (130.14 vs. 135.70 mg/g of RB) but higher selectivity and extraction yield for γ-oryzanol (18.0 vs. 36.4 mg/g extract; 3.3 vs. 6.3 mg/g of RB). Cellular antioxidant activity assays showed that both extracts reduced the quantity of reactive oxygen species (ROS) up to 50% in Caco-2 cells submitted to oxidative stress. Importantly, supercritical fluid extract was more effective in inhibiting colorectal cancer cell growth (EC50 = 0.9 mg/mL vs. 1.15 mg/mL) than the hexane extract, and this effect was more pronounced than that obtained for pure γ-oryzanol in the same concentration range. These findings highlight the potential of supercritical fluid technology to develop rice bran extracts with antioxidant and antiproliferative properties, underlining the promising applications of this technology in the field of natural product extraction.
Collapse
Affiliation(s)
- João P. Baixinho
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (M.C.); (A.T.S.); (M.d.R.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Martim Cardeira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (M.C.); (A.T.S.); (M.d.R.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Andreia Bento-Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. das Forças Armadas, 1649-003 Lisboa, Portugal;
| | - Ana Maria Carvalho Partidário
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Unidade de Tecnologia e Inovação, Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (M.C.); (A.T.S.); (M.d.R.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria do Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (M.C.); (A.T.S.); (M.d.R.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. das Forças Armadas, 1649-003 Lisboa, Portugal;
| | - Naiara Fernández
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (M.C.); (A.T.S.); (M.d.R.B.)
| |
Collapse
|
2
|
Mahmud N, Islam J, Oyom W, Adrah K, Adegoke SC, Tahergorabi R. A review of different frying oils and oleogels as alternative frying media for fat-uptake reduction in deep-fat fried foods. Heliyon 2023; 9:e21500. [PMID: 38027829 PMCID: PMC10660127 DOI: 10.1016/j.heliyon.2023.e21500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose This review aims to examine the potential of oleogels as a frying medium to decrease oil absorption during deep-frying and enhance the nutritional and energy content of foods. By investigating the factors influencing oil incorporation during deep-frying and examining the application of oleogels in this process, we seek to provide insights into using oleogels as an alternative to traditional cooking oils. Scope Deep-frying, a widely used cooking method, leads to the retention of large amounts of oil in fried food, which has been associated with health concerns. To address this issue, researchers have investigated various methods to minimize oil absorption during frying. One promising approach is the use of oleogels, which are thermo-reversible, three-dimensional gel networks formed by entrapment of bulk oil with a low concentration (<10% of weight) of solid lipid materials known as oleogelators. This review will focus on the following aspects: a) an overview of deep-fried foods, b) factors influencing oil uptake and underlying mechanisms for oil absorption during deep-frying, c) the characterization and application of different frying oils and their oleogels in deep-fried foods, d) components of the oleogel system for deep-frying, and e) the health impact, oxidative stability, and sensory acceptability of using oleogels in deep-frying. Key findings The review highlights the potential of oleogels as a promising alternative frying medium to reduce fat absorption in deep-fried foods. Considering the factors influencing oil uptake during deep-frying, as well as exploring the properties and applications of different frying oils and their oleogels, can result in improved product qualities and heightened consumer acceptance. Moreover, oleogels offer the advantage of lower fat content in fried products, addressing health concerns associated with traditional deep-frying methods. The capacity to enhance the nutritional and energy profile of foods while preserving sensory qualities and oxidative stability positions oleogels as a promising choice for upcoming food processing applications.
Collapse
Affiliation(s)
- Niaz Mahmud
- Food and Nutritional Sciences Program, North Carolina Agricultural & Technical State University, Greensboro, NC, 27411, USA
| | - Joinul Islam
- Food and Nutritional Sciences Program, North Carolina Agricultural & Technical State University, Greensboro, NC, 27411, USA
- Department of Food Science and Technology, University of Georgia, Athens, GA, 30602, USA
| | - William Oyom
- Food and Nutritional Sciences Program, North Carolina Agricultural & Technical State University, Greensboro, NC, 27411, USA
| | - Kelvin Adrah
- Joint School of Nanoscience and Nanoengineering, 2907 East Gate City Blvd, Greensboro, NC, 27401, USA
| | | | - Reza Tahergorabi
- Food and Nutritional Sciences Program, North Carolina Agricultural & Technical State University, Greensboro, NC, 27411, USA
| |
Collapse
|
3
|
Liu Z, Liu X, Ma Z, Guan T. Phytosterols in rice bran and their health benefits. Front Nutr 2023; 10:1287405. [PMID: 37899831 PMCID: PMC10600523 DOI: 10.3389/fnut.2023.1287405] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
With the continuous technological innovation in the high-value utilization of rice bran byproducts, rice bran oil retains a higher concentration of beneficial components such as a well-balanced composition of fatty acids and abundant phytosterols. This makes it a highly nutritious and healthy vegetable oil. This review provides an overview of the advancements made in separating, purifying, and processing phytosterols in rice bran oil. The review also introduces techniques for assessing the stability of rice bran oil. Moreover, the review emphasizes the nutritional value of phytosterols found in rice bran oil, highlighting their various health benefits, including their anticancer, anti-inflammatory, anti-allergic, antibacterial, cholesterol-lowering, skin-protective, anti-obesity, anti-diabetic, neuroprotective, gastroprotective, and immune-enhancing effects. Attaining a comprehensive understanding of the research progress made in phytosterols derived from rice bran oil can offer valuable guidance for the efficient utilization of rice bran.
Collapse
Affiliation(s)
- Zhaoguo Liu
- Changchun Institute of Technology, Changchun, China
| | - Xiaoxiao Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Zheng Ma
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Tianzhu Guan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Moreira BP, Draszewski CP, Rosa NC, Tres MV, Zabot GL, Pereira FC, Abaide ER, Castilhos F. Integrated rice bran processing by supercritical CO2 extraction and subcritical water hydrolysis to obtain oil, fermentable sugars, and platform chemicals. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2022.105786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Solubility of Rosmarinic Acid in Supercritical Carbon Dioxide Extraction from Orthosiphon stamineus Leaves. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6040059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Rosmarinic acid (RA) is present in a broad variety of plants, including those in the Lamiaceae family, and has a wide range of pharmacological effects, particularly antioxidant activity. To extract RA from Orthosiphon stamineus (OS) leaves, a Lamiaceae plant, a suitable extraction process is necessary. The present study used a green extraction method of supercritical carbon dioxide (SCCO2) extraction with the addition of ethanol as a modifier to objectively measure and correlate the solubility of RA from OS leaves. The solubility of RA in SCCO2 was determined using a dynamic extraction approach, and the solubility data were correlated using three density-based semi-empirical models developed by Chrastil, del Valle-Aguilera, and Gonzalez. Temperatures of 40, 60, and 80 °C and pressures of 10, 20, and 30 MPa were used in the experiments. The maximum RA solubility was found at 80 °C and 10 MPa with 2.004 mg of rosmarinic acid/L solvent. The RA solubility data correlated strongly with the three semi-empirical models with less than 10% AARD. Furthermore, the fastest RA extraction rate of 0.0061 mg/g min−1 was recorded at 80 °C and 10 MPa, and the correlation using the Patricelli model was in strong agreement with experimental results with less than 15% AARD.
Collapse
|
6
|
Role of virgin coconut oil (VCO) as co-extractant for obtaining xanthones from mangosteen (Garcinia mangostana) pericarp with supercritical carbon dioxide extraction. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
|
8
|
Martins AJ, Vicente AA, Cunha RL, Cerqueira MA. Edible oleogels: an opportunity for fat replacement in foods. Food Funct 2018; 9:758-773. [PMID: 29417124 DOI: 10.1039/c7fo01641g] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The scientific and industrial communities have been giving great attention to the development of new bio-based materials with potential use in innovative technological applications. Among these materials are the structures with gel-like behavior that can be used in the cosmetic, pharmaceutical and food industries, aiming at controlling the physical properties of the final products. In the past ten years, words like oleogels and organogels have been increasingly used, the existing number of manuscripts and patents being proof of this tendency. In the food industry, oleogels can be used to control phase separation, and decrease the mobility and migration of the oil phase, providing solid-like properties without using high levels of saturated fatty acids as well as to be a carrier of bioactive compounds. In most cases, their main features are related to the reorganization process of gelators after an increase of the temperature, above the melting or glass transition temperature of the materials, known as the direct method, but it is also possible to develop oleogels by indirect methods, such as emulsification and the solvent exchange technique. In the direct methods, the reorganization is able to physically entrap oil leading to different physicochemical properties, the rheological behavior and texture properties being the frequently most studied ones. This review overviews the use of food grade and bio-based structurants to produce edible oleogels, aiming at fat replacement and structure-tailoring. Gelation mechanisms and oil phases used during oleogel production are discussed, as well as the current food applications and future trends for this kind of structure.
Collapse
Affiliation(s)
- Artur J Martins
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | |
Collapse
|
9
|
Khaw KY, Parat MO, Shaw PN, Falconer JR. Solvent Supercritical Fluid Technologies to Extract Bioactive Compounds from Natural Sources: A Review. Molecules 2017; 22:molecules22071186. [PMID: 28708073 PMCID: PMC6152233 DOI: 10.3390/molecules22071186] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 11/16/2022] Open
Abstract
Supercritical fluid technologies offer a propitious method for drug discovery from natural sources. Such methods require relatively short processing times, produce extracts with little or no organic co-solvent, and are able to extract bioactive molecules whilst minimising degradation. Supercritical fluid extraction (SFE) provides a range of benefits, as well as offering routes to overcome some of the limitations that exist with the conventional methods of extraction. Unfortunately, SFE-based methods are not without their own shortcomings; two major ones being: (1) the high establishment cost; and (2) the selective solvent nature of CO2, i.e., that CO2 only dissolves small non-polar molecules, although this can be viewed as a positive outcome provided bioactive molecules are extracted during solvent-based SFE. This review provides an update of SFE methods for natural products and outlines the main operating parameters for extract recovery. Selected processing considerations are presented regarding supercritical fluids and the development and application of ultrasonic-assisted SFE methods, as well as providing some of the key aspects of SFE scalability.
Collapse
Affiliation(s)
- Kooi-Yeong Khaw
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, Brisbane, QLD 4102, Australia.
| | - Marie-Odile Parat
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, Brisbane, QLD 4102, Australia.
| | - Paul Nicholas Shaw
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, Brisbane, QLD 4102, Australia.
| | - James Robert Falconer
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
10
|
|