1
|
Sereti F, Alexandri M, Papapostolou H, Kachrimanidou V, Papadaki A, Kopsahelis N. Green extraction of carotenoids and oil produced by Rhodosporidium paludigenum using supercritical CO 2 extraction: Evaluation of cell disruption methods and extraction kinetics. Food Chem 2025; 483:144261. [PMID: 40233516 DOI: 10.1016/j.foodchem.2025.144261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/28/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
The constantly expanding functional food market has steered scientific research towards alternative sources of bioactive compounds. Red yeasts are valuable producers of active ingredients such as carotenoids and microbial oil. Efficient and sustainable recovery methods are required when food applications are targeted. In this study, intracellular carotenoids and oil synthesized by Rhodosporidium paludigenum in batch bioreactor cultures were recovered using supercritical CO2 (SFE-CO2) as a green alternative to conventional organic solvents. Yeast biomass was subjected to six different cell disruption methods prior to SFE-CO2. Homogenization emerged as the optimal pre-treatment method, resulting in an 80 % yield of total carotenoids and an 83 % yield of microbial oil. The use of ethanol as co-solvent was imperative for the efficient recovery of both products. β-Carotene was the main carotenoid, while the obtained microbial oil was rich in oleic acid. These results pave the way for integrating these functional compounds into innovative food products.
Collapse
Affiliation(s)
- Fani Sereti
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Maria Alexandri
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Harris Papapostolou
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Vasiliki Kachrimanidou
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece.
| |
Collapse
|
2
|
Allay A, Benkirane C, Ben Moumen A, Fauconnier ML, Bouakline H, Nkengurutse J, Serghini Caid H, Elamrani A, Mansouri F. Optimizing ethanol-modified supercritical CO₂ extraction for enhanced bioactive compound recovery in hemp seed oil. Sci Rep 2025; 15:8551. [PMID: 40075119 PMCID: PMC11904181 DOI: 10.1038/s41598-025-91441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
This work aimed to extract hemp seed oil using modified supercritical CO2 with ethanol, while optimizing the overall process through response surface methodology. The effects of extraction temperature (30-60 °C), pressure (10-20 MPa), and time (120-300 min) on oil yield, total phenols (TPC), total tocopherols, oxidative stability index (OSI), total chlorophylls, total carotenoids, quality indices, and color were assessed. For a maximum yield of 28.83 g/100 g of fresh seeds, the oil was extracted at 50 °C and 20 MPa for 244 min. In addition, CO2 modified with different proportions of ethanol (2.5-20%) under the optimized SFE conditions was also tested for enhancing phenolic compound extractability in hemp seed oil. The best proportion was 10% ethanol, which significantly increased the oil yield to 30.13%, TPC to 294.15 GAE mg/kg, total tocopherols to 484.38 mg/kg, and OSI to 28.01 h, without affecting the quality parameters and the fatty acid profile. Furthermore, the phenolic compounds in the extracted oils were analyzed via HPLC-DAD/ESI-MS2. These findings indicated that CO2 modified with ethanol enhanced the extraction of phenolic compounds, 26 of which were identified. Among these, the most abundant compounds were N-trans-caffeoyltyramine, and cannabisins A and B, with concentrations of 50.32, 13.72, and 16.11 mg/kg oil, respectively. The oil obtained by SFE with SC-CO2 + ethanol could be valorized by evaluating its biological activities and its anti-aging, dermato-protective and antimicrobial properties for use in the cosmetics, pharmaceutical and food applications.
Collapse
Affiliation(s)
- Aymane Allay
- Laboratory of Agricultural Production Improvement, Biotechnology, and Environment, Faculty of Sciences, Mohammed I University, B.P. 717, 60000, Oujda, Morocco
| | - Chaymae Benkirane
- Laboratory of Agricultural Production Improvement, Biotechnology, and Environment, Faculty of Sciences, Mohammed I University, B.P. 717, 60000, Oujda, Morocco
| | - Abdessamad Ben Moumen
- Laboratory of Agricultural Production Improvement, Biotechnology, and Environment, Faculty of Sciences, Mohammed I University, B.P. 717, 60000, Oujda, Morocco
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030, Gembloux, Belgium
| | - Hamza Bouakline
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed I University, B.P. 717, 60000, Oujda, Morocco
| | - Jacques Nkengurutse
- Biology Department, Faculty of Sciences, University of Burundi, P.O. Box 2700, Bujumbura, Burundi.
| | - Hana Serghini Caid
- Laboratory of Agricultural Production Improvement, Biotechnology, and Environment, Faculty of Sciences, Mohammed I University, B.P. 717, 60000, Oujda, Morocco
| | - Ahmed Elamrani
- Laboratory of Agricultural Production Improvement, Biotechnology, and Environment, Faculty of Sciences, Mohammed I University, B.P. 717, 60000, Oujda, Morocco
| | - Farid Mansouri
- Laboratory of Agricultural Production Improvement, Biotechnology, and Environment, Faculty of Sciences, Mohammed I University, B.P. 717, 60000, Oujda, Morocco
- Higher School of Education and Training, Mohammed I University, BP-410, 60000, Oujda, Morocco
| |
Collapse
|
3
|
Mirzazadeh N, Bagheri H, Mirzazadeh M, Soleimanimehr S, Rasi F, Akhavan‐Mahdavi S. Comparison of different green extraction methods used for the extraction of anthocyanin from red onion skin. Food Sci Nutr 2024; 12:7347-7357. [PMID: 39479718 PMCID: PMC11521669 DOI: 10.1002/fsn3.4354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 11/02/2024] Open
Abstract
Green extraction primarily emphasizes developing new extraction techniques that consume less energy. It involves using safe, non-toxic alternative solvents and sustainable natural resources to ensure the production of safe and high-quality extracts. Red onion skin is an important source of anthocyanins, a subgroup of phenolic compounds. Anthocyanins are an important group of natural pigments that have attracted a lot of attention due to their health benefits. However, the instability and high sensitivity of these pigments have limited their use in food and cosmetics. Therefore, in this study, various modern green extraction methods were used, including solvent extraction, ultrasound-assisted extraction, subcritical water extraction, microwave-assisted extraction (MAE), pulsed electric field extraction, supercritical fluid extraction (SFE), and high hydrostatic pressure-assisted (HHPAE) extraction, to specifically extract and purify anthocyanins. The extraction efficiency, specifically targeting anthocyanins, showed the highest efficiency with HHPAE (81.84%) and the lowest with MAE (40.01%). Measurement of total anthocyanin content revealed that HHPAE and SFE methods yielded the highest anthocyanin concentrations, with 248.49 and 244.98 mg/L, respectively. Identification of anthocyanin by LC-MS revealed that the main anthocyanidins in red onion peel are pelargonidin, cyanidin, delphinidin, and petunidin. These results indicate that innovative green extraction methods, particularly HHPAE and SFE, can effectively replace conventional techniques due to their superior efficiency and enhanced preservation of anthocyanin compounds.
Collapse
Affiliation(s)
- Nasim Mirzazadeh
- Islamic Azad University Pharmaceutical Sciences BranchTehranIran
| | - Hadiseh Bagheri
- Department of Food Science and Technology, Sari BranchIslamic Azad UniversitySariIran
| | - Mehdi Mirzazadeh
- Department of Food Science and Technology, Faculty of Agriculture, Kermanshah BranchIslamic Azad UniversityKermanshahIran
| | - Somaye Soleimanimehr
- Food and Drug Administration (FDA)Kermanshah University of Medical SciencesKermanshahIran
| | - Fatemeh Rasi
- Department of Food Science and TechnologyGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
| | - Sahar Akhavan‐Mahdavi
- Department of Food Science and TechnologyGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
| |
Collapse
|
4
|
Sheibani S, Jafarzadeh S, Qazanfarzadeh Z, Osadee Wijekoon MMJ, Mohd Rozalli NH, Mohammadi Nafchi A. Sustainable strategies for using natural extracts in smart food packaging. Int J Biol Macromol 2024; 267:131537. [PMID: 38608975 DOI: 10.1016/j.ijbiomac.2024.131537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The growing demand for sustainable and eco-friendly food packaging has prompted research on innovative solutions to environmental and consumer health issues. To enhance the properties of smart packaging, the incorporation of bioactive compounds derived from various natural sources has attracted considerable interest because of their functional properties, including antioxidant and antimicrobial effects. However, extracting these compounds from natural sources poses challenges because of their complex chemical structures and low concentrations. Traditional extraction methods are often environmentally harmful, expensive and time-consuming. Thus, green extraction techniques have emerged as promising alternatives, offering sustainable and eco-friendly approaches that minimise the use of hazardous solvents and reduce environmental impact. This review explores cutting-edge research on the green extraction of bioactive compounds and their incorporation into smart packaging systems in the last 10 years. Then, an overview of bioactive compounds, green extraction techniques, integrated techniques, green extraction solvents and their application in smart packaging was provided, and the impact of bioactive compounds incorporated in smart packaging on the shelf lives of food products was explored. Furthermore, it highlights the challenges and opportunities within this field and presents recommendations for future research, aiming to contribute to the advancement of sustainable and efficient smart packaging solutions.
Collapse
Affiliation(s)
- Samira Sheibani
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Shima Jafarzadeh
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3216, Australia.
| | - Zeinab Qazanfarzadeh
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - M M Jeevani Osadee Wijekoon
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
5
|
Tzanova MT, Yaneva Z, Ivanova D, Toneva M, Grozeva N, Memdueva N. Green Solvents for Extraction of Natural Food Colorants from Plants: Selectivity and Stability Issues. Foods 2024; 13:605. [PMID: 38397582 PMCID: PMC10887973 DOI: 10.3390/foods13040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Consumers associate the color of food with its freshness and quality. More and more attention is being paid to natural colorants that bring additional health benefits to humans. Such natural substances are the carotenoids (yellow to orange), the anthocyanins (red to blue), and the betalains (red and yellow), which are very sensitive to exposure to light, air, high temperatures, and chemicals. Stability and diversity in terms of color can be optimized by using environmentally friendly and selective extraction processes that provide a balance between efficacy, safety, and stability of the resulting extracts. Green solvents like water, supercritical fluids, natural deep eutectic solvents, and ionic liquids are the most proper green solvents when combined with different extraction techniques like maceration, supercritical extraction, and ultrasound-assisted or microwave-assisted extraction. The choice of the right extracting agent is crucial for the selectivity of the extraction method and the stability of the prepared colorant. The present work reviews the green solvents used for the extraction of natural food colorants from plants and focuses on the issues related to the selectivity and stability of the products extracted.
Collapse
Affiliation(s)
- Milena Tankova Tzanova
- Faculty of Agriculture, Department of Biological Sciences, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| | - Zvezdelina Yaneva
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.Y.); (D.I.); (M.T.)
| | - Donika Ivanova
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.Y.); (D.I.); (M.T.)
- Medical Faculty, Department of Medicinal Chemistry and Biochemistry, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Monika Toneva
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.Y.); (D.I.); (M.T.)
| | - Neli Grozeva
- Faculty of Agriculture, Department of Biological Sciences, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| | - Neli Memdueva
- Faculty of Agriculture, Department of Biological Sciences, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| |
Collapse
|
6
|
Morón-Ortiz Á, Mapelli-Brahm P, Meléndez-Martínez AJ. Sustainable Green Extraction of Carotenoid Pigments: Innovative Technologies and Bio-Based Solvents. Antioxidants (Basel) 2024; 13:239. [PMID: 38397837 PMCID: PMC10886214 DOI: 10.3390/antiox13020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Carotenoids are ubiquitous and versatile isoprenoid compounds. The intake of foods rich in these pigments is often associated with health benefits, attributable to the provitamin A activity of some of them and different mechanisms. The importance of carotenoids and their derivatives for the production of foods and health-promotion through the diet is beyond doubt. In the new circular economy paradigm, the recovery of carotenoids in the biorefinery process is highly desirable, for which greener processes and solvents are being advocated for, considering the many studies being conducted at the laboratory scale. This review summarizes information on different extraction technologies (ultrasound, microwaves, pulsed electric fields, pressurized liquid extraction, sub- and supercritical fluid extraction, and enzyme-assisted extraction) and green solvents (ethyl lactate, 2-methyltetrahydrofuran, natural deep eutectic solvents, and ionic liquids), which are potential substitutes for more toxic and less environmentally friendly solvents. Additionally, it discusses the results of the latest studies on the sustainable green extraction of carotenoids. The conclusions drawn from the review indicate that while laboratory results are often promising, the scalability to real industrial scenarios poses a significant challenge. Furthermore, incorporating life cycle assessment analyses is crucial for a comprehensive evaluation of the sustainability of innovative extraction processes compared to industry-standard methods.
Collapse
Affiliation(s)
| | - Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.M.-O.); (A.J.M.-M.)
| | | |
Collapse
|
7
|
Sutarsi, Jati PT, Wiradiestia D, Altway A, Winardi S, Wahyudiono, Machmudah S. Extraction Process Optimization of Curcumin from Curcuma xanthorrhiza Roxb. with Supercritical Carbon Dioxide Using Ethanol as a Cosolvent. ACS OMEGA 2024; 9:1251-1264. [PMID: 38239285 PMCID: PMC10795970 DOI: 10.1021/acsomega.3c07497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/12/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024]
Abstract
Curcuma xanthorrhiza Roxb., known as temulawak, Javanese ginger, or Javanese turmeric, is a plant species belonging to the ginger family. This plant originated in Indonesia, more specifically on Java Island, and is usually used as medicine. It contains a high amount of a phenolic compound, namely, curcumin. A supercritical carbon dioxide extraction technique was employed to extract curcumin from C. xanthorrhiza. The objective of this work was to investigate the effects of temperature, pressure, and CO2 flow rate on the extraction yield and curcumin recovery from C. xanthorrhiza, which was extracted using supercritical carbon dioxide and ethanol as a cosolvent. The Box-Behnken design (BBD) experimental design and response surface methodology were used to optimize the extraction yield and curcumin recovery. The extraction conditions at a temperature of 40 °C, a pressure of 25 MPa, and a CO2 flow rate of 5.34 mL/min produced the optimum extraction yield of 10.4% and curcumin recovery of 3.2%. From Fourier transform infrared analysis, although the physical-chemical structure in the residue of the starting material was almost similar, the quantity of all functional groups in the residue decreased from the starting material. From scanning electron microscopy analysis, it was confirmed that the cell was broken due to the high-pressure effect, so that the extraction process runs easily.
Collapse
Affiliation(s)
- Sutarsi
- Department
of Chemical Engineering, Institut Teknologi
Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Pundhi T. Jati
- Department
of Chemical Engineering, Institut Teknologi
Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Diano Wiradiestia
- Department
of Chemical Engineering, Institut Teknologi
Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Ali Altway
- Department
of Chemical Engineering, Institut Teknologi
Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Sugeng Winardi
- Department
of Chemical Engineering, Institut Teknologi
Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Wahyudiono
- New
Industry Creation Hatchery Center, Tohoku
University, 6-6-10 Aoba,
Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Siti Machmudah
- Department
of Chemical Engineering, Institut Teknologi
Sepuluh Nopember, Surabaya 60111, Indonesia
| |
Collapse
|
8
|
Jimenez-Champi D, Romero-Orejon FL, Moran-Reyes A, Muñoz AM, Ramos-Escudero F. Bioactive compounds in potato peels, extraction methods, and their applications in the food industry: a review. CYTA - JOURNAL OF FOOD 2023; 21:418-432. [DOI: 10.1080/19476337.2023.2213746] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/10/2023] [Indexed: 01/05/2025]
Affiliation(s)
- Diana Jimenez-Champi
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Campus Gran Almirante Miguel Grau, Lima, Perú
| | - Frank L. Romero-Orejon
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Campus Gran Almirante Miguel Grau, Lima, Perú
| | - Angie Moran-Reyes
- Facultad de Nutrición y Alimentación, Escuela Profesional de Nutrición y Dietética, Universidad Femenina del Sagrado Corazón (UNIFE), Lima, Perú
| | - Ana María Muñoz
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Campus Gran Almirante Miguel Grau, Lima, Perú
- Instituto de Ciencias de Los Alimentos y Nutrición, Universidad San Ignacio de Loyola (ICAN-USIL), Campus Pachacamac, Sección B, Parcela 1, Fundo La Carolina, Lima, Perú
| | - Fernando Ramos-Escudero
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Campus Gran Almirante Miguel Grau, Lima, Perú
- Facultad de Ciencias de la Salud, Universidad San Ignacio de Loyola, Lima, Perú
| |
Collapse
|
9
|
Frattaruolo L, Durante M, Cappello MS, Montefusco A, Mita G, Cappello AR, Lenucci MS. The ability of supercritical CO 2 carrot and pumpkin extracts to counteract inflammation and oxidative stress in RAW 264.7 macrophages stimulated with LPS or MDA-MB-231 cell-conditioned media. Food Funct 2023; 14:10083-10096. [PMID: 37870074 DOI: 10.1039/d3fo03159d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Supercritical fluid extraction with CO2 (SFE) is an alternative technology to conventional solvent extraction (CSE), to obtain food-grade bioactives from plants. Here, SFE and CSE extracts from carrot and pumpkin matrices, impregnated with hempseed or flaxseed oil as co-solvents, were characterized by HPLC and GC-MS, and their ability to counteract the inflammatory and oxidative phenomena underlying the onset of several pathologies was assessed in vitro. All extracts showed dose-dependent anti-inflammatory potential and demonstrated an ability to interfere with the pro-inflammatory effects of breast cancer cell-conditioned media, and to inhibit reactive oxygen species (ROS) accumulation and nitrite production (NP) in lipopolysaccharide-stimulated macrophages. Nuclear factor-erythroid-2-related factor 2 (Nrf2) is involved in these response mechanisms, as highlighted by the increased mRNA levels of its target genes revealed by quantitative real-time PCR analyses. NP and ROS concentrations negatively correlated with α-tocopherol and most carotenoids, but positively with the total tocopherol/total carotenoid ratio, suggesting an idiosyncratic effect of these bioactives on cell responses and emphasizing the need to focus on extract constituents' interactions.
Collapse
Affiliation(s)
- Luca Frattaruolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Miriana Durante
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Lecce-Monteroni, 73100, Italy.
| | - Maria Stella Cappello
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Lecce-Monteroni, 73100, Italy.
| | - Anna Montefusco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Lecce-Monteroni, 73100, Italy
| | - Giovanni Mita
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Lecce-Monteroni, 73100, Italy.
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Marcello Salvatore Lenucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Lecce-Monteroni, 73100, Italy
| |
Collapse
|
10
|
Rodriguez-Amaya DB, Esquivel P, Meléndez-Martínez AJ. Comprehensive Update on Carotenoid Colorants from Plants and Microalgae: Challenges and Advances from Research Laboratories to Industry. Foods 2023; 12:4080. [PMID: 38002140 PMCID: PMC10670565 DOI: 10.3390/foods12224080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The substitution of synthetic food dyes with natural colorants continues to be assiduously pursued. The current list of natural carotenoid colorants consists of plant-derived annatto (bixin and norbixin), paprika (capsanthin and capsorubin), saffron (crocin), tomato and gac fruit lycopene, marigold lutein, and red palm oil (α- and β-carotene), along with microalgal Dunaliella β-carotene and Haematococcus astaxanthin and fungal Blakeslea trispora β-carotene and lycopene. Potential microalgal sources are being sought, especially in relation to lutein, for which commercial plant sources are lacking. Research efforts, manifested in numerous reviews and research papers published in the last decade, have been directed to green extraction, microencapsulation/nanoencapsulation, and valorization of processing by-products. Extraction is shifting from conventional extraction with organic solvents to supercritical CO2 extraction and different types of assisted extraction. Initially intended for the stabilization of the highly degradable carotenoids, additional benefits of encapsulation have been demonstrated, especially the improvement of carotenoid solubility and bioavailability. Instead of searching for new higher plant sources, enormous effort has been directed to the utilization of by-products of the fruit and vegetable processing industry, with the application of biorefinery and circular economy concepts. Amidst enormous research activities, however, the gap between research and industrial implementation remains wide.
Collapse
Affiliation(s)
- Delia B. Rodriguez-Amaya
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Patricia Esquivel
- Centro Nacional de Ciencia y Tecnología (CITA), Universidad de Costa Rica, San José 11501, Costa Rica;
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica, San José 11501, Costa Rica
| | | |
Collapse
|
11
|
Rojas-Orduña E, Hernández-Carrión M, Gómez-Franco JD, Narváez-Cuenca CE, Sánchez-Camargo ADP. Utilization of red and yellow Coffea arabica var. Caturra pulp: macronutrient analysis, carotenoid extraction, and encapsulation for dairy product enrichment. Front Nutr 2023; 10:1231049. [PMID: 37720375 PMCID: PMC10501141 DOI: 10.3389/fnut.2023.1231049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
This study aimed to investigate the macronutrient and carotenoid content of red and yellow Coffea arabica var. Caturra pulp, a by-product of coffee processing in Colombia. The study employed ultra-sound-assisted extraction (UAE) to extract carotenoids, and a 23 factorial design was used to evaluate the effects of pulp color, biomass-solvent ratio, and solvent mixture composition on carotenoid content and extraction yield. The condition that provided the highest carotenoid extraction was further encapsulated by spray drying and added to a dairy product. The results showed that coffee pulp has significant dietary fiber content and high levels of carotenoids, with yellow pulp having a higher content than red pulp. Lutein isomers and lutein esters were the most abundant carotenoids found in both red and yellow coffee pulp. The highest carotenoid extraction was achieved using a 1:40 (g/mL) biomass:solvent ratio and a 20:80% v/v Ethanol:Ethyl Acetate solvent mixture for the yellow pulp. The carotenoid extract also demonstrated high encapsulation efficiency (46.57 ± 4.03%) and was found to be stable when added to a fermented milk product. This study presents an alternative solution for utilizing coffee by-products in Colombia, which could positively impact the families of over half a million Colombian coffee producers.
Collapse
Affiliation(s)
- Elkin Rojas-Orduña
- Group of Product and Process Design, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | - María Hernández-Carrión
- Group of Product and Process Design, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Juan David Gómez-Franco
- Food Chemistry Research Group, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos-Eduardo Narváez-Cuenca
- Food Chemistry Research Group, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | |
Collapse
|
12
|
Khan ZS, Amir S, Sokač Cvetnić T, Jurinjak Tušek A, Benković M, Jurina T, Valinger D, Gajdoš Kljusurić J. Sustainable Isolation of Bioactive Compounds and Proteins from Plant-Based Food (and Byproducts). PLANTS (BASEL, SWITZERLAND) 2023; 12:2904. [PMID: 37631116 PMCID: PMC10458638 DOI: 10.3390/plants12162904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Plant-based food produces significantly less greenhouse gases, and due to its wealth of bioactive components and/or plant-based protein, it becomes an alternative in a sustainable food system. However, the processing and production of products from plant sources creates byproducts, which can be waste or a source of useful substances that can be reused. The waste produced during the production and processing of food is essentially nutrient- and energy-rich, and it is recognized as an excellent source of secondary raw materials that could be repurposed in the process of manufacturing and preparing food, or as feed for livestock. This review offers an overview of the sources and techniques of the sustainable isolation of bioactive substances and proteins from various sources that might represent waste in the preparation or production of food of plant origin. The aim is to uncover novel approaches to use waste and byproducts from the process of making food to provide this waste food an additional benefit, not forgetting the expectations of the end user, the consumer. For the successful isolation of bioactive ingredients and proteins from food of plant origin, it is crucial to develop more eco-friendly and efficient extraction techniques with a low CO2 footprint while considering the economic aspects.
Collapse
Affiliation(s)
- Zakir Showkat Khan
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, India
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, India
| | - Saira Amir
- Department of Nutrition Sciences, School of Health Sciences, University of Management and Technology, C-II Johar Town, Lahore 54700, Pakistan
| | - Tea Sokač Cvetnić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Maja Benković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Tamara Jurina
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Davor Valinger
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| |
Collapse
|
13
|
Kostrzewa D, Mazurek B, Kostrzewa M, Jóźwik E. Carotenoids and Fatty Acids Obtained from Paprika Capsicum annuum by Supercritical Carbon Dioxide and Ethanol as Co-Extractant. Molecules 2023; 28:5438. [PMID: 37513310 PMCID: PMC10386050 DOI: 10.3390/molecules28145438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Paprika Capsicum annuum L. contains useful molecules such as carotenoids and polyunsaturated fatty acids, which are considered high-value functional and health ingredients. To obtain these compounds, paprika was extracted using different methods (Soxhlet, SC-CO2, and SC-CO2 with co-extractant) and at different parameters. The results showed that the carotenoid content decreased with the addition of the co-extractant while the fatty acid content and yield increased. It was found that the highest carotenoid content (capsanthin > β-carotene > capsorubin > zeaxanthin > β-cryptoxanthin > violaxanthin) was obtained at 50 °C/45 MPa for SC-CO2 extraction. Paprika extract rich in polyunsaturated fatty acids (linoleic, oleic, and α-linolenic acid) was obtained at 40 °C/25 MPa for SC-CO2 with co-extractant. The PUFA/SFA ratios for paprika extract were in agreement with the recommendations of nutritional guidelines. The use of SC-CO2 for the extraction of Capsicum annuum allowed us to obtain a high-quality, rich in carotenoids and polyunsaturated fatty acids, extract that can be used as a substrate in the industry.
Collapse
Affiliation(s)
- Dorota Kostrzewa
- Łukasiewicz Research Network-New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13A, 24-110 Pulawy, Poland
| | - Barbara Mazurek
- Łukasiewicz Research Network-New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13A, 24-110 Pulawy, Poland
| | - Marcin Kostrzewa
- Faculty of Chemical Engineering and Commodity Science, Kazimierz Pulaski University of Technology and Humanities in Radom, Chrobrego 27, 26-600 Radom, Poland
| | - Emilia Jóźwik
- Łukasiewicz Research Network-New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13A, 24-110 Pulawy, Poland
| |
Collapse
|
14
|
Liu Z. A review on the emerging conversion technology of cellulose, starch, lignin, protein and other organics from vegetable-fruit-based waste. Int J Biol Macromol 2023; 242:124804. [PMID: 37182636 DOI: 10.1016/j.ijbiomac.2023.124804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/13/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
A large amount of vegetable-fruit-based waste (VFBW) belonging to agricultural waste is produced around the world every year, imposing a huge burden on the environment and sustainable development. VFBW contains a lot of water and useful organic compounds (e.g., cellulose, minerals, starch, proteins, organic acids, lipids, and soluble sugars). Taking into account the composition characteristics and circular economy of VFBW, many new emerging conversion technologies for the treatment of VFBW (such as hydrothermal gasification, ultrasound-assisted extraction, and synthesis of bioplastics) have been developed. This review summarizes the current literature discussing the technical parameters, process, mechanism, and characteristics of various emerging conversion methods, as well as analyzing the application, environmental impact, and bio-economy of by-products from the conversion process, to facilitate solutions to the key problems of engineering cases using these methods. The shortcomings of the current study and the direction of future research are also highlighted in the review.
Collapse
Affiliation(s)
- Zhongchuang Liu
- Green Intelligence Environmental School, Yangtze Normal University, No. 16, Juxian Avenue, Fuling District, Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, No. 16, Juxian Avenue, Fuling District, Chongqing, China.
| |
Collapse
|
15
|
Kour R, Singh S, Sharma HB, Naik TSSK, Shehata N, N P, Ali W, Kapoor D, Dhanjal DS, Singh J, Khan AH, Khan NA, Yousefi M, Ramamurthy PC. Persistence and remote sensing of agri-food wastes in the environment: Current state and perspectives. CHEMOSPHERE 2023; 317:137822. [PMID: 36649897 DOI: 10.1016/j.chemosphere.2023.137822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/19/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Food demand is expected to increase globally by 60-110% from 2005 to 2050 due to diet shifts and population growth. This growth in food demand leads to the generation of enormous agri-food wastes (AFWs), which could be classified into pre-consumption and post-consumption. The AFW represents economic losses for all stakeholders along food supply chains, including consumers. It is reported that the direct financial, social, and environmental costs of food waste are 1, 0.9, and 0.7 trillion USD/year, respectively. Diverse conventional AFW management approaches are employed at the different life cycle levels (entre supply chain). The review indicates that inadequate transportation, erroneous packaging, improper storage, losses during processing, contamination, issues with handling, and expiry dates are the main reason for the generation of AFWs in the supply chain. Further, various variables such as cultural, societal, personal, and behavioral factors contribute to the AFW generation. The selection of a specific valorization technology is based on multiple physicochemical and biological parameters. Furthermore, other factors like heterogeneity of the AFWs, preferable energy carriers, by-products management, cost, end-usage applications, and environmental legislative and disposal processes also play a crucial role in adopting suitable technology. Valorization of AFW could significantly impact both economy and the environment. AFWs have been widely investigated for the development of engineered added-value biomaterials and renewable energy production. Considering this, this study has been carried out to highlight the significance of AFW cost, aggregation, quantification, and membrane-based strategies for its management. The study also explored the satellite remote sensing data for Spatio-temporal monitoring, mapping, optimization, and management of AFW management. Along with this, the study also explained the most recent strategies for AFW valorization and outlined the detailed policy recommendation along with opportunities and challenges. The review suggested that AFW should be managed using a triple-bottom-line strategy (economic, social, and environmental sustainability).
Collapse
Affiliation(s)
- Retinder Kour
- Interdisciplinary Centre for Water Research (ICWaR) Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR) Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Hari Bhakta Sharma
- Department of Civil Engineering, Sikkim Manipal Institute of Technology, Sikkim, 737136, India
| | - T S Sunil Kumar Naik
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 56001, India
| | - Nabila Shehata
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Egypt
| | - Pavithra N
- Interdisciplinary Centre for Water Research (ICWaR) Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Wahid Ali
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Jazan, 45971, Kingdom of Saudi Arabia
| | - Dhriti Kapoor
- Department of Botany, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, PO Box. 706, Jazan 45142, Saudi Arabia
| | - Nadeem A Khan
- Department of Civil Engineering, Mewat Engineering College, Nuh, Haryana-122107, India
| | - Mahmood Yousefi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR) Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| |
Collapse
|
16
|
Current Challenges in the Sustainable Valorisation of Agri-Food Wastes: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr11010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the upcoming years, the world will face societal challenges arising, in particular, from the impact of climate change and the inefficient use of natural resources, in addition to an exponential growth of the world population, which according to the United Nations (UN) estimations will be 9.8 billion in 2050. This increasing trend requires optimized management of natural resources with the use of value-added waste and a significant reduction in food loss and food waste. Moreover, the recent pandemic situation, COVID-19, has contributed indisputably. Along with the agri-food supply chain, several amounts of waste or by-products are generated. In most cases, these biomass wastes cause serious environmental concerns and high costs to enterprises. The valorisation of the agri-food loss and food industry wastes emerged as a useful strategy to produce certain value-added compounds with several potential applications, namely in the food, health, pharmaceutical, cosmetic, and environmental fields. Therefore, in this review, some of the crucial sustainable challenges with impacts on the valorisation of agri-food loss/wastes and by-products are discussed and identified, in addition to several opportunities, trends and innovations. Potential applications and usages of the most important compounds found in food loss/waste will be highlighted, with a focus on the food industry, pharmaceutical industry, and the environment.
Collapse
|
17
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
18
|
Hashemi B, Shiri F, Švec F, Nováková L. Green solvents and approaches recently applied for extraction of natural bioactive compounds. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Sapone V, Iannone A, Alivernini A, Cicci concenptualization A, Philip Jessop G, Bravi concenptualization M. An innovative simplified one-pot process for Astaxanthin purification from Paracoccus carotinifaciens. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Value-added utilization of fruit and vegetable processing by-products for the manufacture of biodegradable food packaging films. Food Chem 2022; 405:134964. [DOI: 10.1016/j.foodchem.2022.134964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
21
|
Optimization of Extraction of Natural Antimicrobial Pigments Using Supercritical Fluids: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It has become increasingly popular to replace chemically synthesized compounds with natural counterparts mostly found in natural sources, such as natural pigments. The conventional extraction processes for these compounds are limited by the toxicity and flammability of the solvents. To obtain pure extracts, it is always a longer process that requires several steps. Supercritical fluid extraction (SFE) is a cutting-edge green technology that is continuously increasing and expanding its fields of application, with benefits such as no waste produced, shorter extraction time, automation, and lower solvent consumption. The SFE of natural pigments has high potential in food, textiles, cosmetics, and pharmaceuticals; there are a number of other applications that can benefit from the SFE technique of natural pigments. The pigments that are extracted via SFE have a high potential for application and sustainability because of their biological and antimicrobial properties as well as low environmental risk. This review provides an update on the SFE technique, specifically as it pertains to the optimization of health-promoting pigments. This review focuses on antimicrobial pigments and the high efficiency of SFE in extracting pure antimicrobial pigments. In addition, the optimal conditions, biological activities, and possible applications of each category are explained.
Collapse
|
22
|
More PR, Jambrak AR, Arya SS. Green, environment-friendly and sustainable techniques for extraction of food bioactive compounds and waste valorization. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
A Systematic Review on Waste as Sustainable Feedstock for Bioactive Molecules—Extraction as Isolation Technology. Processes (Basel) 2022. [DOI: 10.3390/pr10081668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In today’s linear economy, waste streams, environmental pollution, and social–economic differences are increasing with population growth. The need to develop towards a circular economy is obvious, especially since waste streams are composed of valuable compounds. Waste is a heterogeneous and complex matrix, the selective isolation of, for example, polyphenolic compounds, is challenging due to its energy efficiency and at least partially its selectivity. Extraction is handled as an emerging technology in biorefinery approaches. Conventional solid liquid extraction with organic solvents is hazardous and environmentally unfriendly. New extraction methods and green solvents open a wider scope of applications. This research focuses on the question of whether these methods and solvents are suitable to replace their organic counterparts and on the definition of parameters to optimize the processes. This review deals with the process development of agro-food industrial waste streams for biorefineries. It gives a short overview of the classification of waste streams and focuses on the extraction methods and important process parameters for the isolation of secondary metabolites.
Collapse
|
24
|
Tiwari S, Yawale P, Upadhyay N. Carotenoids extraction strategies and potential applications for valorization of under-utilized waste biomass. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Yu J, Liu X, Zhang L, Shao P, Wu W, Chen Z, Li J, Renard CM. An overview of carotenoid extractions using green solvents assisted by Z-isomerization. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Benucci I, Lombardelli C, Mazzocchi C, Esti M. Natural colorants from vegetable food waste: Recovery, regulatory aspects, and stability—A review. Compr Rev Food Sci Food Saf 2022; 21:2715-2737. [DOI: 10.1111/1541-4337.12951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Ilaria Benucci
- Department of Agriculture and Forestry Science (DAFNE) Tuscia University Viterbo Italy
| | - Claudio Lombardelli
- Department of Agriculture and Forestry Science (DAFNE) Tuscia University Viterbo Italy
| | - Caterina Mazzocchi
- Department of Agriculture and Forestry Science (DAFNE) Tuscia University Viterbo Italy
| | - Marco Esti
- Department of Agriculture and Forestry Science (DAFNE) Tuscia University Viterbo Italy
| |
Collapse
|
27
|
Dat TD, Viet ND, Thanh VH, Nhi HND, Linh NTT, Ngan NTK, Nam HM, Thanh Phong M, Hieu NH. Optimization of Triterpenoid Extracted from Vietnamese Ganoderma lucidum via Supercritical Extraction Method and Biological Tests. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2032750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tran Do Dat
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Nguyen Duc Viet
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Vuong Hoai Thanh
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Ho Nguyen Dieu Nhi
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Ngo Thi Thuy Linh
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Kim Ngan
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Hoang Minh Nam
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Mai Thanh Phong
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Nguyen Huu Hieu
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| |
Collapse
|
28
|
Torres‐Haro A, Arellano‐Plaza M, Mateos‐Díaz JC, Espinosa‐Andrews H, Castillo‐Herrera GA. Non‐conventional high‐pressure extraction process: A comparative study for astaxanthin recovery from
Xanthophyllomyces dendrorhous. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alejandro Torres‐Haro
- Industrial Biotechnology Centro de Investigacion y Asistencia en Tecnologia y Diseno del Estado de Jalisco Guadalajara Mexico
| | - Melchor Arellano‐Plaza
- Industrial Biotechnology Centro de Investigacion y Asistencia en Tecnologia y Diseno del Estado de Jalisco Guadalajara Mexico
| | - Juan C. Mateos‐Díaz
- Industrial Biotechnology Centro de Investigacion y Asistencia en Tecnologia y Diseno del Estado de Jalisco Guadalajara Mexico
| | - Hugo Espinosa‐Andrews
- Food Technology Centro de Investigacion y Asistencia en Tecnologia y Diseno del Estado de Jalisco Guadalajara Mexico
| | - Gustavo A. Castillo‐Herrera
- Food Technology Centro de Investigacion y Asistencia en Tecnologia y Diseno del Estado de Jalisco Guadalajara Mexico
| |
Collapse
|
29
|
Rapid determination of lutein in fresh and commercial food samples using paper spray ionization mass spectrometry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Kultys E, Kurek MA. Green Extraction of Carotenoids from Fruit and Vegetable Byproducts: A Review. Molecules 2022; 27:molecules27020518. [PMID: 35056830 PMCID: PMC8779810 DOI: 10.3390/molecules27020518] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Carotenoids are characterized by a wide range of health-promoting properties. For example, they support the immune system and wound healing process and protect against UV radiation’s harmful effects. Therefore, they are used in the food industry and cosmetics, animal feed, and pharmaceuticals. The main sources of carotenoids are the edible and non-edible parts of fruit and vegetables. Therefore, the extraction of bioactive substances from the by-products of vegetable and fruit processing can greatly reduce food waste. This article describes the latest methods for the extraction of carotenoids from fruit and vegetable byproducts, such as solvent-free extraction—which avoids the costs and risks associated with the use of petrochemical solvents, reduces the impact on the external environment, and additionally increases the purity of the extract—or green extraction using ultrasound and microwaves, which enables a significant improvement in process efficiency and reduction in extraction time. Another method is supercritical extraction with CO2, an ideal supercritical fluid that is non-toxic, inexpensive, readily available, and easily removable from the product, with a high penetration capacity.
Collapse
|
31
|
Klettenhammer S, Ferrentino G, Zendehbad HS, Morozova K, Scampicchio M. Microencapsulation of linseed oil enriched with carrot pomace extracts using Particles from Gas Saturated Solutions (PGSS) process. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Jalali-Jivan M, Fathi-Achachlouei B, Ahmadi-Gavlighi H, Jafari SM. Improving the extraction efficiency and stability of β-carotene from carrot by enzyme-assisted green nanoemulsification. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
High-pressure fluid technologies: Recent approaches to the production of natural pigments for food and pharmaceutical applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Umair M, Jabbar S, Nasiru MM, Lu Z, Zhang J, Abid M, Murtaza MA, Kieliszek M, Zhao L. Ultrasound-Assisted Extraction of Carotenoids from Carrot Pomace and Their Optimization through Response Surface Methodology. Molecules 2021; 26:6763. [PMID: 34833855 PMCID: PMC8618288 DOI: 10.3390/molecules26226763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Ultrasound-assisted extraction (UAE) was used to extract carotenoids from the carrot pomace. To investigate the effect of independent variables on the UAE, the response surface methodology (RSM) with central-composite design (CCD) was employed. The study was conducted with three independent variables including extraction time (min), temperature (°C), and ethanol concentration (%). The results showed that the optimal conditions for UAE were achieved with an extraction time of 17 min, temperature of 32 °C, and ethanol concentration of 51% of total carotenoids (31.82 ± 0.55); extraction time of 16 min, temperature of 29 °C, and ethanol concentration of 59% for a combination of β-carotene (14.89 ± 0.40), lutein (5.77 ± 0.19), and lycopene (2.65 ± 0.12). The non-significant (p > 0.05) correlation under optimal extraction conditions between predicted and experimental values suggested that UAE is the more productive process than conventional techniques for the extraction of carotenoids from the carrot pomace.
Collapse
Affiliation(s)
- Muhammad Umair
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, Shenzhen 518060, China;
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.M.N.); (Z.L.); (J.Z.)
| | - Saqib Jabbar
- Food Science Research Institute (FSRI), National Agricultural Research Centre (NARC), Islamabad 46000, Pakistan;
| | - Mustapha M. Nasiru
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.M.N.); (Z.L.); (J.Z.)
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.M.N.); (Z.L.); (J.Z.)
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.M.N.); (Z.L.); (J.Z.)
| | - Muhammad Abid
- Institute of Food and Nutritional Sciences, Pir Mehr Ali Shah, Arid Agriculture University Rawalpindi, Rawalpindi 44000, Pakistan;
| | - Mian Anjum Murtaza
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan;
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Liqing Zhao
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
35
|
Dini I. Bio Discarded from Waste to Resource. Foods 2021; 10:2652. [PMID: 34828933 PMCID: PMC8621767 DOI: 10.3390/foods10112652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
The modern linear agricultural production system allows the production of large quantities of food for an ever-growing population. However, it leads to large quantities of agricultural waste either being disposed of or treated for the purpose of reintroduction into the production chain with a new use. Various approaches in food waste management were explored to achieve social benefits and applications. The extraction of natural bioactive molecules (such as fibers and antioxidants) through innovative technologies represents a means of obtaining value-added products and an excellent measure to reduce the environmental impact. Cosmetic, pharmaceutical, and nutraceutical industries can use natural bioactive molecules as supplements and the food industry as feed and food additives. The bioactivities of phytochemicals contained in biowaste, their potential economic impact, and analytical procedures that allow their recovery are summarized in this study. Our results showed that although the recovery of bioactive molecules represents a sustainable means of achieving both waste reduction and resource utilization, further research is needed to optimize the valuable process for industrial-scale recovery.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
36
|
Supercritical CO 2 Extraction of Bioactive Compounds from Mango ( Mangifera indica L.) Peel and Pulp. Foods 2021; 10:foods10092201. [PMID: 34574311 PMCID: PMC8464866 DOI: 10.3390/foods10092201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
The potential of supercritical CO2 (SC-CO2) for the extraction of bioactive compounds from mango by-products was assessed. Carotenoid extraction was optimized using a design of experiments based on temperature (35, 55 and 70 °C), pressure (10 and 35 MPa) and co-solvent addition (0%, 10% and 20% of ethanol or acetone). Moreover, the co-extraction of phenolic acids, flavonoids and xanthonoids was evaluated in a subset of parameters. Finally, a comparison was made between SC-CO2 and a two-step organic solvent extraction of the bioactive compounds from the pulp and peel fractions of two Ecuadorian varieties. The optimal extraction temperature was found to be dependent on the bioactive type, with phenolics requiring higher temperature than carotenoids. The optimal overall conditions, focused on maximal carotenoids recovery, were found to be 55 °C, 35 MPa and 20% of ethanol. The main carotenoid was β-carotene, while phenolics differed among the varieties. The bioactive content of the peel was up to 4.1-fold higher than in the pulp fraction. Higher antioxidant activity was found in the extracts obtained with organic solvents. SC-CO2 is a promising technology for the isolation of valuable compounds from mango by-products.
Collapse
|
37
|
Awad AM, Kumar P, Ismail-Fitry MR, Jusoh S, Ab Aziz MF, Sazili AQ. Green Extraction of Bioactive Compounds from Plant Biomass and Their Application in Meat as Natural Antioxidant. Antioxidants (Basel) 2021; 10:1465. [PMID: 34573097 PMCID: PMC8466011 DOI: 10.3390/antiox10091465] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Plant extracts are rich in various bioactive compounds exerting antioxidants effects, such as phenolics, catechins, flavonoids, quercetin, anthocyanin, tocopherol, rutin, chlorogenic acid, lycopene, caffeic acid, ferulic acid, p-coumaric acid, vitamin C, protocatechuic acid, vitamin E, carotenoids, β-carotene, myricetin, kaempferol, carnosine, zeaxanthin, sesamol, rosmarinic acid, carnosic acid, and carnosol. The extraction processing protocols such as solvent, time, temperature, and plant powder should be optimized to obtain the optimum yield with the maximum concentration of active ingredients. The application of novel green extraction technologies has improved extraction yields with a high concentration of active compounds, heat-labile compounds at a lower environmental cost, in a short duration, and with efficient utilization of the solvent. The application of various combinations of extraction technologies has proved to exert a synergistic effect or to act as an adjunct. There is a need for proper identification, segregation, and purification of the active ingredients in plant extracts for their efficient utilization in the meat industry, as natural antioxidants. The present review has critically analyzed the conventional and green extraction technologies in extracting bioactive compounds from plant biomass and their utilization in meat as natural antioxidants.
Collapse
Affiliation(s)
- Alzaidi Mohammed Awad
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (A.M.A.); (P.K.)
| | - Pavan Kumar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (A.M.A.); (P.K.)
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Mohammad Rashedi Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia;
| | - Shokri Jusoh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (S.J.); (M.F.A.A.)
| | - Muhamad Faris Ab Aziz
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (S.J.); (M.F.A.A.)
| | - Awis Qurni Sazili
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (A.M.A.); (P.K.)
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia; (S.J.); (M.F.A.A.)
| |
Collapse
|
38
|
Improvement of Carrot Accelerated Solvent Extraction Efficacy Using Experimental Design and Chemometric Techniques. Processes (Basel) 2021. [DOI: 10.3390/pr9091652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Human studies have demonstrated the multiple health benefits of fruits and vegetables. Due to its high fiber, mineral and antioxidant content, carrot is an ideal source for the development of nutraceuticals or functional ingredients. Current research assesses accelerated solvent extraction (ASE) traits which affect the antioxidant qualities of carrot extract using response surface methodology (RSM), hierarchical cluster analysis (HCA), and the sum of ranking differences (SRD). A mixture of organic solvents, acetone, and ethanol with or without the addition of 20% water was applied. The total carotenoid and polyphenol contents in extracts, as well as their scavenging activity and reducing power, were used as responses for the optimization of ASE extraction. RSM optimization, in the case of 20% water involvement, included 49% of acetone and 31% of ethanol (Opt1), while in the case of pure organic solvents, pure ethanol was the best choice (Opt2). The results of HCA clearly pointed out significant differences between the properties of extracts with or without water. SRD analysis confirmed ethanol to be optimal as well. RSM, HCA, and SRD analysis confirmed the same conclusion—water in the solvent mixture can significantly affect the extraction efficacy, and the optimal solvent for extracting antioxidants from carrot by ASE is pure ethanol.
Collapse
|
39
|
Rifna EJ, Misra NN, Dwivedi M. Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review. Crit Rev Food Sci Nutr 2021; 63:719-752. [PMID: 34309440 DOI: 10.1080/10408398.2021.1952923] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fruits and vegetables are the most important commodities of trade value among horticultural produce. They are utilized as raw or processed, owing to the presence of health-promoting components. Significant quantities of waste are produced during fruits and vegetables processing that are majorly accounted by waste peels (∼90-92%). These wastes, however, are usually exceptionally abundant in bioactive molecules. Retrieving these valuable compounds is a core objective for the valorization of waste peel, besides making them a prevailing source of beneficial additives in food and pharmaceutical industry. The current review is focused on extraction of bioactive compounds derived from fruit and vegetable waste peels and highlights the supreme attractive conventional and non-conventional extraction techniques, such as microwave-assisted, ultrasound assisted, pulsed electric fields, pulsed ohmic heating, pressurized liquid extraction, supercritical fluid extraction, pressurized hot water, high hydrostatic pressure, dielectric barrier discharge plasma extraction, enzyme-assisted extraction and the application of "green" solvents say as well as their synergistic effects that have been applied to recover bioactive from waste peels. Superior yields achieved with non-conventional technologies were identified to be of chief interest, considering direct positive economic consequences. This review also emphasizes leveraging efficient, modern extraction technologies for valorizing abundantly available low-cost waste peel, to achieve economical substitutes, whilst safeguarding the environment and building a circular economy. It is supposed that the findings discussed though this review might be a valuable tool for fruit and vegetable processing industry to imply an economical and effectual sustainable extraction methods, converting waste peel by-product to a high added value functional product.
Collapse
Affiliation(s)
- E J Rifna
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - N N Misra
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Madhuresh Dwivedi
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
40
|
Jayesree N, Hang PK, Priyangaa A, Krishnamurthy NP, Ramanan RN, Turki MSA, Charis MG, Ooi CW. Valorisation of carrot peel waste by water-induced hydrocolloidal complexation for extraction of carotene and pectin. CHEMOSPHERE 2021; 272:129919. [PMID: 35534975 DOI: 10.1016/j.chemosphere.2021.129919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/29/2021] [Accepted: 02/06/2021] [Indexed: 06/14/2023]
Abstract
Food processing waste is a potential resource of a variety of bioactive compounds. Carrot peel is a good example of phytonutrient-rich agroindustrial byproducts generated from the processing of carrots. The conventional methods for the extraction of phytonutrients typically involve large volume of organic solvents, complex procedures and expensive equipment. Hence, the development of green and simpler extraction method is advantageous to the valorisation of agroindustrial waste in terms of economic and sustainability. In this study, the applicability of carotene-pectin hydrocolloidal complexation to the co-extraction of carotenoids and pectin from carrot peel waste was evaluated. Carrot peel waste is a potential feedstock for this extraction method because it is rich in carotenoids and pectin, which could form the colloidal complex induced by water. The operating conditions of complexation process were optimized using response surface methodology. The maximum yield and purity of β-carotenes extracted from carrot peel are 1.17 mg/100 g wet sample and 96%, respectively. In comparison to the conventional solvent extraction method, the number of operating steps in carotene-pectin hydrocolloidal complexation is significantly lower and the antioxidant activity of β-carotenes was higher. The carotene-pectin hydrocolloidal complexation method is therefore a green extraction method that enables the valorisation of agricultural waste to recover carotenoids.
Collapse
Affiliation(s)
- Nagarajan Jayesree
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Pui Kay Hang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Arumugam Priyangaa
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | | | | | - M S Aldawoud Turki
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M Galanakis Charis
- Department of Research & Innovation, Galanakis Laboratories, Skalidi 34, GR-73131, Chania, Greece; King Saud University, College of Sciences, Riyadh, Saudi Arabia; Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
41
|
Optimization of Natural Antioxidants Extraction from Pineapple Peel and Their Stabilization by Spray Drying. Foods 2021; 10:foods10061255. [PMID: 34205876 PMCID: PMC8228717 DOI: 10.3390/foods10061255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/04/2023] Open
Abstract
Pineapple peel still contains an important amount of phenolic compounds and vitamins with valuable antioxidant activity. In this way, the aim of this study was the recovery of the bioactive compounds from pineapple peel using environmentally friendly and low-cost techniques, envisaging their application in food products. From the solid-liquid extraction conditions tested, the one delivering an extract with higher total phenolic content and antioxidant capacity was a single extraction step with a solvent-pineapple peel ratio of 1:1 (w/w) for 25 min at ambient temperature, using ethanol-water (80-20%) as a solvent. The resulting extract revealed a total phenolic content value of 11.10 ± 0.01 mg gallic acid equivalent (GAE)/g dry extract, antioxidant activity of 91.79 ± 1.98 µmol Trolox/g dry extract by the DPPH method, and 174.50 ± 9.98 µmol Trolox/g dry extract by the FRAP method. The antioxidant rich extract was subjected to stabilization by the spray drying process at 150 °C of inlet air temperature using maltodextrin (5% w/w) as an encapsulating agent. The results showed that the antioxidant capacity of the encapsulated compounds was maintained after encapsulation. The loaded microparticles obtained, which consist of a bioactive powder, present a great potential to be incorporated in food products or to produce bioactive packaging systems.
Collapse
|
42
|
Dhakane-Lad J, Kar A. Supercritical CO 2 extraction of lycopene from pink grapefruit (Citrus paradise Macfad) and its degradation studies during storage. Food Chem 2021; 361:130113. [PMID: 34062453 DOI: 10.1016/j.foodchem.2021.130113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 01/22/2023]
Abstract
Lycopene was extracted from pink grapefruit using SC-CO2 and rice bran oil as co-solvent. Response surface methodology was employed to evaluate the individual and interactive effects of three process parameters varied at five levels i.e. pressure (250, 300, 375, 450 & 500 bar), temperature (55, 60, 70, 80 & 85 °C), and extraction time (60, 90, 135, 180 & 210 min). Single optimum point for multiple response variables was achieved at 325 bar, 64 °C, and 143 min with overall desirability of 0.92 at which 70.52 ± 3.65% (lycopene extraction efficiency) and 11154 ± 148 ppm (γ-oryzanol) were predicted. Extraction temperatures of more than 80 °C and time beyond 180 min led to the isomerization of lycopene. Lycopene storage at 3 °C, 10 °C, & 25 °C showed average k and half-life values as 0.018, 0.030, & 0.075 and 40, 23, & 9 days, respectively for first-order degradation kinetics; depicting faster degradation at higher storage temperatures.
Collapse
Affiliation(s)
- Jyoti Dhakane-Lad
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Abhijit Kar
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
43
|
Mei Z, Zhang R, Zhao Z, Zheng G, Xu X, Yang D. Extraction process and method validation for bioactive compounds from Citrus reticulata cv. Chachiensis: Application of response surface methodology and HPLC–DAD. ACTA CHROMATOGR 2021. [DOI: 10.1556/1326.2020.00789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractCitrus reticulata cv. Chachiensis, a traditional Chinese herb, has extensive medicinal and edible effects. 3′,4′,5,6,7,8-Hexamethoxyflavone (HM) and 5,6,7,8,4′-pentamethoxyflavone (PM) are main bioactive compounds in Chachiensis, which have been reported to possess various biological properties. In this study, supercritical CO2 extraction (SCE) and high-speed countercurrent chromatography (HSCCC) were utilized to prepare HM and PM from Chachiensis. The contents of target compounds were determined by a high-performance liquid chromatography method with diode-array detection (HPLC-DAD), which was validated using the following parameters: linearity, sensitivity, repeatability, stability, precision and accuracy. The SCE conditions were optimized using response surface methodology with central composite design. Obtained optimum conditions were temperature of 37.9 °C, pressure of 26.3 MPa, and modifier volume of 81.0 mL. Under above conditions, the recoveries of target compounds were 92.52 ± 0.83 and 96.36 ± 0.43%, respectively. The most appropriate solvent system for HSCCC was selected as n-hexane/ethyl acetate/methanol/water (1:0.8:1:1.2, v/v). The HSCCC fractions were detected by HPLC-DAD, liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR). The results indicated that this method was successfully applied to obtain HM and PM with high purities and high recoveries from Chachiensis.
Collapse
Affiliation(s)
- Zhenying Mei
- 1School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Rongfei Zhang
- 1School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhimin Zhao
- 1School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- 2Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, 510006, China
| | - Guodong Zheng
- 3School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xinjun Xu
- 1School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- 2Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, 510006, China
| | - Depo Yang
- 1School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- 2Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
44
|
Villacís-Chiriboga J, Vera E, Van Camp J, Ruales J, Elst K. Valorization of byproducts from tropical fruits: A review, Part 2: Applications, economic, and environmental aspects of biorefinery via supercritical fluid extraction. Compr Rev Food Sci Food Saf 2021; 20:2305-2331. [PMID: 33864344 DOI: 10.1111/1541-4337.12744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/30/2021] [Accepted: 02/21/2021] [Indexed: 12/25/2022]
Abstract
The global trade of tropical fruits is expected to increase significantly in the coming years. In 2018, the production was approximately 100 million tones, an increase of 3.3% compared to the previous year. Nevertheless, according to the Food and Agricultural Organization, every year one-third of the food produced in the world for human consumption is lost or wasted. More specifically, around 45% of the fruits, constituted mainly by peels, seeds, and pulps after juice extraction, are discarded mainly in the agricultural and processing steps. Therefore, decreasing and/or using these byproducts, which are often rich in bioactive components, have become an important focus for both the scientific community and the fruit processing industry. In this line, supercritical fluid extraction (SFE) technology is expected to play a significant role in the valorization of these byproducts. This review presents the concepts of a tropical fruit biorefinery using supercritical CO2 extraction and the potential applications of the isolated fractions. There is a specific focus on the extraction of bioactive compounds, that is, carotenoids and phenolics, but also oils and other valuable molecules. Moreover, the techno-economic and environmental performance is assessed. Overall, the biorefinery of tropical fruits via SFE provides new opportunities for development of food and pharmaceutical products with improved economic and environmental performance.
Collapse
Affiliation(s)
- José Villacís-Chiriboga
- Business Unit Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Mol, Belgium.,Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium.,Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito, Pichincha, Ecuador
| | - Edwin Vera
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito, Pichincha, Ecuador
| | - John Van Camp
- Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| | - Jenny Ruales
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito, Pichincha, Ecuador
| | - Kathy Elst
- Business Unit Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Mol, Belgium
| |
Collapse
|
45
|
Ferreira JPDL, Queiroz AJDM, de Figueirêdo RMF, da Silva WP, Gomes JP, Santos DDC, Silva HA, Rocha APT, de Paiva ACC, Chaves ADCG, de Lima AGB, de Andrade RO. Utilization of Cumbeba ( Tacinga inamoena) Residue: Drying Kinetics and Effect of Process Conditions on Antioxidant Bioactive Compounds. Foods 2021; 10:788. [PMID: 33917616 PMCID: PMC8067508 DOI: 10.3390/foods10040788] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 11/28/2022] Open
Abstract
The residue generated from the processing of Tacinga inamoena (cumbeba) fruit pulp represents a large amount of material that is discarded without proper application. Despite that, it is a raw material that is source of ascorbic acid, carotenoids and phenolic compounds, which are valued in nutraceutical diets for allegedly combating free radicals generated in metabolism. This research paper presents a study focused on the mathematical modeling of drying kinetics and the effect of the process on the level of bioactive of cumbeba residue. The experiments of cumbeba residue drying (untreated or whole residue (WR), crushed residue (CR) and residue in the form of foam (FR)) were carried out in a fixed-bed dryer at four air temperatures (50, 60, 70 and 80 °C). Effective water diffusivity (Deff) was determined by the inverse method and its dependence on temperature was described by an Arrhenius-type equation. It was observed that, regardless of the type of pretreatment, the increase in air temperature resulted in higher rate of water removal. The Midilli model showed better simulation of cumbeba residue drying kinetics than the other models tested within the experimental temperature range studied. Effective water diffusivity (Deff) ranged from 6.4890 to 11.1900 × 10-6 m2/s, 2.9285 to 12.754 × 10-9 m2/s and 1.5393 × 10-8 to 12.4270 × 10-6 m2/s with activation energy of 22.3078, 46.7115 and 58.0736 kJ/mol within the temperature range of 50-80 °C obtained for the whole cumbeba, crushed cumbeba and cumbeba residue in the form of foam, respectively. In relation to bioactive compounds, it was observed that for a fixed temperature the whole residue had higher retention of bioactive compounds, especially phenolic compounds, whereas the crushed residue and the residue in the form of foam had intermediate and lower levels, respectively. This study provides evidence that cumbeba residue in its whole form can be used for the recovery of natural antioxidant bioactive compounds, mainly phenolic compounds, with the possibility of application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- João Paulo de Lima Ferreira
- Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (J.P.d.L.F.); (R.M.F.d.F.); (J.P.G.)
| | - Alexandre José de Melo Queiroz
- Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (J.P.d.L.F.); (R.M.F.d.F.); (J.P.G.)
| | - Rossana Maria Feitosa de Figueirêdo
- Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (J.P.d.L.F.); (R.M.F.d.F.); (J.P.G.)
| | - Wilton Pereira da Silva
- Department of Physics, Federal University of Campina Grande, Campina Grande 58429-900, Brazil;
| | - Josivanda Palmeira Gomes
- Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (J.P.d.L.F.); (R.M.F.d.F.); (J.P.G.)
| | - Dyego da Costa Santos
- Department of Technology in Agroindustry, Federal Institute of Acre, Xapuri 69930-000, Brazil;
| | - Hanndson Araujo Silva
- Department of Processes Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil;
| | - Ana Paula Trindade Rocha
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (A.P.T.R.); (A.C.C.d.P.)
| | - Anna Catarina Costa de Paiva
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (A.P.T.R.); (A.C.C.d.P.)
| | - Alan Del Carlos Gomes Chaves
- Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (A.D.C.G.C.); (A.G.B.d.L.)
| | - Antônio Gilson Barbosa de Lima
- Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (A.D.C.G.C.); (A.G.B.d.L.)
| | | |
Collapse
|
46
|
de Souza FG, Náthia-Neves G, de Araújo FF, Dias Audibert FL, Delafiori J, Neri-Numa IA, Catharino RR, de Alencar SM, de Almeida Meireles MA, Pastore GM. Evaluation of antioxidant capacity, fatty acid profile, and bioactive compounds from buritirana (Mauritiella armata Mart.) oil: A little-explored native Brazilian fruit. Food Res Int 2021; 142:110260. [PMID: 33773690 DOI: 10.1016/j.foodres.2021.110260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/22/2021] [Accepted: 02/18/2021] [Indexed: 11/30/2022]
Abstract
Buritirana (Mauritiella armata Mart.) is a fruit species native to the Amazon and Cerrado region, belonging to the Arecaceae family. It has high nutritional and functional potential, yet little explored. In this study, we evaluated for the first time the overall yield, behavior of total carotenoids in the extraction kinetics, fatty acid profile, bioactive compounds, and the antioxidant capacity of the oil from buritirana fractions obtained by supercritical CO2. The highest extraction yield was found in the pulp and whole without seed at 60 °C (18.06 ± 0.40 and 14.55 ± 1.10 g 100 g-1 of the freeze-dried sample (fdw), respectively), and in the peel at 40 °C (8.31 ± 0.73 g 100 g-1 fdw). During the extraction kinetics, the pulp had the highest yields of oil (41.57%) and total carotenoids (8.34 mg g-1) after 61 min at 40 °C. The antioxidant potential, fatty acid profile, and α-tocopherol content were dependent on both fraction and temperature, with oleic acid being the main fatty acid. The oil from the whole fraction without seed had the largest number (20) of identified phenolic compounds. The extraction at 60 °C reduced the relative intensity of most compounds in the whole without seed and pulp. Moreover, it increased the intensity of the compounds in the peel. These results suggest that buritirana is a good oil source with great bioactive potential to produce new products with functional claims.
Collapse
Affiliation(s)
- Florisvaldo Gama de Souza
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| | - Grazielle Náthia-Neves
- LASEFI - Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Fábio Fernandes de Araújo
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| | - Flavia Luísa Dias Audibert
- Innovare Laboratory of Biomarkers, Faculty of Pharmaceutical Sciences, University of Campinas, São Paulo, Brazil
| | - Jeany Delafiori
- Innovare Laboratory of Biomarkers, Faculty of Pharmaceutical Sciences, University of Campinas, São Paulo, Brazil
| | - Iramaia Angélica Neri-Numa
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Rodrigo Ramos Catharino
- Innovare Laboratory of Biomarkers, Faculty of Pharmaceutical Sciences, University of Campinas, São Paulo, Brazil
| | | | | | - Glaucia Maria Pastore
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
47
|
Salami A, Asefi N, Kenari RE, Gharekhani M. Extraction of pumpkin peel extract using supercritical CO 2 and subcritical water technology: Enhancing oxidative stability of canola oil. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:1101-1109. [PMID: 33664529 PMCID: PMC7884548 DOI: 10.1007/s13197-020-04624-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 06/15/2020] [Accepted: 07/03/2020] [Indexed: 11/18/2022]
Abstract
In this study, subcritical water extraction (SWE) and the supercritical fluid extraction (SFE) methods were used for the extraction of pumpkin peel extract. Total phenolic content and carotenoid compounds of extracts were measured. The extracts were added to canola oil at a concentration of 400 ppm and were stored at 30 °C for 60 days. The peroxide, carbonyl and acid values of the oil samples were measured, then compared with 100 ppm of tert-butylhydroquinone (TBHQ) synthetic antioxidants. The results showed that the total phenol content of obtained extract by SFE (353.5 mg GA/100 g extract) was higher than by SWE (213.6 mg GA/100 g extract), while the carotenoid content was higher for obtained extract by SWE (15.22 mg/100 g extract) compared to SFE (11.48 mg/100 g extract). The result of oil oxidation showed that the oxidative stability of the oil containing the mixed extract (SFE-SWE) is higher than the separate extract, consequently showing higher performance in preventing oil oxidation compared to TBHQ.
Collapse
Affiliation(s)
- Azadeh Salami
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Narmela Asefi
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Reza Esmaeilzadeh Kenari
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Mazandaran, Iran
| | - Mehdi Gharekhani
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
48
|
The Application of Supercritical Fluids Technology to Recover Healthy Valuable Compounds from Marine and Agricultural Food Processing By-Products: A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9020357] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Food by-products contain a remarkable source of bioactive molecules with many benefits for humans; therefore, their exploitation can be an excellent opportunity for the food sector. Moreover, the revalorization of these by-products to produce value-added compounds is considered pivotal for sustainable growth based on a circular economy. Traditional extraction technologies have several drawbacks mainly related to the consumption of hazardous organic solvents, and the high temperatures maintained for long extraction periods which cause the degradation of thermolabile compounds as well as a low extraction efficiency of desired compounds. In this context, supercritical fluid extraction (SFE) has been explored as a suitable green technology for the recovery of a broad range of bioactive compounds from different types of agri-food wastes. This review describes the working principle and development of SFE technology to valorize by-products from different origin (marine, fruit, vegetable, nuts, and other plants). In addition, the potential effects of the extracted active substances on human health were also approached.
Collapse
|
49
|
Antioxidant Molecules from Plant Waste: Extraction Techniques and Biological Properties. Processes (Basel) 2020. [DOI: 10.3390/pr8121566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The fruit, vegetable, legume, and cereal industries generate many wastes, representing an environmental pollution problem. However, these wastes are a rich source of antioxidant molecules such as terpenes, phenolic compounds, phytosterols, and bioactive peptides with potential applications mainly in the food and pharmaceutical industries, and they exhibit multiple biological properties including antidiabetic, anti-obesity, antihypertensive, anticancer, and antibacterial properties. The aforementioned has increased studies on the recovery of antioxidant compounds using green technologies to value plant waste, since they represent more efficient and sustainable processes. In this review, the main antioxidant molecules from plants are briefly described and the advantages and disadvantages of the use of conventional and green extraction technologies used for the recovery and optimization of the yield of antioxidant naturals are detailed; finally, recent studies on biological properties of antioxidant molecules extracted from plant waste are presented here.
Collapse
|
50
|
Uwineza PA, Waśkiewicz A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020; 25:molecules25173847. [PMID: 32847101 PMCID: PMC7504334 DOI: 10.3390/molecules25173847] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 11/16/2022] Open
Abstract
In this review, recent advances in greener technology for extracting natural bioactive components from plant origin sources are discussed. Bioactive compounds of plant origin have been defined as natural chemical compounds present in small amounts in plants. Researchers have shown interest in extracting bioactive compounds because of their human health benefits and characteristics of being eco-friendly and generally recognized as safe. Various new extraction methods and conventional extraction methods have been developed, however, until now, no unique approach has been presented as a benchmark for extracting natural bioactive compounds from plants. The selectivity and productivity of traditional and modern extraction techniques generally depend on selecting the critical input parameters, knowing the nature of plant-based samples, the structure of bioactive compounds, and good scientific skills. This work aims to discuss the recent advances in supercritical fluid extraction techniques, especially supercritical carbon dioxide, along with the fundamental principles for extracting bioactive compounds from natural plant materials such as herbs, spices, aromatic and medicinal plants.
Collapse
|