1
|
Jia Z, Yang F, Liu X, Zhang X, Hu W, Sheng Z. The n-butanol fraction of the Xiao-Chai-Hu decoction alleviates the endocrine disturbance in the liver of mice exposed to lead. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114381. [PMID: 34197961 DOI: 10.1016/j.jep.2021.114381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lead is a toxic heavy metal that causes health risks globally. However, the mechanism of endocrine poisoning and detoxification of lead poisoning, especially in the liver, still needs to be studied. Xiao-Chai-Hu decoction (XCHD) is regarded as an antidote and an anti-hepatotoxic traditional prescription that has been recorded in the pharmacopeia of the People's Republic of China. AIM OF THE STUDY The study aimed to probe the hepatoprotective activity of XCHD in the regulation of endocrine dysfunction in the liver and its molecular mechanism. MATERIALS AND METHODS The mice from the Institute of Cancer Research (ICR) were exposed to different concentrations of XCHD and lead. Then, serum biochemical indices and liver pathology were analyzed. The key differential genes were detected by qRT-PCR and Western blot. RESULTS According to the biochemical and histopathological analysis, XCHD-NBA was the most effective in attenuating lead-induced hepatotoxicity. From the transcriptome, we analyzed the key genes of XCHD-NBA in the regulation of lead toxicity, including Tubb2a, Stip1, Cyp4a12a, Cyp2c50, Ugt1a1, Cyp3a11, Cyp4a12b, Ahsa1, Cyp2c54, Tubb4b, Esr1, Hsp90aa1, Tuba1a, Tuba1c, and Hsph1. We also analyzed the main components of XCHD-NBA by LC-MS. Because of their extensive role in regulating the endocrine function, baicalin and glycyrrhizin were identified as the main active components of XCHD in regulating endocrine disorders caused by lead. CONCLUSIONS Lead can disturb the endocrine regulatory process of the liver, while XCHD-NBA alleviates lead-induced liver injury by regulating the endocrine regulatory process.
Collapse
Affiliation(s)
- Zheng Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, PR China
| | - Fan Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaoqing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaomeng Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wanjun Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zunlai Sheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, PR China.
| |
Collapse
|
2
|
He GL, Luo Z, Shen TT, Yang J, Li P, Luo X, Yang XS. Inhibition of HSP90β by ganetespib blocks the microglial signalling of evoked pro-inflammatory responses to heat shock. Int J Biochem Cell Biol 2019; 106:35-45. [PMID: 30448425 DOI: 10.1016/j.biocel.2018.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022]
Abstract
Although microglial reaction to heat shock is considered to be protective, heat shock is still a potential hazard caused by high temperatures. Recent studies indicate that the inhibition of the 90-kDa heat shock protein (HSP90) increasing the protective heat shock response and suppressing inflammatory signalling pathways in several diseases. Nevertheless, the effects of heat shock on microglial pro-inflammatory responses are not completely identical. Here, we aim to investigate the effect of the HSP90 inhibitor ganetespib on microglial pro-inflammatory responses following heat shock. HSP90 isoforms were determined by transfecting N9 microglial cells (N9 cells) with enzymatically prepared siRNA (esiRNAs). We found that heat shock significantly increased the secretion of tumour necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-6 and nitric oxide (NO), and the phosphorylation of extracellular signal-regulated kinase (ERK), Janus-activated kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκB-α) and p65 nuclear factor kappa-light-chain-enhancer of activated B cells (p65 NF-κB) in N9 cells. These increases, except for phospho-p65, were attenuated efficiently in a dose-dependent manner by ganetespib pretreatment. Furthermore, the suppression of heat shock-evoked cytokines and NO production, and the phosphorylation of ERK, JAK2 and STAT3 in cytosols and/or nuclei were also observed by administering esiRNA HSP90β, but not HSP90α, in heat shock-treated N9 cells. Taken together, our findings demonstrate that the HSP90 inhibitor ganetespib blocks pro-inflammatory responses in heat shock-treated N9 cells via a signalling mechanism involving HSP90β and STAT3.
Collapse
Affiliation(s)
- Gen-Lin He
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Zhen Luo
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Ting-Ting Shen
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Ju Yang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Ping Li
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Xue Luo
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Xue-Sen Yang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China.
| |
Collapse
|
3
|
iTRAQ-based proteomic analysis identifies proteins involved in limb regeneration of swimming crab Portunus trituberculatus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 26:10-19. [PMID: 29482113 DOI: 10.1016/j.cbd.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 11/22/2022]
Abstract
The swimming crab (Portunus trituberculatus) has a striking capacity for limb regeneration, which has drawn the interest of many researchers. In this study, isobaric tag for relative and absolute quantitation (iTRAQ) approach was utilised to investigate protein abundance changes during limb regeneration in this species. A total of 1830 proteins were identified, of which 181 were significantly differentially expressed, with 94 upregulated and 87 downregulated. Our results highlight the complexity of limb regeneration and its regulation through cooperation of various biological processes including cytoskeletal changes, extracellular matrix (ECM) remodelling and ECM-receptor interactions, protein synthesis, signal recognition and transduction, energy production and conversion, and substance transport and metabolism. Additionally, real-time PCR confirmed that mRNA levels of differentially expressed genes were correlated with protein levels. Our results provide a basis for studying the regulatory mechanisms associated with crab limb regeneration.
Collapse
|
4
|
Wang X, Zhang Y, Zhao Y, Liang Y, Xiang C, Zhou H, Zhang H, Zhang Q, Qing H, Jiang B, Xiong H, Peng L. CD24 promoted cancer cell angiogenesis via Hsp90-mediated STAT3/VEGF signaling pathway in colorectal cancer. Oncotarget 2018; 7:55663-55676. [PMID: 27494878 PMCID: PMC5342444 DOI: 10.18632/oncotarget.10971] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 07/16/2016] [Indexed: 01/05/2023] Open
Abstract
CD24 is involved in tumor progression of various cancers, but the effects of CD24 on tumor angiogenesis in colorectal cancer are still unknown. We aimed to investigate the underlying mechanism and role of CD24 on colorectal cancer (CRC) angiogenesis. Our data showed that the microvessal density (MVD) was related to the expression of CD24 in primary and metastasis CRC. Silencing of CD24 could dramatically decrease human umbilical vein endothelial cell (HUVEC) migration, invasion and tubule formation, but trivially affected cell proliferation. We also mechanically showed that silencing CD24 could downregulate the expression of VEGF via inhibiting the phosphorylation and translocation of STAT3. Moreover, Hsp90 was identified as the down-interaction protein of CD24 with co-immunoprecipitation assay and systematic mass spectrometry. Immunofluorescence results showed Hsp90 partly co-localized with CD24 in CRC cell membrane and there was a positive correlation between CD24 and Hsp90 expression in CRC tissues. We gradually evidenced that Hsp90 modulated the stability and degradation of CD24 in a proteasome-depended manner, and transferred the signal transmission from CD24 to STAT3. 17-AAG, a specific Hsp90, could abrogate the CD24 induce- HUVEC migration, invasion and tubule formation in vitro and in vivo. Collectively, our results suggested that CD24 induced CRC angiogenesis in Hsp90-dependent manner and activated STAT3-mediated transcription of VEGF. We provided a new insight into the regulation mechanism of tumor angiogenesis by exploring the role of CD24 in angiogenesis.
Collapse
Affiliation(s)
- Xinying Wang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Guangzhou 510515, China
| | - Yu Zhang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming 65003, China
| | - Yingying Zhao
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Guangzhou 510515, China
| | - Yanling Liang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Guangzhou 510515, China
| | - Cheng Xiang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Guangzhou 510515, China
| | - Huanyu Zhou
- Department of Ultrasound Imaging, 306 Hospital of PLA, Beijing 100101, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical College, Jining 272067, China.,Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Qiang Zhang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Guangzhou 510515, China
| | - Haitao Qing
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Guangzhou 510515, China
| | - Bo Jiang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Guangzhou 510515, China
| | - Huabao Xiong
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Liang Peng
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Gastroenterology, Guangzhou 510515, China.,Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| |
Collapse
|
5
|
Jing R, Duncan CB, Duncan SA. A small-molecule screen reveals that HSP90β promotes the conversion of induced pluripotent stem cell-derived endoderm to a hepatic fate and regulates HNF4A turnover. Development 2017; 144:1764-1774. [PMID: 28360131 DOI: 10.1242/dev.146845] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/22/2017] [Indexed: 12/16/2022]
Abstract
We have previously shown that the transcription factor HNF4A is required for the formation of hepatic progenitor cells from endoderm that has been derived from human induced pluripotent stem cells (iPSCs). We reasoned that we could uncover regulatory pathways with new roles in hepatocyte differentiation by identifying cellular processes that regulate HNF4A. We therefore performed a screen of 1120 small molecules with well-characterized mechanisms of action to detect those that affect the abundance of HNF4A in iPSC-derived hepatic progenitor cells. This approach uncovered several small molecules that depleted HNF4A. Of those, we chose to focus on an inhibitor of heat shock protein 90 beta (HSP90β). We show that mutation of the gene encoding HSP90β represses hepatocyte differentiation during the formation of hepatocytes from iPSCs. We reveal that HSP90β, although dispensable for expression of HNF4A mRNA, directly interacts with HNF4A protein to regulate its half-life. Our results demonstrate that HSP90β has an unappreciated role in controlling hepatic progenitor cell formation and highlight the efficiency of using small-molecule screens during the differentiation of iPSCs to reveal new molecular mechanisms that control hepatocyte formation.
Collapse
Affiliation(s)
- Ran Jing
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Basic Science Building BS657A, 173 Ashley Avenue, MSC 508, Charleston, SC 29425, USA
| | - Cameron B Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Basic Science Building BS657A, 173 Ashley Avenue, MSC 508, Charleston, SC 29425, USA
| | - Stephen A Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Basic Science Building BS657A, 173 Ashley Avenue, MSC 508, Charleston, SC 29425, USA .,Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, MSC 955, Charleston, SC 29425, USA
| |
Collapse
|
6
|
Chung-Davidson YW, Yeh CY, Bussy U, Li K, Davidson PJ, Nanlohy KG, Brown CT, Whyard S, Li W. Hsp90 and hepatobiliary transformation during sea lamprey metamorphosis. BMC DEVELOPMENTAL BIOLOGY 2015; 15:47. [PMID: 26627605 PMCID: PMC4667476 DOI: 10.1186/s12861-015-0097-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/23/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Biliary atresia (BA) is a human infant disease with inflammatory fibrous obstructions in the bile ducts and is the most common cause for pediatric liver transplantation. In contrast, the sea lamprey undergoes developmental BA with transient cholestasis and fibrosis during metamorphosis, but emerges as a fecund adult. Therefore, sea lamprey liver metamorphosis may serve as an etiological model for human BA and provide pivotal information for hepatobiliary transformation and possible therapeutics. RESULTS We hypothesized that liver metamorphosis in sea lamprey is due to transcriptional reprogramming that dictates cellular remodeling during metamorphosis. We determined global gene expressions in liver at several metamorphic landmark stages by integrating mRNA-Seq and gene ontology analyses, and validated the results with real-time quantitative PCR, histological and immunohistochemical staining. These analyses revealed that gene expressions of protein folding chaperones, membrane transporters and extracellular matrices were altered and shifted during liver metamorphosis. HSP90, important in protein folding and invertebrate metamorphosis, was identified as a candidate key factor during liver metamorphosis in sea lamprey. Blocking HSP90 with geldanamycin facilitated liver metamorphosis and decreased the gene expressions of the rate limiting enzyme for cholesterol biosynthesis, HMGCoA reductase (hmgcr), and bile acid biosynthesis, cyp7a1. Injection of hsp90 siRNA for 4 days altered gene expressions of met, hmgcr, cyp27a1, and slc10a1. Bile acid concentrations were increased while bile duct and gall bladder degeneration was facilitated and synchronized after hsp90 siRNA injection. CONCLUSIONS HSP90 appears to play crucial roles in hepatobiliary transformation during sea lamprey metamorphosis. Sea lamprey is a useful animal model to study postembryonic development and mechanisms for hsp90-induced hepatobiliary transformation.
Collapse
Affiliation(s)
- Yu-Wen Chung-Davidson
- Departments of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA.
| | - Chu-Yin Yeh
- Physiology & College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Ugo Bussy
- Departments of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA.
| | - Ke Li
- Departments of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA.
| | - Peter J Davidson
- Departments of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA.
| | - Kaben G Nanlohy
- Departments of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA.
| | - C Titus Brown
- Computer Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
| | - Steven Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Weiming Li
- Departments of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA.
- Physiology & College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
7
|
Zhang Y, Bai X, Wang Y, Li N, Li X, Han F, Su L, Hu D. Role for heat shock protein 90α in the proliferation and migration of HaCaT cells and in the deep second-degree burn wound healing in mice. PLoS One 2014; 9:e103723. [PMID: 25111496 PMCID: PMC4128658 DOI: 10.1371/journal.pone.0103723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/01/2014] [Indexed: 01/22/2023] Open
Abstract
Inflammation, proliferation, and tissue remodeling are essential steps for wound healing. The hypoxic wound microenvironment promotes cell migration through a hypoxia—heat shock protein 90 alpha (Hsp90α)—low density lipoprotein receptor-related protein-1 (LRP-1) autocrine loop. To elucidate the role of this autocrine loop on burn wound healing, we investigated the expression profile of Hsp90α at the edge of burn wounds and found a transient increase in both mRNA and protein levels. Experiments performed with a human keratinocyte cell line—HaCaT also confirmed above results. 17-dimethylaminoethylamino-17demethoxygeldanamycin hydrochloride (17-DMAG), an Hsp90α inhibitor, was used to further evaluate the function of Hsp90α in wound healing. Consistently, topical application of Hsp90α in the early stage of deep second-degree burn wounds led to reduced inflammation and increased tissue granulation, with a concomitant reduction in the size of the wound at each time point tested (p<0.05). Consequently, epidermal cells at the wound margin progressed more rapidly causing an expedited healing process. In conclusion, these results provided a rationale for the therapeutic effect of Hsp90α on the burn wound management.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Na Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Xiaoqiang Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Fei Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Linlin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China
- * E-mail: (LS); (DH)
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China
- * E-mail: (LS); (DH)
| |
Collapse
|
8
|
Wolf JH, Bhatti TR, Fouraschen S, Chakravorty S, Wang L, Kurian S, Salomon D, Olthoff KM, Hancock WW, Levine MH. Heat shock protein 70 is required for optimal liver regeneration after partial hepatectomy in mice. Liver Transpl 2014; 20:376-85. [PMID: 24357103 PMCID: PMC3947447 DOI: 10.1002/lt.23813] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 11/21/2013] [Indexed: 01/05/2023]
Abstract
Liver regeneration is a complex process that restores functional tissue after resection or injury, and it is accompanied by transient adenosine triphosphate depletion and metabolic stress in hepatic parenchymal cells. Heat shock protein 70 (Hsp70) functions as a chaperone during periods of cellular stress and induces the expression of several inflammatory cytokines identified as key players during early liver regeneration. We, therefore, hypothesized that Hsp70 is required for the initiation of regeneration. Investigations were carried out in a 70% partial hepatectomy mouse model with mice lacking inducible Hsp70 (Hsp70(-/-)). Liver regeneration was assessed postoperatively with the liver weight/body weight (LW/BW) ratio, and sera and tissues were collected for analysis. In addition, the expression of Hsp-related genes was assessed in a cohort of 23 human living donor liver transplantation donors. In mice, the absence of Hsp70 was associated with a reduced postoperative LW/BW ratio, Ki-67 staining, and tumor necrosis factor α (TNF-α) expression in comparison with wild-type mice. TNF-α expression was also reduced in livers from Hsp70(-/-) mice after induction with lipopolysaccharide (1 mg/kg). Clinically, the transcription of multiple Hsp genes (especially Hsp70 family members) was up-regulated after donor hepatectomy. Together, these results suggest that the early phase of successful liver regeneration requires the presence of Hsp70 to induce TNF-α. Further studies are required to determine whether Hsp70 contributes to liver regeneration as a chaperone by stabilizing specific interactions required for growth signaling or as a paracrine inflammatory signal, as can occur in models of shock.
Collapse
Affiliation(s)
- Joshua H. Wolf
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Tricia R. Bhatti
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia/University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Suomi Fouraschen
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Shourjo Chakravorty
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia/University of Pennsylvania School of Medicine, Philadelphia, PA
| | | | | | - Kim M. Olthoff
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Wayne W. Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia/University of Pennsylvania School of Medicine, Philadelphia, PA,Correspondence and proofs: Wayne W. Hancock, Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, 3615 Civic Ctr. Blvd., Philadelphia PA 19104, Telephone: (215) 590-8709, Fax: (215) 590-7384,
| | - Matthew H. Levine
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
9
|
Low and medium but not high doses of green tea polyphenols ameliorated dextran sodium sulfate-induced hepatotoxicity and nephrotoxicity. Biosci Biotechnol Biochem 2013; 77:1223-8. [PMID: 23748761 DOI: 10.1271/bbb.121003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our previous study indicated that a diet containing a high dose (1%) of green tea polyphenols (GTPs) disrupted liver and kidney function via a reduction in antioxidant enzyme and heat shock protein (HSP) levels in both colitis and non-treated ICR mice. In the present study, we assessed the effects of 0.01%, 0.1%, and 1% dietary GTPs on liver and kidney physiological functioning in dextran sulfate sodium (DSS)-exposed and normal mice. GTPs at 0.01% and 0.1% significantly suppressed DSS-increased serum aspartate 2-oxoglutarate aminotransferase (AST) and alanine aminotransferase (ALT) levels. In contrast, GTPs at 1% increased kidney weight, serum creatinine levels, and thiobarbituric acid-reactive substances (TBARs) in both the kidney and the liver in normal mice, as compared with DSS-exposed mice. GTPs at 0.01% and 0.1% remarkably upregulated the expression of heme oxygenase-1 (HO-1) and heat shock protein 70 (HSP70) mRNA in the liver and kidney of mice exposed to DSS, whereas GTPs at 1% abolished it. Our results indicate that low and medium doses of GTPs have beneficial effects on DSS-induced hepatotoxicity and nephrotoxicity via upregulation of self-protective enzymes, while these effects disappeared at a high dose.
Collapse
|
10
|
Madrigal-Matute J, Fernandez-Garcia CE, Gomez-Guerrero C, Lopez-Franco O, Muñoz-Garcia B, Egido J, Blanco-Colio LM, Martin-Ventura JL. HSP90 inhibition by 17-DMAG attenuates oxidative stress in experimental atherosclerosis. Cardiovasc Res 2012; 95:116-23. [PMID: 22547655 DOI: 10.1093/cvr/cvs158] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Reactive oxygen species (ROS) participate in atherogenesis through different mechanisms including oxidative stress and inflammation. Proteins implicated in both processes, such as mitogen-activated protein kinase kinase (MEK) and some NADPH oxidase (NOX) subunits, are heat shock protein-90 (HSP90) client proteins. In this work, we investigated the antioxidant properties of the HSP90 inhibitor, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) in experimental atherosclerosis. METHODS AND RESULTS Treatment of ApoE(-/-) mice with 17-DMAG (2 mg/kg every 2 days for 10 weeks) decreased ROS levels and extracellular signal-regulated kinase (ERK) activation in aortic plaques compared with control animals. Accordingly, treatment of rat vascular smooth muscle cells (VSMCs) with 17-DMAG increased HSP27 and HSP70 and inhibited ERK activation. Interestingly, 17-DMAG diminished NADPH oxidase dependent ROS production in VSMCs and monocytes. In addition, a marked reduction in NADPH oxidase dependent ROS production was observed with HSP90siRNA and the opposite pattern with HSP70siRNA. 17-DMAG also diminished the expression of Nox1 and Nox organizer-1 (Noxo1) in VSMCs and monocytes. Interestingly, 17-DMAG was able to modulate ROS-induced monocyte to macrophage differentiation. Finally, higher expression of Nox1 and Noxo1 was found in the inflammatory region of human atherosclerotic plaques, colocalizing with VSMCs, macrophages, and ROS-producing cells. CONCLUSION Our results suggest that HSP90 inhibitors interfere with oxidative stress and modulate experimental atherosclerosis development through reduction in pro-oxidative factors.
Collapse
Affiliation(s)
- Julio Madrigal-Matute
- Vascular Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University, Av. Reyes Católicos 2, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Inoue H, Akiyama S, Maeda-Yamamoto M, Nesumi A, Tanaka T, Murakami A. High-dose green tea polyphenols induce nephrotoxicity in dextran sulfate sodium-induced colitis mice by down-regulation of antioxidant enzymes and heat-shock protein expressions. Cell Stress Chaperones 2011; 16:653-62. [PMID: 21766215 PMCID: PMC3220383 DOI: 10.1007/s12192-011-0280-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 06/27/2011] [Accepted: 06/30/2011] [Indexed: 01/17/2023] Open
Abstract
Previously, we reported that oral feeding of 1% green tea polyphenols (GTPs) aggravated the dextran sulfate sodium (DSS)-induced colitis in mice. In the present study, we assessed the toxicity of 1% GTPs in several organs from normal and DSS-exposed mice. Sixty-two male ICR mice were initially divided into four groups. Non-treated group (group 1, n = 15) was given standard diet and water, GTPs (group 2, n = 15) received 1% GTPs in diet and water, DSS (group 3, n = 15) received diet and 5% DSS in water, and GTPs + DSS group (group 4, n = 17) received 1% GTPs in diet and 5% DSS in water. We found that group 4 significantly increased (P < 0.05) kidney weight, the levels of serum creatinine and thiobarbituric acid-reactive substances in both kidney and liver, as compared with those in group 3. The mRNA expression levels of antioxidant enzymes and heat-shock proteins (HSPs) in group 4 were lower than those of group 3. For instance, heme oxygenase-1 (HO-1), HSP27, and 90 mRNA in the kidney of group 4 were dramatically down-regulated as compared with those of group 3. Furthermore, 1% GTPs diet decreased the expression of HO-1, NAD(P)H:quinone oxidoreductase 1 (NQO1) and HSP90 in kidney and liver of non-treated mice. Taken together, our results indicate that high-dose GTPs diet disrupts kidney functions through the reduction of antioxidant enzymes and heat-shock protein expressions in not only colitis but also non-treated ICR mice.
Collapse
Affiliation(s)
- Hirofumi Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Satoko Akiyama
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Mari Maeda-Yamamoto
- National Institute of Vegetable and Tea Sciences, National Agriculture and Food Research Organization, 2769 Kanaya, Shimada, Shizuoka 428-8501 Japan
| | - Atsushi Nesumi
- National Institute of Vegetable and Tea Sciences, National Agriculture and Food Research Organization, 2769 Kanaya, Shimada, Shizuoka 428-8501 Japan
| | - Takuji Tanaka
- The Tohkai Cytopathology Institute: Cancer Research and Prevention (TCI-CaPP), 4-33 Minami-Uzura, Gifu, 500-8285 Japan
| | - Akira Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|