1
|
Yan C, Lin X, Guan J, Ding W, Yue Z, Tang Z, Meng X, Zhao B, Song Z, Li D, Jiang T. SIRT3 Deficiency Promotes Lung Endothelial Pyroptosis Through Impairing Mitophagy to Activate NLRP3 Inflammasome During Sepsis-Induced Acute Lung Injury. Mol Cell Biol 2025; 45:1-16. [PMID: 39556090 DOI: 10.1080/10985549.2024.2426282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024] Open
Abstract
Acute lung injury (ALI) is a major cause of death in bacterial sepsis due to endothelial inflammation and endothelial permeability defects. Mitochondrial dysfunction is recognized as a key mediator in the pathogenesis of sepsis-induced ALI. Sirtuin 3 (SIRT3) is a histone protein deacetylase involved in preservation of mitochondrial function, which has been demonstrated in our previous study. Here, we investigated the effects of SIRT3 deficiency on impaired mitophagy to promote lung endothelial cells (ECs) pyroptosis during sepsis-induced ALI. We found that 3-TYP aggravated sepsis-induced ALI with increased lung ECs pyroptosis and enhanced NLRP3 activation. Mitochondrial reactive oxygen species (mtROS) and extracellular mitochondrial DNA (mtDNA) released from damaged mitochondria could be exacerbated in SIRT3 deficiency, which further elicit NLRP3 inflammasome activation in lung ECs during sepsis-induced ALI. Furthermore, Knockdown of SIRT3 contributed to impaired mitophagy via downregulating Parkin, which resulted in mitochondrial dysfunction. Moreover, pharmacological inhibition NLRP3 or restoration of SIRT3 attenuates sepsis-induced ALI and sepsis severity in vivo. Taken together, our results demonstrated SIRT3 deficiency facilitated mtROS production and cytosolic release of mtDNA by impaired Parkin-dependent mitophagy, promoting to lung ECs pyroptosis through the NLRP3 inflammasome activation, which providing potential therapeutic targets for sepsis-induced ALI.
Collapse
Affiliation(s)
- Congmin Yan
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xin Lin
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jingting Guan
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wengang Ding
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ziyong Yue
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhiqiang Tang
- Department of Intensive Care Medicine, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Bo Zhao
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Zhiqiang Song
- Department of Geriatrics, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Dongmei Li
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Tao Jiang
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Zhang X, Wang H, Cai X, Zhang A, Liu E, Li Z, Jiang T, Li D, Ding W. α7nAChR Activation Combined with Endothelial Progenitor Cell Transplantation Attenuates Lung Injury in Diabetic Rats with Sepsis through the NF-κB Pathway. Inflammation 2024; 47:1344-1355. [PMID: 38302679 DOI: 10.1007/s10753-024-01980-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Chronic diabetes mellitus compromises the vascular system, which causes organ injury, including in the lung. Due to the strong compensatory ability of the lung, patients always exhibit subclinical symptoms. Once sepsis occurs, the degree of lung injury is more severe under hyperglycemic conditions. The α7 nicotinic acetylcholine receptor (α7nAChR) plays an important role in regulating inflammation and metabolism and can improve endothelial progenitor cell (EPC) functions. In the present study, lung injury caused by sepsis was compared between diabetic rats and normal rats. We also examined whether α7nAChR activation combined with EPC transplantation could ameliorate lung injury in diabetic sepsis rats. A type 2 diabetic model was induced in rats via a high-fat diet and streptozotocin. Then, a rat model of septic lung injury was established by intraperitoneal injection combined with endotracheal instillation of LPS. The oxygenation indices, wet-to-dry ratios, and histopathological scores of the lungs were tested after PNU282987 treatment and EPC transplantation. IL-6, IL-8, TNF-α, and IL-10 levels were measured. Caspase-3, Bax, Bcl-2, and phosphorylated NF-κB (p-NF-κB) levels were determined by blotting. Sepsis causes obvious lung injury, which is exacerbated by diabetic conditions. α7nAChR activation and endothelial progenitor cell transplantation reduced lung injury in diabetic sepsis rats, alleviating inflammation and decreasing apoptosis. This treatment was more effective when PNU282987 and endothelial progenitor cells were administered together. p-NF-κB levels decreased following treatment with PNU282987 and EPCs. In conclusion, α7nAChR activation combined with EPC transplantation can alleviate lung injury in diabetic sepsis rats through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China
| | - Haixu Wang
- Department of Anesthesiology, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xuemin Cai
- Department of Anesthesiology, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Aijia Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Enran Liu
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China
| | - Zhiyuan Li
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China
| | - Tao Jiang
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China
| | - Dongmei Li
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China
| | - Wengang Ding
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China.
| |
Collapse
|
3
|
Liu T, Wei H, Zhang L, Ma C, Wei Y, Jiang T, Li W. Metformin attenuates lung ischemia-reperfusion injury and necroptosis through AMPK pathway in type 2 diabetic recipient rats. BMC Pulm Med 2024; 24:237. [PMID: 38745191 PMCID: PMC11094932 DOI: 10.1186/s12890-024-03056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM) can aggravate lung ischemia-reperfusion (I/R) injury and is a significant risk factor for recipient mortality after lung transplantation. Metformin protects against I/R injury in a variety of organs. However, the effect of metformin on diabetic lung I/R injury remains unclear. Therefore, this study aimed to observe the effect and mechanism of metformin on lung I/R injury following lung transplantation in type 2 diabetic rats. METHODS Sprague-Dawley rats were randomly divided into the following six groups: the control + sham group (CS group), the control + I/R group (CIR group), the DM + sham group (DS group), the DM + I/R group (DIR group), the DM + I/R + metformin group (DIRM group) and the DM + I/R + metformin + Compound C group (DIRMC group). Control and diabetic rats underwent the sham operation or left lung transplantation operation. Lung function, alveolar capillary permeability, inflammatory response, oxidative stress, necroptosis and the p-AMPK/AMPK ratio were determined after 24 h of reperfusion. RESULTS Compared with the CIR group, the DIR group exhibited decreased lung function, increased alveolar capillary permeability, inflammatory responses, oxidative stress and necroptosis, but decreased the p-AMPK/AMPK ratio. Metformin improved the function of lung grafts, decreased alveolar capillary permeability, inflammatory responses, oxidative stress and necroptosis, and increased the p-AMPK/AMPK ratio. In contrast, the protective effects of metformin were abrogated by Compound C. CONCLUSIONS Metformin attenuates lung I/R injury and necroptosis through AMPK pathway in type 2 diabetic lung transplant recipient rats.
Collapse
Affiliation(s)
- Tianhua Liu
- Department of Anesthesiology, Hei Long Jiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, NO.246, Xuefu Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Hong Wei
- Department of Anesthesiology, Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lijuan Zhang
- Department of Anesthesiology, Hei Long Jiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, NO.246, Xuefu Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Can Ma
- Department of Anesthesiology, Hei Long Jiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, NO.246, Xuefu Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Yuting Wei
- Department of Anesthesiology, Hei Long Jiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, NO.246, Xuefu Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Tao Jiang
- Department of Anesthesiology, Hei Long Jiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, NO.246, Xuefu Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Wenzhi Li
- Department of Anesthesiology, Hei Long Jiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, NO.246, Xuefu Road, Nangang District, Harbin, Heilongjiang Province, 150081, China.
| |
Collapse
|
4
|
Slade L, Deane CS, Szewczyk NJ, Etheridge T, Whiteman M. Hydrogen sulfide supplementation as a potential treatment for primary mitochondrial diseases. Pharmacol Res 2024; 203:107180. [PMID: 38599468 DOI: 10.1016/j.phrs.2024.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Primary mitochondrial diseases (PMD) are amongst the most common inborn errors of metabolism causing fatal outcomes within the first decade of life. With marked heterogeneity in both inheritance patterns and physiological manifestations, these conditions present distinct challenges for targeted drug therapy, where effective therapeutic countermeasures remain elusive within the clinic. Hydrogen sulfide (H2S)-based therapeutics may offer a new option for patient treatment, having been proposed as a conserved mitochondrial substrate and post-translational regulator across species, displaying therapeutic effects in age-related mitochondrial dysfunction and neurodegenerative models of mitochondrial disease. H2S can stimulate mitochondrial respiration at sites downstream of common PMD-defective subunits, augmenting energy production, mitochondrial function and reducing cell death. Here, we highlight the primary signalling mechanisms of H2S in mitochondria relevant for PMD and outline key cytoprotective proteins/pathways amenable to post-translational restoration via H2S-mediated persulfidation. The mechanisms proposed here, combined with the advent of potent mitochondria-targeted sulfide delivery molecules, could provide a framework for H2S as a countermeasure for PMD disease progression.
Collapse
Affiliation(s)
- Luke Slade
- University of Exeter Medical School, University of Exeter, St. Luke's Campus, Exeter EX1 2LU, UK; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Colleen S Deane
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Nathaniel J Szewczyk
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom; Ohio Musculoskeletal and Neurologic Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, Greece
| | - Timothy Etheridge
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom.
| | - Matthew Whiteman
- University of Exeter Medical School, University of Exeter, St. Luke's Campus, Exeter EX1 2LU, UK.
| |
Collapse
|
5
|
Jiang T, Liu E, Li Z, Yan C, Zhang X, Guan J, Zhan Y, Zhao B, Ding W. SIRT1-Rab7 axis attenuates NLRP3 and STING activation through late endosomal-dependent mitophagy during sepsis-induced acute lung injury. Int J Surg 2024; 110:2649-2668. [PMID: 38445453 PMCID: PMC11093444 DOI: 10.1097/js9.0000000000001215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is a leading cause of mortality in patients with sepsis due to proinflammatory endothelial changes and endothelial permeability defects. Mitochondrial dysfunction is recognized as a critical mediator in the pathogenesis of sepsis-induced ALI. Although mitophagy regulation of mitochondrial quality is well recognized, little is known about its role in lung ECs during sepsis-induced ALI. Sirtuin 1 (SIRT1) is a histone protein deacetylase involved in inflammation, mitophagy, and cellular senescence. Here, the authors show a type of late endosome-dependent mitophagy that inhibits NLRP3 and STING activation through SIRT1 signaling during sepsis-induced ALI. METHODS C57BL/6J male mice with or without administration of the SIRT1 inhibitor EX527 in the CLP model and lung ECs in vitro were developed to identify mitophagy mechanisms that underlie the cross-talk between SIRT1 signaling and sepsis-induced ALI. RESULTS SIRT1 deficient mice exhibited exacerbated sepsis-induced ALI. Knockdown of SIRT1 interfered with mitophagy through late endosome Rab7, leading to the accumulation of damaged mitochondria and inducing excessive mitochondrial reactive oxygen species (mtROS) generation and cytosolic release of mitochondrial DNA (mtDNA), which triggered NLRP3 inflammasome and the cytosolic nucleotide sensing pathways (STING) over-activation. Pharmacological inhibition of STING and NLRP3 i n vivo or genetic knockdown in vitro reversed SIRT1 deficiency mediated endothelial permeability defects and endothelial inflammation in sepsis-induced ALI. Moreover, activation of SIRT1 with SRT1720 in vivo or overexpression of SIRT1 in vitro protected against sepsis-induced ALI. CONCLUSION These findings suggest that SIRT1 signaling is essential for restricting STING and NLRP3 hyperactivation by promoting endosomal-mediated mitophagy in lung ECs, providing potential therapeutic targets for treating sepsis-induced ALI.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine)
| | - Enran Liu
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine)
| | - Zhiyuan Li
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine)
| | - Congmin Yan
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine)
| | - Xiaoyun Zhang
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine)
| | - Jingting Guan
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine)
| | - Yuanbo Zhan
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital, Harbin Medical University
| | - Bo Zhao
- School of Forestry, Northeast Forestry University, Harbin, People’s Republic of China
| | - Wengang Ding
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine)
| |
Collapse
|
6
|
Yamada Y, Sato T, Oda H, Harada N, Yoshizawa A, Nishikawa S, Kayawake H, Tanaka S, Yutaka Y, Hamaji M, Nakajima D, Ohsumi A, Date H. Favorable effect of CD26/DPP-4 inhibitors on postoperative outcomes after lung transplantation: A propensity-weighted analysis. J Heart Lung Transplant 2024; 43:66-76. [PMID: 37634575 DOI: 10.1016/j.healun.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/24/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND We have shown the efficacy of CD26/dipeptidyl peptidase 4 (CD26/DPP-4) inhibitors, antidiabetic agents, in allograft protection after experimental lung transplantation (LTx). We aimed to elucidate whether CD26/DPP-4 inhibitors effectively improve postoperative outcomes after clinical LTx. METHODS We retrospectively reviewed the records of patients undergoing LTx at our institution between 2010 and 2021 and extracted records of patients with diabetes mellitus (DM) at 6 months post-LTx. The patient characteristics and postoperative outcomes were analyzed. We established 6 months post-LTx as the landmark point for predicting overall survival (OS) and chronic lung allograft dysfunction (CLAD)-free survival. Hazard ratios were estimated by Cox regression after propensity score weighting, using CD26/DPP-4 inhibitor treatment up to 6 months post-LTx as the exposure variable. We evaluated CLAD samples pathologically, including for CD26/DPP-4 immunohistochemistry. RESULTS Of 102 LTx patients with DM, 29 and 73 were treated with and without CD26/DPP-4 inhibitors, respectively. Based on propensity score adjustment using standardized mortality ratio weighting, the 5-year OS rates were 77.0% and 44.3%, and the 5-year CLAD-free survival rates 77.8% and 49.1%, in patients treated with and without CD26/DPP-4 inhibitors, respectively. The hazard ratio for CD26/DPP-4 inhibitor use was 0.34 (95% confidence interval (CI) 0.14-0.82, p = 0.017) for OS and 0.47 (95% CI 0.22-1.01, p = 0.054) for CLAD-free survival. We detected CD26/DPP-4 expression in the CLAD grafts of patients without CD26/DPP-4 inhibitors. CONCLUSIONS Analysis using propensity score weighting showed that CD26/DPP-4 inhibitors positively affected the postoperative prognosis of LTx patients with DM.
Collapse
Affiliation(s)
- Yoshito Yamada
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan; Department of Thoracic Surgery, Kyoto Katsura Hospital, Kyoto, Japan.
| | - Tosiya Sato
- Department of Biostatistics, Kyoto University School of Public Health, Kyoto, Japan
| | - Hiromi Oda
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Shigeto Nishikawa
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Hidenao Kayawake
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Satona Tanaka
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Yojiro Yutaka
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Masatsugu Hamaji
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Daisuke Nakajima
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Akihiro Ohsumi
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
7
|
Mitochondrial PKM2 deacetylation by procyanidin B2-induced SIRT3 upregulation alleviates lung ischemia/reperfusion injury. Cell Death Dis 2022; 13:594. [PMID: 35821123 PMCID: PMC9276754 DOI: 10.1038/s41419-022-05051-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 01/21/2023]
Abstract
Apoptosis is a critical event in the pathogenesis of lung ischemia/reperfusion (I/R) injury. Sirtuin 3 (SIRT3), an important deacetylase predominantly localized in mitochondria, regulates diverse physiological processes, including apoptosis. However, the detailed mechanisms by which SIRT3 regulates lung I/R injury remain unclear. Many polyphenols strongly regulate the sirtuin family. In this study, we found that a polyphenol compound, procyanidin B2 (PCB2), activated SIRT3 in mouse lungs. Due to this effect, PCB2 administration attenuated histological lesions, relieved pulmonary dysfunction, and improved the survival rate of the murine model of lung I/R injury. Additionally, this treatment inhibited hypoxia/reoxygenation (H/R)-induced A549 cell apoptosis and rescued Bcl-2 expression. Using Sirt3-knockout mice and specific SIRT3 knockdown in vitro, we further found that SIRT3 strongly protects against lung I/R injury. Sirt3 deficiency or enzymatic inactivation substantially aggravated lung I/R-induced pulmonary lesions, promoted apoptosis, and abolished PCB2-mediated protection. Mitochondrial pyruvate kinase M2 (PKM2) inhibits apoptosis by stabilizing Bcl-2. Here, we found that PKM2 accumulates and is hyperacetylated in mitochondria upon lung I/R injury. By screening the potential sites of PKM2 acetylation, we found that SIRT3 deacetylates the K433 residue of PKM2 in A549 cells. Transfection with a deacetylated mimic plasmid of PKM2 noticeably reduced apoptosis, while acetylated mimic transfection abolished the protective effect of PKM2. Furthermore, PKM2 knockdown or inhibition in vivo significantly abrogated the antiapoptotic effects of SIRT3 upregulation. Collectively, this study provides the first evidence that the SIRT3/PKM2 pathway is a protective target for the suppression of apoptosis in lung I/R injury. Moreover, this study identifies K433 deacetylation of PKM2 as a novel modification that regulates its anti-apoptotic activity. In addition, PCB2-mediated modulation of the SIRT3/PKM2 pathway may significantly protect against lung I/R injury, suggesting a novel prophylactic strategy for lung I/R injury.
Collapse
|
8
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
9
|
Dexmedetomidine Alleviates Lung Oxidative Stress Injury Induced by Ischemia-Reperfusion in Diabetic Rats via the Nrf2-Sulfiredoxin1 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5584733. [PMID: 35252452 PMCID: PMC8894003 DOI: 10.1155/2022/5584733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/28/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022]
Abstract
Oxidative stress injury (OSI) is an important pathological process in lung ischemia-reperfusion injury (LIRI), and diabetes mellitus (DM) can exacerbate this injury. Dexmedetomidine protects against LIRI by reducing OSI. However, the effect of dexmedetomidine on LIRI under diabetic conditions remains unclear. Therefore, this study is aimed at exploring the effects and mechanisms of dexmedetomidine on OSI induced by LIRI in diabetic rats. Rats were randomly divided into control+sham (CS), DM+sham (DS), control+ischemia-reperfusion (CIR), DM+ischemia-reperfusion (DIR), and DM+ischemia-reperfusion+dexmedetomidine (DIRD) groups (
). In the CS and DS groups, the nondiabetic and diabetic rats underwent thoracotomy only without LIRI. In the CIR, DIR, and DIRD groups, LIRI was induced through left hilum occlusion for 60 min, followed by reperfusion for 120 min in nondiabetic and diabetic rats, and rats in the DIRD group were administered dexmedetomidine (3, 5, and 10 μg/kg). Compared with those in the CS group, the OSI, lung compliance, apoptosis, and oxygenation indices deteriorated in the DS group (
), and these indices were further aggravated in the CIR and DIR groups (
), being the worst in the DIR group (
). Compared to those of the DIR group, the OSI, lung compliance (
vs.
), apoptosis (
vs.
), oxygenation (
vs.
), and caspase-3 and caspase-9 protein expression indices were attenuated, and Nrf2 and sulfiredoxin1 protein expression was increased in the DIRD group (
). And the lung injury, oxygenation, OSI, and Nrf2 and sulfiredoxin1 protein expression changed in a concentration-dependent manner. In conclusion, dexmedetomidine alleviated lung OSI and improved lung function in a diabetic rat LIRI model through the Nrf2-sulfiredoxin1 pathway.
Collapse
|
10
|
Jiang T, Liu T, Deng X, Ding W, Yue Z, Yang W, Lv X, Li W. Adiponectin ameliorates lung ischemia-reperfusion injury through SIRT1-PINK1 signaling-mediated mitophagy in type 2 diabetic rats. Respir Res 2021; 22:258. [PMID: 34602075 PMCID: PMC8489101 DOI: 10.1186/s12931-021-01855-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a key contributing factor to poor survival in lung transplantation recipients. Mitochondrial dysfunction is recognized as a critical mediator in the pathogenesis of diabetic lung ischemia-reperfusion (IR) injury. The protective effects of adiponectin have been demonstrated in our previous study, but the underlying mechanism remains unclear. Here we demonstrated an important role of mitophagy in the protective effect of adiponectin during diabetic lung IR injury. METHODS High-fat diet-fed streptozotocin-induced type 2 diabetic rats were exposed to adiponectin with or without administration of the SIRT1 inhibitor EX527 following lung transplantation. To determine the mechanisms underlying the action of adiponectin, rat pulmonary microvascular endothelial cells were transfected with SIRT1 small-interfering RNA or PINK1 small-interfering RNA and then subjected to in vitro diabetic lung IR injury. RESULTS Mitophagy was impaired in diabetic lungs subjected to IR injury, which was accompanied by increased oxidative stress, inflammation, apoptosis, and mitochondrial dysfunction. Adiponectin induced mitophagy and attenuated subsequent diabetic lung IR injury by improving lung functional recovery, suppressing oxidative damage, diminishing inflammation, decreasing cell apoptosis, and preserving mitochondrial function. However, either administration of 3-methyladenine (3-MA), an autophagy antagonist or knockdown of PINK1 reduced the protective action of adiponectin. Furthermore, we demonstrated that APN affected PINK1 stabilization via the SIRT1 signaling pathway, and knockdown of SIRT1 suppressed PINK1 expression and compromised the protective effect of adiponectin. CONCLUSION These data demonstrated that adiponectin attenuated reperfusion-induced oxidative stress, inflammation, apoptosis and mitochondrial dysfunction via activation of SIRT1- PINK1 signaling-mediated mitophagy in diabetic lung IR injury.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research On Anesthesiology and Critical Care Medicine), The Second Affiliated Hospital, Harbin Medical University, No.194, XueFu Road, NanGang District, Harbin, China
| | - Tianhua Liu
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research On Anesthesiology and Critical Care Medicine), The Second Affiliated Hospital, Harbin Medical University, No.194, XueFu Road, NanGang District, Harbin, China
| | - Xijin Deng
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research On Anesthesiology and Critical Care Medicine), The Second Affiliated Hospital, Harbin Medical University, No.194, XueFu Road, NanGang District, Harbin, China
| | - Wengang Ding
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research On Anesthesiology and Critical Care Medicine), The Second Affiliated Hospital, Harbin Medical University, No.194, XueFu Road, NanGang District, Harbin, China
| | - Ziyong Yue
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research On Anesthesiology and Critical Care Medicine), The Second Affiliated Hospital, Harbin Medical University, No.194, XueFu Road, NanGang District, Harbin, China
| | - Wanchao Yang
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research On Anesthesiology and Critical Care Medicine), The Second Affiliated Hospital, Harbin Medical University, No.194, XueFu Road, NanGang District, Harbin, China
| | - Xiangqi Lv
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research On Anesthesiology and Critical Care Medicine), The Second Affiliated Hospital, Harbin Medical University, No.194, XueFu Road, NanGang District, Harbin, China
| | - Wenzhi Li
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research On Anesthesiology and Critical Care Medicine), The Second Affiliated Hospital, Harbin Medical University, No.194, XueFu Road, NanGang District, Harbin, China.
| |
Collapse
|
11
|
Xiong R, Jiang W, Li N, Liu B, He R, Wang B, Geng Q. PM2.5-induced lung injury is attenuated in macrophage-specific NLRP3 deficient mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112433. [PMID: 34146983 DOI: 10.1016/j.ecoenv.2021.112433] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 05/05/2023]
Abstract
Fine particulate matter (PM2.5) is one of the most important components of environmental pollutants and is associated with lung injury. Pyroptosis, a form of programmed cell death mainly mediated by the NLRP3 inflammasome, has been reported to be involved in sepsis-induced or ischemia/reperfusion-induced lung injury. However, the specific mechanisms of pyroptosis in PM2.5-induced lung injury are not yet clear. We constructed macrophage-specific NLRP3 knockout mice to explore the mechanism of PM2.5-induced lung injury in terms of inflammatory response, oxidative stress, and apoptosis levels, including the relationship between these effects and pyroptosis. The results disclosed that PM2.5 exposure increased the infiltration of macrophages and leukocytes and the secretion of inflammatory cytokines, including TNF-α and IL-6, in lung tissue. The activity of antioxidant enzymes, including SOD, GSH-PX, and CAT, significantly decreased, while MDA, the end product of lipid oxidation, remarkably increased. The level of apoptosis in lung tissue, measured by the TUNEL assay and apoptosis-related proteins (BAX and BCL-2), was significantly increased. Macrophage-specific NLRP3 knockout could offset these effects. We further observed that PM2.5 treatment activated the NLRP3 inflammasome and subsequently induced pyroptosis, as evidenced by the increased production of IL-1β and IL-18 and the increase of the protein levels of NLRP3, ASC, caspase-1, and GSDMD, which were inhibited when NLRP3 was knocked out in macrophages. Taken together, these results revealed that NLRP3-mediated macrophage pyroptosis promoted PM2.5-induced lung injury through aggravating inflammation, oxidative stress, and apoptosis. Targeting the inhibition of NLRP3-mediated macrophage pyroptosis provides a new way to study lung injury induced by the exposure to PM2.5.
Collapse
Affiliation(s)
- Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenyang Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Zhang J, Cai X, Zhang Q, Li X, Li S, Ma J, Zhu W, Liu X, Wei M, Tu W, Shen Y, Liu J, Lai X, Yu P. Hydrogen sulfide restores sevoflurane postconditioning mediated cardioprotection in diabetic rats: Role of SIRT1/Nrf2 signaling-modulated mitochondrial dysfunction and oxidative stress. J Cell Physiol 2021; 236:5052-5068. [PMID: 33325044 DOI: 10.1002/jcp.30214] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Diabetic hearts are vulnerable to myocardial ischemia/reperfusion injury (IRI), but are insensitive to sevoflurane postconditioning (SPC), activating peroxiredoxins that confer cardioprotection. Previous studies have demonstrated that hydrogen sulfide (H2 S) can suppress oxidative stress of diabetic rats through increasing the expression of silent information regulator factor 2-related enzyme 1 (SIRT1), but whether cardioprotection by SPC can be restored afterward remains unclear. Diabetic rat was subjected to IRI (30 min of ischemia followed by 120 min reperfusion). Postconditioning treatment with sevoflurane was administered for 15 min upon the onset of reperfusion. The diabetic rats were treated with GYY4137 (H2 S donor) 5 days before the experiment. Myocardial infarct size, mitochondrial structure and function, ATP content, activities of complex I-IV, marker of oxidative stress, SIRT1, nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NADPH Oxidase-2 (Nox-2) protein expression were detected after reperfusion, and cardiac function was evaluated by echocardiography at 24 h after reperfusion. After H2 S activated SIRT1 in the impaired myocardium of diabetic rats, SPC significantly upregulated the expression of Nrf2 and its downstream mediator HO-1, thus reduced the expression of Nox-2. In addition, H2 S remarkably increased cytoplasmic and nuclear SIRT1 which was further enhanced by SPC. Furthermore, H2 S combined with SPC reduced the production of reactive oxygen species, increased the content of ATP, and maintained mitochondrial enzyme activity. Finally, myocardial infarct size and myocardium damage were decreased, and cardiac function was improved. Taken together, our study proved that H2 S could restore SPC-induced cardioprotection in diabetic rats by enhancing and promoting SIRT1/Nrf2 signaling pathway mediated mitochondrial dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xia Cai
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qin Zhang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaozhong Li
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Siyuan Li
- Department of Metabolism and Endocrinology, The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Wengen Zhu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Xiao Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Meilin Wei
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Tu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yunfeng Shen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianping Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyang Lai
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Zhang B, Tian X, Li G, Zhao H, Wang X, Yin Y, Yu J, Meng C. Methane Inhalation Protects Against Lung Ischemia-Reperfusion Injury in Rats by Regulating Pulmonary Surfactant via the Nrf2 Pathway. Front Physiol 2021; 12:615974. [PMID: 34054564 PMCID: PMC8149795 DOI: 10.3389/fphys.2021.615974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/15/2021] [Indexed: 12/28/2022] Open
Abstract
Methane (CH4) exerted protective effects against lung ischemia-reperfusion (I/R) injury, but the mechanism remains unclear, especially the role of pulmonary surfactant. Therefore, this study aimed to explore the effects of CH4 inhalation on pulmonary surfactant in rat lung I/R injury and to elucidate the mechanism. Rats were randomly divided into three groups (n = 6): the sham, I/R control, and I/R CH4 groups. In the sham group, only thoracotomy was performed on the rats. In the I/R control and I/R CH4 groups, the rats underwent left hilum occlusion for 90 min, followed by reperfusion for 180 min and ventilation with O2 or 2.5% CH4, respectively. Compared with those of the sham group, the levels of large surfactant aggregates (LAs) in pulmonary surfactant, lung compliance, oxygenation decreased, the small surfactant aggregates (SAs), inflammatory response, oxidative stress injury, and cell apoptosis increased in the control group (P < 0.05). Compared to the control treatment, CH4 increased LA (0.42 ± 0.06 vs. 0.31 ± 0.09 mg/kg), oxygenation (201 ± 11 vs. 151 ± 14 mmHg), and lung compliance (16.8 ± 1.0 vs. 11.5 ± 1.3 ml/kg), as well as total antioxidant capacity and Nrf2 protein expression and decreased the inflammatory response and number of apoptotic cells (P < 0.05). In conclusion, CH4 inhalation decreased oxidative stress injury, inflammatory response, and cell apoptosis, and improved lung function through Nrf2-mediated pulmonary surfactant regulation in rat lung I/R injury.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaojun Tian
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guangqi Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Han Zhao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuan Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanwei Yin
- Department of Pain Management, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junmin Yu
- Department of Pain Management, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Meng
- Department of Pain Management, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Abstract
This review addresses the plausibility of hydrogen sulfide (H2S) therapy for acute lung injury (ALI) and circulatory shock, by contrasting the promising preclinical results to the present clinical reality. The review discusses how the narrow therapeutic window and width, and potentially toxic effects, the route, dosing, and timing of administration all have to be balanced out very carefully. The development of standardized methods to determine in vitro and in vivo H2S concentrations, and the pharmacokinetics and pharmacodynamics of H2S-releasing compounds is a necessity to facilitate the safety of H2S-based therapies. We suggest the potential of exploiting already clinically approved compounds, which are known or unknown H2S donors, as a surrogate strategy.
Collapse
|
15
|
Calabrese V, Scuto M, Salinaro AT, Dionisio G, Modafferi S, Ontario ML, Greco V, Sciuto S, Schmitt CP, Calabrese EJ, Peters V. Hydrogen Sulfide and Carnosine: Modulation of Oxidative Stress and Inflammation in Kidney and Brain Axis. Antioxidants (Basel) 2020; 9:antiox9121303. [PMID: 33353117 PMCID: PMC7767317 DOI: 10.3390/antiox9121303] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence indicates that the dysregulation of cellular redox homeostasis and chronic inflammatory processes are implicated in the pathogenesis of kidney and brain disorders. In this light, endogenous dipeptide carnosine (β-alanyl-L-histidine) and hydrogen sulfide (H2S) exert cytoprotective actions through the modulation of redox-dependent resilience pathways during oxidative stress and inflammation. Several recent studies have elucidated a functional crosstalk occurring between kidney and the brain. The pathophysiological link of this crosstalk is represented by oxidative stress and inflammatory processes which contribute to the high prevalence of neuropsychiatric disorders, cognitive impairment, and dementia during the natural history of chronic kidney disease. Herein, we provide an overview of the main pathophysiological mechanisms related to high levels of pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and neurotoxins, which play a critical role in the kidney–brain crosstalk. The present paper also explores the respective role of H2S and carnosine in the modulation of oxidative stress and inflammation in the kidney–brain axis. It suggests that these activities are likely mediated, at least in part, via hormetic processes, involving Nrf2 (Nuclear factor-like 2), Hsp 70 (heat shock protein 70), SIRT-1 (Sirtuin-1), Trx (Thioredoxin), and the glutathione system. Metabolic interactions at the kidney and brain axis level operate in controlling and reducing oxidant-induced inflammatory damage and therefore, can be a promising potential therapeutic target to reduce the severity of renal and brain injuries in humans.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
- Correspondence: (V.C.); (A.T.S.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
- Correspondence: (V.C.); (A.T.S.)
| | - Giuseppe Dionisio
- Department of Molecular Biology and Genetics, Research Center Flakkebjerg, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark;
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Valentina Greco
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Sebastiano Sciuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Claus Peter Schmitt
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (C.P.S.); (V.P.)
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA;
| | - Verena Peters
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (C.P.S.); (V.P.)
| |
Collapse
|
16
|
Jiang T, Yang W, Zhang H, Song Z, Liu T, Lv X. Hydrogen Sulfide Ameliorates Lung Ischemia-Reperfusion Injury Through SIRT1 Signaling Pathway in Type 2 Diabetic Rats. Front Physiol 2020; 11:596. [PMID: 32695008 PMCID: PMC7338566 DOI: 10.3389/fphys.2020.00596] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
Lung ischemia-reperfusion (IR) injury remains a significant factor for the early mortality of lung transplantations. Diabetes mellitus (DM) is an independent risk factor for 5-year mortality following lung transplantation. Our previous study showed that DM aggravated lung IR injury and that oxidative stress played a key role in this process. Previously, we demonstrated that hydrogen sulfide (H2S) protected against diabetic lung IR injury by suppressing oxidative damage. This study aimed to examine the mechanism by which H2S affects diabetic lung IR injury. High-fat-diet-fed streptozotocin-induced type 2 diabetic rats were exposed to GYY4137, a slow-releasing H2S donor with or without administration of EX527 (a SIRT1 inhibitor), and then subjected to a surgical model of IR injury of the lung. Lung function, oxidative stress, cell apoptosis, and inflammation were assessed. We found that impairment of lung SIRT1 signaling under type 2 diabetic conditions was further exacerbated by IR injury. GYY4137 treatment markedly activated SIRT1 signaling and ameliorated lung IR injury in type 2 DM animals by improving lung functional recovery, diminishing oxidative damage, reducing inflammation, and suppressing cell apoptosis. However, these effects were largely compromised by EX527. Additionally, treatment with GYY4137 significantly activated the Nrf2/HO-1 antioxidant signaling pathway and increased eNOS phosphorylation. However, these effects were largely abolished by EX527. Together, our results indicate that GYY4137 treatment effectively attenuated lung IR injury under type 2 diabetic conditions via activation of lung SIRT1 signaling. SIRT1 activation upregulated Nrf2/HO-1 and activated the eNOS-mediated antioxidant signaling pathway, thus reducing cell apoptosis and inflammation and eventually preserving lung function.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Weiwei Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Hongli Zhang
- Department of Ophthalmology, Daqing Fifth Hospital, Daqing, China
| | - Zhiqiang Song
- Department of Geriatrics, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Tianhua Liu
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiangqi Lv
- Department of Anesthesiology (Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine), The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Tan J, Gao W, Yang W, Zeng X, Wang L, Cui X. Isoform-specific functions of c-Jun N-terminal kinase 1 and 2 in lung ischemia-reperfusion injury through the c-Jun/activator protein-1 pathway. J Thorac Cardiovasc Surg 2020; 162:e143-e156. [PMID: 32414595 DOI: 10.1016/j.jtcvs.2020.03.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND c-Jun N-terminal kinase 1 (JNK1) and JNK2 regulate distinct pathological processes in lung diseases. Here we discriminated the respective roles of these kinases in lung transplantation-induced ischemia-reperfusion injury (IRI). METHODS Rat pulmonary microvascular endothelial cells were transfected with JNK1 small-interfering RNA (siRNA) and JNK2 siRNA and then subjected to in vitro IRI. For the isoform confirmed to aggravate IRI, the delivery of short-hairpin RNA (shRNA) plasmid was performed by intratracheal administration 48 hours before transplantation into donor rats. After a 3-hour reperfusion, the samples were collected. RESULTS JNK1 siRNA decreased but JNK2 siRNA increased JNK phosphorylation and activity, phosphorylated and total c-Jun, and activator protein-1 activity. Although JNK1 siRNA decreased apoptosis and the levels of malondialdehyde, interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF-α), it increased the levels of superoxide dismutase, S-phase percentage, and cyclin D1; JNK2 siRNA had a converse effect. JNK1 siRNA decreased the level of lactate dehydrogenase and increased the levels of VE-cadherin, nitric oxide, phosphorylated nitric oxide synthase, and cell viability; JNK2 si RNA had a converse effect. Compared with the control group, the JNK1 shRNA group exhibited a higher lung oxygenation index and lower lung apoptosis index, injury score, wet weight:dry weight ratio, and levels of IL-1, IL-6, and TNF-α. CONCLUSIONS JNK1 aggravated, but JNK2 alleviated, IRI through differential regulation of the JNK1 pathway in in vitro ischemia-reperfusion. JNK1 silence attenuated lung graft dysfunction by inhibiting inflammation and apoptosis. These findings provide a theoretical basis for devising therapeutic strategies against IRI after lung transplantation.
Collapse
Affiliation(s)
- Jing Tan
- Department of Anesthesiology, Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wei Gao
- Department of Anesthesiology, Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wanchao Yang
- Department of Anesthesiology, Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xianzhang Zeng
- Department of Anesthesiology, Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Linlin Wang
- Department of Anesthesiology, Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaoguang Cui
- Department of Anesthesiology, Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Second Affiliated Hospital, Harbin Medical University, Harbin, China; Department of Anesthesiology, First Affiliated Hospital, Hainan Medical University, Hainan, China.
| |
Collapse
|
18
|
Nin DS, Idres SB, Song ZJ, Moore PK, Deng LW. Biological Effects of Morpholin-4-Ium 4 Methoxyphenyl (Morpholino) Phosphinodithioate and Other Phosphorothioate-Based Hydrogen Sulfide Donors. Antioxid Redox Signal 2020; 32:145-158. [PMID: 31642346 DOI: 10.1089/ars.2019.7896] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significance: Hydrogen sulfide (H2S) is regarded as the third gasotransmitter along with nitric oxide and carbon monoxide. Extensive studies have demonstrated a variety of biological roles for H2S in neurophysiology, cardiovascular disease, endocrine regulation, and other physiological and pathological processes. Recent Advances: Novel H2S donors have proved useful in understanding the biological functions of H2S, with morpholin-4-ium 4 methoxyphenyl (morpholino) phosphinodithioate (GYY4137) being one of the most common pharmacological tools used. One advantage of GYY4137 over sulfide salts is its ability to release H2S in a slow and sustained manner akin to endogenous H2S production, rather than the delivery of H2S as a single concentrated burst. Critical Issues: Here, we summarize recent progress made in the characterization of the biological activities and pharmacological effects of GYY4137 in a range of in vitro and in vivo systems. Recent developments in the structural modification of GYY4137 to generate new compounds and their biological effects are also discussed. Future Directions: Slow-releasing H2S donor, GYY4137, and other phosphorothioate-based H2S donors are potent tools to study the biological functions of H2S. Despite recent progress, more work needs to be performed on these new compounds to unravel the mechanisms behind H2S release and pace of its discharge, as well as to define the effects of by-products of donors after H2S liberation. This will not only lead to better in-depth understanding of the biological effects of H2S but will also shed light on the future development of a new class of therapeutic agents with potential to treat a wide range of human diseases.
Collapse
Affiliation(s)
- Dawn Sijin Nin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shabana Binte Idres
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi Jian Song
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Philip K Moore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lih-Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University Cancer Institute, National University Health System, Singapore, Singapore
| |
Collapse
|