1
|
Lin W, Li Y, Huang H, Zhao P, Su Y, Fang CY. Harmine hydrochloride induces G0/G1 cell cycle arrest and apoptosis in oral squamous carcinoma cells. Exp Ther Med 2025; 29:111. [PMID: 40242602 PMCID: PMC12001316 DOI: 10.3892/etm.2025.12861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/26/2025] [Indexed: 04/18/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) represents the most frequently occurring form of oral cancer. However, despite the availability of advanced treatment modalities, the global 5-year survival rate for patients with advanced OSCC remains at ~50-60%. Devising alternative therapeutic strategies for oral cancer has therefore become an urgent need. Harmine, a β-carboline alkaloid, has recently been shown to exhibit anticancer activity. Compared with harmine, harmine hydrochloride (HH), a derivative of harmine, has improved water solubility and stability, so can absorb into tissues more readily. Therefore, the present study aimed to investigate the anticancer activity of HH in OSCC cells. A Cell Counting Kit-8 assay was performed to assess the cytotoxic effects of HH on the OSCC cell lines, SCC-4 and SCC-25. Flow cytometric analysis was subsequently employed to examine both the cell cycle profile and the extent of apoptosis. Western blotting was used to assess the expression levels of the regulatory proteins involved in these biological activities, and treatment with a pan-caspase inhibitor (Z-VAD-FMK) confirmed the involvement of the apoptotic pathway. Furthermore, western blotting was used to investigate which signaling pathways were affected in the HH-treated cells. Taken together, the findings of the present study demonstrated that HH was cytotoxic in OSCC cells. HH treatment induced G0/G1 phase cell cycle arrest and apoptosis. Additionally, the MAPK pathway was shown to be involved in HH-induced apoptosis in SCC-4 cells. Therefore, HH exhibited anticancer activity, and may be a putative therapeutic agent for the treatment of OSCC in the future.
Collapse
Affiliation(s)
- Weiting Lin
- Department of Stomatology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan, R.O.C
| | - Yizhen Li
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan, R.O.C
| | - Hsinyi Huang
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan, R.O.C
| | - Peiwen Zhao
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan, R.O.C
| | - Yining Su
- Department of Stomatology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan, R.O.C
| | - Chiung-Yao Fang
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan, R.O.C
- Institute of Molecular Biology, National Chung Cheng University, Chiayi 621, Taiwan, R.O.C
| |
Collapse
|
2
|
Goujani SM, Koopaie M, Safarian FH, Hakimiha N, Younespour S. Comparative analysis of combined methylene blue photodynamic therapy and doxorubicin treatment of oral squamous cell carcinoma cell line: In vitro study on apoptosis. Photodiagnosis Photodyn Ther 2025; 51:104457. [PMID: 39732188 DOI: 10.1016/j.pdpdt.2024.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 12/30/2024]
Abstract
INTRODUCTION Squamous cell carcinoma (SCC) is the most common malignancy of the head and neck region. Combination therapy potentially enhances the effectiveness beyond that of each treatment alone. This study aimed to assess whether photodynamic therapy (PDT), using methylene blue as a photosensitizer in conjunction with doxorubicin, produces synergistic effects on the apoptosis of the oral squamous cell carcinoma (OSCC) cell line. MATERIALS AND METHODS The human oral epidermal carcinoma cell line (KB cell line, NCBI Code: C152) was cultured in Dulbecco's modified Eagle's medium. Following at least 24 hours of incubation, the OSCC cells were distributed into six groups, with groups 1-3 and 5 performed in the dark to prevent any light interference. 1: control group; 2: treated with 3.2 μg/mL methylene blue; 3: exposed to various concentrations of doxorubicin; 4: PDT group (methylene blue + 660 nm light); 5: treated with both doxorubicin and methylene blue; and finally, 6: treated with PDT (methylene blue + 660 nm light) in conjunction with doxorubicin. Flow cytometry methods were used to assess apoptosis. Analysis of variance (ANOVA) was used to compare quantitative variables between groups, and Tukey's test was applied for pairwise group comparisons. RESULTS Flow cytometry analysis revealed that the highest level of cellular apoptosis occurred in the group treated with PDT in conjunction with doxorubicin. CONCLUSIONS PDT using the photosensitizer methylene blue, in combination with doxorubicin, can serve as an effective agent for inducing apoptosis in OSCC cells.
Collapse
Affiliation(s)
- Shayan Momeni Goujani
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Koopaie
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fateme Hamta Safarian
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Hakimiha
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Younespour
- Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Tasneem A, Singh M, Singh P, Dohare R. Multi-omics and in-silico approach reveals AURKA, AURKB, and RSAD2 as therapeutic biomarkers in OSCC progression. J Biomol Struct Dyn 2024:1-19. [PMID: 39639535 DOI: 10.1080/07391102.2024.2436556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/10/2024] [Indexed: 12/07/2024]
Abstract
Oral squamous cell carcinoma (OSCC), a prevalent form of head and neck cancer, poses a significant health challenge with limited improvements in patient outcomes over the years. Its development is influenced by a complex interplay of genetic alterations and environmental factors. While progress has been made in understanding the molecular mechanisms driving OSCC, pinpointing critical molecular markers and potential drug candidates has proven elusive. This study uniquely endeavors to conduct a meta-analysis to unveil therapeutic genes responsible for OSCC tumorigenesis. A multi-omics approach identified 951 differentially expressed genes (DEGs) associated with OSCC by analyzing microarray data from the NCBI GEO database. Weighted gene co-expression network analysis (WGCNA) detected a significant hub gene module comprising 805 genes, followed by the construction of protein-protein interaction network resulting in two small clusters of 7 gene-encoded proteins each. These clusters were filtered out based on top 10 significant pathways and gene ontology terms to identify six key target proteins with elevated expression levels, acting as potential therapeutic biomarkers for OSCC. Notably, RSAD2 emerged as a novel biomarker linked to OSCC progression. Furthermore, we identified potential inhibitors targeting AURKA, AURKB, and RSAD2 proteins and validated their interactions through molecular dynamics simulation studies. The simulations confirmed the stability of receptor-ligand complexes, suggesting ZINC03839281, ZINC04026167, and ZINC00718292 compounds hold promise as potential inhibitors for therapeutically targeting AURKA, AURKB, and RSAD2 as significant OSCC biomarkers. We recommend further comprehensive studies, including experimental and preclinical investigations, to validate the effectiveness of these lead compounds for OSCC treatment.
Collapse
Affiliation(s)
- Alvea Tasneem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Manish Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
4
|
Chan XY, Chang KP, Yang CY, Liu CR, Hung CM, Huang CC, Liu HP, Wu CC. Upregulation of ENAH by a PI3K/AKT/β-catenin cascade promotes oral cancer cell migration and growth via an ITGB5/Src axis. Cell Mol Biol Lett 2024; 29:136. [PMID: 39511483 PMCID: PMC11545229 DOI: 10.1186/s11658-024-00651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Oral cancer accounts for 2% of cancer-related deaths globally, with over 90% of cases being oral cavity squamous cell carcinomas (OSCCs). Approximately 50% of patients with OSCC succumb to the disease within 5 years, primarily due to the advanced stage at which it is typically diagnosed. This underscores an urgent need to identify proteins related to OSCC progression to develop effective diagnostic and therapeutic strategies. METHODS To identify OSCC progression-related proteins, we conducted integrated proteome and transcriptome analyses on cancer tissues from patients and patient-derived xenograft (PDX) model mice. We investigated the role of protein-enabled homolog (ENAH), identified as an OSCC progression-associated protein, through proliferation, transwell migration, and invasion assays in OSCC cells. The mechanisms underlying ENAH-mediated functions were elucidated using gene knockdown and ectopic expression techniques in OSCC cells. RESULTS ENAH was identified as a candidate associated with OSCC progression based on integrated analyses, which showed increased ENAH levels in primary OSCC tissues compared with adjacent noncancerous counterparts, and sustained overexpression in the cancer tissues of PDX models. We confirmed that level of ENAH is increased in OSCC tissues and that its elevated expression correlates with poorer survival rates in patients with OSCC. Furthermore, the upregulation of ENAH in OSCC cells results from the activation of the GSK3β/β-catenin axis by the EGFR/PI3K/AKT cascade. ENAH expression enhances cell proliferation and mobility by upregulating integrin β5 in oral cancer cells. CONCLUSIONS The upregulation of ENAH through a PI3K/AKT/β-catenin signaling cascade enhances oral cancer cell migration and growth via the ITGB5/Src axis. These findings offer a new interpretation of the ENAH function in the OSCC progression and provide crucial information for developing new OSCC treatment strategies.
Collapse
Affiliation(s)
- Xiu-Ya Chan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Ping Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Yu Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiao-Rou Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chu-Mi Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Chueh Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Ping Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Ching Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Wu X, Zhou X, Sun X, Ning Y, Song X, Song G, Guo X, Sun R. Tra2β exerts tumor-promoting effects via GSK3/β-catenin signaling in oral squamous cell carcinoma. Oral Dis 2024; 30:4956-4970. [PMID: 38623870 DOI: 10.1111/odi.14949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 03/03/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVES The splicing factor transformer-2 homolog beta (Tra2β) plays a pivotal role in various cancers. Nonetheless, its role in oral squamous cell carcinoma (OSCC) has not been comprehensively explored. This study sought to discern the influence of Tra2β on OSCC and its underlying mechanisms. MATERIALS AND METHODS We assessed Tra2β expression in OSCC utilizing immunohistochemistry, qRT-PCR, and western blotting techniques. siRNA transfection was used to silence Tra2β. Whole transcriptome RNA sequencing (RNA-seq) analysis was carried out to reveal the alternative splicing (AS) events. KEGG pathway analysis enriched the related pathways. Colony formation, transwell, wound healing, and Annexin V-FITC/PI were employed to appraise the consequences of Tra2β silencing on OSCC. RESULTS Tra2β was highly expressed in both OSCC tissues and cell lines. Knockdown of Tra2β-regulated AS events with skipped exon (SE) accounts for the highest proportion. Meanwhile, downregulation of Tra2β reduced cell proliferation, migration, and invasion, however increasing cell apoptosis. Moreover, Wnt signaling pathway involved in the function of Tra2β knockdown which was demonstrated directly by a discernible reduction in the expression of GSK3/β-catenin signaling axis. CONCLUSIONS These findings suggest that knockdown of Tra2β may exert anti-tumor effects through the GSK3/β-catenin signaling pathway in OSCC.
Collapse
Affiliation(s)
- Xiaofen Wu
- Department of Stomatology, Wenshui County People's Hospital of Shanxi Province, Wenshui, China
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Xinyue Zhou
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaozhen Sun
- Shanxi Traditional Chinese Medical Hospital, Taiyuan, China
| | - Yi Ning
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Xiaona Song
- Department of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Guohua Song
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, China
| | - Xiaohong Guo
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Rui Sun
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Oral and Maxillofacial Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| |
Collapse
|
6
|
An L, Yu Y, He L, Xiao X, Li P. Ginsenoside Rb1 Deters Cell Proliferation, Induces Apoptosis, Alleviates Oxidative Stress, and Antimetastasis in Oral Squamous Carcinoma Cells. Appl Biochem Biotechnol 2024; 196:7642-7656. [PMID: 38530541 DOI: 10.1007/s12010-024-04880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/28/2024]
Abstract
There are numerous therapeutic applications for ginsenoside Rb1 (GRb1), the primary saponin derived from ginseng root. According to earlier research, ginsenoside Rb1 causes apoptosis and reduces the cell cycle. Its adverse effects, especially those on the development of the embryo, still need to be thoroughly studied. A host's lifestyle choices, including smoking, drinking too much alcohol, using tobacco products, and having an HPV infection, can increase the risk of oral squamous cell carcinoma (OSCC), one of the most prevalent malignancies of the oral cavity. To address this challenge, this investigation focuses on the design of GRb1 for treating OSCC. In vitro cytotoxicity studies confirmed that GRb1 was more effective in PCI-9A and PCI-13 cells, with reduced toxicity in non-cancerous cells. Further verification of cellular morphology was achieved through various biochemical staining methods. The mechanism of cell death was investigated by Annexin V-FITC and PI methods. Additionally, the antimetastatic attributes of GRb1 have been evaluated using both migration scratch and Transwell migration assays, which have collectively revealed excellent antimetastatic potential. The DNA fragmentation of the PCI-9A and PCI-13 cells was assessed using a comet assay. Ginsenoside Rb1 improved ROS levels and caused mitochondrial membrane potential alterations and DNA damage, which resulted in apoptosis. OSCC administration significantly reduced the levels of SOD, GSH, GPx, and CAT, increasing the levels of PCI-9A and PCI-13 cells, while GRb1 improved this situation. Therefore, we propose that Ginsenoside Rb1 could be an alternative therapeutic strategy for OSCC therapy.
Collapse
Affiliation(s)
- Le An
- Department of the Oral and Maxillofacial Surgery, the First Affiliated Hospital of Hainan Medical University, No.31, Longhua Road, Haikou, 570100, China
| | - Yang Yu
- Department of Oral Anatomy and Physiology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Long He
- Department of the Oral and Maxillofacial Surgery, the First Affiliated Hospital of Hainan Medical University, No.31, Longhua Road, Haikou, 570100, China
| | - Xu Xiao
- Department of the Oral and Maxillofacial Surgery, the First Affiliated Hospital of Hainan Medical University, No.31, Longhua Road, Haikou, 570100, China
| | - Pengcheng Li
- Department of the Oral and Maxillofacial Surgery, the First Affiliated Hospital of Hainan Medical University, No.31, Longhua Road, Haikou, 570100, China.
| |
Collapse
|
7
|
Ma Q, Ren J, Wang R, Yuan Y, Tao X. Predicting response to immunotherapy in oral squamous cell carcinoma via a CT-based radiomics model. BMC Med Imaging 2024; 24:266. [PMID: 39375583 PMCID: PMC11460018 DOI: 10.1186/s12880-024-01444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND To investigate whether radiomics models derived from pretreatment CT could help to predict response to immunotherapy in oral squamous cell carcinoma (OSCC). METHODS Retrospectively, a total of 40 patients with measurable OSCC were included. The patients were divided into responder group and non-responder group according to the comparison of pre-treatment and post-treatment CT findings. Radiomics features were extracted from pre-treatment CT images, and optimal features were selected by univariate analysis and the least absolute shrinkage and selection operator (LASSO) regression analysis. Neural network, support vector machine, random forest and logistic regression models were used to predict response to immunotherapy in OSCC, and leave-one-out cross validation was employed to assess the performance of the classifiers. The area under the curve (AUC), accuracy, sensitivity and specificity were calculated to quantify the predictive efficacy. RESULTS A total of 7 features were selected to build models upon machine learning methods. By comparing different machine learning based models, the neural network model achieved the best predictive ability, with an AUC of 0.864, an accuracy of 82.5%, a sensitivity of 82.5%, and a specificity of 82.5%. CONCLUSIONS The pretreatment CT-based radiomics model showed good performance in predicting response to immunotherapy in OSCC. Pretreatment CT-based radiomics model might provide an alternative approach for the selection of patients who benefit from immunotherapy.
Collapse
Affiliation(s)
- Qifan Ma
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200010, China
| | - Jiliang Ren
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200010, China
| | - Rui Wang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200010, China
| | - Ying Yuan
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200010, China.
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200010, China.
| |
Collapse
|
8
|
Jamshidi S, Tavangar M, Shojaei S, Taherkhani A. Malignant Transformation of Normal Oral Tissue to Dysplasia and Early Oral Squamous Cell Carcinoma: An In Silico Transcriptomics Approach. Anal Cell Pathol (Amst) 2024; 2024:6260651. [PMID: 39376501 PMCID: PMC11458300 DOI: 10.1155/2024/6260651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/22/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024] Open
Abstract
Background: Oral squamous cell carcinoma (OSCC) is a prevalent and aggressive form of head and neck cancer, often diagnosed at advanced stages. Elucidating the molecular mechanisms involved in the malignant transformation from normal oral tissue to oral preinvasive lesions (OPL) and primary OSCC could facilitate early diagnosis and improve therapeutic strategies. Methods: Differentially expressed genes (DEGs) were identified from the GSE30784 dataset by comparing normal oral tissue, oral dysplasia, and primary OSCC samples. Cross-validation was performed using an independent RNA-seq dataset, GSE186775. Protein-protein interaction (PPI) network analysis, gene ontology annotation, and pathway enrichment analysis were conducted on the common DEGs. Hub genes were identified, and their prognostic significance was evaluated using survival analysis. Transcription factor (TF) enrichment analysis, cross-validation, and immunohistochemistry analyses were also performed. Results: A total of 226 proteins and 677 interactions were identified in the PPI network, with 34 hub genes, including FN1, SERPINE1, PLAUR, THBS1, and ITGA6. Pathways such as "Formation of the cornified envelope," "Keratinization," and "Developmental biology" were enriched. Overexpression of SERPINE1, PLAUR, THBS1, and ITGA6 correlated with poor prognosis, while upregulation of CALML5 and SPINK5 was associated with favorable outcomes. NFIB emerged as the most significant TF-regulating hub genes. Immunohistochemistry validated ITGA6 overexpression in primary OSCC. Cross-validation using the RNA-seq dataset supported the involvement of critical genes in the malignant transformation process. Conclusion: This study identified vital genes, pathways, and prognostic markers involved in the malignant transformation from normal oral tissue to OPL and primary OSCC, providing insights for early diagnosis and targeted therapy development. Cross-validation with an independent RNA-seq dataset and immunohistochemistry reinforced the findings, supporting the robustness of the identified molecular signatures.
Collapse
Affiliation(s)
- Shokoofeh Jamshidi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Matina Tavangar
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Setareh Shojaei
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
9
|
Soni U, Singh A, Soni R, Samanta SK, Varadwaj PK, Misra K. Identification of candidate target genes of oral squamous cell carcinoma using high-throughput RNA-Seq data and in silico studies of their interaction with naturally occurring bioactive compounds. J Biomol Struct Dyn 2024; 42:8024-8044. [PMID: 37526306 DOI: 10.1080/07391102.2023.2242515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Oral Squamous Cell Carcinoma (OSCC) accounts for more than 90% of all kinds of oral neoplasms that develop in the oral cavity. It is a type of malignancy that shows high morbidity and recurrence rate, but data on the disease's target genes and biomarkers is still insufficient. In this study, in silico studies have been performed to find out the novel target genes and their potential therapeutic inhibitors for the effective and efficient treatment of OSCC. The DESeq2 package of RStudio was used in the current investigation to screen and identify differentially expressed genes for OSCC. As a result of gene expression analysis, the top 10 novel genes were identified using the Cytohubba plugin of Cytoscape, and among them, the ubiquitin-conjugating enzyme (UBE2D1) was found to be upregulated and playing a significant role in the progression of human oral cancers. Following this, naturally occurring compounds were virtually evaluated and simulated against the discovered novel target as prospective drugs utilizing the Maestro, Schrodinger, and Gromacs software. In a simulated screening of naturally occurring potential inhibitors against the novel target UBE2D1, Epigallocatechin 3-gallate, Quercetin, Luteoline, Curcumin, and Baicalein were identified as potent inhibitors. Novel identified gene UBE2D1 has a significant role in the proliferation of human cancers through suppression of 'guardian of genome' p53 via ubiquitination dependent pathway. Therefore, the treatment of OSCC may benefit significantly from targeting this gene and its discovered naturally occurring inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Unnati Soni
- Department of Applied Sciences, Indian Institute of Information Technology, Prayagraj, India
| | - Anirudh Singh
- Department of Applied Sciences, Indian Institute of Information Technology, Prayagraj, India
| | - Ramendra Soni
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology, Prayagraj, India
| | - Pritish Kumar Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology, Prayagraj, India
| | - Krishna Misra
- Department of Applied Sciences, Indian Institute of Information Technology, Prayagraj, India
| |
Collapse
|
10
|
Sheykhbahaei N, Tameemi AHA, Koopaie M. Effect of short-term fasting on the cisplatin activity in human oral squamous cell carcinoma cell line HN5 and chemotherapy side effects. BMC Cancer 2024; 24:989. [PMID: 39123141 PMCID: PMC11316436 DOI: 10.1186/s12885-024-12752-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Ketogenic interventions like short-term fasting show potential as complementary therapies to enhance the effectiveness of chemotherapy for cancer. However, the specific effects of fasting on head and neck squamous cell carcinoma (HNSCC) cells and healthy oral mucosa cells during these treatments are not well understood. This study investigates whether short-term fasting can differentially impact HNSCC cell survival and viability compared to healthy keratinocytes while undergoing standard chemotherapy regimens. METHODS This study investigated the effects of fasting on cell viability in HN5 cell line and healthy oral keratinocyte cells. The HN5 cell line, derived from human tongue squamous cell carcinoma, and primary human keratinocytes isolated from the basal layer of gingival epithelium were divided into three groups: (1) control, (2) treated with the standard chemotherapeutic agent cisplatin, and (3) treated with cisplatin under fasting conditions achieved through 48-hour glucose restriction mimicking the blood glucose levels of fasted individuals. Cell proliferation was assessed at 48 and 72 h using the MTT assay, a colorimetric method based on mitochondrial dehydrogenase activity. Flow cytometry analysis with specific apoptosis and necrosis markers distinguished between early and late apoptotic, necrotic, and viable cells. RESULTS Cell viability in HN5 and healthy keratinocyte cells decreased in cisplatin with low glucose groups compared to cisplatin and control groups. The same results were observed for healthy keratinocyte cells; only a decrease in cell viability in cisplatin groups compared to control groups was observed, which was not statistically significant. Cell apoptosis in HN5 and healthy keratinocyte cells increased in cisplatin with low glucose groups compared to cisplatin and control groups. In healthy keratinocyte cells, the cisplatin with low glucose group showed an impressive increase in necrosis, late apoptosis, and early apoptosis and a significant decrease in live cells compared with other groups. CONCLUSION This study revealed that short-term fasting chemotherapy significantly improved HNSCC cell line apoptosis and necrosis.
Collapse
Affiliation(s)
- Nafiseh Sheykhbahaei
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, North Kargar St, Tehran, 14399-55991, Iran
| | - Ahmed Hayder Al Tameemi
- Dentist, Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Koopaie
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, North Kargar St, Tehran, 14399-55991, Iran.
| |
Collapse
|
11
|
Abou Madawi NA, Darwish ZE, Omar EM. Targeted gene therapy for cancer: the impact of microRNA multipotentiality. Med Oncol 2024; 41:214. [PMID: 39088082 PMCID: PMC11294399 DOI: 10.1007/s12032-024-02450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
Cancer is a life-threatening disease and its management is difficult due to its complex nature. Cancer is characterized by genomic instability and tumor-associated inflammation of the supporting stoma. With the advances in omics science, a treatment strategy for cancer has emerged, which is based on targeting cancer-driving molecules, known as targeted therapy. Gene therapy, a form of targeted therapy, is the introduction of nucleic acids into living cells to replace a defective gene, promote or repress gene expression to treat a disease. MicroRNAs (miRNAs) are non-coding RNAs (ncRNAs) that regulate gene expression and thus are involved in physiological processes like cell proliferation, differentiation, and cell death. miRNAs control the actions of many genes. They are deregulated in cancer and their abnormal expression influences genetic and epigenetic alterations inducing carcinogenesis. In this review, we will explain the role of miRNAs in normal and abnormal gene expression and their usefulness in monitoring cancer patients. Besides, we will discuss miRNA-based therapy as a method of gene therapy and its impact on the success of cancer management.
Collapse
Affiliation(s)
- Nourhan A Abou Madawi
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, 21521, Alexandria, Egypt.
| | - Zeinab E Darwish
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, 21521, Alexandria, Egypt
| | - Enas M Omar
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, 21521, Alexandria, Egypt
| |
Collapse
|
12
|
Zhu L, Yang X, Wu S, Dong R, Yan Y, Lin N, Zhang B, Tan B. Hepatotoxicity of epidermal growth factor receptor - tyrosine kinase inhibitors (EGFR-TKIs). Drug Metab Rev 2024; 56:302-317. [PMID: 39120430 DOI: 10.1080/03602532.2024.2388203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Drug-induced liver injury (DILI) is one of the most frequently adverse reactions in clinical drug use, usually caused by drugs or herbal compounds. Compared with other populations, cancer patients are more prone to abnormal liver function due to primary or secondary liver malignant tumor, radiation-induced liver injury and other reasons, making potential adverse reactions from liver damage caused by anticancer drugs of particular concernduring clinical treatment process. In recent years, the application of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has changed the treatment status of a series of solid malignant tumors. Unfortunately, the increasing incidence of hepatotoxicitylimits the clinical application of EGFR-TKIs. The mechanisms of liver injury caused by EGFR-TKIs were complex. Despite more than a decade of research, other than direct damage to hepatocytes caused by inhibition of cellular DNA synthesis and resulting in hepatocyte necrosis, the rest of the specific mechanisms remain unclear, and few effective solutions are available. This review focuses on the clinical feature, incidence rates and the recent advances on the discovery of mechanism of hepatotoxicity in EGFR-TKIs, as well as rechallenge and therapeutic strategies underlying hepatotoxicity of EGFR-TKIs.
Collapse
Affiliation(s)
- Lulin Zhu
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Xinxin Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shanshan Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong Dong
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Youyou Yan
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Nengming Lin
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Biqin Tan
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
13
|
Hajisadeghi S, Rafiei M, Tahmasebi E, Khafaei M. Evaluating the expression pattern of ATXN1 and CDC42EP1 genes and related long noncoding RNAs in oral squamous cell carcinoma. Mol Biol Rep 2024; 51:796. [PMID: 39002033 DOI: 10.1007/s11033-024-09719-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a significant health issue worldwide, and the expression of long non-coding RNAs (lncRNAs) are altered in these malignancies. The present study evaluated the expression level of ATXN1 CDC42EP1 genes and the lncRNAs related to these genes (lnc-ATXN1L, lnc-ATXN1, lnc-ATXN10, and lnc-CDC42EP1) in paraffin blocks of oral and pharyngeal squamous cell carcinoma (SCC) samples from patients referred to Amir Alam Hospital in Tehran, Iran. METHODS AND RESULTS This cross-sectional study was conducted on 76 paraffin blocks of oral and pharyngeal squamous cell carcinoma (SCC) samples from patients referred to Amir Alam Hospital in Tehran. The expression levels of ATXN1, CDC42EP1, lnc-ATXN1L, lnc-ATXN1, lnc-ATXN10, and lnc-CDC42EP1 were measured in all samples using a qPCR Master Mix kit. Real-time PCR was used to perform the reactions, and GAPDH was considered the housekeeping gene. Statistical analyses were conducted utilizing the Statistical Package for the Social Sciences (SPSS) version 22.0. The expression of lnc-ATXN1, lnc-ATXN10, and lnc-CDC42EP1 significantly differed between the two groups. All of them were downregulated (p < 0.05), and no significant difference was observed between the SCC samples and the adjacent tissue in other genes (p > 0.05). The expression of genes was not related to age, sex, size, and tumor location (p > 0.05). CONCLUSIONS Dysexpression of lnc-ATXN1, lnc-ATXN10, and lnc-CDC42EP1 can be used for diagnosing OSCC.
Collapse
Affiliation(s)
- Samira Hajisadeghi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
- School of Dentistry, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
- School of Dentistry, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Khafaei
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Li J, Qiao Z, Li Y, Lu X, Shao T, Lv X. Bioinformatic analysis indicated that STARD4-AS1 might be a novel ferroptosis-related biomarker of oral squamous cell carcinoma. Heliyon 2024; 10:e33193. [PMID: 39015805 PMCID: PMC11250877 DOI: 10.1016/j.heliyon.2024.e33193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/18/2024] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) stands as the predominant form of oral cancer, marked by a poor prognosis. Ferroptosis, a type of programmed cell death, plays a critical role in the initiation and progression of various cancers. Long non-coding RNAs (lncRNAs) are prominent in modulating cancer development. Nevertheless, the prognostic significance of ferroptosis-related lncRNAs (FRLs) in OSCC remains inadequately explored. This study aims to develop a predictive signature based on FRLs to forecast the prognosis of OSCC patients. Methods We gathered expression profiles of FRLs along with clinical data from The Cancer Genome Atlas (TCGA) and FerrDb databases. A prognostic model based on 10 FRLs were constructed using Cox regression analyses with LASSO algorithms, and their predictive power was evaluated. Then, the model was used to investigate functional enrichment, immune landscape, m6A genes, somatic variations, and drug response in different risk cohorts of patients. Finally, the expression and function of STARD4-AS1 (steroidogenic acute regulator protein-related lipid transfer domain containing 4-antisense RNA 1), a potential prognostic marker for OSCC screening based on our bioinformatics analysis, were investigated in vitro. Results We developed a signature comprising 10 FRLs to stratify patients into two risk cohorts according to their calculated risk scores. Patients classified as high-risk exhibited significantly poorer prognoses compared to those in the low-risk cohort. Furthermore, survival analysis, patient risk heat plot, and risk curve verified the accuracy of the signature. The role of this signature in OSCC was well investigated using immune microenvironment, mutational, and gene set enrichment analysis (GSEA). Moreover, seven drugs, including cisplatin and docetaxel, were identified as potential treatments for patients with high-risk cancers. In addition, the knockdown of STARD4-AS1 in OSCC cell lines markedly inhibited cell proliferation and migration and induced ferroptosis. Conclusion Using this signature may improve overall survival predictions in OSCC, throwing new light on immunotherapies and targeted therapies. Moreover, STARD4-AS1 might regulate the process of ferroptosis and could be used as a novel biomarker of OSCC.
Collapse
Affiliation(s)
| | | | - Yuwei Li
- Department of Oral and Maxillofacial Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xinyan Lu
- Department of Oral and Maxillofacial Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Tingru Shao
- Department of Oral and Maxillofacial Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaozhi Lv
- Department of Oral and Maxillofacial Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
15
|
Gao F, Zhang M, Ying Z, Li W, Lu D, Wang X, Sha O. A PANoptosis pattern to predict prognosis and immunotherapy response in head and neck squamous cell carcinoma. Heliyon 2024; 10:e27162. [PMID: 38463811 PMCID: PMC10920724 DOI: 10.1016/j.heliyon.2024.e27162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Individuals diagnosed with head and neck squamous cell carcinoma (HNSCC) experience a significant occurrence rate and are susceptible to premature spreading, resulting in a bleak outlook. Therapeutic approaches, such as chemotherapy, targeted therapy, and immunotherapy, may exhibit primary and acquired resistance during the advanced phases of HNSCC. There is currently no viable solution to tackle this issue. PANoptosis-a type of non-apoptotic cell death-is a recently identified mechanism of cellular demise that entails communication and synchronization among thermal apoptosis, apoptosis, and necrosis mechanisms. However, the extent to which PANoptosis-associated genes (PRG) contribute to the forecast and immune reaction of HNSCC remains mostly undisclosed. The present study aimed to thoroughly analyze the potential importance of PRG in HNSCC and report our discoveries. We systematically analyzed 19 PRG from previous studies and clinical data from HNSCC patients to establish a PAN-related signature and assess its prognostic, predictive potential. Afterward, the patient information was separated into two gene patterns that corresponded to each other, and the analysis focused on the connection between patient prognosis, immune status, and cancer immunotherapy. The PAN score was found to correlate with survival rates, immune systems, and cancer-related pathways. We then validated the malignant role of CD27 among them in HNSCC. In summary, we demonstrated the effectiveness of PAN.Score-based molecular clustering and prognostic features in predicting the outcome of HNSCC. The discovery we made could enhance our comprehension of the significance of PAN.Score in HNSCC and facilitate the development of more effective treatment approaches.
Collapse
Affiliation(s)
- Feng Gao
- School of Dentistry, Institute of Stomatological Research, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Minghuan Zhang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Zhenguang Ying
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Wanqiu Li
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Desheng Lu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xia Wang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Ou Sha
- School of Dentistry, Institute of Stomatological Research, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
16
|
Chakraborty P, Lubna S, Bhuin S, K. D, Chakravarty M, Jamma T, Yogeeswari P. Targeting hexokinase 2 for oral cancer therapy: structure-based design and validation of lead compounds. Front Pharmacol 2024; 15:1346270. [PMID: 38529190 PMCID: PMC10961359 DOI: 10.3389/fphar.2024.1346270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
The pursuit of small molecule inhibitors targeting hexokinase 2 (HK2) has significantly captivated the field of cancer drug discovery. Nevertheless, the creation of selective inhibitors aimed at specific isoforms of hexokinase (HK) remains a formidable challenge. Here, we present a multiple-pharmacophore modeling approach for designing ligands against HK2 with a marked anti-proliferative effect on FaDu and Cal27 oral cancer cell lines. Molecular dynamics (MD) simulations showed that the prototype ligand exhibited a higher affinity towards HK2. Complementing this, we put forth a sustainable synthetic pathway: an environmentally conscious, single-step process facilitated through a direct amidation of the ester with an amine under transition-metal-free conditions with an excellent yield in ambient temperature, followed by a column chromatography avoided separation technique of the identified lead bioactive compound (H2) that exhibited cell cycle arrest and apoptosis. We observed that the inhibition of HK2 led to the loss of mitochondrial membrane potential and increased mitophagy as a potential mechanism of anticancer action. The lead H2 also reduced the growth of spheroids. Collectively, these results indicated the proof-of-concept for the prototypical lead towards HK2 inhibition with anti-cancer potential.
Collapse
Affiliation(s)
- Purbali Chakraborty
- Department of Pharmacy, Birla Institute of Technology and Science, Hyderabad, India
- Cancer Research Group, Centre for Human Diseases Research, Birla Institute of Technology and Science, Hyderabad, India
| | - Syeda Lubna
- Department of Biological Sciences, Birla Institute of Technology and Science, Hyderabad, India
| | - Shouvik Bhuin
- Department of Chemistry, Birla Institute of Technology and Science, Hyderabad, India
| | - Deepika K.
- Department of Pharmacy, Birla Institute of Technology and Science, Hyderabad, India
| | - Manab Chakravarty
- Department of Chemistry, Birla Institute of Technology and Science, Hyderabad, India
| | - Trinath Jamma
- Cancer Research Group, Centre for Human Diseases Research, Birla Institute of Technology and Science, Hyderabad, India
- Department of Biological Sciences, Birla Institute of Technology and Science, Hyderabad, India
| | - Perumal Yogeeswari
- Department of Pharmacy, Birla Institute of Technology and Science, Hyderabad, India
- Cancer Research Group, Centre for Human Diseases Research, Birla Institute of Technology and Science, Hyderabad, India
| |
Collapse
|
17
|
Rich BJ, Samuels SE, Azzam GA, Kubicek G, Freedman L. Oral Cavity Squamous Cell Carcinoma: Review of Pathology, Diagnosis, and Management. Crit Rev Oncog 2024; 29:5-24. [PMID: 38683151 DOI: 10.1615/critrevoncog.2023050055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Squamous cell carcinoma of the oral cavity presents a significant global health burden, primarily due to risk factors such as tobacco smoking, smokeless tobacco use, heavy alcohol consumption, and betel quid chewing. Common clinical manifestations of oral cavity cancer include visible lesions and sores, often accompanied by pain in advanced stages. Diagnosis relies on a comprehensive assessment involving detailed history, physical examination, and biopsy. Ancillary imaging studies and functional evaluations aid in accurate staging and facilitate treatment planning. Prognostic information is obtained from histopathological factors, such as tumor grade, depth of invasion, lymphovascular invasion, and perineural invasion. Notably, lymph node metastasis, found in approximately half of the patients, carries significant prognostic implications. Effective management necessitates a multidisciplinary approach to optimize patient outcomes. Surgical resection is the backbone of treatment, aimed at complete tumor removal while preserving functional outcomes. Adjuvant therapies, including radiation and chemotherapy, are tailored according to pathological factors. Further work in risk stratification and treatment is necessary to optimize outcomes in squamous cell carcinoma of the oral cavity.
Collapse
Affiliation(s)
| | | | - Gregory A Azzam
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine
| | - Gregory Kubicek
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine
| | - Laura Freedman
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine
| |
Collapse
|
18
|
Fu Q, Zhang F, Vijayalakshmi A. The Protective Effect of Sanggenol L Against DMBA-induced Hamster Buccal Pouch Carcinogenesis Induces Apoptosis and Inhibits Cell Proliferative Signalling Pathway. Comb Chem High Throughput Screen 2024; 27:885-893. [PMID: 37496247 DOI: 10.2174/1386207326666230726140706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/21/2023] [Accepted: 06/09/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) has a poor prognosis when treated with surgery and chemotherapy. Therefore, a new therapy and preventative strategy for OSCC and its underlying mechanisms are desperately needed. The purpose of this study was to examine the chemopreventive effects of sanggenol L on oral squamous cell carcinoma (OSCC). The research focused on molecular signalling pathways in 7,12-dimethylbenz(a)anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis. AIM The purpose of this study was to look at the biochemical and chemopreventive effects of sanggenol L on 7,12-dimethylbenz(a)anthracene (DMBA)-induced HBP (hamster buccal pouch) carcinogenesis via cell proliferation and the apoptotic pathway. METHODS After developing squamous cell carcinoma, oral tumours continued to progress leftward into the pouch 3 times per week for 10 weeks while being exposed to 0.5 % reactive DMBA three times per week. Tumour growth was caused by biochemical abnormalities that induced inflammation, increased cell proliferation, and decreased apoptosis. RESULTS Oral sanggenol L (10 mg/kg bw) supplementation with cancer-induced model DMBApainted hamsters prevented tumour occurrences, improved biochemistry, inhibited inflammatory markers, decreased cell proliferation marker expression of tumour necrosis factor-alpha (TNF- α), nuclear factor (NF-κB), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and induced apoptosis. CONCLUSION Sanggenol L could be developed into a new medicine for the treatment of oral carcinogenesis.
Collapse
Affiliation(s)
- Qing Fu
- Department of Stomatology, People's Hospital of Qijiang District, Chongqing, 401420, China
| | - Fangming Zhang
- Department of Stomatology, The Fifth People's Hospital Of Wuxi, Wuxi, 214000, China
| | - Annamalai Vijayalakshmi
- Department of Biochemistry, Rabiammal Ahamed Maideen College for Women, Thiruvarur, Tamil Nadu, 610001, India
| |
Collapse
|
19
|
Li M, Yin S, Xu A, Kang L, Ma Z, Liu F, Yang T, Sun P, Tang Y. Synergistic Phototherapy-Molecular Targeted Therapy Combined with Tumor Exosome Nanoparticles for Oral Squamous Cell Carcinoma Treatment. Pharmaceutics 2023; 16:33. [PMID: 38258044 PMCID: PMC10821490 DOI: 10.3390/pharmaceutics16010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) contributes to more than 90% of all oral malignancies, yet the performance of traditional treatments is impeded by limited therapeutic effects and substantial side effects. In this work, we report a combinational treatment strategy based on tumor exosome-based nanoparticles co-formulating a photosensitizer (Indocyanine green) and a tyrosine kinase inhibitor (Gefitinib) (IG@EXOs) for boosting antitumor efficiency against OSCC through synergistic phototherapy-molecular targeted therapy. The IG@EXOs generate distinct photothermal/photodynamic effects through enhanced photothermal conversion efficiency and ROS generation, respectively. In vivo, the IG@EXOs efficiently accumulate in the tumor and penetrate deeply to the center of the tumor due to passive and homologous targeting. The phototherapy effects of IG@EXOs not only directly induce potent cancer cell damage but also promote the release and cytoplasmic translocation of Gefitinib for achieving significant inhibition of cell proliferation and tumor angiogenesis, eventually resulting in efficient tumor ablation and lymphatic metastasis inhibition through the synergistic phototherapy-molecular targeted therapy. We envision that the encouraging performances of IG@EXOs against cancer pave a new avenue for their future application in clinical OSCC treatment.
Collapse
Affiliation(s)
- Ming Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
| | - Shiyao Yin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
- Department of Otolaryngology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China;
| | - Anan Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
| | - Liyuan Kang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
| | - Ziqian Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
| | - Fan Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
| | - Peng Sun
- Department of Otolaryngology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China;
| | - Yongan Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
| |
Collapse
|
20
|
Hammad Uddin MK, Khan Sadiq MS, Ahmed A, Khan M, Maniar T, Mateen SM, Saba B, Kashif SM, Usman S, Najeeb S, Khurshid Z, Zafar MS. Applications of Metformin in Dentistry-A review. J Taibah Univ Med Sci 2023; 18:1299-1310. [PMID: 37275952 PMCID: PMC10239065 DOI: 10.1016/j.jtumed.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 06/07/2023] Open
Abstract
Metformin is a versatile drug with numerous medical uses. It is known primarily as an anti-hyperglycemic drug that has become the main oral blood-glucose-lowering medication for managing type 2 diabetes mellitus globally. Its use has been reported in a variety of oral conditions and dentistry in general. Recent clinical trials have indicated the effectiveness of adjunct topical application of metformin in improving the periodontal parameters of patients with diabetes and periodontitis. Additionally, studies have suggested that metformin stimulates odontogenic differentiation and mineral synthesis of stem cells in the tooth pulp. Metformin also stimulates osteoblast proliferation, decreases osteoclast activity and exerts regenerative effects on periodontal bone, thus making it a viable candidate for periodontal regeneration. Metformin monotherapy significantly enhances osseointegration of endosseous implants and has been reported to have anti-cancer effects on oral squamous cell carcinoma by impeding tumor progression. Animal studies have indicated that metformin improves orthodontic tooth movement and resists orthodontic appliance corrosion. This narrative review aims to provide a current summary of research highlighting the prospective uses of metformin in dentistry.
Collapse
Affiliation(s)
- Muhammad Khawaja Hammad Uddin
- Department of Science of Dental Materials, Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Sindh, Pakistan
- School of Dental Care Professionals (SDCP), Dow University of Health Sciences Karachi, Sindh, Pakistan
| | - Muhammad Shahrukh Khan Sadiq
- Department of Oral Pathology, Bahria University Dental College, Bahria University Health Sciences Campus (Karachi) Karachi, Sindh, Pakistan
| | - Ashfaq Ahmed
- Department of Science of Dental Materials, Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Sindh, Pakistan
- Department of Oral Pathology, Bahria University Dental College, Bahria University Health Sciences Campus (Karachi) Karachi, Sindh, Pakistan
| | - Mariam Khan
- Department of Science of Dental Materials, Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Sindh, Pakistan
- Department of Oral Pathology, Bahria University Dental College, Bahria University Health Sciences Campus (Karachi) Karachi, Sindh, Pakistan
| | - Tooba Maniar
- Department of Science of Dental Materials, Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Sindh, Pakistan
- Department of Oral Pathology, Bahria University Dental College, Bahria University Health Sciences Campus (Karachi) Karachi, Sindh, Pakistan
| | - Syeda Mamoona Mateen
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Sindh, Pakistan
| | - Bilquees Saba
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Sindh, Pakistan
- Department of Medicine, Ziauddin Medical College, Ziauddin University, Karachi, Sindh, Pakistan
| | - Syed Muhammad Kashif
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Sindh, Pakistan
- Department of General Medicine, Civil Hospital, Dow University of Health Sciences, Karachi, Sindh, Pakistan
| | - Shumaila Usman
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Sindh, Pakistan
- Department of Molecular Medicine, Ziauddin Medical College, Ziauddin University, Karachi, Sindh, Pakistan
| | - Shariq Najeeb
- Evidentia Dental Outcomes Research, Calgary, Alberta, Canada
- Schulich Dentistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C, Canada
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, King Faisal University, Hofuf, Al-Ahsa, Saudi Arabia
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madina Al Munawara, 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| |
Collapse
|
21
|
Zhou J, Jin S. Circ_0058063 Contributed to Oral Squamous Cell Carcinoma Development by Sponging miR-145 and Regulating PI3K/AKT Pathway. Mol Biotechnol 2023; 65:2049-2060. [PMID: 36928742 DOI: 10.1007/s12033-023-00715-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are key regulators of oral squamous cell carcinoma (OSCC) progression. In this study, we aimed to clarify the regulatory roles of circ_0058063 and its effect on tumorigenesis in OSCC. METHODS Quantitative real-time polymerase chain reaction was conducted to determine the expression levels of microRNA (miR)-145-5p and circ_0058063 in OSCC. Cell viability, adhesion, migration, and epithelial-mesenchymal transition (EMT) of OSCC cells were assessed using cell counting kit-8, cell adhesion, and transwell assays. Western blotting was performed to determine the phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) phosphorylation levels. Xenograft tumor models were constructed to evaluate the tumorigenicity of OSCC cells in vivo. In addition, the interaction between circ_0058063 and miR-145-5p was validated via luciferase reporter and RNA immunoprecipitation assays. RESULTS Expression levels of circ_0058063 were elevated, whereas those of miR-145-5p were decreased in OSCC. Upregulation of circ_0058063 levels enhanced the viability, adhesion, migration, and EMT of OSCC cells in vitro and promoted tumorigenicity in vivo. Moreover, circ_0058063 promoted OSCC growth by upregulating the PI3K and AKT phosphorylation levels. miR-145-5p overexpression considerably inhibited the PI3K/AKT pathway and decreased OSCC cell viability, adhesion, migration, and EMT. Mechanistically, circ_0058063 sponged miR-145-5p and activated the PI3K/AKT pathway in OSCC cells. CONCLUSION Our results revealed that circ_0058063 functions as an oncogene via regulation of the PI3K/AKT pathway by targeting miR-145-5p in OSCC, suggesting its potential for OSCC diagnosis and treatment.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Stomatology, Wuhan Fourth Hospital, No. 473, Hanzheng Street, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Song Jin
- Department of Stomatology, Wuhan Fourth Hospital, No. 473, Hanzheng Street, Qiaokou District, Wuhan, 430030, Hubei, China.
| |
Collapse
|
22
|
Burcher JT, DeLiberto LK, Allen AM, Kilpatrick KL, Bishayee A. Bioactive phytocompounds for oral cancer prevention and treatment: A comprehensive and critical evaluation. Med Res Rev 2023; 43:2025-2085. [PMID: 37143373 DOI: 10.1002/med.21969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023]
Abstract
The high incidence of oral cancer combined with excessive treatment cost underscores the need for novel oral cancer preventive and therapeutic options. The value of natural agents, including plant secondary metabolites (phytochemicals), in preventing carcinogenesis and representing expansive source of anticancer drugs have been established. While fragmentary research data are available on antioral cancer effects of phytochemicals, a comprehensive and critical evaluation of the potential of these agents for the prevention and intervention of human oral malignancies has not been conducted according to our knowledge. This study presents a complete and critical analysis of current preclinical and clinical results on the prevention and treatment of oral cancer using phytochemicals. Our in-depth analysis highlights anticancer effects of various phytochemicals, such as phenolics, terpenoids, alkaloids, and sulfur-containing compounds, against numerous oral cancer cells and/or in vivo oral cancer models by antiproliferative, proapoptotic, cell cycle-regulatory, antiinvasive, antiangiogenic, and antimetastatic effects. Bioactive phytochemicals exert their antineoplastic effects by modulating various signaling pathways, specifically involving the epidermal growth factor receptor, cytokine receptors, toll-like receptors, and tumor necrosis factor receptor and consequently alter the expression of downstream genes and proteins. Interestingly, phytochemicals demonstrate encouraging effects in clinical trials, such as reduction of oral lesion size, cell growth, pain score, and development of new lesions. While most phytochemicals displayed minimal toxicity, concerns with bioavailability may limit their clinical application. Future directions for research include more in-depth mechanistic in vivo studies, administration of phytochemicals using novel formulations, investigation of phytocompounds as adjuvants to conventional treatment, and randomized clinical trials.
Collapse
Affiliation(s)
- Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Lindsay K DeLiberto
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Andrea M Allen
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Kaitlyn L Kilpatrick
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
23
|
Han EJ, Choi EY, Jeon SJ, Lee SW, Moon JM, Jung SH, Jung JY. Piperine Induces Apoptosis and Autophagy in HSC-3 Human Oral Cancer Cells by Regulating PI3K Signaling Pathway. Int J Mol Sci 2023; 24:13949. [PMID: 37762259 PMCID: PMC10530752 DOI: 10.3390/ijms241813949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Currently, therapies for treating oral cancer have various side effects; therefore, research on treatment methods employing natural substances is being conducted. This study aimed to investigate piperine-induced apoptosis and autophagy in HSC-3 human oral cancer cells and their effects on tumor growth in vivo. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay demonstrated that piperine reduced the viability of HSC-3 cells and 4',6-diamidino-2-phenylindole staining, annexin-V/propidium iodide staining, and analysis of apoptosis-related protein expression confirmed that piperine induces apoptosis in HSC-3 cells. Additionally, piperine-induced autophagy was confirmed by the observation of increased acidic vesicular organelles and autophagy marker proteins, demonstrating that autophagy in HSC-3 cells induces apoptosis. Mechanistically, piperine induced apoptosis and autophagy by inhibiting the phosphatidylinositol-3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin pathway in HSC-3 cells. We also confirmed that piperine inhibits oral cancer tumor growth in vivo via antitumor effects related to apoptosis and PI3K signaling pathway inhibition. Therefore, we suggest that piperine can be considered a natural anticancer agent for human oral cancer.
Collapse
Affiliation(s)
- Eun-Ji Han
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Eun-Young Choi
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Su-Ji Jeon
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Sang-Woo Lee
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Jun-Mo Moon
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Soo-Hyun Jung
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Ji-Youn Jung
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
- Research Institute for Natural Products, Kongju National University, Yesan-gun 32439, Republic of Korea
| |
Collapse
|
24
|
Huang J, Yang JG, Ren JG, Xia HF, Chen GH, Fu QY, Zhang LZ, Liu HM, Wang KM, Xie QH, Chen G. Overexpression of RAB27A in Oral Squamous Cell Carcinoma Promotes Tumor Migration and Invasion via Modulation of EGFR Membrane Stability. Int J Mol Sci 2023; 24:13103. [PMID: 37685910 PMCID: PMC10488256 DOI: 10.3390/ijms241713103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent subtype of head and neck tumors, highly prone to lymph node metastasis. This study aims to examine the expression pattern of Ras-related protein Rab-27A (RAB27A) and explore its potential implications in OSCC. The expression of RAB27A was assessed through immunohistochemical analysis utilizing tissue microarrays. In vitro experiments were conducted using RAB27A-knockdown cells to investigate its impact on OSCC tumor cells. Additionally, transcriptome sequencing was performed to elucidate potential underlying mechanisms. RAB27A was significantly overexpressed in OSCC, and particularly in metastatic lymph nodes. It was positively correlated with the clinical progression and poor survival prognosis. Silencing RAB27A notably decreased the proliferation, migration, and invasion abilities of OSCC cells in vitro. A Gene Ontology (GO) enrichment analysis indicated a strong association between RAB27A and the epidermal growth factor receptor (EGFR) signaling pathway. Further investigations revealed that RAB27A regulated the palmitoylation of EGFR via zinc finger DHHC-type containing 13 (ZDHHC13). These findings provide insights into OSCC progression and highlight RAB27A as a potential therapeutic target for combating this aggressive cancer.
Collapse
Affiliation(s)
- Jue Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China (H.-M.L.)
| | - Jie-Gang Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China (H.-M.L.)
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jian-Gang Ren
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China (H.-M.L.)
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hou-Fu Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China (H.-M.L.)
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Gao-Hong Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China (H.-M.L.)
| | - Qiu-Yun Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China (H.-M.L.)
| | - Lin-Zhou Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China (H.-M.L.)
| | - Hai-Ming Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China (H.-M.L.)
| | - Kui-Ming Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China (H.-M.L.)
| | - Qi-Hui Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China (H.-M.L.)
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China (H.-M.L.)
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
25
|
Desel I, Jung S, Purcz N, Açil Y, Sproll C, Kleinheinz J, Sielker S. Analysis of Genes Related to Invadopodia Formation and CTTN in Oral Squamous Cell Carcinoma-A Systematic Gene Expression Analysis. Curr Issues Mol Biol 2023; 45:6927-6940. [PMID: 37623256 PMCID: PMC10453299 DOI: 10.3390/cimb45080437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Successful treatment for any type of carcinoma largely depends on understanding the patterns of invasion and migration. For oral squamous cell carcinoma (OSCC), these processes are not entirely understood as of now. Invadopodia and podosomes, called invadosomes, play an important role in cancer cell invasion and migration. Previous research has established that cortactin (CTTN) is a major inducer of invadosome formation. However, less is known about the expression patterns of CTTN and other genes related to it or invadopodia formation in OSCC during tumor progression in particular. In this study, gene expression patterns of CTTN and various genes (n = 36) associated with invadopodia formation were analyzed to reveal relevant expression patterns and give a comprehensive overview of them. The genes were analyzed from a whole genome dataset of 83 OSCC samples relating to tumor size, grading, lymph node status, and UICC (Union for Internatioanl Cancer Control). The data revealed significant overexpression of 18 genes, most notably CTTN, SRC (SRC proto-onocogene, non-receptor tyrosine kinase), EGFR (epidermal growth factor receptor), SYK (spleen associated tyrosine kinase), WASL (WASP like actin nucleation promotion factor), and ARPC2 (arrestin beta 1) due to their significant correlation with further tumor parameters. This study is one of the first to summarize the expression patterns of CTTN and related genes in a complex group of OSCC samples.
Collapse
Affiliation(s)
- Immanuel Desel
- Vascular Biology of Oral Structures (VABOS) Research Unit, Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Muenster, Germany; (I.D.); (S.J.); (J.K.)
| | - Susanne Jung
- Vascular Biology of Oral Structures (VABOS) Research Unit, Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Muenster, Germany; (I.D.); (S.J.); (J.K.)
| | - Nikolai Purcz
- Department of Cranio-Maxillofacial Surgery, University Hospital Kiel, 24105 Kiel, Germany (Y.A.)
| | - Yahya Açil
- Department of Cranio-Maxillofacial Surgery, University Hospital Kiel, 24105 Kiel, Germany (Y.A.)
| | - Christoph Sproll
- Department of Cranio-Maxillofacial Surgery, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Johannes Kleinheinz
- Vascular Biology of Oral Structures (VABOS) Research Unit, Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Muenster, Germany; (I.D.); (S.J.); (J.K.)
| | - Sonja Sielker
- Vascular Biology of Oral Structures (VABOS) Research Unit, Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Muenster, Germany; (I.D.); (S.J.); (J.K.)
| |
Collapse
|
26
|
Arora R, Cao C, Kumar M, Sinha S, Chanda A, McNeil R, Samuel D, Arora RK, Matthews TW, Chandarana S, Hart R, Dort JC, Biernaskie J, Neri P, Hyrcza MD, Bose P. Spatial transcriptomics reveals distinct and conserved tumor core and edge architectures that predict survival and targeted therapy response. Nat Commun 2023; 14:5029. [PMID: 37596273 PMCID: PMC10439131 DOI: 10.1038/s41467-023-40271-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/19/2023] [Indexed: 08/20/2023] Open
Abstract
The spatial organization of the tumor microenvironment has a profound impact on biology and therapy response. Here, we perform an integrative single-cell and spatial transcriptomic analysis on HPV-negative oral squamous cell carcinoma (OSCC) to comprehensively characterize malignant cells in tumor core (TC) and leading edge (LE) transcriptional architectures. We show that the TC and LE are characterized by unique transcriptional profiles, neighboring cellular compositions, and ligand-receptor interactions. We demonstrate that the gene expression profile associated with the LE is conserved across different cancers while the TC is tissue specific, highlighting common mechanisms underlying tumor progression and invasion. Additionally, we find our LE gene signature is associated with worse clinical outcomes while TC gene signature is associated with improved prognosis across multiple cancer types. Finally, using an in silico modeling approach, we describe spatially-regulated patterns of cell development in OSCC that are predictably associated with drug response. Our work provides pan-cancer insights into TC and LE biology and interactive spatial atlases ( http://www.pboselab.ca/spatial_OSCC/ ; http://www.pboselab.ca/dynamo_OSCC/ ) that can be foundational for developing novel targeted therapies.
Collapse
Affiliation(s)
- Rohit Arora
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christian Cao
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mehul Kumar
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Ayan Chanda
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Reid McNeil
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Divya Samuel
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rahul K Arora
- Center for Health Informatics, University of Calgary, Calgary, AB, Canada
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - T Wayne Matthews
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shamir Chandarana
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert Hart
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joseph C Dort
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paola Neri
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Division of Hematology, Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Martin D Hyrcza
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Pinaki Bose
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
27
|
Silva JPN, Pinto B, Monteiro L, Silva PMA, Bousbaa H. Combination Therapy as a Promising Way to Fight Oral Cancer. Pharmaceutics 2023; 15:1653. [PMID: 37376101 PMCID: PMC10301495 DOI: 10.3390/pharmaceutics15061653] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Oral cancer is a highly aggressive tumor with invasive properties that can lead to metastasis and high mortality rates. Conventional treatment strategies, such as surgery, chemotherapy, and radiation therapy, alone or in combination, are associated with significant side effects. Currently, combination therapy has become the standard practice for the treatment of locally advanced oral cancer, emerging as an effective approach in improving outcomes. In this review, we present an in-depth analysis of the current advancements in combination therapies for oral cancer. The review explores the current therapeutic options and highlights the limitations of monotherapy approaches. It then focuses on combinatorial approaches that target microtubules, as well as various signaling pathway components implicated in oral cancer progression, namely, DNA repair players, the epidermal growth factor receptor, cyclin-dependent kinases, epigenetic readers, and immune checkpoint proteins. The review discusses the rationale behind combining different agents and examines the preclinical and clinical evidence supporting the effectiveness of these combinations, emphasizing their ability to enhance treatment response and overcome drug resistance. Challenges and limitations associated with combination therapy are discussed, including potential toxicity and the need for personalized treatment approaches. A future perspective is also provided to highlight the existing challenges and possible resolutions toward the clinical translation of current oral cancer therapies.
Collapse
Affiliation(s)
- João P. N. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Bárbara Pinto
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Luís Monteiro
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| |
Collapse
|
28
|
Biswal S, Panda M, Sahoo RK, Tripathi SK, Biswal BK. Tumour microenvironment and aberrant signaling pathways in cisplatin resistance and strategies to overcome in oral cancer. Arch Oral Biol 2023; 151:105697. [PMID: 37079976 DOI: 10.1016/j.archoralbio.2023.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
OBJECTIVE Oral cancer is the sixteenth most prevalent cancer in the world and the third-most in India. Despite of several treatment modalities, the cure rate of oral cancer is still low due to drug resistance mechanisms, which are caused by many reasons. It is necessary to improve the existing treatment strategies and discover neoteric therapy to kill cancer cells, which will give oral cancer's cure rate more success. So this review aims to delineate the molecular mechanisms behind cisplatin resistance, specifically the role of the tumor microenvironment, extracellular vesicles, and altered signaling pathways and its overcoming strategies in oral cancer. DESIGN This review was designed by searching words like cancer, oral cancer, cisplatin-resistance, tumor microenvironment, aberrant signalings, and extracellular vesicles, overcoming strategies for cisplatin resistance in databases like PubMed, Google Scholar, web science, and Scopus. Data available in this review is from 2017 to 2021. RESULTS After searching too much data, we found these 98 data appropriate for our review. From these data, we found that tumor microenvironment, extracellular vesicles, and altered signaling pathways like PI3K/AKT, EGFR, NOTCH, Ras, PTEN, Nf-κβ, and Wnt signaling have a crucial role in resistance development towards cisplatin in oral cancer. CONCLUSIONS Lastly, this review explores the alternative strategies to overcome cisplatin resistance likely, the combination therapy and targeted therapy by combining more than one chemotherapeutic drug or inhibitors of signaling pathways and also by using nanoparticle loaded drugs that will reduce the drug efflux, which gives new treatment strategies.
Collapse
Affiliation(s)
- Stuti Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Munmun Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Rajeev K Sahoo
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
29
|
Imbesi Bellantoni M, Picciolo G, Pirrotta I, Irrera N, Vaccaro M, Vaccaro F, Squadrito F, Pallio G. Oral Cavity Squamous Cell Carcinoma: An Update of the Pharmacological Treatment. Biomedicines 2023; 11:biomedicines11041112. [PMID: 37189730 DOI: 10.3390/biomedicines11041112] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Oral cavity squamous cell carcinoma (OCSCC) represents a serious health and socio-economic problem in different geographical areas of the world. It is characterized by a high rate of mortality, recurrence and metastasis. Despite the therapeutic strategies implemented for its management and resolution, currently the survival estimate for locally advanced disease is about 50%. The available therapeutic options comprise surgery and pharmacological treatment. Recently, an increased emphasis has been placed on the drugs that might be of benefit in this life-threatening disease. Therefore, the aim of this present review was to offer a general survey of the current available pharmacological treatment for OCSCC. The PubMed database was used to retrieve the papers using "OCSCC" as the search terms. We limited our search to the last 5 years to give a more updated and recent picture of the state of the art, including preclinical and clinical investigations. We found that 77 out of 201 papers were on the surgical treatment of OCSCC, 43 out of 201 focused on the radiotherapy and 81 out of 201 underwent evaluation for the aim of our review. We excluded the case reports, editorial letters, observational studies and papers written in languages other than English. A total of 12 articles were included in the final review. Our results showed that nanotechnologies use to enhance the efficacy of anticancer drugs such as: cisplatin, paclitaxel, cetuximab, EGFR antagonists, MEK1/2 and immune check inhibitors combination could have promising anti-cancer activity. However, the paucity of available data on drugs suggests the urgent need to improve the pharmacological armamentarium for OCSCC treatment.
Collapse
Affiliation(s)
- Martina Imbesi Bellantoni
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Giacomo Picciolo
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Igor Pirrotta
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Federico Vaccaro
- Department of Dermatology, University of Modena and Reggio Emilia, Via Del Pozzo, 41124 Modena, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| |
Collapse
|
30
|
Dong C, Zhao Y, Yang S, Jiao X. LINC00173 blocks GATA6-mediated transcription of COL5A1 to affect malignant development of oral squamous cell carcinoma. J Oral Pathol Med 2023. [PMID: 36856154 DOI: 10.1111/jop.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Aberrant expression of collagen type V alpha 1 chain (COL5A1) has been linked to several forms of human cancers. In this work, we focused on the interaction of the LINC00173/GATA binding protein 6 (GATA6)/COL5A1 axis in the malignant property of oral squamous cell carcinoma (OSCC) cells. METHODS We analyzed six publicly accessible datasets GSE160042, GSE74530, GSE138206, GSE23558, GSE31853 and GSE146483 to identify aberrantly expressed genes in OSCC. The expression of COL5A1 in OSCC tissues and cell lines was examined by reverse transcription-quantitative polymerase chain reaction and/or immunohistochemistry. The regulatory mechanism responsible for COL5A1 transcription was predicted via bioinformatics systems, and the interactions of LINC00173, GATA6, and COL5A1 were identified by immunoprecipitation and luciferase assays. Overexpression or downregulation of COL5A1, GATA6, and LINC00173 were induced in OSCC cell lines to determine their roles in the malignant phenotype of the OSCC cells in vitro and in vivo. RESULTS COL5A1 showed elevated expression in OSCC tissues and cells. The COLA51 knockdown suppressed proliferation, migration and invasiveness, apoptosis resistance, and pro-angiogenic ability of OSCC cells, and it suppressed the growth and dissemination of xenograft tumors in vivo. GATA6 bound to COL5A1 promoter to activate its transcription, whereas LINC00173 bound to GATA6 to block this transcriptional activation. Overexpression of GATA6 or COL5A1 promoted the malignant phenotype of the OSCC cells, which were blocked upon LINC00173 upregulation. CONCLUSION This work demonstrates that LINC00173 blocks GATA6-mediated transcription of COL5A1 to affect malignant development of OSCC.
Collapse
Affiliation(s)
- Chen Dong
- School of Stomatology, Harbin Medical University, Harbin, Heilongjiang, China.,Department of Maxillofacial Surgery, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Yanmei Zhao
- Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Song Yang
- Department of Maxillofacial Surgery, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Xiaohui Jiao
- School of Stomatology, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
31
|
Chitturi Suryaprakash RT, Shearston K, Farah CS, Fox SA, Iqbal MM, Kadolsky U, Zhong X, Saxena A, Kujan O. A Novel Preclinical In Vitro 3D Model of Oral Carcinogenesis for Biomarker Discovery and Drug Testing. Int J Mol Sci 2023; 24:ijms24044096. [PMID: 36835505 PMCID: PMC9967961 DOI: 10.3390/ijms24044096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
This study aimed to develop an in vitro three-dimensional (3D) cell culture model of oral carcinogenesis for the rapid, scalable testing of chemotherapeutic agents. Spheroids of normal (HOK) and dysplastic (DOK) human oral keratinocytes were cultured and treated with 4-nitroquinoline-1-oxide (4NQO). A 3D invasion assay using Matrigel was performed to validate the model. RNA was extracted and subjected to transcriptomic analysis to validate the model and assess carcinogen-induced changes. The VEGF inhibitors pazopanib and lenvatinib were tested in the model and were validated by a 3D invasion assay, which demonstrated that changes induced by the carcinogen in spheroids were consistent with a malignant phenotype. Further validation was obtained by bioinformatic analyses, which showed the enrichment of pathways associated with hallmarks of cancer and VEGF signalling. Overexpression of common genes associated with tobacco-induced oral squamous cell carcinoma (OSCC), such as MMP1, MMP3, MMP9, YAP1, CYP1A1, and CYP1B1, was also observed. Pazopanib and lenvatinib inhibited the invasion of transformed spheroids. In summary, we successfully established a 3D spheroid model of oral carcinogenesis for biomarker discovery and drug testing. This model is a validated preclinical model for OSCC development and would be suitable for testing a range of chemotherapeutic agents.
Collapse
Affiliation(s)
| | - Kate Shearston
- UWA Dental School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Camile S. Farah
- Australian Centre for Oral Oncology Research and Education, Nedlands, WA 6009, Australia
| | - Simon A. Fox
- UWA Dental School, The University of Western Australia, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Muhammad Munir Iqbal
- Genomics WA, Harry Perkins Institute of Medical Research, Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Ulrich Kadolsky
- Genomics WA, Harry Perkins Institute of Medical Research, Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Xiao Zhong
- Genomics WA, Harry Perkins Institute of Medical Research, Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Alka Saxena
- Genomics WA, Harry Perkins Institute of Medical Research, Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Omar Kujan
- UWA Dental School, The University of Western Australia, Nedlands, WA 6009, Australia
- Correspondence:
| |
Collapse
|
32
|
Mabrouk AA, El-Mezayen NS, Awaad AK, Tadros MI, El-Gazayerly ON, El-Refaie WM. Novel celecoxib-loaded chitosan-fucoidan nanoparticles as potential immunotherapy for oral squamous cell carcinoma: Mechanistic insights. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Xu S, Luo L, Sun X, Yang Y, Guo Q, Jiang Z, Wu Y. Design, synthesis and antitumor activity of novel thiophene- triazine derivatives bearing arylurea unit as potent PI3K/mTOR inhibitorss. Bioorg Med Chem 2023; 78:117133. [PMID: 36599263 DOI: 10.1016/j.bmc.2022.117133] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
In this article, we designed and synthesized a series of novel thiophene-triazine derivatives bearing arylurea unit as potent dual PI3K/mTOR inhibitors. The cytotoxicity of all the target compounds were evaluated against nine cancer cell lines (breast cancer cell line MCF-7, lung cancer cell lines A549, NCI-H460, H2228 and H1975, cervical cancer cell lines Hela and Hela-MDR, ovarian cancer cell lines Ovcar-2 and glioma U87MG) and the kinase inhibitory activity against PI3K/mTOR kinases was also tested. The results demonstrated that most of the target compounds exhibited moderate to excellent activity and high selectivity against one or more cancer cell lines. Among them, seven compounds displayed better activity than lead compound GDC-0941. The inhibitory activity of the most promising compound on nine cancer cell lines was 302.5 times better than that of GDC-0941 with the IC50 values as low as 0.008 ± 0.002 μM, and the inhibitory activity against PI3Kα and mTOR kinase was excellent, with the IC50 values of 177.41 and 12.24 nM, respectively, indicating that it was a potential dual PI3Kα/mTOR inhibitor. The Structure-Activity Relationships (SARs) indicated that the introduction of the arylurea group significantly improved the cellular and kinase activities of the target compounds. Moreover, the results of toxicity and hemolysis experiments demonstrated that the most promising compound had low toxicity and good safety. The results of PCR assay and molecular docking modes showed that it was a potential PI3K/mTOR inhibitor, which was worthy of further study.
Collapse
Affiliation(s)
- Shan Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenhe District, Shenyang 110016, China; Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605, Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Leixuan Luo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605, Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Xin Sun
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605, Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Yang Yang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605, Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Qiuyan Guo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605, Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Zhiyan Jiang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605, Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
34
|
Zhang G, Zhao X, Liu W. NEDD4L inhibits glycolysis and proliferation of cancer cells in oral squamous cell carcinoma by inducing ENO1 ubiquitination and degradation. Cancer Biol Ther 2022; 23:243-253. [PMID: 35316145 PMCID: PMC8942561 DOI: 10.1080/15384047.2022.2054244] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Glycolysis contributes to cell metabolism and facilitates cell proliferation of oral squamous cell carcinoma (OSCC), the most common type of oral cancer. Understanding the regulatory mechanisms involved in the glycolysis of OSCC cells may provide important therapeutic inspirations. Immunohistochemistry was used to examine protein localization patterns in human OSCC tissues and Western blot was conducted to gauge protein level. Lentivirus transduction was used to overexpress or silence genes of interest. Cell proliferation was assessed by Cell Counting Kit (CCK)-8 assay while glycolysis was examined via measurement of extracellular acidification rate, oxygen consumption rate, and lactate and ATP production. In vivo cancer development was evaluated with a mouse tumor growth model. OSCC tissues displayed reduced expression of NEDD4L compared with normal tissues. NEDD4L expression positively correlated with 5-year patient survival rate, indicating that NEDD4L may be a prognosis marker for OSCC. NEDD4L overexpression suppressed proliferation, cell cycle transition, and glycolysis in OSCC cells, and inhibited in vivo tumor growth. UbiBrowser identified ENO1, an enzyme that catalyzes glycolysis, as a substrate of NEDD4L. Overexpression of NEDD4L resulted in the ubiquitination and subsequent degradation of ENO1 whereas overexpression of ENO1 reversed the functional effects of NEDD4L overexpression, restoring proliferation, cell cycle transition, and glycolysis in OSCC cells. NEDD4L elicits tumor-suppressive functions via inhibition of OSCC cell proliferation, cell cycle transition, and glycolysis by stimulating ENO1 ubiquitination and degradation. Our results unraveled a signaling axis important for OSCC cell survival and metabolism, which can serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Guangping Zhang
- Department of Oral and Maxillofacial Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Zhao
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Weixian Liu
- Department of Oral and Maxillofacial Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
35
|
Wang H, Ma Y. β-Elemene alleviates cisplatin resistance in oral squamous cell carcinoma cell via inhibiting JAK2/STAT3 pathway in vitro and in vivo. Cancer Cell Int 2022; 22:244. [PMID: 35909161 PMCID: PMC9341059 DOI: 10.1186/s12935-022-02650-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/25/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Objective
To investigate the effect of β-Elemene (β-Ele) on the cisplatin sensitivity of OSCC cells and its mechanism in vitro and in vivo.
Methods
The human OSCC cell lines Tca-8113 and the cisplatin-resistant cell line Tca-8113-CDDP were cultured with β-Ele or/and cisplatin. The cytotoxicity of cisplatin or β-Ele, cell viability, cell cycles and apoptosis were detected. And the expression of JAK2/STAT3 related protein were detected. The xenograft tumor model of OSCC was established in nude mice and treated with cisplatin and/or β-Ele. The volume and weight of the transplanted tumor was measured, and the expression of p-JAK2 and p-STAT3 and cell apoptosis in the xenograft tumor tissues were detected.
Results
The combination of β-Ele and cisplatin significantly suppressed the cell proliferation, induced cell cycle arrest, promoted the apoptosis of Tca-8113-CDDP cells, and suppressed the activation of JAK2/STAT3 signaling pathway. The rescue experiments suggested that β-Ele enhanced cisplatin sensitivity via down-regulating JAK2/STAT3 signaling pathway. In vivo, β-Ele and cisplatin synergistically suppressed the tumor growth and induced apoptosis, and down-regulated the expression of p-JAK2 and p-STAT3.
Conclusions
β-Ele inhibits the cell viability and enhances the cisplatin sensitivity of OSCC by blocking the activation of JAK/STAT3 signaling pathway in vitro and in vivo, and the combination of β-Ele and cisplatin maybe a novel treatment for OSCC.
Collapse
|
36
|
Venkatesiah SS, Augustine D, Mishra D, Gujjar N, Haragannavar VC, Awan KH, Patil S. Immunology of Oral Squamous Cell Carcinoma-A Comprehensive Insight with Recent Concepts. Life (Basel) 2022; 12:1807. [PMID: 36362963 PMCID: PMC9695443 DOI: 10.3390/life12111807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 09/28/2023] Open
Abstract
This review aims to understand the concept of oral cancer immunology through the notion of immune profiling, immunoediting and immunotherapy, and to gain knowledge regarding its application for the management of oral cancer patients. Oral cancer is an immunogenic tumor where the cells of the tumor microenvironment play an important role in tumorigenesis. Understanding the mechanism of these modulations can help design immunotherapeutic strategies in oral cancer patients. This article gives an overview of immunomodulation in the oral cancer tumor microenvironment, with concepts of immune profiling, immunoediting and immunotherapy. English literature searches via Google Scholar, Web of Science, EBSCO, Scopus, and PubMed database were performed with the key words immunology, tumor microenvironment, cells, cross talk, immune profiling, biomarkers, inflammation, gene expression, techniques, immunoediting, immunosurveillance, tumor escape, immunotherapy, immune checkpoint inhibitors, vaccines in cancer, oral cancer, and head and neck cancer. Original research articles, reviews, and case reports published from 2016-2021 (n = 81) were included to appraise different topics, and were discussed under the following subsections. Literature published on oral cancer immunology reveals that oral cancer immune profiling with appropriate markers and techniques and knowledge on immunoediting concepts can help design and play an effective role in immunotherapeutic management of oral cancer patients. An evaluation of oral cancer immunology helps to determine its role in tumorigenesis, and immunotherapy could be the emerging drift in the effective management of oral cancer.
Collapse
Affiliation(s)
- Sowmya Samudrala Venkatesiah
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Dominic Augustine
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Deepika Mishra
- Department of Oral Pathology & Microbiology, Centre for Dental Education and Research, All India Institute of Medical Sciences (AIIMS), Delhi 110608, India
| | - Neethi Gujjar
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Vanishri C. Haragannavar
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Kamran Habib Awan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences University, Chennai 600077, India
| |
Collapse
|
37
|
Yu H, Li T, Mao X. Expression and Significance of Sex-Determining Region Y (SRY)–Box 12 (SOX12) in Oral Squamous Cell Carcinoma. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a ubiquitous malignancy and is associated with high mortality. Accumulating evidence indicates that transcription factors play a pivotal role in the progression of OSCC. This study was aimed to investigate the expression of SOX12 in OSCC and its
significance. SOX12 expression in OSCC tissues was analyzed through TCGA databases and then tested by Western blot and qRT-PCR analysis. Moreover, SOX12 was silenced by RNA interference in OSCC cells (SCC-25 and SCC-4), and the growth ability of OSCC cells was examined using MTT assay. The
level of SOX12 was upregulated in OSCC according to the TCGA results, which was further confirmed in the OSCC cell lines. Patients with high SOX12 expression had shorter overall survival (OS) than those with low SOX12 expression. High expression of SOX12 is positively correlated with T stage
of OSCC. In addition, MTT analysis indicated that silencing of SOX12 resulted in reduced OSCC cell proliferation. Taken together, the high expression of SOX12 in OSCC indicates that SOX12 gene may play an essential role in OSCC. Our research indicates that SOX12 expression could be a predictive
biomarker and is a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Huijie Yu
- Department of Stomatology, The People’s Hospital of Dongying, Shandong, 257000, China
| | - Tianhua Li
- Department of Stomatology, The People’s Hospital of Dongying, Shandong, 257000, China
| | - Xuemei Mao
- Department of Stomatology, The People’s Hospital of Dongying, Shandong, 257000, China
| |
Collapse
|
38
|
Huang C, Li H, Zhou L, Li D. Circ_0005050 promotes the proliferation of oral squamous cell carcinoma and inhibits the apoptosis by activating JAK/STAT3 signaling pathway. Pathol Res Pract 2022; 238:154058. [PMID: 36155326 DOI: 10.1016/j.prp.2022.154058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is the most predominant type of oral cancer, featured with poor prognosis and high mortality. Circular RNA (circRNA) exerts its function in a variety of human cancers, including OSCC. Circ_0005050, as a novel circRNA, has not been well explored in OSCC so far. This study centered on investigating the impact of circ_0005050 on OSCC cell growth and its molecular mechanism. RNA or protein expression was detected by RT-qPCR or western blot analysis. Functional assays were employed to uncover the changes of OSCC cell biological behaviors. Mechanistic assays were done to verify the underlying mechanism of circ_0005050 in OSCC cells. According to the collected data, circ_0005050 was significantly up-regulated in OSCC cells compared to normal cells. Circ_0005050 depletion hampered proliferative ability of OSCC cells while promoting cell apoptotic ability. As for mechanism analyses, circ_0005050 knockdown led to the reduction of STAT3 expression and JAK/STAT3 signaling pathway activity. Moreover, circ_0005050 competitively bound to miR-23a-3p and miR-625-5p to up-regulate STAT3, thus prompting malignant behaviors of OSCC cells. In conclusion, circ_0005050 regulates miR-23a-3p/miR-625-5p/STAT3 axis to activate JAK/STAT3 signaling pathway, consequently facilitating OSCC cell proliferation and inhibiting cell apoptosis.
Collapse
Affiliation(s)
- Chunming Huang
- Department of Oral and Maxillofacial Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Haosen Li
- Department of Oral and Maxillofacial Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Leilei Zhou
- Department of Oral and Maxillofacial Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Dianqi Li
- Department of Oral and Maxillofacial Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
39
|
Sun EC, Dong SS, Li ZJ, Li CX. Clinicopathological Significance of AKT1 and PLK1 Expression in Oral Squamous Cell Carcinoma. DISEASE MARKERS 2022; 2022:7300593. [PMID: 35756492 PMCID: PMC9232379 DOI: 10.1155/2022/7300593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022]
Abstract
Purpose Oral squamous cell carcinoma (OSCC) is the sixth leading cause of cancer-related death worldwide and is characterized by metastasis and recurrence. We aimed to evaluate the expression of AKT1 and PLK1 in OSCC and identify their correlation with the clinical and histological features and prognosis of patients with OSCC. Methods Tissue samples were collected from 70 patients with OSCC and 50 patients with normal oral mucosa. The expression levels of AKT1 and PLK1 in OSCC tissues and normal oral mucosa were detected by immunohistochemistry. The chi-square test was used to identify correlations between the expression levels of AKT1 and PLK1 with patients' clinicopathologic characteristics. Survival analysis was assessed by the Kaplan-Meier method. Spearman's rank correlation test was used to determine the relationships between AKT1 and PLK1 expressions. The bioinformatics database GEPIA was used to verify the experimental results. Results The chi-square test and Fisher's exact test showed that the positive expression rate of AKT1 and PLK1 in OSCC tissue was significantly higher than that in the normal oral mucosa (P < 0.05). PLK1 expression levels were significantly correlated with tumor stage and size (P < 0.05). Kaplan-Meier analysis showed that the survival time of AKT1 and PLK1 with high expression was significantly shorter than that of patients with low expression (P < 0.05). Spearman's rank correlation test showed a strong correlation between AKT1 and PLK1 expression in OSCC tissue (R = 0.53; P < 0.05). GEPIA bioinformatics database analysis results show that the expression and overall survival of AKT1 and PLK1 analysis and the correlation analysis of AKT1 and PLK1 were consistent with experimental results. Conclusion AKT1 and PLK1 expressions are associated with the occurrence and progression of OSCC and may be used as diagnostic and prognostic indicators of OSCC. There may be a correlation between AKT1 and PLK1 in OSCC tissue.
Collapse
Affiliation(s)
- Er-Can Sun
- Department of Stomatology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002 Xinjiang, China
| | - Shuang-Shuang Dong
- Department of Pathology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Zhi-Jun Li
- Department of Stomatology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002 Xinjiang, China
| | - Chang-Xue Li
- Department of Stomatology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002 Xinjiang, China
| |
Collapse
|
40
|
Zhou X, Jin W, Chen Y, Zhu L, Mo A, Xie Q. Identification of potential druggable targets of cell cycle with small-molecule inhibitors in oral squamous cell carcinoma. Pharmacogenet Genomics 2022; 32:125-137. [PMID: 34954767 DOI: 10.1097/fpc.0000000000000461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors worldwide and there are few crucial regulators and druggable targets for early diagnosis. Therefore, the identification of biomarkers for the early diagnosis and druggable targets of OSCC is imminent. In this study, we integrated gene set enrichment analysis, differential gene expression analysis based on the negative binomial distribution, weighted correlation network analysis, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes into analyzing the OSCC cohort downloaded from The Cancer Genome Atlas, and found that cell cycle and related biologic processes are significantly enriched. Then, we constructed the core gene network of OSCC, which showed the connection of encode human Cyclin-A2 protein, encode RAD51-associated protein 1, encode human centromere-associated protein E (CENPE), encode humans centromere protein I (CENPI) and encode polo-like kinase 1 (PLK1) to several cell cycle-related genes. Survival analysis further showed that low expression of these genes was associated with a better prognosis. Furthermore, we utilized a high-throughput virtual screening to find new CENPE and PLK1 inhibitors, and one of the CENPE inhibitor DB04517 suppressed the proliferation of OSCC cells by cell cycle arrest of cell cycle. Taken together, these candidate regulators could serve as the candidate diagnostic and prognostic biomarkers for OSCC, and specific suppression of these genes may be a potential approach to prevent and treat OSCC with the candidate inhibitors.
Collapse
Affiliation(s)
- Xiaoyi Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology
| | - Wenke Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu
| | - Yanmei Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang and
| | - Lingjuan Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang and
| | - Anchun Mo
- Department of Oral Implantology, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases,West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu
| |
Collapse
|
41
|
Jie G, Peng S, Cui Z, He C, Feng X, Yang K. Long non-coding RNA TFAP2A-AS1 plays an important role in oral squamous cell carcinoma: research includes bioinformatics analysis and experiments. BMC Oral Health 2022; 22:160. [PMID: 35524329 PMCID: PMC9074241 DOI: 10.1186/s12903-022-02203-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the most common neck and head malignancies, and the prognosis is not good. Studies shown that the long non-coding RNA (lncRNA) TFAP2A-AS1 is involved in the progression of multiple cancers. However, the role of lncRNA TFAP2A-AS1 in OSCC remains unclear. We aimed to explore the functions and expression in OSCC. METHODS The lncRNA profiles for OSCC patients were acquired from the TCGA. Based on these data, the data mining of TFAP2A-AS1 in patients with OSCC were performed. The functions of TFAP2A-AS1 were determined by bioinformatics analysis. The expression and roles in cell growth were tested by RT-qPCR and MTS assay. Cell invasion and migration were tested by wound healing and transwell assays. RESULTS The consequences displayed that TFAP2A-AS1 was upregulated in the TCGA datasets. The expression of TFAP2A-AS1 was higher in OSCC samples. Bioinformatics analysis shown that TFAP2A-AS1 might be associated with the P53 signaling pathway. Cell culture experiments indicated that deficiency of TFAP2A-AS1 inhibited cell growth, invasion, and migration, and overexpression of it could opposite results in SCC-25 cells. CONCLUSION The results suggested that TFAP2A-AS1 was overexpressed in OSCC cells, which could facilitate OSCC cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Guo Jie
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, Hebei Province, China
| | - ShiXiong Peng
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, Hebei Province, China
| | - ZiFeng Cui
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, Hebei Province, China
| | - Chen He
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, Hebei Province, China
| | - XuPo Feng
- Department of Stomatology, Zhao County People's Hospital, No. 1 Yongtong Road, Shijiazhuang, 050000, Hebei Province, China
| | - Kaicheng Yang
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, Hebei Province, China.
| |
Collapse
|
42
|
Zhao C, Shi W, Chen M. Long non-coding RNA BBOX1-antisense RNA 1 enhances cell proliferation and migration and suppresses apoptosis in oral squamous cell carcinoma via the miR-3940-3p/laminin subunit gamma 2 axis. Bioengineered 2022; 13:11138-11153. [PMID: 35506252 PMCID: PMC9278455 DOI: 10.1080/21655979.2022.2059982] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play an essential role in oral squamous cell carcinoma (OSCC). We aimed to demonstrate the effects of lncRNA gamma-butyrobetaine hydroxylase 1 (BBOX1)-antisense RNA 1 (AS1) in OSCC and its regulatory mechanisms. The levels of BBOX1-AS1, microRNA (miR)-3940-3p, and laminin subunit gamma 2 (LAMC2) in OSCC were determined using reverse transcription-quantitative polymerase chain reaction. The correlations among BBOX1-AS1, miR-3940-3p, and LAMC2 were validated using luciferase, pull-down, and RNA immunoprecipitation assays. Cell proliferation, migration, and apoptosis were examined. BBOX1-AS1 and LAMC2 were notably overexpressed in OSCC, while miR-3940-3p showed the opposite trend. BBOX-1-AS1 silencing reduced the cell proliferation and migration, while promoting apoptosis. Mechanistically, BBOX1-AS1 modulates LAMC2 expression by competitively binding to miR-3940-3p. miR-3940-3p inhibition alleviated the inhibitory effects of BBOX1-AS1 deficiency on OSCC development. LAMC2 knockdown reversed these changes. Our results revealed that BBOX1-AS1 promotes the malignant phenotype of OSCC cells via the upregulation of LAMC2 expression by targeting miR-3940-3p, indicating that BBOX1-AS1 may be a novel target for OSCC intervention.
Collapse
Affiliation(s)
- Chunguang Zhao
- Department of Stomatology, the Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | - Wei Shi
- Department of Otolaryngology, Tongji Hospital Affiliated to Tongji Medical College of Hust, Wuhan, Hubei, China
| | - Min Chen
- Department of Stomatology, the Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| |
Collapse
|
43
|
Li H, Zhang Y, Xu M, Yang D. Current trends of targeted therapy for oral squamous cell carcinoma. J Cancer Res Clin Oncol 2022; 148:2169-2186. [PMID: 35501496 DOI: 10.1007/s00432-022-04028-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/15/2022] [Indexed: 10/18/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a malignant disease in the world which has a profound effect on human health and life quality. According to tumor stage and pathological diagnosis, OSCC is mainly treated by combinations of surgery, radiotherapy and chemotherapy. However, traditional treatment methods suffer from some limitations, such as systemic toxicity, limited therapeutic effect and drug resistance. With the rapid development of nanotechnology, nanodrug delivery systems (DDSs) and intelligent DDSs have been widely used in targeted therapy for OSCC. Meanwhile, the newly developed therapeutic techniques such as immunotherapy, gene therapy and bionic technology provide the possibility to realize the active targeted therapy. Here, the latest advances of target therapy for OSCC are reviewed, and their therapeutic remarks, current limits and future prospects are also systematically interpreted. It is believed that active and passive targeted therapies have great potentials for clinical transformation and application of OSCC, which will greatly improve human quality of life.
Collapse
Affiliation(s)
- Hongjiao Li
- School and Hospital of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Yao Zhang
- School and Hospital of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Mengmeng Xu
- School and Hospital of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Deqin Yang
- School and Hospital of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.
| |
Collapse
|
44
|
Impact of Spatially Heterogeneous Trop-2 Expression on Prognosis in Oral Squamous Cell Carcinoma. Int J Mol Sci 2021; 23:ijms23010087. [PMID: 35008509 PMCID: PMC8745008 DOI: 10.3390/ijms23010087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/20/2022] Open
Abstract
Oral cancer often presents with aggressive behavior and a high risk of recurrence and metastasis. For oral squamous cell carcinoma (OSCC), which is the most frequent histological subtype, therapy strategies include surgery, radiation therapy, chemotherapy, immune checkpoint inhibitors, and EGFR inhibitors. Recently, a Trop-2 antibody-drug conjugate (ADC) has been approved in the United States of America for the treatment of advanced triple-negative breast cancer. However, this ADC has also been tested in other solid tumors including head & neck squamous cell carcinoma. The prognostic impact of Trop-2 has already been reported for several cancers. We studied the prognostic influence of Trop-2 protein expression on OSCC patients' survival. The cohort comprised n = 229 OSCC patients with available archived tumor tissue and corresponding non-neoplastic oral mucosa tissue. Using immunohistochemistry, we investigated Trop-2 expression in both the central and peripheral regions of each tumor and in corresponding non-neoplastic oral mucosa. In patients suffering from OSCC with combined high central and low peripheral Trop-2 expression, five-year overall survival (OS) was 41.2%, whereas 55.6% of OSCC patients who presented lower central and/or higher peripheral tumoral Trop-2 expression were alive after five years (p = 0.075). In multivariate Cox regression, the expression pattern of high central tumoral and lower peripheral Trop-2 expression was significantly correlated with impaired OS (HR = 1.802, 95%-CI: 1.134-2.864; p = 0.013) and recurrence-free survival (RFS) (HR = 1.633, 95%-CI: 1.042-2.560; p = 0.033), respectively, when adjusting for co-variables. Hence, Trop-2 may serve as an independent prognostic biomarker in OSCC. In subsequent studies, the pathophysiological meaning of downregulated Trop-2 expression in the OSCC periphery has to be analyzed.
Collapse
|
45
|
Jin Y, Zuo HX, Li MY, Zhang ZH, Xing Y, Wang JY, Ma J, Li G, Piao H, Gu P, Jin X. Anti-Tumor Effects of Carrimycin and Monomeric Isovalerylspiramycin I on Hepatocellular Carcinoma in Vitro and in Vivo. Front Pharmacol 2021; 12:774231. [PMID: 34899336 PMCID: PMC8662527 DOI: 10.3389/fphar.2021.774231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma results in a high risk of second primary malignancies and has prominent morbidity and mortality. There is a lack of effective treatment and prognosis is poor. Therefore, effective drugs need to be discovered. Carrimycin is a 16-member macrolide antibiotic with anticancer activity, and monomeric isovalerylspiramycin I is a main component. The aim of this study was to determine the anti-tumor effects of carrimycin and monomeric isovalerylspiramycin I on hepatocellular carcinoma through in vivo and in vitro experiments. In vitro, changes in cellular proliferation, migration, invasion, and apoptosis were analyzed by MTT, colony formation, EdU labeling, wound-healing, matrigel transwell invasion, and flow cytometric assays using SK-Hep1, Hep3B, SNU-354, SNU-387 hepatocellular carcinoma cell lines. Western blotting and RT-PCR were used to detect the effects of carrimycin and monomeric isovalerylspiramycin I on the expression levels of vascular endothelial growth factor (VEGF) and programmed death ligand 1 (PD-L1). Nude mice were subcutaneously transplanted with SK-Hep1 cells or C57BL/6J mice were orthotopically transplanted with hepatocarcinoma H22 cells. Tumor volume, pathological changes in tumor tissues, and the concentration of VEGF in mouse serum were measured after treatments. Carrimycin and monomeric isovalerylspiramycin I dose-dependently inhibited hepatocellular carcinoma cell viability, colony formation, and DNA replication. These agents markedly suppressed migration and invasion and promoted apoptosis of the cell lines. Western blotting and RT-PCR demonstrated that carrimycin and monomeric isovalerylspiramycin I reduced VEGF and PD-L1 protein and mRNA levels in a dose-dependent manner. In vivo studies further confirmed that carrimycin and monomeric isovalerylspiramycin I could significantly inhibit tumor growth, tumor histopathological alterations, and the concentration of VEGF in both mouse tumor models. These results show that carrimycin and monomeric isovalerylspiramycin I promoted apoptosis and inhibited proliferation, migration, and invasion of hepatocellular carcinoma cells. Therefore, our discovery suggests anti-tumor capacity for carrimycin and monomeric isovalerylspiramycin I and provides data on potential new drugs for inhibiting hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yong Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Zhi Hong Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Jing Ying Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Hongxin Piao
- Liver Diseases Branch, Yanbian University Affiliated Hospital, Yanji, China
| | - Puqing Gu
- Shanghai Tonglian Pharmaceutical Co., Ltd, Shanghai, China
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| |
Collapse
|
46
|
Cheng Y, Li S, Gao L, Zhi K, Ren W. The Molecular Basis and Therapeutic Aspects of Cisplatin Resistance in Oral Squamous Cell Carcinoma. Front Oncol 2021; 11:761379. [PMID: 34746001 PMCID: PMC8569522 DOI: 10.3389/fonc.2021.761379] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a kind of malignant tumors with low survival rate and prone to have early metastasis and recurrence. Cisplatin is an alkylating agent which induces DNA damage through the formation of cisplatin-DNA adducts, leading to cell cycle arrest and apoptosis. In the management of advanced OSCC, cisplatin-based chemotherapy or chemoradiotherapy has been considered as the first-line treatment. Unfortunately, only a portion of OSCC patients can benefit from cisplatin treatment, both inherent resistance and acquired resistance greatly limit the efficacy of cisplatin and even cause treatment failure. Herein, this review outline the underlying mechanisms of cisplatin resistance in OSCC from the aspects of DNA damage and repair, epigenetic regulation, transport processes, programmed cell death and tumor microenvironment. In addition, this review summarizes the strategies applicable to overcome cisplatin resistance, which can provide new ideas to improve the clinical therapeutic outcome of OSCC.
Collapse
Affiliation(s)
- Yali Cheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Ling Gao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
47
|
Overexpression of DOCK6 in oral squamous cell cancer promotes cellular migration and invasion and is associated with poor prognosis. Arch Oral Biol 2021; 133:105297. [PMID: 34742001 DOI: 10.1016/j.archoralbio.2021.105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/09/2021] [Accepted: 10/21/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE We aimed to identify the role of DOCK6 in oral squamous cell cancer (OSCC) in this study. DESIGN DOCK6 expression in OSCC was analyzed using TCGA and GEO datasets and was verified by quantitative real-time PCR, Western blotting, and immunohistochemistry. Statistical analyses were performed to evaluate the relationships between DOCK6 expression and the clinicopathological characteristics of OSCC patients. Wound healing and Transwell assays were performed to assess OSCC cell migration and invasion, respectively. STRING and GO analyses and gene set enrichment analysis were used to identify DOCK6-interacting proteins, their functions and their potential pathways. RESULTS DOCK6 was significantly upregulated at both the mRNA and protein levels in OSCC tissues (all P < 0.05). DOCK6 levels were positively correlated with age (P < 0.05), lymph node metastasis status (P < 0.001), clinical stage (P < 0.001), differentiation (P < 0.05), and poor clinical outcome (P < 0.05) in OSCC patients. Furthermore, univariate and multivariate analyses revealed that high DOCK6 expression (P < 0.01) and clinical stage III-IV (P < 0.05) might serve as independent prognostic factors for OSCC patients. Functionally, DOCK6 silencing significantly suppressed OSCC cell migration and invasion (all P < 0.05). Ten proteins that interact with DOCK6, more than ten functions related to cancer, and more than six pathways related to DOCK6 in OSCC were identified via bioinformatic methods. CONCLUSION DOCK6 is upregulated in OSCC, is associated with a poor prognosis in OSCC patients and increases OSCC cells migration and invasion. These findings suggest that DOCK6 may be a potential therapeutic target with prognostic implication in patients with OSCC.
Collapse
|
48
|
CircLPAR3 Acts as an Oncogene in Oral Squamous Cell Carcinoma Through Regulating the miR-643/HMGB2 Network. Biochem Genet 2021; 60:882-898. [PMID: 34528144 DOI: 10.1007/s10528-021-10134-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/04/2021] [Indexed: 12/09/2022]
Abstract
The malignant progression of oral squamous cell carcinoma (OSCC) has been confirmed to be mediated by a variety of factors, including circular RNA (circRNA). However, the role of circLPAR3 in OSCC development is still unclear. 70 paired OSCC tissues and normal control tissues were obtained from 70 OSCC patients. Quantitative real-time PCR was used to detect the expression of circLPAR3, microRNA (miR)-643, and high-mobility group box 2 (HMGB2). Cell proliferation, apoptosis, metastasis and stemness were assessed using cell counting kit 8 assay, colony-formation assay, flow cytometry, transwell assay and sphere formation assay. Marker protein expression and HMGB2 protein expression were determined by western blot analysis. The interaction between miR-643 and circLPAR3 or HMGB2 was confirmed by RNA pull-down assay, dual-luciferase reporter and RIP assay. The role of circLPAR3 in OSCC tumorigenesis was explored by constructing the xenograft models. Our data showed that circLPAR3 was highly expressed in OSCC tissues and cells. CircLPAR3 silencing suppressed OSCC cell proliferation, metastasis and stemness, while promoted apoptosis. On the mechanism, we discovered that circLPAR3 could sponge miR-643 to positive regulate HMGB2. MiR-643 overexpression had an inhibition effect on OSCC progression, and its inhibitor could reverse the negative regulation of circLPAR3 knockdown on OSCC progression. In addition, overexpressed HMGB2 also reversed the suppressive effect of circLPAR3 silencing on OSCC progression. Animal experiments results showed that downregulated circLPAR3 repressed OSCC tumorigenesis in vivo. Taken together, our data showed that circLPAR3 contributed to OSCC malignant progression through regulating the miR-643/HMGB2 axis.
Collapse
|
49
|
Ren L, Lou Y, Sun M. The anti-tumor effects of evodiamine on oral squamous cell carcinoma (OSCC) through regulating advanced glycation end products (AGE) / receptor for advanced glycation end products (RAGE) pathway. Bioengineered 2021; 12:5985-5995. [PMID: 34477479 PMCID: PMC8806666 DOI: 10.1080/21655979.2021.1972082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Evodiamine (EVO) is emerging as a novel anti-tumor drug, which is involved in the inhibition of cell proliferation and apoptosis. High-Mobility Group Box 1 (HMGB1)/RAGE is involved in invasive behavior of OSCC cells and angiogenesis. In this study, we evaluated the potential of EVO in OSCC in vitro and in vivo. We found that RAGE silencing suppressed HSC-4 cell proliferation and invasion, and tube formation of HUVEC. EVO showed marked inhibitory effects on the malignant behaviors of HSC-4 cells in a dose-dependent manner. Further experiments revealed that the RAGE overexpression was able to markedly block the effects of EVO on cell proliferation and invasion, and tube formation. By analyzing the expression of High-Mobility Group Box 1 (HMGB1) and RAGE in HSC-4 cells, the result showed that EVO slightly reduced HMBG1 levels and dramatically decreased RAGE levels, while RAGE overexpression did have no marked influences on HMBG1 levels. The anti-tumor effects of EVO were further confirmed in mouse oral squamous cell carcinoma xenograft models. Remarkable anti-tumor effects of EVO were also demonstrated, as presented by reduced tumor size and levels of HMBG1 and RAGE in tumor tissue of mouse oral squamous cell carcinoma xenograft models. The results demonstrated that EVO has a direct binding effect on HMGB1, but it may be involved in degrading the protein. More importantly, it can reduce the activity of RAGE pathway by affecting the binding between HMBG1 and RAGE. To conclude, EVO inhibited proliferation, invasion and angiogenesis of OSCC through affecting the downstream signal transduction system of AGE/RAGE by targeting RAGE.
Collapse
Affiliation(s)
- Liuyang Ren
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Ying Lou
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Mingyu Sun
- Department of Stomatology, Union Hospital, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
50
|
Reyimu A, Chen Y, Song X, Zhou W, Dai J, Jiang F. Identification of latent biomarkers in connection with progression and prognosis in oral cancer by comprehensive bioinformatics analysis. World J Surg Oncol 2021; 19:240. [PMID: 34384424 PMCID: PMC8361649 DOI: 10.1186/s12957-021-02360-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Oral cancer (OC) is a common and dangerous malignant tumor with a low survival rate. However, the micro level mechanism has not been explained in detail. METHODS Gene and miRNA expression micro array data were extracted from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) and miRNAs (DE miRNAs) were identified by R software. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of genes and genomes (KEGG) pathway analysis were used to assess the potential molecular mechanisms of DEGs. Cytoscape software was utilized to construct protein-protein interaction (PPI) network and miRNA-gene network. Central genes were screened out with the participation of gene degree, molecular complex detection (MCODE) plugin, and miRNA-gene network. Then, the identified genes were checked by The Cancer Genome Atlas (TCGA) gene expression profile, Kaplan-Meier data, Oncomine, and the Human Protein Atlas database. Receiver operating characteristic (ROC) curve was drawn to predict the diagnostic efficiency of crucial gene level in normal and tumor tissues. Univariate and multivariate Cox regression were used to analyze the effect of dominant genes and clinical characteristics on the overall survival rate of OC patients. RESULTS Gene expression data of gene expression profiling chip(GSE9844, GSE30784, and GSE74530) were obtained from GEO database, including 199 tumor and 63 non-tumor samples. We identified 298 gene mutations, including 200 upregulated and 98 downregulated genes. GO functional annotation analysis showed that DEGs were enriched in extracellular structure and extracellular matrix containing collagen. In addition, KEGG pathway enrichment analysis demonstrated that the DEGs were significantly enriched in IL-17 signaling pathway and PI3K-Akt signaling pathway. Then, we detected three most relevant modules in PPI network. Central genes (CXCL8, DDX60, EIF2AK2, GBP1, IFI44, IFI44L, IFIT1, IL6, MMP9,CXCL1, CCL20, RSAD2, and RTP4) were screened out with the participation of MCODE plugin, gene degree, and miRNA-gene network. TCGA gene expression profile and Kaplan-Meier analysis showed that high expression of CXCL8, DDX60, IL6, and RTP4 was associated with poor prognosis in OC patients, while patients with high expression of IFI44L and RSAD2 had a better prognosis. The elevated expression of CXCL8, DDX60, IFI44L, RSAD2, and RTP44 in OC was verified by using Oncomine database. ROC curve showed that the mRNA levels of these five genes had a helpful diagnostic effect on tumor tissue. The Human Protein Atlas database showed that the protein expressions of DDX60, IFI44L, RSAD2, and RTP44 in tumor tissues were higher than those in normal tissues. Finally, univariate and multivariate Cox regression showed that DDX60, IFI44L, RSAD2, and RTP44 were independent prognostic indicators of OC. CONCLUSION This study revealed the potential biomarkers and relevant pathways of OC from publicly available GEO database, and provided a theoretical basis for elucidating the diagnosis, treatment, and prognosis of OC.
Collapse
Affiliation(s)
- Abdusemer Reyimu
- Medical College, Anhui University of Science and Technology, Huainan, Anhui, 232001, People's Republic of China
| | - Ying Chen
- Department of Medical Laboratory, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, People's Republic of China
| | - Xudong Song
- Department of Gastrointestinal Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, People's Republic of China
| | - Wubi Zhou
- Department of Pathology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, People's Republic of China.
| | - Jingjing Dai
- Department of Medical Laboratory, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, People's Republic of China.
| | - Feng Jiang
- Department of Stomatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, People's Republic of China.
| |
Collapse
|