1
|
Li J, Wang X, Zhang H, Hu X, Peng X, Jiang W, Zhuo L, Peng Y, Zeng G, Wang Z. Fenamates: Forgotten treasure for cancer treatment and prevention: Mechanisms of action, structural modification, and bright future. Med Res Rev 2025; 45:164-213. [PMID: 39171404 DOI: 10.1002/med.22079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Fenamates as classical nonsteroidal anti-inflammatory agents are widely used for relieving pain. Preclinical studies and epidemiological data highlight their chemo-preventive and chemotherapeutic potential for cancer. However, comprehensive reviews of fenamates in cancer are limited. To accelerate the repurposing of fenamates, this review summarizes the results of fenamates alone or in combination with existing chemotherapeutic agents. This paper also explores targets of fenamates in cancer therapy, including COX, AKR family, AR, gap junction, FTO, TEAD, DHODH, TAS2R14, ion channels, and DNA. Besides, this paper discusses other mechanisms, such as regulating Wnt/β-catenin, TGF-β, p38 MAPK, and NF-κB pathway, and the regulation of the expressions of Sp, EGR-1, NAG-1, ATF-3, ErbB2, AR, as well as the modulation of the tumor immune microenvironment. Furthermore, this paper outlined the structural modifications of fenamates, highlighting their potential as promising leads for anticancer drugs.
Collapse
Affiliation(s)
- Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weifan Jiang
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guo Zeng
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Borhani Yazdi N, Rezvani Ghalhari M, Parach A, Ehrampoush MH, Ghadiri K, Ghorbanian M, Zare Hassanabadi MH, Abouee Mehrizi E. Degradation of piroxicam and celecoxib from aqueous solution by high-energy electron beam as a Sustainable method. Heliyon 2024; 10:e39839. [PMID: 39524863 PMCID: PMC11550070 DOI: 10.1016/j.heliyon.2024.e39839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most commonly prescribed drugs that can reduce pain. This study aimed to measure the concentration of piroxicam and celecoxib in Iranian hospitals, as well as the effect of electron beam irradiation on the degradation of these pollutants in synthetic and real samples. The high-performance liquid chromatography (HPLC) was used to detect the residual analytes in the samples. The Response Surface Methodology (RSM) was used to design the experiment conditions that investigate the effect of electron beam irradiation on degradation of piroxicam and celecoxib from synthetic samples, and then according to the optimum condition, the experiments were carried out for real wastewater samples. The results of wastewater analysis shown that the mean concentration of PIRO and CELE were 6.32 ± 2.5 and 11.5 ± 3.2 μg/L, respectively. Also, the findings show that 98.98 % and 97.62 % of piroxicam and celecoxib was degraded, respectively, when the optimum conditions (pH = 4, electron beam irradiation = 8 kGy, and concentrations of 60 μg/L for piroxicam and 50 μg/L for celecoxib) were applied. Results show that the degradation rates of piroxicam and celecoxib in the real wastewater sample at optimum condition were 89.6 % and 84.25 %, respectively. So, electron beam irradiation is a long-lasting and promising method for removal emerging contaminants from wastewater, like non-steroidal anti-inflammatory drugs, that can't be removed by conventional wastewater treatment methods; so, it can be used in combination with conventional wastewater treatment methods.
Collapse
Affiliation(s)
- Niloufar Borhani Yazdi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Student’s Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rezvani Ghalhari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Student’s Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Parach
- Department of Medical Physics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Ehrampoush
- Department of Environmental Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Kamal Ghadiri
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahdi Ghorbanian
- Vector-borne Diseases Research Center, School of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Ehsan Abouee Mehrizi
- Department of Environmental Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
3
|
Fatima R, Prasher P, Sharma M, Singh SK, Gupta G, Dua K. The contemplation of amylose for the delivery of ulcerogenic nonsteroidal anti-inflammatory drugs. Future Med Chem 2024; 16:791-809. [PMID: 38573051 PMCID: PMC11221539 DOI: 10.4155/fmc-2024-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
This manuscript proposes an innovative approach to mitigate the gastrointestinal adversities linked with nonsteroidal anti-inflammatory drugs (NSAIDs) by exploiting amylose as a novel drug delivery carrier. The intrinsic attributes of V-amylose, such as its structural uniqueness, biocompatibility and biodegradability, as well as its capacity to form inclusion complexes with diverse drug molecules, are meticulously explored. Through a comprehensive physicochemical analysis of V-amylose and ulcerogenic NSAIDs, the plausibility of amylose as a protective carrier for ulcerogenic NSAIDs to gastrointestinal regions is elucidated. This review further discusses the potential therapeutic advantages of amylose-based drug delivery systems in the management of gastric ulcers. By providing controlled release kinetics and enhanced bioavailability, these systems offer promising prospects for the development of more effective ulcer therapies.
Collapse
Affiliation(s)
- Rabab Fatima
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Center in Complementary & Integrative Medicine, University of Technology Sydney, Sydney, Ultimo, NSW, 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary & Integrative Medicine, University of Technology Sydney, Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
4
|
Kapuścińska D, Narajczyk M, Liakh I, Wielgomas B, Aksmann A. Nabumetone and flufenamic acid pose a serious risk to aquatic plants: A study with Chlamydomonas reinhardtii as a model organism. CHEMOSPHERE 2024; 349:140853. [PMID: 38052310 DOI: 10.1016/j.chemosphere.2023.140853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/25/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
The aquatic environment is constantly under threat due to the release of numerous pollutants. Among them, pharmaceuticals constitute a huge and diverse group. Non-steroidal anti-inflammatory drugs (NSAIDs) are increasingly found in water bodies, but knowledge about their potential toxicity is still low. In particular, there is a lack of information about their influences on aquatic plants and algae. We estimated the susceptibility of the microalgae Chlamydomonas reinhardtii to nabumetone (NBT) and flufenamic acid (FFA), focusing on photosynthesis. Due to the differences in the structures of these compounds, it was assumed that these drugs would have different toxicities to the tested green algae. The hypothesis was confirmed by determining the effective concentration values, the intensity of photosynthesis, the intensity of dark respiration, the contents of photosynthetic pigments, the fluorescence of chlorophyll a in vivo (OJIP test), and cell ultrastructure analysis. Assessment of the toxicity of the NSAIDs was extended by the calculation of an integrated biomarker response index (IBR), which is a valuable tool in ecotoxicological studies. The obtained results indicate an over six times higher toxicity of NBT compared to FFA. After analysis of the chlorophyll a fluorescence in vivo, it was found that NBT inhibited electron transport beyond the PS II. FFA, unlike NBT, lowered the intensity of photosynthesis, probably transforming some reaction centers into "silent centers", which dissipate energy as heat. The IBR estimated based on photosynthetic parameters suggests that the toxic effect of FFA results mainly from photosynthesis disruption, whereas NBT significantly affects other cellular processes. No significant alteration in the ultrastructure of treated cells could be seen, except for changes in starch grain number and autophagic vacuoles that appeared in FFA-treated cells. To the best of our knowledge, this is the first work reporting the toxic effects of NBT and FFA on unicellular green algae.
Collapse
Affiliation(s)
- Dominika Kapuścińska
- Department of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Ivan Liakh
- Department of Toxicology, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland.
| | - Bartosz Wielgomas
- Department of Toxicology, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland.
| | - Anna Aksmann
- Department of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
5
|
Rana P, Khan S, Arat S, Potter D, Khan N. Nonclinical Safety Signals in PharmaPendium Improve the Predictability of Human Drug-Induced Liver Injury. Chem Res Toxicol 2022; 35:2133-2144. [PMID: 36287557 DOI: 10.1021/acs.chemrestox.2c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Drug-induced liver injury (DILI) is a leading cause of candidate attrition during drug development in the pharmaceutical industry. This study evaluated liver toxicity signals for 249 approved drugs (114 of "most-DILI concern" and 135 of "no-DILI concern") using PharmaPendium and assessed the association between nonclinical and clinical injuries using contingency table analysis. All animal liver findings were combined into eight toxicity categories based on nature and severity. Together, these analyses revealed that cholestasis [odds ratio (OR): 5.02; 95% confidence interval (CI) 1.04-24.03] or liver aminotransferase increases (OR: 1.86; 95% CI 1.09-3.09) in rats and steatosis (OR-1.9; 95% CI 1.03-3.49) or liver aminotransferase increases (OR-2.57; 95% CI 1.4-4.7) in dogs were significant predictors of human liver injury. The predictive value further improved when the liver injury categories were combined into less severe (steatosis, cholestasis, liver aminotransferase increase, hyperbilirubinemia, or jaundice) and more-severe (liver necrosis, acute liver failure, or hepatotoxicity) injuries. In particular, less-severe liver injuries in the following pairs of species predicted human hepatotoxicity {[dog and mouse] (OR: 2.70; 95% CI 1.25-5.84), [dog and rat] (OR-2.61; 95% CI 1.48-4.59), [monkey and mouse] (OR-4.22; 95% CI 1.33-13.32), and [monkey and rat] (OR-2.45; 95% CI 1.15-5.21)} were predictive of human hepatotoxicity. Meanwhile, severe liver injuries in both [dog and rat] (OR-1.9; 95% CI 1.04-3.49) were significant predictors of human liver toxicity. Therefore, we concluded that the occurrence of DILI in humans is highly likely if liver injuries are observed in one rodent and one nonrodent species and that liver aminotransferase increases in dogs and rats can predict DILI in humans. Together, these findings indicate that the liver safety signals observed in animal toxicity studies indicate potential DILI risk in humans and could therefore be used to prioritize small molecules with less potential to cause DILI in humans.
Collapse
Affiliation(s)
- Payal Rana
- Drug Safety Research and Development, Pfizer, Groton, Connecticut 06340, United States
| | - Sanaa Khan
- Drug Safety Research and Development, Pfizer, Groton, Connecticut 06340, United States
| | - Seda Arat
- Drug Safety Research and Development, Pfizer, Groton, Connecticut 06340, United States
| | - David Potter
- Early Clinical Development Biostatistics, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Nasir Khan
- Drug Safety Research and Development, Pfizer, Groton, Connecticut 06340, United States
| |
Collapse
|
6
|
Karkoszka M, Rok J, Banach K, Kowalska J, Rzepka Z, Wrześniok D. The Assessment of Meloxicam Phototoxicity in Human Normal Skin Cells: In Vitro Studies on Dermal Fibroblasts and Epidermal Melanocytes. Molecules 2022; 27:molecules27134215. [PMID: 35807460 PMCID: PMC9268563 DOI: 10.3390/molecules27134215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
Meloxicam (MLX), which belongs to the oxicam nonsteroidal anti-inflammatory drug derivatives, is an inhibitor of the cyclooxygenase-2 (COX-2) enzyme. Cutaneous adverse effects caused by interaction between UVA radiation and exogenous factors can manifest as phototoxic reactions. Phototoxicity may be a reason for the accumulation of genetic and molecular changes in long-lived cells with low proliferation potential, leading to tumor development. There are several potentially phototoxic drugs, the active component of which is meloxicam. The research aimed to evaluate the influence of MLX and UVAR on skin cells—fibroblasts and melanocytes homeostasis. The obtained results indicated that co-treatment with MLX and UVAR inhibited skin cell proliferation, proportionally to the drug concentration. The observation was confirmed by cytometric analysis of the cell number and viability. The phototoxic effect of MLX was revealed in morphological changes. It was stated that MLX with UVAR lowered the mitochondrial transmembrane potential and changed the cell cycle profile. Additionally, MLX and UVAR caused the disruption of redox homeostasis by lowering the intracellular level of reduced thiols. The presented study revealed that the phototoxic activity of MLX is associated with oxidative stress induction and disruptions in cell homeostasis. The differences in the phototoxic effects of MLX at the cellular level may be related to the different content of melanin pigments.
Collapse
|
7
|
Sokołowska P, Siatkowska M, Jóźwiak-Bębenista M, Komorowski P, Koptas M, Kowalczyk E, Wiktorowska-Owczarek A. Diclofenac Diminished the Unfolded Protein Response (UPR) Induced by Tunicamycin in Human Endothelial Cells. Molecules 2022; 27:molecules27113449. [PMID: 35684385 PMCID: PMC9182461 DOI: 10.3390/molecules27113449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 01/01/2023] Open
Abstract
Diclofenac belongs to the class of nonsteroidal anti-inflammatory drugs (NSAIDs), which are amongst the most frequently prescribed drugs to treat fever, pain and inflammation. Despite the presence of NSAIDs on the pharmaceutical market for several decades, epidemiological studies have shown new clinical applications of NSAIDs, and new mechanisms of their action were discovered. The unfolded protein response (UPR) activated under endoplasmic reticulum (ER) stress is involved in the pathophysiology of many diseases and may become a drug target, therefore, the study evaluated the effects of diclofenac on the tunicamycin-induced UPR pathways in endothelial cells. RT PCR analysis showed that diclofenac significantly inhibited activation of ER stress-responsive genes, i.e., CHOP/DITT3, GRP78/HSPA5 and DNAJB9. Additionally, the drug diminished the significant upregulation and release of the GRP78 protein, as evaluated using the ELISA assay, which was likely to be involved in the mechanism of the UPR activation resulting in apoptosis induction in endothelial cells. These results suggest the value of diclofenac as a factor capable of restoring the ER homeostasis in endothelial cells by diminishing the UPR.
Collapse
Affiliation(s)
- Paulina Sokołowska
- Department of Pharmacology and Toxicology, Medical University of Lodz, 7/9 Zeligowskiego, 90-752 Lodz, Poland; (P.S.); (M.J.-B.); (E.K.)
| | - Małgorzata Siatkowska
- Laboratory of Molecular and Nanostructural Biophysics, Bionanopark, 114/116 Dubois, 93-465 Lodz, Poland; (M.S.); (P.K.)
| | - Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology, Medical University of Lodz, 7/9 Zeligowskiego, 90-752 Lodz, Poland; (P.S.); (M.J.-B.); (E.K.)
| | - Piotr Komorowski
- Laboratory of Molecular and Nanostructural Biophysics, Bionanopark, 114/116 Dubois, 93-465 Lodz, Poland; (M.S.); (P.K.)
- Division of Biophysics, Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, 1/15 Stefanowskiego, 90-924 Lodz, Poland
| | - Marta Koptas
- Department of Ophtalmology, Jonscher Municipal Medical Center, 14 Milionowa, 93-113 Lodz, Poland;
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, 7/9 Zeligowskiego, 90-752 Lodz, Poland; (P.S.); (M.J.-B.); (E.K.)
| | - Anna Wiktorowska-Owczarek
- Department of Pharmacology and Toxicology, Medical University of Lodz, 7/9 Zeligowskiego, 90-752 Lodz, Poland; (P.S.); (M.J.-B.); (E.K.)
- Correspondence:
| |
Collapse
|
8
|
Bednarczyk D. Passive Influx and Ion Trapping Are More Relevant to the Cellular Accumulation of Highly Permeable Low-Molecular-Weight Acidic Drugs than Is Organic Anion Transporter 2. Drug Metab Dispos 2021; 49:648-657. [PMID: 34031139 DOI: 10.1124/dmd.121.000425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022] Open
Abstract
Recently published work suggests that highly permeable low-molecular-weight (LMW) acidic drugs are transported by organic anion transporter 2 (OAT2). However, an asymmetric distribution of ionizable drugs in subcellular organelles where pH gradients are significant may occur in the presence of an inhibitor relative to its absence (e.g., lysosomal trapping). In the present study, OAT2-mediated transport of highly permeable LMW anions could not be demonstrated using OAT2 transfected cells, despite robust transport of the OAT2 substrate penciclovir. Moreover, a rifamycin SV (RifSV)-dependent reduction in the accumulation of highly permeable LMW anions previously observed in hepatocytes could be qualitatively reproduced using HepG2 cells and also in Madin-Darby canine kidney (MDCK) cells, which lack expression of OAT2. Neither HepG2 nor MDCK cells demonstrated meaningful penciclovir transport, nor was the cellular accumulation of the highly permeable LMW anions sensitive to competitive inhibition by the neutral OAT2 substrate penciclovir. Both cell lines, however, demonstrated sensitivity to the mitochondrial uncoupler p-trifluoromethoxy carbonyl cyanide phenyl hydrazone (FCCP) in a manner similar to RifSV. Furthermore, the transepithelial MDCK permeability of the highly permeable LMW anions was measured in the absence and presence of RifSV and FCCP at concentrations that reduced the cellular accumulation of anions. Neither inhibitor, nor the OAT2 inhibitor ketoprofen, reduced the transepithelial flux of the anions as would be anticipated for transported substrate inhibition. The findings presented here are aligned with cellular accumulation of highly permeable LMW anions being significantly determined by ion trapping sensitive to mitochondrial uncoupling, rather than the result of OAT2-mediated transport. SIGNIFICANCE STATEMENT: The manuscript illustrates that passive influx and ion trapping are more relevant to the cellular accumulation of highly permeable low-molecular-weight acidic drugs than is the previously proposed mechanism of OAT2-mediated transport. The outcome illustrated here highlights a rare, and perhaps previously not reported, observation of anionic drug trapping in a compartment sensitive to mitochondrial uncoupling (e.g., the mitochondrial matrix) that may be confused for transporter-mediated uptake.
Collapse
Affiliation(s)
- Dallas Bednarczyk
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| |
Collapse
|
9
|
Role of respiratory uncoupling in drug-induced mitochondrial permeability transition. Toxicol Appl Pharmacol 2021; 427:115659. [PMID: 34332991 DOI: 10.1016/j.taap.2021.115659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022]
Abstract
Mitochondrial injury contributes to severe drug-induced liver injury. Particularly, mitochondrial permeability transition (MPT) is thought to be relevant to cytolytic hepatitis. However, the mechanism of drug-induced MPT is unclear and prediction of MPT is not adequately evaluated in the preclinical stage. In a previous study, we found that troglitazone, a drug withdrawn due to liver injury, induced MPT via mild depolarization probably resulting from uncoupling. Herein, we investigated whether other drugs that induce MPT share similar properties as troglitazone, using isolated mitochondria from rat liver. Of the 22 test drugs examined, six drugs, including troglitazone, induced MPT and showed an uncoupling effect. Additionally, receiver operating characteristic analysis was conducted to predict the MPT potential from the respiratory control ratio, an indicator of uncoupling intensity. Results showed that 2.5 was the best threshold that exhibited high sensitivity (1.00) and high specificity (0.81), indicating that uncoupling was correlated with MPT potential. Activation of calcium-independent phospholipase A2 appeared to be involved in uncoupling-induced MPT. Furthermore, a strong relationship between MPT intensity and the uncoupling effect among similar compounds was confirmed. These results may help in predicting MPT potential using cultured cells and modifying the chemical structures of the drugs to reduce MPT risk.
Collapse
|
10
|
Role of the Abcg2 transporter in plasma levels and tissue accumulation of the anti-inflammatory tolfenamic acid in mice. Chem Biol Interact 2021; 345:109537. [PMID: 34062171 DOI: 10.1016/j.cbi.2021.109537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 01/16/2023]
Abstract
The Breast Cancer Resistance Protein (BCRP/ABCG2) is an ATP-binding cassette efflux transporter that is expressed in the apical membrane of cells from relevant tissues involved in drug pharmacokinetics such as liver, intestine, kidney, testis, brain and mammary gland, among others. Tolfenamic acid is an anti-inflammatory drug used as an analgesic and antipyretic in humans and animals. Recently, tolfenamic acid has been repurposed as an antitumoral drug and for use in chronic human diseases such as Alzheimer. The aim of this work was to study whether tolfenamic acid is an in vitro Abcg2 substrate, and to investigate the potential role of Abcg2 in plasma exposure, secretion into milk and tissue accumulation of this drug. Using in vitro transepithelial assays with cells transduced with Abcg2, we showed that tolfenamic acid is an in vitro substrate of Abcg2. The in vivo effect of this transporter was tested using wild-type and Abcg2-/- mice, showing that after oral and intravenous administration of tolfenamic acid, its area under the plasma concentration-time curve in Abcg2-/- mice was between 1.7 and 1.8-fold higher compared to wild-type mice. Abcg2-/- mice also showed higher liver and testis accumulation of tolfenamic acid after intravenous administration. In this study, we demonstrate that tolfenamic acid is transported in vitro by Abcg2 and that its plasma levels as well as its tissue distribution are affected by Abcg2, with potential pharmacological and toxicological consequences.
Collapse
|
11
|
Babich R, Hamlin H, Thayer L, Dorr M, Wei Z, Neilson A, Jayasundara N. Mitochondrial response and resilience to anthropogenic chemicals during embryonic development. Comp Biochem Physiol C Toxicol Pharmacol 2020; 233:108759. [PMID: 32259593 DOI: 10.1016/j.cbpc.2020.108759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/28/2022]
Abstract
Mitochondria are integral to maintaining cellular homeostasis. Optimum mitochondrial function is critical during embryonic development, as they play a key role in early signaling cascades and epigenetic programming, in addition to sustaining an adequate energy production. Mitochondria are sensitive targets of environmental toxins, potentially even at levels considered safe under current regulatory limits. Most mitochondrial analyses have focused only on chemical exposure effects in vitro or in isolated mitochondria. However, comparatively little is known about mitochondrial effects of chemical exposure during vertebrate embryogenesis, especially during the recovery phase following a chemical insult. Here, we used the zebrafish (Danio rerio), in a 96-well plate system, to examine mitochondrial effects of 24 chemicals including pharmaceuticals, industrial chemicals, and agrochemicals. We used oxygen consumption rate (OCR) during embryogenesis as a proxy for mitochondrial function. Embryonic OCR (eOCR) was measured in clean egg water immediately following 24 h of chemical exposure and subsequently for an additional 8 h. Each chemical, dependent upon the concentration, resulted in a unique eOCR response profile. While some eOCR effects were persistent or recoverable over time, some effects were only detected several hours after being removed from the exposure. Non-monotonic dose response effects as well as mitochondrial hormesis were also detected following exposure to some chemicals. Collectively, our study shows that mitochondrial response to chemicals are highly dynamic and warrant careful consideration when determining mitochondrial toxicity of a given chemical.
Collapse
Affiliation(s)
- Remy Babich
- The School of Marine Sciences, University of Maine, Orono, ME 04469, USA.
| | - Heather Hamlin
- The School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| | - LeeAnne Thayer
- The School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| | - Madeline Dorr
- The Department of Mathematics and Statistics, University of Maine, Orono, ME, 04469, USA
| | - Zheng Wei
- The Department of Mathematics and Statistics, University of Maine, Orono, ME, 04469, USA
| | | | - Nishad Jayasundara
- The School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
12
|
Aleo MD, Shah F, Allen S, Barton HA, Costales C, Lazzaro S, Leung L, Nilson A, Obach RS, Rodrigues AD, Will Y. Moving beyond Binary Predictions of Human Drug-Induced Liver Injury (DILI) toward Contrasting Relative Risk Potential. Chem Res Toxicol 2019; 33:223-238. [DOI: 10.1021/acs.chemrestox.9b00262] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Scott Allen
- Drug Safety Research and Development, Investigative Toxicology, Pfizer Worldwide Research & Development, One Burtt Road, Andover, Massachusetts 01810, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Drug-Induced Mitochondrial Toxicity in the Geriatric Population: Challenges and Future Directions. BIOLOGY 2019; 8:biology8020032. [PMID: 31083551 PMCID: PMC6628177 DOI: 10.3390/biology8020032] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial function declines with age, leading to a variety of age-related diseases (metabolic, central nervous system-related, cancer, etc.) and medication usage increases with age due to the increase in diseases. Drug-induced mitochondrial toxicity has been described for many different drug classes and can lead to liver, muscle, kidney and central nervous system injury and, in rare cases, to death. Many of the most prescribed medications in the geriatric population carry mitochondrial liabilities. We have demonstrated that, over the past decade, each class of drugs that demonstrated mitochondrial toxicity contained drugs with both more and less adverse effects on mitochondria. As patient treatment is often essential, we suggest using medication(s) with the best safety profile and the avoidance of concurrent usage of multiple medications that carry mitochondrial liabilities. In addition, we also recommend lifestyle changes to further improve one’s mitochondrial function, such as weight loss, exercise and nutrition.
Collapse
|
14
|
Bellver-Domingo Á, Maldonado-Devis M, Hernández-Sancho F, Carmona E, Picó Y. Identification of effective parameters for anti-inflammatory concentration in València City's wastewater using fuzzy-set qualitative comparative analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:110-124. [PMID: 30711579 DOI: 10.1016/j.scitotenv.2019.01.350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/14/2019] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
The current literature about pharmaceutical and personal care compounds (PPCPs) focuses on identifying their concentration and toxicological risk both in surface water and in wastewater. However, the influence of urban areas (population ageing, income level, hospitals and others) has not yet been analysed. Knowing how a population (and its facilities) affects PPCPs' presence in wastewater is important to identify the conditions that are responsible for their presence. In this work, the influence of water consumption, population ageing, income level, hospitals and nursing homes on the anti-inflammatory concentration have been analysed. To fill the gap between the quantitative data on PPCPs' concentration and the qualitative reasoning of the influence of urban areas on the anti-inflammatory concentration, the use of fuzzy-set qualitative comparative analysis (fsQCA) is proposed. The fsQCA results are presented as recipes that show the different causal combinations of conditions that explain the presence of anti-inflammatories in wastewater. Using fsQCA for urban wastewater management with the aim of explaining the presence of anti-inflammatories in wastewater treatment plants (WWTPs) is a novelty in the literature. The results obtained here show the influence of water consumption (WATCON), hospitals (HOSP) and population ageing (POPAG) as the main conditions for the anti-inflammatory concentration in Valèncian wastewater. Specifically, these conditions are present in all the recipes obtained with consistency of 99%. Through the results obtained, it would be possible to identify that HOSP are the main facilities that discharge anti-inflammatories into urban wastewater. Hence, the necessity of preventive measures to avoid the anti-inflammatory discharge into water bodies has been showed. Furthermore, under a methodological point of view, this work highlights the eligibility of fsQCA as a wastewater cycle management tool.
Collapse
Affiliation(s)
- Águeda Bellver-Domingo
- Water Economic Group, Faculty of Economics, University of Valencia, Avda. dels Tarongers, s/n, 46022 València, Spain.
| | - Mónica Maldonado-Devis
- Water Economic Group, Faculty of Economics, University of Valencia, Avda. dels Tarongers, s/n, 46022 València, Spain
| | - Francesc Hernández-Sancho
- Water Economic Group, Faculty of Economics, University of Valencia, Avda. dels Tarongers, s/n, 46022 València, Spain
| | - Eric Carmona
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre (CIDE-GV-UV), Faculty of Pharmacy, University of Valencia, Spain
| | - Yolanda Picó
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre (CIDE-GV-UV), Faculty of Pharmacy, University of Valencia, Spain
| |
Collapse
|
15
|
Rana P, Aleo MD, Gosink M, Will Y. Evaluation of in Vitro Mitochondrial Toxicity Assays and Physicochemical Properties for Prediction of Organ Toxicity Using 228 Pharmaceutical Drugs. Chem Res Toxicol 2018; 32:156-167. [DOI: 10.1021/acs.chemrestox.8b00246] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Payal Rana
- Drug Safety Research & Development, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Michael D. Aleo
- Drug Safety Research & Development, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mark Gosink
- Drug Safety Research & Development, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Yvonne Will
- Drug Safety Research & Development, Pfizer, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
16
|
ABSENCE OF ACUTE TOXICITY OF A SINGLE INTRAMUSCULAR INJECTION OF MELOXICAM IN GOLDFISH ( CARASSIUS AURATUS AURATUS): A RANDOMIZED CONTROLLED TRIAL. J Zoo Wildl Med 2018; 49:617-622. [PMID: 30212321 DOI: 10.1638/2018-0077.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Meloxicam is a nonsteroidal anti-inflammatory drug with preferential cyclooxygenase-2 inhibitory activity. It is frequently used in veterinary medicine, including in fish species. The efficacy and safety of meloxicam, however, has not yet been reported in adult fish. The purpose of this study was to evaluate the acute toxicity of a single intramuscular injection of meloxicam in goldfish ( Carassius auratus auratus). Following 3 wk of acclimation, 32 goldfish were randomly assigned to two groups of 16 individuals. Fish from the treatment group received a single intramuscular injection of 5 mg/kg meloxicam, while the fish from the control group received a single intramuscular injection of a 0.9% sodium chloride solution using a similar volume (1 ml/kg). No external lesions, mortality, or modifications in behavior or position in the water column were noted during the following 72 hr. Three days after the initial injection, all fish were euthanized by immersion in a solution of tricaine methanesulfonate. Complete postmortem and histologic evaluations were performed for each fish. Hemorrhage and muscular necrosis were observed at the site of injection in fish from both groups. Multiple granulomas of undetermined etiology were detected in numerous organs from fish of both groups. No statistically significant differences were detected in regard to the lesions observed in these two groups. This study demonstrates that a single intramuscular injection of meloxicam at a dosage of 5 mg/kg does not cause acute toxicity in goldfish.
Collapse
|
17
|
Melguizo-Rodríguez L, Costela-Ruiz VJ, Manzano-Moreno FJ, Illescas-Montes R, Ramos-Torrecillas J, García-Martínez O, Ruiz C. Repercussion of nonsteroidal anti-inflammatory drugs on the gene expression of human osteoblasts. PeerJ 2018; 6:e5415. [PMID: 30128197 PMCID: PMC6097469 DOI: 10.7717/peerj.5415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/20/2018] [Indexed: 01/31/2023] Open
Abstract
Background Nonsteroidal anti-inflammatory drugs (NSAIDs) are frequently used in clinical practice, which can have adverse effects on the osteoblast. The objective of this study was to determine the effect of NSAIDs on the osteoblast by analyzing the gene expression of different markers related to osteoblast maturation and function when treated in vitro with different NSAIDs. Methods Three human osteoblast lines from bone samples of three healthy volunteers were treated with 10 µM acetaminophen, indomethacin, ketoprofen, diclofenac, ibuprofen, ketorolac, naproxen, and piroxicam. The gene expression of different markers (run related transcription factor 2 [RUNX-2], type 1 collagen [COL-I], osterix [OSX], osteocalcin [OSC], bone morphogenetic protein 2 [BMP-2] and 7 [BMP-7], transforming growth factor β1 [TGF-β1], and TGFβ receptors [TGFβR1, TGFβR2; TGFBR3]) were analyzed by real-time PCR at 24 h of treatment. Results Expression of RUNX-2, COL-I, OSX, was reduced by treatment with all studied NSAIDs, OSC expression was reduced by all NSAIDs except for ketoprofen, naproxen, or piroxicam. Expression of BMP-7 was reduced by all NSAIDs; BMP-2 was reduced by all except for naproxen. In general, NSAID treatment increased the expression of TGF-β1, but not of its receptors (TGFβ-R1, TGFβ-R2, andTFGβ-R3), which was either unchanged or reduced by the treatment. Conclusion These data confirm that NSAIDs can affect osteoblast physiology, suggesting their possible impact on bone.
Collapse
Affiliation(s)
- Lucia Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Instituto Investigación Biosanitaria, ibs.Granada, University of Granada, Granada, Spain
| | - Víctor J Costela-Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Francisco J Manzano-Moreno
- Instituto Investigación Biosanitaria, ibs.Granada, University of Granada, Granada, Spain.,Biomedical Group (BIO277), Department of Stomatology, School of Dentistry, University of Granada, Granada, Spain
| | - Rebeca Illescas-Montes
- Instituto Investigación Biosanitaria, ibs.Granada, University of Granada, Granada, Spain.,Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Melilla, Spain
| | - Javier Ramos-Torrecillas
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Instituto Investigación Biosanitaria, ibs.Granada, University of Granada, Granada, Spain
| | - Olga García-Martínez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Instituto Investigación Biosanitaria, ibs.Granada, University of Granada, Granada, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Instituto Investigación Biosanitaria, ibs.Granada, University of Granada, Granada, Spain.,Institute of Neuroscience, University of Granada, Granada, Spain
| |
Collapse
|
18
|
|
19
|
Hahn V, Meister M, Hussy S, Cordes A, Enderle G, Saningong A, Schauer F. Enhanced laccase-mediated transformation of diclofenac and flufenamic acid in the presence of bisphenol A and testing of an enzymatic membrane reactor. AMB Express 2018; 8:28. [PMID: 29478084 PMCID: PMC6890904 DOI: 10.1186/s13568-018-0546-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/27/2018] [Indexed: 01/11/2023] Open
Abstract
The inadequate removal of pharmaceuticals and other micropollutants in municipal wastewater treatment plants, as evidenced by their detection of these substances in the aquatic environment has led to the need for sustainable remediation strategies. Laccases possess a number of advantages including a broad substrate spectrum. To identify promoting or inhibitory effects of reaction partners in the remediation processes we tested not only single compounds-as has been described in most studies-but also mixtures of pollutants. The reaction of diclofenac (DCF) and flufenamic acid (FA), mediated by Trametes versicolor laccase resulted in the formation of products, which were more hydrophilic than the respective reactant (reactant concentration of 0.1 mM; laccase activity 0.5 U/ml). Analyses (HPLC, LC/MS) showed that the product 1a and 1b for DCF and FA, respectively, to be a para-benzoquinone imine derivative. The formation of 1a was enhanced by the addition of bisphenol A (BPA). After 6 days 97% more product was formed in the mixture of DCF and BPA compared with DCF tested alone. Product 1a was also detected in experiments with micropollutant-supplemented secondary effluent. Within 24 h 67% and 100% of DCF and BPA were transformed, respectively (25 U/ml). Experiments with a membrane reactor (volume 10 l; phosphate buffer, pH 7) were in good agreement with the results of the laboratory scale experiments (50 ml). EC50-values were also determined. The data support the use of laccases for the removal or detoxification of recalcitrant pollutants. Thus, the enzyme laccase may be a component of an additional environmentally friendly process for the treatment stage of wastewater remediation.
Collapse
Affiliation(s)
- Veronika Hahn
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
- Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Mareike Meister
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
- Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Stephan Hussy
- Atec Automatisierungstechnik GmbH, Emmi-Noether-Str. 6, 89231 Neu-Ulm, Germany
| | - Arno Cordes
- ASA Spezialenzyme GmbH, Am Exer 19 C, 38302 Wolfenbüttel, Germany
| | - Günther Enderle
- Atec Automatisierungstechnik GmbH, Emmi-Noether-Str. 6, 89231 Neu-Ulm, Germany
| | | | - Frieder Schauer
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| |
Collapse
|
20
|
Ramsay RR, Popovic-Nikolic MR, Nikolic K, Uliassi E, Bolognesi ML. A perspective on multi-target drug discovery and design for complex diseases. Clin Transl Med 2018; 7:3. [PMID: 29340951 PMCID: PMC5770353 DOI: 10.1186/s40169-017-0181-2] [Citation(s) in RCA: 447] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/30/2017] [Indexed: 12/11/2022] Open
Abstract
Diseases of infection, of neurodegeneration (such as Alzheimer’s and Parkinson’s diseases), and of malignancy (cancers) have complex and varied causative factors. Modern drug discovery has the power to identify potential modulators for multiple targets from millions of compounds. Computational approaches allow the determination of the association of each compound with its target before chemical synthesis and biological testing is done. These approaches depend on the prior identification of clinically and biologically validated targets. This Perspective will focus on the molecular and computational approaches that underpin drug design by medicinal chemists to promote understanding and collaboration with clinical scientists.
Collapse
Affiliation(s)
- Rona R Ramsay
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Marija R Popovic-Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000, Belgrade, Serbia
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000, Belgrade, Serbia
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Bologna University, Via Belmeloro 6, 40126, Bologna, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Bologna University, Via Belmeloro 6, 40126, Bologna, Italy
| |
Collapse
|
21
|
Feng JY. Addressing the selectivity and toxicity of antiviral nucleosides. Antivir Chem Chemother 2018; 26:2040206618758524. [PMID: 29534607 PMCID: PMC5890540 DOI: 10.1177/2040206618758524] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/10/2018] [Indexed: 11/17/2022] Open
Abstract
Nucleoside and nucleotide analogs have played significant roles in antiviral therapies and are valued for their impressive potency and high barrier to resistance. They have been approved for treatment of herpes simplex virus-1, HIV, HBV, HCV, and influenza, and new drugs are being developed for the treatment of RSV, Ebola, coronavirus MERS, and other emerging viruses. However, this class of compounds has also experienced a high attrition rate in clinical trials due to toxicity. In this review, we discuss the utility of different biochemical and cell-based assays and provide recommendations for assessing toxicity liability before entering animal toxicity studies.
Collapse
|
22
|
Mügge FLB, Silva AM. Aspirin metabolite sodium salicylate selectively inhibits transcriptional activity of ATF6α and downstream target genes. Sci Rep 2017; 7:9190. [PMID: 28835710 PMCID: PMC5569067 DOI: 10.1038/s41598-017-09500-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/26/2017] [Indexed: 12/27/2022] Open
Abstract
In response to ER stress, activating transcription factor 6 (ATF6) traffics from ER to Golgi apparatus where it is activated by cleavage before being translocated as transcription factor to the cell nucleus. In this work we describe ATF6α as a newly target of the aspirin metabolite sodium salicylate (NaSal). NaSal treatment of cells induces increases in ATF6α mRNA and protein levels, but these events are not accompanied by ATF6 activation. Conversely, NaSal inhibited ATF6 transactivating activity elicited by various ER stress-inducing stimuli in different cell types. This resulted in reduced expression of a subset of ATF6α target genes. Mechanistically, exposure of cells to NaSal results in ATF6α trapping at the Golgi apparatus, thus preventing nuclear translocation. This study provides evidence that NaSal compound restrains the activity of ATF6α, thereby preventing activation of a specific subset of ER-stress responsive genes implicated in different cellular responses.
Collapse
Affiliation(s)
- Fernanda L B Mügge
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Aristóbolo M Silva
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
23
|
Roth AD, Lee MY. Idiosyncratic Drug-Induced Liver Injury (IDILI): Potential Mechanisms and Predictive Assays. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9176937. [PMID: 28133614 PMCID: PMC5241492 DOI: 10.1155/2017/9176937] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022]
Abstract
Idiosyncratic drug-induced liver injury (IDILI) is a significant source of drug recall and acute liver failure (ALF) in the United States. While current drug development processes emphasize general toxicity and drug metabolizing enzyme- (DME-) mediated toxicity, it has been challenging to develop comprehensive models for assessing complete idiosyncratic potential. In this review, we describe the enzymes and proteins that contain polymorphisms believed to contribute to IDILI, including ones that affect phase I and phase II metabolism, antioxidant enzymes, drug transporters, inflammation, and human leukocyte antigen (HLA). We then describe the various assays that have been developed to detect individual reactions focusing on each of the mechanisms described in the background. Finally, we examine current trends in developing comprehensive models for examining these mechanisms. There is an urgent need to develop a panel of multiparametric assays for diagnosing individual toxicity potential.
Collapse
Affiliation(s)
- Alexander D. Roth
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street, Cleveland, OH 44115-2214, USA
| | - Moo-Yeal Lee
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street, Cleveland, OH 44115-2214, USA
| |
Collapse
|
24
|
Key Challenges and Opportunities Associated with the Use of In Vitro Models to Detect Human DILI: Integrated Risk Assessment and Mitigation Plans. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9737920. [PMID: 27689095 PMCID: PMC5027328 DOI: 10.1155/2016/9737920] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/22/2016] [Indexed: 01/10/2023]
Abstract
Drug-induced liver injury (DILI) is a major cause of late-stage clinical drug attrition, market withdrawal, black-box warnings, and acute liver failure. Consequently, it has been an area of focus for toxicologists and clinicians for several decades. In spite of considerable efforts, limited improvements in DILI prediction have been made and efforts to improve existing preclinical models or develop new test systems remain a high priority. While prediction of intrinsic DILI has improved, identifying compounds with a risk for idiosyncratic DILI (iDILI) remains extremely challenging because of the lack of a clear mechanistic understanding and the multifactorial pathogenesis of idiosyncratic drug reactions. Well-defined clinical diagnostic criteria and risk factors are also missing. This paper summarizes key data interpretation challenges, practical considerations, model limitations, and the need for an integrated risk assessment. As demonstrated through selected initiatives to address other types of toxicities, opportunities exist however for improvement, especially through better concerted efforts at harmonization of current, emerging and novel in vitro systems or through the establishment of strategies for implementation of preclinical DILI models across the pharmaceutical industry. Perspectives on the incorporation of newer technologies and the value of precompetitive consortia to identify useful practices are also discussed.
Collapse
|
25
|
Foufelle F, Fromenty B. Role of endoplasmic reticulum stress in drug-induced toxicity. Pharmacol Res Perspect 2016; 4:e00211. [PMID: 26977301 PMCID: PMC4777263 DOI: 10.1002/prp2.211] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022] Open
Abstract
Drug‐induced toxicity is a key issue for public health because some side effects can be severe and life‐threatening. These adverse effects can also be a major concern for the pharmaceutical companies since significant toxicity can lead to the interruption of clinical trials, or the withdrawal of the incriminated drugs from the market. Recent studies suggested that endoplasmic reticulum (ER) stress could be an important event involved in drug liability, in addition to other key mechanisms such as mitochondrial dysfunction and oxidative stress. Indeed, drug‐induced ER stress could lead to several deleterious effects within cells and tissues including accumulation of lipids, cell death, cytolysis, and inflammation. After recalling important information regarding drug‐induced adverse reactions and ER stress in diverse pathophysiological situations, this review summarizes the main data pertaining to drug‐induced ER stress and its potential involvement in different adverse effects. Drugs presented in this review are for instance acetaminophen (APAP), arsenic trioxide and other anticancer drugs, diclofenac, and different antiretroviral compounds. We also included data on tunicamycin (an antibiotic not used in human medicine because of its toxicity) and thapsigargin (a toxic compound of the Mediterranean plant Thapsia garganica) since both molecules are commonly used as prototypical toxins to induce ER stress in cellular and animal models.
Collapse
|
26
|
Syed M, Skonberg C, Hansen SH. Mitochondrial toxicity of selective COX-2 inhibitors via inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria. Toxicol In Vitro 2015; 32:26-40. [PMID: 26689325 DOI: 10.1016/j.tiv.2015.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/14/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
Abstract
Cyclooxygenase-2 (COX-2) inhibitors (coxibs) are non-steroidal anti-inflammatory drugs (NSAIDs) designed to selectively inhibit COX-2. However, drugs of this therapeutic class are associated with drug induced liver injury (DILI) and mitochondrial injury is likely to play a role. The effects of selective COX-2 inhibitors on inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria were investigated. The order of potency of inhibition of ATP synthesis was: lumiracoxib (IC50: 6.48 ± 2.74 μM)>celecoxib (IC50: 14.92 ± 6.40 μM)>valdecoxib (IC50: 161.4 ± 28.6 μM)>rofecoxib (IC50: 238.4 ± 79.2 μM)>etoricoxib (IC50: 405.1 ± 116.3 μM). Mechanism based inhibition of ATP synthesis (Kinact 0.078 min(-1) and KI 21.46 μM and Kinact/KI ratio 0.0036 min(-1)μM(-1)) was shown by lumiracoxib and data suggest that the opening of the MPT pore may not be the mechanism of toxicity. A positive correlation (with r(2)=0.921) was observed between the potency of inhibition of ATP synthesis and the log P values. The in vitro metabolism of coxibs in rat liver mitochondria yielded for each drug substance a major single metabolite and identified a hydroxy metabolite with each of the coxibs and these metabolites did not alter the inhibition profile of ATP synthesis of the parent compound. The results suggest that coxibs themselves could be involved in the hepatotoxic action through inhibition of ATP synthesis.
Collapse
Affiliation(s)
- Muzeeb Syed
- Section of Analytical Biosciences, Department of Pharmacy, School of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Christian Skonberg
- Discovery ADME Department, Diabetes Pharmacology and Bioanalysis, Novo Nordisk A/S, Måløv, Copenhagen, Denmark
| | - Steen Honoré Hansen
- Section of Analytical Biosciences, Department of Pharmacy, School of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Vernetti LA, Senutovitch N, Boltz R, DeBiasio R, Shun TY, Gough A, Taylor DL. A human liver microphysiology platform for investigating physiology, drug safety, and disease models. Exp Biol Med (Maywood) 2015. [PMID: 26202373 DOI: 10.1177/1535370215592121] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This paper describes the development and characterization of a microphysiology platform for drug safety and efficacy in liver models of disease that includes a human, 3D, microfluidic, four-cell, sequentially layered, self-assembly liver model (SQL-SAL); fluorescent protein biosensors for mechanistic readouts; as well as a microphysiology system database (MPS-Db) to manage, analyze, and model data. The goal of our approach is to create the simplest design in terms of cells, matrix materials, and microfluidic device parameters that will support a physiologically relevant liver model that is robust and reproducible for at least 28 days for stand-alone liver studies and microfluidic integration with other organs-on-chips. The current SQL-SAL uses primary human hepatocytes along with human endothelial (EA.hy926), immune (U937) and stellate (LX-2) cells in physiological ratios and is viable for at least 28 days under continuous flow. Approximately, 20% of primary hepatocytes and/or stellate cells contain fluorescent protein biosensors (called sentinel cells) to measure apoptosis, reactive oxygen species (ROS) and/or cell location by high content analysis (HCA). In addition, drugs, drug metabolites, albumin, urea and lactate dehydrogenase (LDH) are monitored in the efflux media. Exposure to 180 μM troglitazone or 210 μM nimesulide produced acute toxicity within 2-4 days, whereas 28 μM troglitazone produced a gradual and much delayed toxic response over 21 days, concordant with known mechanisms of toxicity, while 600 µM caffeine had no effect. Immune-mediated toxicity was demonstrated with trovafloxacin with lipopolysaccharide (LPS), but not levofloxacin with LPS. The SQL-SAL exhibited early fibrotic activation in response to 30 nM methotrexate, indicated by increased stellate cell migration, expression of alpha-smooth muscle actin and collagen, type 1, alpha 2. Data collected from the in vitro model can be integrated into a database with access to related chemical, bioactivity, preclinical and clinical information uploaded from external databases for constructing predictive models.
Collapse
Affiliation(s)
- Lawrence A Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA University of Pittsburgh Dept. of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nina Senutovitch
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA University of Pittsburgh Dept. of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Robert Boltz
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA University of Pittsburgh Dept. of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Richard DeBiasio
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Tong Ying Shun
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA University of Pittsburgh Dept. of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA University of Pittsburgh Dept. of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
28
|
Wojcik T, Szczesny E, Chlopicki S. Detrimental effects of chemotherapeutics and other drugs on the endothelium: A call for endothelial toxicity profiling. Pharmacol Rep 2015; 67:811-7. [PMID: 26321285 DOI: 10.1016/j.pharep.2015.03.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 12/25/2022]
Abstract
The vascular endothelium is a real "maestro of circulation", and endothelial dysfunction leads to atherothrombosis, its cardiovascular complications, as well as to many other diseases. It is surprising that quite a large number of drugs seem to hamper the vasoprotective mechanisms of the endothelium, possibly promoting the development of cardiovascular diseases in patients initially treated for non-cardiological conditions. Toxicity profiling (including cardiac and liver toxicity assessment) is a routine procedure performed during pre-clinical drug development. Unfortunately, endothelium-dependent side effects are not taken into account in standard toxicity profiling protocols, as the "endothelial safety" of drugs is not required in order to enter the clinical phase of drug development. Presumably, this might be one of the reasons why several efficient therapeutics, including rofecoxib (COX-2 inhibitor), torcetrapib (CETP-inhibitor), and bardoxolone (Nrf2 activator), have unexpectedly displayed clinically significant cardiovascular hazard, resulting in their withdrawal from the market or alarming comments, respectively. In this review, we will briefly characterize the endothelial activity profiles of chemotherapeutics, antidepressants and antipsychotics-all drugs prescribed for severe, life-threatening and/or life-long diseases-and will show that at least some of them may display clinically relevant detrimental effects on endothelial function.
Collapse
Affiliation(s)
- Tomasz Wojcik
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
| | - Ewa Szczesny
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland; Department of Experimental Pharmacology, Chair of Pharmacology, Jagiellonian University, Medical College, Kraków, Poland.
| |
Collapse
|
29
|
Hitting the Bull's-Eye in Metastatic Cancers-NSAIDs Elevate ROS in Mitochondria, Inducing Malignant Cell Death. Pharmaceuticals (Basel) 2015; 8:62-106. [PMID: 25688484 PMCID: PMC4381202 DOI: 10.3390/ph8010062] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/08/2015] [Accepted: 02/05/2015] [Indexed: 12/20/2022] Open
Abstract
Tumor metastases that impede the function of vital organs are a major cause of cancer related mortality. Mitochondrial oxidative stress induced by hypoxia, low nutrient levels, or other stresses, such as genotoxic events, act as key drivers of the malignant changes in primary tumors to enhance their progression to metastasis. Emerging evidence now indicates that mitochondrial modifications and mutations resulting from oxidative stress, and leading to OxPhos stimulation and/or enhanced reactive oxygen species (ROS) production, are essential for promoting and sustaining the highly metastatic phenotype. Moreover, the modified mitochondria in emerging or existing metastatic cancer cells, by their irreversible differences, provide opportunities for selectively targeting their mitochondrial functions with a one-two punch. The first blow would block their anti-oxidative defense, followed by the knockout blow—promoting production of excess ROS, capitulating the terminal stage—activation of the mitochondrial permeability transition pore (mPTP), specifically killing metastatic cancer cells or their precursors. This review links a wide area of research relevant to cellular mechanisms that affect mitochondria activity as a major source of ROS production driving the pro-oxidative state in metastatic cancer cells. Each of the important aspects affecting mitochondrial function are discussed including: hypoxia, HIFs and PGC1 induced metabolic changes, increased ROS production to induce a more pro-oxidative state with reduced antioxidant defenses. It then focuses on how the mitochondria, as a major source of ROS in metastatic cancer cells driving the pro-oxidative state of malignancy enables targeting drugs affecting many of these altered processes and why the NSAIDs are an excellent example of mitochondria-targeted agents that provide a one-two knockout activating the mPTP and their efficacy as selective anticancer metastasis drugs.
Collapse
|
30
|
Mügge FL, Silva AM. Endoplasmic reticulum stress response in the roadway for the effects of non-steroidal anti-inflammatory drugs. ENDOPLASMIC RETICULUM STRESS IN DISEASES 2015. [DOI: 10.1515/ersc-2015-0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractOver the past decade, a handful of evidence has been provided that nonsteroidal anti-inflammatory drugs (NSAIDs) display effects on the homeostasis of the endoplasmic reticulum (ER). Their uptake into cells will eventually lead to activation or inhibition of key molecules that mediate ER stress responses, raising not only a growing interest for a pharmacological target in ER stress responses but also important questions how the ER-stress mediated effects induced by NSAIDs could be therapeutically advantageous or not. We review here the toxicity effects and therapeutic applications of NSAIDs involving the three majors ER stress arms namely PERK, IRE1, and ATF6. First, we provide brief introduction on the well-established and characterized downstream events mediated by these ER stress players, followed by presentation of the NSAIDs compounds and mode of action, and finally their effects on ER stress response. NSAIDs present promising drug agents targeting the components of ER stress in different aspects of cancer and other diseases, but a better comprehension of the mechanisms underlying their benefits and harms will certainly pave the road for several diseases’ therapy.
Collapse
|
31
|
Horai S, Yanagi K, Kaname T, Yamamoto M, Watanabe I, Ogura G, Abe S, Tanabe S, Furukawa T. Establishment of a primary hepatocyte culture from the small Indian mongoose (Herpestes auropunctatus) and distribution of mercury in liver tissue. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1681-1689. [PMID: 25142347 DOI: 10.1007/s10646-014-1307-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/06/2014] [Indexed: 06/03/2023]
Abstract
The present study established a primary hepatocyte culture for the small Indian mongoose (Herpestes auropunctatus). To determine the suitable medium for growing the primary hepatic cells of this species, we compared the condition of cells cultured in three media that are frequently used for mammalian cell culture: Dulbecco's Modified Eagle's Medium, RPMI-1640, and William's E. Of these, William's E medium was best suited for culturing the hepatic cells of this species. Using periodic acid-Schiff staining and ultrastructural observations, we demonstrated the cells collected from mongoose livers were hepatocytes. To evaluate the distribution of mercury (Hg) in the liver tissue, we carried out autometallography staining. Most of the Hg compounds were found in the central region of hepatic lobules. Smooth endoplasmic reticulum, which plays a role inxenobiotic metabolism, lipid/cholesterol metabolism, and the digestion and detoxification of lipophilic substances is grown in this area. This suggested that Hg colocalized with smooth endoplasmic reticulum. The results of the present study could be useful to identify the detoxification systems of wildlife with high Hg content in the body, and to evaluate the susceptibility of wildlife to Hg toxicity.
Collapse
Affiliation(s)
- Sawako Horai
- Department of Regional Environment, Tottori University, 4-101 Koyamacho-Minami, Tottori, 680-8551, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wen L, Xia N, Chen X, Li Y, Hong Y, Liu Y, Wang Z, Liu Y. Activity of antibacterial, antiviral, anti-inflammatory in compounds andrographolide salt. Eur J Pharmacol 2014; 740:421-7. [DOI: 10.1016/j.ejphar.2014.06.053] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 12/21/2022]
|
33
|
Lucas FWDS, Mascaro LH, Fill TP, Rodrigues-Filho E, Franco-Junior E, Homem-de-Mello P, de Lima-Neto P, Correia AN. Diclofenac on boron-doped diamond electrode: from electroanalytical determination to prediction of the electrooxidation mechanism with HPLC-ESI/HRMS and computational simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:5645-5654. [PMID: 24806390 DOI: 10.1021/la4044123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Using square-wave voltammetry coupled to the boron-doped diamond electrode (BDDE), it was possible to develop an analytical methodology for identification and quantification of diclofenac (DCL) in tablets and synthetic urine. The electroanalytical procedure was validated, with results being statistically equal to those obtained by chromatographic standard method, showing linear range of 4.94 × 10(-7) to 4.43 × 10(-6) mol L(-1), detection limit of 1.15 × 10(-7) mol L(-1), quantification limit of 3.85 × 10(-7) mol L(-1), repeatability of 3.05% (n = 10), and reproducibility of 1.27% (n = 5). The association of electrochemical techniques with UV-vis spectroscopy, computational simulations and HPLC-ESI/HRMS led us to conclude that the electrooxidation of DCL on the BDDE involved two electrons and two protons, where the products are colorful and easily hydrolyzable dimers. Density functional theory calculations allowed to evaluate the stability of dimers A, B, and C, suggesting dimer C was more stable than the other two proposed structures, ca. 4 kcal mol(-1). The comparison of the dimers stabilities with the stabilities of the molecular ions observed in the MS, the compounds that showed retention time (RT) of 15.53, 21.44, and 22.39 min were identified as the dimers B, C, and A, respectively. Corroborating the observed chromatographic profile, dimer B had a dipole moment almost twice higher than that of dimers A and C. As expected, dimer B has really shorter RT than dimers A and C. The majority dimer was the A (71%) and the C (19.8%) should be the minority dimer. However, the minority was the dimer B, which was formed in the proportion of 9.2%. This inversion between the formation proportion of dimer B and dimer C can be explained by preferential conformation of the intermediaries (cation-radicals) on the surface.
Collapse
Affiliation(s)
- Francisco Willian de S Lucas
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará , Bloco 940 Campus do Pici, 60440-900, Fortaleza - CE Brazil
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yusof I, Shah F, Hashimoto T, Segall MD, Greene N. Finding the rules for successful drug optimisation. Drug Discov Today 2014; 19:680-7. [DOI: 10.1016/j.drudis.2014.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/10/2013] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
|
35
|
Zhang X, Li C, Gong Z. Development of a convenient in vivo hepatotoxin assay using a transgenic zebrafish line with liver-specific DsRed expression. PLoS One 2014; 9:e91874. [PMID: 24626481 PMCID: PMC3953600 DOI: 10.1371/journal.pone.0091874] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/16/2014] [Indexed: 01/28/2023] Open
Abstract
Previously we have developed a transgenic zebrafish line (LiPan) with liver-specific red fluorescent protein (DsRed) expression under the fabp10a promoter. Since red fluorescence in the liver greatly facilitates the observation of liver in live LiPan fry, we envision that the LiPan zebrafish may provide a useful tool in analyses of hepatotoxicity based on changes of liver red fluorescence intensity and size. In this study, we first tested four well-established hepatotoxins (acetaminophen, aspirin, isoniazid and phenylbutazone) in LiPan fry and demonstrated that these hepatotoxins could significantly reduce both liver red fluorescence and liver size in a dosage-dependent manner, thus the two measurable parameters could be used as indicators of hepatotoxicity. We then tested the LiPan fry with nine other chemicals including environmental toxicants and human drugs. Three (mefenamic acid, lindane, and arsenate) behave like hepatotoxins in reduction of liver red fluorescence, while three others (17β-estradiol, TCDD [2,3,7,8-tetrachlorodibenzo-p-dioxin] and NDMA [N-nitrosodimethylamine]) caused increase of liver red fluorescence and the liver size. Ethanol and two other chemicals, amoxicillin (antibiotics) and chlorphenamine (pain killer) did not resulted in significant changes of liver red fluorescence and liver size. By quantitative RT-PCR analysis, we found that the changes of red fluorescence intensity caused by different chemicals correlated to the changes of endogenous fabp10a RNA expression, indicating that the measured hepatotoxicity was related to fatty acid transportation and metabolism. Finally we tested a mixture of four hepatotoxins and observed a significant reduction of red fluorescence in the liver at concentrations below the lowest effective concentrations of individual hepatotoxins, suggesting that the transgenic zebrafish assay is capable of reporting compound hepatotoxicity effect from chemical mixtures. Thus, the LiPan transgenic fry provide a rapid and convenient in vivo hepatotoxicity assay that should be applicable to high-throughput hepatotoxicity test in drug screening as well as in biomonitoring environmental toxicants.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Caixia Li
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|