1
|
Gao H, Zhou L, Zhang P, Wang Y, Qian X, Liu Y, Wu G. Filamentous Fungi-Derived Orsellinic Acid-Sesquiterpene Meroterpenoids: Fungal Sources, Chemical Structures, Bioactivities, and Biosynthesis. PLANTA MEDICA 2023; 89:1110-1124. [PMID: 37225133 DOI: 10.1055/a-2099-4932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fungi-derived polyketide-terpenoid hybrids are important meroterpenoid natural products that possess diverse structure scaffolds with a broad spectrum of bioactivities. Herein, we focus on an ever-increasing group of meroterpenoids, orsellinic acid-sesquiterpene hybrids comprised of biosynthetic start unit orsellinic acid coupling to a farnesyl group or/and its modified cyclic products. The review entails the search of China National Knowledge Infrastructure (CNKI), Web of Science, Science Direct, Google Scholar, and PubMed databases up to June 2022. The key terms include "orsellinic acid", "sesquiterpene", "ascochlorin", "ascofuranone", and "Ascochyta viciae", which are combined with the structures of "ascochlorin" and "ascofuranone" drawn by the Reaxys and Scifinder databases. In our search, these orsellinic acid-sesquiterpene hybrids are mainly produced by filamentous fungi. Ascochlorin was the first compound reported in 1968 and isolated from filamentous fungus Ascochyta viciae (synonym: Acremonium egyptiacum; Acremonium sclerotigenum); to date, 71 molecules are discovered from various filamentous fungi inhabiting in a variety of ecological niches. As typical representatives of the hybrid molecules, the biosynthetic pathway of ascofuranone and ascochlorin are discussed. The group of meroterpenoid hybrids exhibits a broad arrange of bioactivities, as highlighted by targeting hDHODH (human dihydroorotate dehydrogenase) inhibition, antitrypanosomal, and antimicrobial activities. This review summarizes the findings related to the structures, fungal sources, bioactivities, and their biosynthesis from 1968 to June 2022.
Collapse
Affiliation(s)
- Hua Gao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Peng Zhang
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States
| | - Ying Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Xuan Qian
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yujia Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Guangwei Wu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Iksen I, Seephan S, Limprasutr V, Sinsook S, Buaban K, Chamni S, Pongrakhananon V. Preclinical Characterization of 22-(4'-Pyridinecarbonyl) Jorunnamycin A against Lung Cancer Cell Invasion and Angiogenesis via AKT/mTOR Signaling. ACS Pharmacol Transl Sci 2023; 6:1143-1154. [PMID: 37588759 PMCID: PMC10425992 DOI: 10.1021/acsptsci.3c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 08/18/2023]
Abstract
Non-small-cell lung cancer (NSCLC), the most prevalent form of lung cancer, is associated with an unfavorable prognosis owing to its high rate of metastasis. Thus, the identification of new drugs with potent anticancer activities is essential to improve the clinical outcome of this disease. Marine organisms exhibit a diverse source of biologically active compounds with anticancer effects. The anticancer effects of jorunnamycin A (JA) derived from the Thai blue sponge (Xestospongia sp.) and 22-(4'-pyridinecarbonyl) jorunnamycin A (22-(4'-py)-JA), the semisynthetic derivative of JA, have been reported. The present study aimed to investigate the impact of 22-(4'-py)-JA on NSCLC metastasis using in vitro, in vivo, and in silico approaches. The JA derivative inhibited tumor cell invasion and tube formation in human umbilical vein endothelial cells (HUVECs). The computational analysis demonstrated strong and stable interactions between 22-(4'-py)-JA and the AKT protein. Further examinations into the molecular mechanisms revealed the suppression of AKT/mTOR/p70S6K signaling by 22-(4'-py)-JA, leading to the downregulation of matrix metalloproteinases (MMP-2 and MMP-9), hypoxia-inducible factor-1α (HIF-1α), and vascular endothelial growth factor (VEGF). Furthermore, 22-(4'-py)-JA suppressed in vivo metastasis by decreasing the number of colonies in the lung. These findings indicated the antimetastasis activity of 22-(4'-py)-JA, which might prove useful for further clinical applications.
Collapse
Affiliation(s)
- Iksen Iksen
- Department
of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suthasinee Seephan
- Pharmaceutical
Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vudhiporn Limprasutr
- Department
of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical
Toxicity and Efficacy Assessment of Medicines and Chemicals Research
Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwimon Sinsook
- Pharmaceutical
Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department
of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical
Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Koonchira Buaban
- Department
of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical
Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural
Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok 10330, Thailand
| | - Supakarn Chamni
- Department
of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical
Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural
Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok 10330, Thailand
| | - Varisa Pongrakhananon
- Department
of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical
Toxicity and Efficacy Assessment of Medicines and Chemicals Research
Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Shahiwala AF, Khan GA. Potential Phytochemicals for Prevention of Familial Breast Cancer with BRCA Mutations. Curr Drug Targets 2023; 24:521-531. [PMID: 36918779 DOI: 10.2174/1389450124666230314110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/17/2022] [Accepted: 01/12/2023] [Indexed: 03/16/2023]
Abstract
Breast cancer has remained a global challenge and the second leading cause of cancer mortality in women and family history. Hereditary factors are some of the major risk factors associated with breast cancer. Out of total breast cancer cases, 5-10% account only for familial breast cancer, and nearly 50% of all hereditary breast cancer are due to BRCA1/BRCA2 germline mutations. BRCA1/2 mutations play an important role not only in determining the clinical prognosis of breast cancer but also in the survival curves. Since this risk factor is known, a significant amount of the healthcare burden can be reduced by taking preventive measures among people with a known history of familial breast cancer. There is increasing evidence that phytochemicals of nutrients and supplements help in the prevention and cure of BRCA-related cancers by different mechanisms such as limiting DNA damage, altering estrogen metabolism, or upregulating expression of the normal BRCA allele, and ultimately enhancing DNA repair. This manuscript reviews different approaches used to identify potential phytochemicals to mitigate the risk of familial breast cancer with BRCA mutations. The findings of this review can be extended for the prevention and cure of any BRCAmutated cancer after proper experimental and clinical validation of the data.
Collapse
Affiliation(s)
| | - Gazala Afreen Khan
- Department of Clinical Pharmacy & Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| |
Collapse
|
4
|
de Keijzer MJ, de Klerk DJ, de Haan LR, van Kooten RT, Franchi LP, Dias LM, Kleijn TG, van Doorn DJ, Heger M. Inhibition of the HIF-1 Survival Pathway as a Strategy to Augment Photodynamic Therapy Efficacy. Methods Mol Biol 2022; 2451:285-403. [PMID: 35505024 DOI: 10.1007/978-1-0716-2099-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a non-to-minimally invasive treatment modality that utilizes photoactivatable drugs called photosensitizers to disrupt tumors with locally photoproduced reactive oxygen species (ROS). Photosensitizer activation by light results in hyperoxidative stress and subsequent tumor cell death, vascular shutdown and hypoxia, and an antitumor immune response. However, sublethally afflicted tumor cells initiate several survival mechanisms that account for decreased PDT efficacy. The hypoxia inducible factor 1 (HIF-1) pathway is one of the most effective cell survival pathways that contributes to cell recovery from PDT-induced damage. Several hundred target genes of the HIF-1 heterodimeric complex collectively mediate processes that are involved in tumor cell survival directly and indirectly (e.g., vascularization, glucose metabolism, proliferation, and metastasis). The broad spectrum of biological ramifications culminating from the activation of HIF-1 target genes reflects the importance of HIF-1 in the context of therapeutic recalcitrance. This chapter elaborates on the involvement of HIF-1 in cancer biology, the hypoxic response mechanisms, and the role of HIF-1 in PDT. An overview of inhibitors that either directly or indirectly impede HIF-1-mediated survival signaling is provided. The inhibitors may be used as pharmacological adjuvants in combination with PDT to augment therapeutic efficacy.
Collapse
Affiliation(s)
- Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Lianne R de Haan
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Robert T van Kooten
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, epartment of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group,University of São Paulo, São Paulo, Brazil
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Diederick J van Doorn
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Narayanankutty A. Phytochemicals as PI3K/ Akt/ mTOR Inhibitors and Their Role in Breast Cancer Treatment. Recent Pat Anticancer Drug Discov 2021; 15:188-199. [PMID: 32914720 DOI: 10.2174/1574892815666200910164641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Breast cancer is the predominant form of cancer in women; various cellular pathways are involved in the initiation and progression of breast cancer. Among the various types of breast cancer that differ in their growth factor receptor status, PI3K/Akt signaling is a common pathway where all these converge. Thus, the PI3K signaling is of great interest as a target for breast cancer prevention; however, it is less explored. OBJECTIVE The present review is aimed to provide a concise outline of the role of PI3K/Akt/mTOR pathway in breast carcinogenesis and its progression events, including metastasis, drug resistance and stemness. The review emphasizes the role of natural and synthetic inhibitors of PI3K/Akt/m- TOR pathway in breast cancer prevention. METHODS The data were obtained from PubMed/Medline databases, Scopus and Google patent literature. RESULTS PI3K/Akt/mTOR signaling plays an important role in human breast carcinogenesis; it acts on the initiation and progression events associated with it. Numerous molecules have been isolated and identified as promising drug candidates by targeting the signaling pathway. Results from clinical studies confirm their application in the treatment of human breast cancer alone and in combination with classical chemotherapeutics as well as monoclonal antibodies. CONCLUSION PI3K/mTOR signaling blockers have evolved as promising anticancer agents by interfering breast cancer development and progression at various stages. Natural products and bioactive components are emerging as novel inhibitors of PI3K signaling and more research in this area may yield numerous drug candidates.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, Post Graduate & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Kerala, India
| |
Collapse
|
6
|
Kim HW, Jeong YJ, Hwang SK, Park YY, Choi YH, Kim CH, Magae J, Chang YC. Ascofuranone inhibits epidermal growth factor-induced cell migration by blocking epithelial-mesenchymal transition in lung cancer cells. Eur J Pharmacol 2020; 880:173199. [PMID: 32439259 DOI: 10.1016/j.ejphar.2020.173199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
Abstract
Ascofuranone, an isoprenoid antibiotic initially purified from a culture broth of Ascochyta viciae, has multiple anticancer effects. However, the impacts of ascofuranone on the epithelial-mesenchymal transition (EMT) and epidermal growth factor (EGF)-induced effects on human lung cancer cell lines have not been previously reported. Here, we show that ascofuranone exerts its anticancer effects by inhibiting the EGF-induced EMT and cell migration in human lung cancer cell lines. Ascofuranone significantly inhibited EGF-induced migration and invasion by lung cancer cells, and suppressed EGF-induced morphologic changes by regulating the expression of EMT-associated proteins. In addition, ascofuranone upregulated E-cadherin, and downregulated fibronectin, vimentin, Slug, Snail, and Twist. Inhibition of ERK/AKT/mTOR promoted EGF-induced E-cadherin downregulation and inhibited EGF-induced vimentin upregulation in response to ascofuranone, implying that inhibition of the EGF-induced EMT by ascofuranone was mediated by the ERK and AKT/mTOR pathways. Inhibition of c-Myc suppressed EGF-induced vimentin upregulation, suggesting the involvement of c-Myc. Collectively, these findings suggest that ascofuranone inhibits tumor growth by blocking the EGF-induced EMT through a regulatory mechanism involving ERK, AKT/mTOR, and c-Myc in lung cancer cells.
Collapse
Affiliation(s)
- Hyo-Weon Kim
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, 42472, Republic of Korea
| | - Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, 42472, Republic of Korea
| | - Soon-Kyung Hwang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, 42472, Republic of Korea
| | - Yoon-Yub Park
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, 42472, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, 47227, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Science, Sungkyunkwan University, Suwon, Kyunggi-Do, 440-746, Republic of Korea
| | - Junji Magae
- Magae Bioscience Institute, 49-4 Fujimidai, Tsukuba, 300-1263, Japan
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, 42472, Republic of Korea.
| |
Collapse
|
7
|
Jeong YJ, Hwang SK, Magae J, Chang YC. Ascofuranone suppresses invasion and F-actin cytoskeleton organization in cancer cells by inhibiting the mTOR complex 1 signaling pathway. Cell Oncol (Dordr) 2020; 43:793-805. [PMID: 32488849 DOI: 10.1007/s13402-020-00520-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 03/29/2020] [Accepted: 04/15/2020] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Ascofuranone is an antiviral antibiotic that is known to exert multiple anti-tumor effects, including cell cycle arrest, inhibition of mitochondrial respiration, and inhibition of angiogenesis. In this study, we investigated the molecular mechanisms underlying the anti-metastatic effects of ascofuranone in insulin-like growth factor-I (IGF-1)-responsive cancer cells. METHODS The inhibitory effect of ascofuranone on cancer cell migration and invasion was assessed using scratch wound healing and Matrigel invasion assays, respectively. F-actin cytoskeleton organization was assessed using FITC conjugated phalloidin staining. Target gene expression was evaluated using Western blotting and gene silencing was performed using siRNA transfections. Finally, the anti-metastatic effect of ascofuranone was investigated in vivo. RESULTS We found that ascofuranone suppressed IGF-1-induced cell migration, invasion and motility in multiple cancer cell lines. The effects of ascofuranone on actin cytoskeleton organization were found to be mediated by suppression of the mTOR/p70S6K/4EBP1 pathway. Ascofuranone inhibited IGF-1-induced mTOR phosphorylation and actin cytoskeleton organization via upregulation of AMPK and downregulation of Akt phosphorylation. It also selectively suppressed the IGF-1-induced mTOR complex (mTORC)1 by phosphorylation of Raptor, but did not affect mTORC2. Furthermore, we found that focal adhesion kinase (FAK) activation decreased in response to ascofuranone, rapamycin, compound C and wortmannin treatment. Finally, we found that ascofuranone suppressed phosphorylation of FAK and mTOR and dephosphorylation of Raptor in cancerous metastatic lung tissues in vivo. CONCLUSIONS Our data indicate that ascofuranone suppresses IGF-1-induced cancer cell migration and invasion by blocking actin cytoskeleton organization and FAK activation through inhibition of the mTORC1 pathway, and reveal a novel anti-metastatic function of this compound.
Collapse
Affiliation(s)
- Yun-Jeong Jeong
- Research Institute of Biomedical Engineering, Department of Medicine, Catholic University of Daegu School of Medicine, 42472, Deagu, Korea
| | - Soon-Kyung Hwang
- Research Institute of Biomedical Engineering, Department of Medicine, Catholic University of Daegu School of Medicine, 42472, Deagu, Korea
| | - Junji Magae
- Magae Bioscience Institute, 49-4 Fujimidai, 300-1263, Tsukuba, Japan
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering, Department of Medicine, Catholic University of Daegu School of Medicine, 42472, Deagu, Korea. .,Department of Cell Biology, Catholic University of Daegu School of Medicine, 3056-6, Daemyung-4-Dong, Nam-gu, 42472, Daegu, Korea.
| |
Collapse
|
8
|
Magae J, Furukawa C, Kuwahara S, Jeong YJ, Nakajima H, Chang YC. 4- O-methylascochlorin stabilizes hypoxia-inducible factor-1 in a manner different from hydroxylase inhibition by iron chelating or substrate competition. Biosci Biotechnol Biochem 2019; 83:2244-2248. [PMID: 31392931 DOI: 10.1080/09168451.2019.1651626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that plays essential roles in human diseases including cancer. The synthetic ascochlorin derivative 4-O-methylascochlorin stabilizes HIF-1α protein, and activates its transcriptional activity, resulting to induce gene expression of its downstream targets such as VEGF and GLUT-1. Here, we quantified protein level of HIF-1α in human osteosarcoma U2OS cells treated with ascochlorin-related compounds and typical HIF-1α stabilizers to characterize properties of HIF-1α stabilization by 4-O-methylascochlorin. Structure-activity relationship studies suggested that the aromatic moiety and hydrophobic substitution of the 4'-hydroxyl group are important for HIF-1α stabilization by ascochlorin-related compounds. 4-O-Methylascochlorin-induced HIF-1α stabilization was suppressed by ascorbic acid and compound C, but not by Fe(II), whereas ascorbic acid only suppressed HIF-1α stabilization by dimethyloxaloylglycine, an analog of the HIF-1 hydroxylase substrate. Fe(II) completely suppressed iron chelator-induced stabilization. These results suggest that ascochlorin-related compounds stabilize HIF-1α in a manner distinct from iron chelating or substrate competition.
Collapse
Affiliation(s)
- Junji Magae
- Magae Bioscience Institute, Tsukuba, Japan.,Institute of Research and Innovation, Kashiwa, Japan
| | | | - Shigefumi Kuwahara
- Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Hiroo Nakajima
- Department of Breast Surgery, Misugi-kai Sato Hospital, Osaka, Japan
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
9
|
Wu J, Zhang ZH, Zhang LH, Jin XJ, Ma J, Piao HR. Design, synthesis, and screening of novel ursolic acid derivatives as potential anti-cancer agents that target the HIF-1α pathway. Bioorg Med Chem Lett 2019; 29:853-858. [DOI: 10.1016/j.bmcl.2018.12.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 11/16/2022]
|
10
|
4-O-Methylascochlorin inhibits the prolyl hydroxylation of hypoxia-inducible factor-1α, which is attenuated by ascorbate. J Antibiot (Tokyo) 2019; 72:271-281. [PMID: 30796332 DOI: 10.1038/s41429-019-0157-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 12/27/2022]
Abstract
4-O-Methylascochlorin (MAC), a methylated derivative of ascochlorin, was previously shown to promote the accumulation of hypoxia-inducible factor (HIF)-1α in human breast adenocarcinoma MCF-7 cells. In the present study, we further investigated the effects of MAC on the expression and function of HIF-1α in human fibrosarcoma HT-1080 cells. MAC promoted the accumulation of the HIF-1α protein without affecting its constitutive mRNA expression and augmented the transcriptional activation of HIF target genes. Ascorbate, but not N-acetylcysteine, attenuated MAC-mediated HIF-1α accumulation. MAC-induced increases in HIF-1α transcriptional activity were also attenuated by ascorbate. MAC inhibited the hydroxylation of HIF-1α at the proline 564 residue, while it was reversed by ascorbate. MAC slightly decreased the intracellular concentration of ascorbate. The present results demonstrated that MAC promoted the accumulation of HIF-1α by preventing prolyl hydroxylation, and ascorbate attenuated the MAC-mediated inhibition of HIF-1α prolyl hydroxylation.
Collapse
|
11
|
Li L, Yu J, Jiao S, Wang W, Zhang F, Sun S. Vandetanib (ZD6474) induces antiangiogenesis through mTOR-HIF-1 alpha-VEGF signaling axis in breast cancer cells. Onco Targets Ther 2018; 11:8543-8553. [PMID: 30555244 PMCID: PMC6278704 DOI: 10.2147/ott.s175578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective Vandetanib, also known as ZD6474, has recently been proved to be a clinical drug for cancer by targeting vascular endothelial growth factor receptor 2 (VEGFR2), EGFR, and RET tyrosine kinases. We hypothesized that vandetanib will be a drug candidate for breast cancer treatment by targeting angiogenesis. Materials and methods Vandetanib was used to treat different breast cancer cell lines, and its effect on growth, apoptosis, and cell cycle was studied by MTT assay and flow cytometry. VEGF level in culture medium was measured by ELISA. Gene expression of mechanistic target of rapamycin (mTOR), hypoxia-inducible factor (HIF)-1 alpha, and VEGF at mRNA and protein level were analyzed by quantitative real-time-PCR and Western blot. The cellular behavior variations were investigated by using wound healing assay, transwell invasion assay, and tubular formation assay as well as experiments in vivo. Result We found that vandetanib can inhibit breast cancer cell line growth via apoptosis and cell cycle regulation. VEGF secretion decreases upon treatment. Vandetanib can reduce both mRNA and protein level of mTOR, HIF-1 alpha, and VEGF. Angiogenesis assays showed that vandetanib can inhibit wound healing, invasion, and tubular formation in culture. Furthermore, vandetanib inhibited the growth of breast tumor in vivo. Conclusion In short, our study showed that vandetanib can control angiogenesis of breast cancer in culture via mTOR, HIF-1 alpha, and VEGF signaling pathway.
Collapse
Affiliation(s)
- Ling Li
- Department of Oncology, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Zaozhuang, Shandong, China,
| | - Jingkui Yu
- Breast Surgery Department, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Zaozhuang, Shandong, China
| | - Shuhong Jiao
- Department of Oncology, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Zaozhuang, Shandong, China,
| | - Wei Wang
- Department of Oncology, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Zaozhuang, Shandong, China,
| | - Fen Zhang
- Department of Oncology, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Zaozhuang, Shandong, China,
| | - Shiqing Sun
- Department of Oncology, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Zaozhuang, Shandong, China,
| |
Collapse
|
12
|
Chang G, Wang L, Ma N, Zhang W, Zhang H, Dai H, Shen X. Histamine activates inflammatory response and depresses casein synthesis in mammary gland of dairy cows during SARA. BMC Vet Res 2018; 14:168. [PMID: 29792195 PMCID: PMC5966854 DOI: 10.1186/s12917-018-1491-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/10/2018] [Indexed: 11/25/2022] Open
Abstract
Background Mounting evidences observed that subacute ruminal acidosis (SARA) induced by high concentration (HC) diet increases the translocation of histamine from digestive tract into circulation causing a diverse of diseases in dairy cows. However, it is largely unknown how it does affect the function of mammary gland and milk quality. Hence, this study aims to observe the effects of histamine derived from the digestive tract on the inflammatory response and casein synthesis in the mammary glands during SARA. Twelve cows fitted rumen fistula were randomly divided into either control group administrated low concentration (LC) diet (60% forage, n = 6) or treatment group administrated HC diet (40% forage, n = 6) for 18 weeks. Results Our data showed that HC diet resulted in significant declines in rumen pH value, milk yield and milk quality, as well as longer duration of averaged pH value below 5.6 per day (more than 180 min) compared to LC diet, these findings confirmed SARA occurence. Our study also observed that SARA increased the content of histamine in rumen fluid, plasma, liver and mammary gland, and enhanced the mRNA expression of histamine specific receptor in the mammary gland. Additionally, we found that the mRNA expression of inflammatory response genes in mammary glands was increased, which was consistent with the protein expression results, showing that the protein kinase C(PKC) / nuclear factor kappa B (NF-κB) or protein kinase A (PKA) / NF-κB signalling pathways of the inflammatory response were activated. The mRNA expression of mTOR, P70S6K and αS1 in mammary glands were significantly decreased with the protein expression of mTOR, P70S6K and αS1-casein, and the phosphorylation levels of the mTOR and P70S6K proteins were also decreased. Conclusions Our study showed that the milk protein of lactating cows is depressed after long-term feeding of HC at the individual level, which was paralleled at the gene and protein levels. The inflammatory response in mammary gland caused by histamine derived from the digestive tract is related to the decline of casein synthesis. Our findings point to a new link between the inflammatory response and casein synthesis, but the understanding of the molecular mechanisms involved in this process will require further research. Electronic supplementary material The online version of this article (10.1186/s12917-018-1491-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangjun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lailai Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Nana Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wenwen Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Huanmin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hongyu Dai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
13
|
Wang K, Zhu X, Zhang K, Yin Y, Chen Y, Zhang T. Interleukin-6 contributes to chemoresistance in MDA-MB-231 cells via targeting HIF-1α. J Biochem Mol Toxicol 2018; 32:e22039. [PMID: 29341321 DOI: 10.1002/jbt.22039] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/18/2017] [Accepted: 12/27/2017] [Indexed: 12/15/2022]
Abstract
Chemoresistance is a critical challenge in the clinical treatment of triple-negative breast cancer (TNBC). It has been well documented that inflammatory mediators from tumor microenvironment are involved in the pathogenesis of TNBC and might be related to chemoresistance of cancer cells. In this study, the contribution of interleukin-6 (IL-6), one of the principal oncogenic molecules, in chemoresistance of a TNBC cell line MDA-MB-231 was first investigated. The results showed that IL-6 treatment could induce upregulation of HIF-1α via the activation of STAT3 in MDA-MB-231 cells, which consequently contributed to its effect against chemotherapeutic drug-induced cytotoxicity and cell apoptosis. However, knockdown of HIF-1α attenuated such effect via affecting the expressions of apoptosis-related molecules as Bax and Bcl-2 and drug transporters as P-gp and MRP1. This study indicated that targeting at IL-6/HIF-1α signaling pathway might be an effective strategy to overcome chemoresistance in TNBC therapy.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine., Wuxi 214063, Jiangsu Province, People's Republic of, China
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine., Wuxi 214063, Jiangsu Province, People's Republic of, China
| | - Kai Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine., Wuxi 214063, Jiangsu Province, People's Republic of, China
| | - Yongxiang Yin
- Department of Pathology, The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu Province, People's Republic of China
| | - Yu Chen
- Central Laboratory, The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu Province, People's Republic of China
| | - Ting Zhang
- Central Laboratory, The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu Province, People's Republic of China.,Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment Cancer Center, Nanjing Medical University, Nanjing 210029, Jiangsu Province, People's Republic of China.,School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu Province, People's Republic of China
| |
Collapse
|
14
|
Jeong YJ, Cho HJ, Chung FL, Wang X, Hoe HS, Park KK, Kim CH, Chang HW, Lee SR, Chang YC. Isothiocyanates suppress the invasion and metastasis of tumors by targeting FAK/MMP-9 activity. Oncotarget 2017; 8:63949-63962. [PMID: 28969043 PMCID: PMC5609975 DOI: 10.18632/oncotarget.19213] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 06/10/2017] [Indexed: 01/03/2023] Open
Abstract
Isothiocyanates, which are present as glucosinolate precursors in cruciferous vegetables, have strong activity against various cancers. Here, we compared the anti-metastatic effects of isothiocyanates (benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC), and sulforaphane (SFN)) by examining how they regulate MMP-9 expression. Isothiocyanates, particularly PEITC, suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP-9 activity and invasion in various cancer cell lines. By contrast, N-methyl phenethylamine, a PEITC analog without an isothiocyanate functional group, had no effect. A reporter gene assay demonstrated that BITC, PEITC, and SFN suppressed TAP-induced MMP-9 expression by inhibiting AP-1 and NF-κB in U20S osteosarcoma cells. All three compounds reduced phosphorylation of FAK, ERK1/2, and Akt. In addition, MMP-9 expression was downregulated by inhibiting FAK, ERK1/2, and Akt. Isothiocyanates-mediated inhibition of FAK phosphorylation suppressed phosphorylation of ERK1/2 and Akt in U2OS and A549 cells, along with the translocation of p65 and c-Fos, suggesting that isothiocyanates inhibit MMP-9 expression and cell invasion by blocking phosphorylation of FAK. Furthermore, isothiocyanates, abolished MMP-9 expression and tumor metastasis in vivo with the following efficacy: PEITC>BITC>SFN. Thus, isothiocyanates act as anti-metastatic compounds that suppress MMP-9 activity/expression by inhibiting NF-κB and AP-1 via suppression of the FAK/ERK and FAK/Akt signaling pathways.
Collapse
Affiliation(s)
- Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Hyun-Ji Cho
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea.,Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu 701-300, Republic of Korea
| | - Fung-Lung Chung
- Department of Oncology, Lambardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Xiantao Wang
- Department of Oncology, Lambardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.,National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu 701-300, Republic of Korea
| | - Kwan-Kyu Park
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Science, Sungkyunkwan University, Suwon, Kyunggi-Do 440-746, Republic of Korea
| | - Hyeun-Wook Chang
- College of pharmacy, Yeungnam University, Gyeongsan 701-947, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| |
Collapse
|
15
|
Park JY, Chung TW, Jeong YJ, Kwak CH, Ha SH, Kwon KM, Abekura F, Cho SH, Lee YC, Ha KT, Magae J, Chang YC, Kim CH. Ascofuranone inhibits lipopolysaccharide-induced inflammatory response via NF-kappaB and AP-1, p-ERK, TNF-α, IL-6 and IL-1β in RAW 264.7 macrophages. PLoS One 2017; 12:e0171322. [PMID: 28207754 PMCID: PMC5313137 DOI: 10.1371/journal.pone.0171322] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/19/2017] [Indexed: 12/19/2022] Open
Abstract
The natural fungal compound ascofuranone (5-chloro-3-[(2E,6E)-7-[(2S)-5,5-dimethyl-4-oxo-tetrahydrofuran-2-yl]-3-methyl-octa-2,6-dienyl]-2,4-dihydroxy-6-methyl-benzaldehyde, MW 420.93) (AF) isolated from Ascochyta viciae has been known to promote cell cycle arrest and inhibit invasion of tumor cells. We have previously studied a structurally similar compound ascochlorin (ASC; MW 404.93) with regard to its anti-inflammatory activity in LPS- stimulated RAW 264.7 macrophages. In order to examine the relationship between the anti-inflammatory activities and the molecular differences between AF and ASC, the activity of AF is herein studied, because ASC has a unique trimethyl oxocyclohexyl structure, while AF has a unique dimethyl-oxo-tetrahydrofuran structure. AF dose-dependently inhibited the production of NO and iNOS and the COX-2 mRNA and protein levels in RAW 264.7 cells. In addition, AF suppressed mRNA expression levels of inflammatory cytokines such as TNF-α, IL-6, and IL-1β, as assessed by RT-PCR. AF (30-50 μg/ml) treatment clearly inhibited the nuclear translocation of NF-κB, AP-1 (p-c-Jun) from the cytosolic space. Phosphorylation of IκB, which functions to maintain the activity of NF-κB, was decreased by AF treatment. Moreover, AF suppressed the binding of NF-κB (p65). Inhibition of IkBa phosphorylation and degradation inhibits nuclear translocation of p65. Immunofluorescence confocal microscopy analysis also revealed that translocation of NF-κB and AP-1 (p-c-Jun) was decreased upon AF treatment. AF specifically decreased the expression level of p-ERK, but not the expression level of p-p38 or p-JNK. Given these results, we suggest that AF suppresses the inflammatory response by targeting p-ERK. This indicates that AF is a negative regulator of LPS-stimulated nuclear translocation of NF-κB and AP-1 (p-c-Jun) in RAW 264.7 macrophages, and specifically it targets p-ERK. Therefore, AF and ASC exert their effects in different ways, most probably because their structural differences allow for specific recognition and inhibition of their target MAPKs. Our results further suggest that AF could be a natural bioactive compound useful for treating inflammation-mediated pathological diseases.
Collapse
Affiliation(s)
- Jun-Young Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, Korea
| | - Tae-Wook Chung
- School of Korean Medicine and Healthy Aging Korean Medicine Research Center, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Choong-Hwan Kwak
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, Korea
| | - Sun-Hyung Ha
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, Korea
| | - Kyung-Min Kwon
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, Korea
| | - Seung-Hak Cho
- Division of Enteric Diseases, Center for Infectious Diseases Research, Korea National Institute of Health, Heungdeok-gu, Cheongju, Korea
| | - Young-Choon Lee
- Faculty of Medicinal Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Ki-Tae Ha
- School of Korean Medicine and Healthy Aging Korean Medicine Research Center, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Junji Magae
- Magae Bioscience Institute, 49–4 Fujimidai, Tsukuba, Japan
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon, Gyunggi-Do, Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
16
|
Min-Wen JC, Yan-Jiang BC, Mishra S, Dai X, Magae J, Shyh-Chang N, Kumar AP, Sethi G. Molecular Targets of Ascochlorin and Its Derivatives for Cancer Therapy. STRESS AND INFLAMMATION IN DISORDERS 2017; 108:199-225. [DOI: 10.1016/bs.apcsb.2017.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Lipopolysaccharide derived from the digestive tract activates inflammatory gene expression and inhibits casein synthesis in the mammary glands of lactating dairy cows. Oncotarget 2016; 7:9652-65. [PMID: 26893357 PMCID: PMC4891074 DOI: 10.18632/oncotarget.7371] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/29/2016] [Indexed: 12/31/2022] Open
Abstract
To meet the nutrition requirements of lactation, dairy cows are usually fed a high concentrate diet (HC). However, high-grain feeding causes subacute ruminal acidosis (SARA), a metabolic disorder that causes milk protein depression. This study aimed to investigate the effect of lipopolysaccharide (LPS) released in the rumen on inflammatory gene expression and casein synthesis in mammary glands of lactating dairy cows fed a HC diet. We found that milk protein was significantly decreased in the HC group after 15 weeks of feeding. Overall, LPS concentrations in the rumen fluid, lacteal artery and vein were increased in the HC group. Transcriptome microarray was used to evaluate alterations in the signaling pathway in mammary glands. Signaling pathways involved in inflammatory responses were activated, whereas those involved in protein synthesis were inhibited in the HC group. mRNA expression involved in inflammatory responses, including that of TLR4, NF-кB and pro-inflammatory genes, was increased in the HC group, while αs1-casein (CSN1S1), β-casein (CSN2), mTOR and S6K gene expression were decreased. Moreover, protein expression was consistent with the corresponding gene expression. After feeding with an HC diet, LPS derived from the rumen increased inflammatory gene expression and inhibited casein synthesis in the mammary glands of lactating dairy cows fed a HC diet.
Collapse
|
18
|
Park JH, Yoon J, Park B. Pomolic acid suppresses HIF1α/VEGF-mediated angiogenesis by targeting p38-MAPK and mTOR signaling cascades. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1716-1726. [PMID: 27912873 DOI: 10.1016/j.phymed.2016.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/06/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Pomolic acid (PA), an active triterpenoid from Euscaphis japonica, inhibits the proliferation of a variety of cancer cells, but the molecular mechanisms of the anti-angiogenic potential of PA have not been fully elucidated in breast cancer cells. HYPOTHESIS/PURPOSE We investigated the molecular mechanisms underlying the anti-angiogenic effect of PA in epidermal growth factor (EGF)-responsive human breast cancer cells, MCF-7 and MDA-MB-231, and human umbilical vascular endothelial cells (HUVEC). STUDY DESIGN/METHODS Effects of PA on EGF-induced HIF1α/VEGF expression in MCF-7, MDA-MB-231 and HUVEC were assayed. As to the mechanisms, EGF-mediated MAPKs, PI3K/Akt, and mTOR signaling pathway were performed. Wound healing and invasion assay, tube formation assay, immunoblot assay, real-time PCR, luciferase gene assay, electrophoretic mobility shift assay and immunofluorescence staining were used for assessment. RESULTS PA significantly and selectively suppressed EGF-induced HIF1α/VEGF expression, whereas it did not affect the expression of HIF1β in MCF-7 and MDA-MB-231. Furthermore, PA inhibited EGF-induced angiogenesis in vitro and downregulated HIF1α/VEGF expression in HUVEC. Mechanistically, we found that the inhibitory effects of PA on HIF1α/VEGF expression are associated with inhibition of HIF1α/VEGF expression through an EGF-dependent mechanism. In addition, PA suppressed the EGF-induced phosphorylation of p38-MAPK and mTOR. CONCLUSION PA suppresses EGF-induced HIF1α protein translation by inhibiting the p38-MAPK and mTOR kinase signaling pathways and plays a novel anti-angiogenic role.
Collapse
Affiliation(s)
- Ji-Hyun Park
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Jaewoo Yoon
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Republic of Korea.
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Republic of Korea.
| |
Collapse
|
19
|
Kim MH, Jeong YJ, Cho HJ, Hoe HS, Park KK, Park YY, Choi YH, Kim CH, Chang HW, Park YJ, Chung IK, Chang YC. Delphinidin inhibits angiogenesis through the suppression of HIF-1α and VEGF expression in A549 lung cancer cells. Oncol Rep 2016; 37:777-784. [PMID: 27959445 DOI: 10.3892/or.2016.5296] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/09/2016] [Indexed: 11/05/2022] Open
Abstract
Delphinidin, a polyphenol that belongs to the group of anthocyanidins and is abundant in many pigmented fruits and vegetables, possesses important antioxidant, anti‑inflammatory, anti-mutagenic and anticancer properties. In the present study, we investigated the inhibitory effects of delphinidin on vascular endothelial growth factor (VEGF) expression, an important factor involved in angiogenesis and tumor progression, in A549 human lung cancer cells. Delphinidin inhibited CoCl2- and epidermal growth factor (EGF)-induced VEGF mRNA expression and VEGF protein production. Delphinidin also decreased CoCl2- and EGF-stimulated expression of hypoxia‑inducible factor (HIF)‑1α, which is a transcription factor of VEGF. Delphinidin suppressed CoCl2- and EGF-induced hypoxia‑response element (HRE) promoter activity, suggesting that the inhibitory effects of delphinidin on VEGF expression are caused by the suppression of the binding of HIF-1 to the HRE promoter. We also found that delphinidin specifically decreased the CoCl2- and EGF-induced HIF-1α protein expression by blocking the ERK and PI3K/Akt/mTOR/p70S6K signaling pathways, whereas the p38-mediated pathways were not involved. In animal models, EGF-induced new blood vessel formation was significantly inhibited by delphinidin. Therefore, our results indicate that delphinidin has a potentially new role in anti‑angiogenic action by inhibiting HIF-1α and VEGF expression.
Collapse
Affiliation(s)
- Mun-Hyeon Kim
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Hyun-Ji Cho
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu 701-300, Republic of Korea
| | - Kwan-Kyu Park
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Yoon-Yub Park
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 614-052, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi 440-746, Republic of Korea
| | - Hyeun-Wook Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 701-947, Republic of Korea
| | - Young-Ja Park
- Department of Clinical Pathology, Sorabol College, Gyeongju, Gyeongbuk 780-711, Republic of Korea
| | - Il-Kyung Chung
- Department of Biotechnology, Catholic University of Daegu, Gyeongsan, Gyeongbuk 712-702, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| |
Collapse
|
20
|
Mengke NS, Hu B, Han QP, Deng YY, Fang M, Xie D, Li A, Zeng HK. Rapamycin inhibits lipopolysaccharide-induced neuroinflammation in vitro and in vivo. Mol Med Rep 2016; 14:4957-4966. [PMID: 27779711 PMCID: PMC5355655 DOI: 10.3892/mmr.2016.5883] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 07/08/2016] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of progressive neurodegenerative disorder, and is responsible for the most common form of dementia in the elderly. Inflammation occurs in the brains of patients with AD, and is critical for disease progression. In the present study, the effects of rapamycin (RAPA) on neuroinflammation lipopolysaccharide (LPS)-induced were investigated. SH-SY5Y human neuroblastoma cells were treated with 20 µg/ml LPS and 0.1, 1 or 10 nmol/l RAPA, and were analyzed at various time points (6, 12 and 24 h). The mRNA expression levels of interleukin (IL) 1β, IL6 and hypoxia-inducible factor 1α (HIF1α) were determined using reverse transcription-quantitative polymerase chain reaction. The protein expression levels of phosphorylated (p-)S6, p-nuclear factor κB (NFκB), p-inhibitor of NFκB kinase subunit β (IKKβ) and p-tau protein were measured by western blot analysis. p-IKKβ, p-NFκB, p-S6 and p-tau were significantly decreased at 6, 12 and 24 h when cells were treated with ≥0.1 nmol/ml RAPA. In addition, female Sprague Dawley rats were intracranially injected with a single dose of 100 µg/kg LPS in the absence or presence of 1 mg/kg RAPA pretreatment. Brain tissues were subjected to immunohistochemical analysis 6–24 h later, which revealed that the expression levels of HIF1α and p-S6 in rat cerebral cortex were increased following LPS injection; however, this increase was abrogated by RAPA treatment. RAPA may therefore be considered a potential therapeutic agent for the early or emergency treatment of neuroinflammation.
Collapse
Affiliation(s)
- Na-Shun Mengke
- Faculty of Graduate Studies, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bei Hu
- Faculty of Graduate Studies, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qian-Peng Han
- Faculty of Graduate Studies, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yi-Yu Deng
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Ming Fang
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Di Xie
- Faculty of Graduate Studies, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ang Li
- Department of Histoembryology, Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hong-Ke Zeng
- Faculty of Graduate Studies, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
21
|
Lei W, He Y, Shui X, Li G, Yan G, Zhang Y, Huang S, Chen C, Ding Y. Expression and analyses of the HIF-1 pathway in the lungs of humans with pulmonary arterial hypertension. Mol Med Rep 2016; 14:4383-4390. [PMID: 27667582 DOI: 10.3892/mmr.2016.5752] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 07/22/2016] [Indexed: 11/06/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by endothelial dysfunction and structural remodeling of the pulmonary vasculature, mediated initially by reduced oxygen availability in the lungs. Hypoxia inducible factor (HIF), consisting of the functional subunit, HIF‑1α, and the constitutively expressed HIF‑1β, is involved in the pathological processes associated with hypoxia. In the current study, the sequences of cDNAs and amino acids of HIF were characterized and analyzed using online bioinformatics tools. To further evaluate whether HIF accounts for the occurrence of PAH, the present study determine the expression and phosphorylation levels of HIF and its associated pathways, including extracellular signal‑regulated kinase (Erk)1/2 and phosphoinositide 3‑kinase (PI3K)/Akt, in the lungs of patients with PAH by reverse transcription‑quantitative polymerase chain reaction and western blotting. The mRNA expression levels of PI3K, Erk2, and HIF‑1α in the patients with PAH were significantly higher, compared with those in the control group, by 3.6‑fold (P<0.01), 4.06‑fold and 2.64‑fold (P<0.05), respectively. No significant differences were found in the mRNA and protein levels of Akt between the two groups (P>0.05). The protein levels of phosphorylated (p‑)Akt, Erk1/2, p‑Erk1/2, HIF‑1α and HIF‑1β were significantly increased by 5.89‑, 0.5‑, 0.59‑, 1.46‑ and 0.92‑fold, respectively, in the patients with PAH, compared with those in the controls group (P<0.01 for p‑Akt, Erk1/2; P<0.05 for p‑Erk1/2, HIF‑1α and HIF‑1β). These findings suggested that the mitogen‑activated protein kinase and PI3K/Akt signaling pathways, and HIF‑1 may perform a specific function in the pathogenesis of PAH.
Collapse
Affiliation(s)
- Wei Lei
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Yuan He
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Guoming Li
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Guosen Yan
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Yu Zhang
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Shian Huang
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Can Chen
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Yuanlin Ding
- Institute of Medical Systems Biology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
22
|
Park JH, Cho YY, Yoon SW, Park B. Suppression of MMP-9 and FAK expression by pomolic acid via blocking of NF-κB/ERK/mTOR signaling pathways in growth factor-stimulated human breast cancer cells. Int J Oncol 2016; 49:1230-40. [PMID: 27573547 DOI: 10.3892/ijo.2016.3585] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/14/2016] [Indexed: 11/06/2022] Open
Abstract
The expression of matrix metalloproteinase-9 (MMP-9) and the phosphorylation of focal adhesion kinase (FAK) have been implicated in the invasion, metastasis and cell motility of cancer cells. It is considered that epidermal growth factor (EGF) may increase cell motility, an event involved in cancer cell invasion and metastasis. Pomolic acid (PA), an active triterpenoid from Euscaphis japonica, is known to inhibit the proliferation of a variety of cancer cells, but the effect of PA on the invasiveness of cancer cells is largely unknown. In this study, we first determined the molecular mechanism by which PA inhibits the migratory and invasive abilities of highly metastatic MDA-MB‑231 cells. Transwell invasion, wound-healing assay and F-actin reorganization showed that PA significantly inhibits the EGF-induced invasion, migration and cell motility by reducing expression of MMP-9 and FAK phosphorylation. In particular, PA potently suppressed the phosphorylation of nuclear factor (NF)-κB, extraceullar signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway. Furthermore, PA treatment inhibited the DNA binding activity of NF-κB and activator protein (AP)-1, which is known to mediate the expression of EGFR and MMP-9. These results suggest that PA may be a potential therapeutic candidate for treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Ji-Hyun Park
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Yoon Young Cho
- Department of Oncology/Hematology, Daegu Catholic University Medical Center, Daegu 42472, Republic of Korea
| | - Seong Woo Yoon
- Department of Korean Internal Medicine, Korean Medicine Cancer Center, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
23
|
Kim MH, Kim MH, Park YJ, Chang YC, Park YY, Song HO. Delphinidin Suppresses Angiogenesis via the Inhibition of HIF-1α and STAT3 Expressions in PC3M Cells. ACTA ACUST UNITED AC 2016. [DOI: 10.9721/kjfst.2016.48.1.66] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
HIF-1α Plays a Critical Role in the Gestational Sidestream Smoke-Induced Bronchopulmonary Dysplasia in Mice. PLoS One 2015; 10:e0137757. [PMID: 26361040 PMCID: PMC4567349 DOI: 10.1371/journal.pone.0137757] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 08/20/2015] [Indexed: 11/24/2022] Open
Abstract
Rationale Smoking during pregnancy increases the risk of bronchopulmonary dysplasia (BPD) and, in mice, gestational exposure to sidestream cigarette smoke (SS) induces BPD-like condition characterized by alveolar simplification, impaired angiogenesis, and suppressed surfactant protein production. Normal fetal development occurs in a hypoxic environment and nicotinic acetylcholine receptors (nAChRs) regulate the hypoxia-inducible factor (HIF)-1α that controls apoptosis and angiogenesis. To understand SS-induced BPD, we hypothesized that gestational SS affected alveolar development through HIF-1α. Methods Pregnant BALB/c mice were exposed to air (control) or SS throughout the gestational period and the 7-day-old lungs of the progeny were examined. Results Gestational SS increased apoptosis of alveolar and airway epithelial cells. This response was associated with increased alveolar volumes, higher levels of proapoptotic factors (FOXO3a, HIPK2, p53, BIM, BIK, and BAX) and the antiangiogenic factor (GAX), and lower levels of antiapoptotic factors (Akt-PI3K, NF-κB, HIF-1α, and Bcl-2) in the lung. Although gestational SS increased the cells containing the proangiogenic bombesin-like-peptide, it markedly decreased the expression of its receptor GRPR in the lung. The effects of SS on apoptosis were attenuated by the nAChR antagonist mecamylamine. Conclusions Gestational SS-induced BPD is potentially regulated by nAChRs and associated with downregulation of HIF-1α, increased apoptosis of epithelial cells, and increased alveolar volumes. Thus, in mice, exposure to sidestream tobacco smoke during pregnancy promotes BPD-like condition that is potentially mediated through the nAChR/HIF-1α pathway.
Collapse
|
25
|
Wang JZ, Liu BG, Zhang Y. Pin1-based diagnostic and therapeutic strategies for breast cancer. Pharmacol Res 2014; 93:28-35. [PMID: 25553719 DOI: 10.1016/j.phrs.2014.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 01/12/2023]
Abstract
Pin1 is the only known cis-to-trans isomerase that recognizes the phosphorylated pThr/pSer-Pro motifs in many signaling molecules, playing unique roles in the pathogenesis of breast cancer. First, Pin1 is prevalently over-expressed in kinds of breast cancer cell lines and tissues, such as MDA-MB-231 cell, MCF-7 cell, Her2+, ERα+, and basal-like breast cancer subtypes. Second, Pin1 amplifies many oncogenic signaling pathways, inhibits multiple tumor suppressors, promotes the angiogenesis and metastasis of breast cancer cells, and enhances the resistance of breast cancer cells to anti-tumor medicines. Third, inhibiting Pin1 blocks most of these detrimental effects in a great number of breast cancer cell lines. These findings suggest Pin1 as a promising diagnostic biomarker as well as an efficient therapeutic target for breast cancer. It is strongly expected that a Pin1-positive subtype of breast cancers should be extremely concerned and that the therapeutic efficacy of Pin1 inhibitors on breast cancer patients should be evaluated as soon as possible. Nonetheless, Pin1-based therapeutic strategies for breast cancer still deserve some debates. Hence, we give the predictions of several important issues, such as application precondition, side effects, and personalized medication, when Pin1 inhibitors are used in the breast cancer therapy. These proposals are meaningful for the further development of Pin1-based diagnostic and therapeutic strategies in order to conquer breast cancer.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- Department of Medical Technology, Affiliated Hospital, College of Medicine, Hebei University of Engineering, Handan 056002, PR China.
| | - Bao-Guo Liu
- Department of Medical Technology, Affiliated Hospital, College of Medicine, Hebei University of Engineering, Handan 056002, PR China
| | - Yong Zhang
- Department of Medical Technology, Affiliated Hospital, College of Medicine, Hebei University of Engineering, Handan 056002, PR China
| |
Collapse
|
26
|
Safdari Y, Khalili M, Ebrahimzadeh MA, Yazdani Y, Farajnia S. Natural inhibitors of PI3K/AKT signaling in breast cancer: emphasis on newly-discovered molecular mechanisms of action. Pharmacol Res 2014; 93:1-10. [PMID: 25533812 DOI: 10.1016/j.phrs.2014.12.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/09/2014] [Accepted: 12/13/2014] [Indexed: 01/08/2023]
Abstract
Epidermal growth factor receptor (EGFR) plays a critical role in the initiation and progression of a variety of human cancers, including breast cancer. An important signaling pathway downstream of EGFR is the PI3K/AKt pathway, which regulates cellular processes as diverse as cell growth, survival, proliferation and migration. Deregulated activity of this pathway may lead to uncontrolled cell growth, survival, migration and invasion, contributing to tumor formation. In this review, we evaluate natural compounds that, in vitro (breast cancer cell lines) and/or in vivo (animal model, clinical) studies, suppress breast cancer cells or tumors mainly by suppressing the PI3K/AKT signaling pathway. The effect of these compounds on cell cycle arrest, inhibition of cell migration and invasion, tumor angiogenesis and metastasis in breast cancer are discussed.
Collapse
Affiliation(s)
- Yaghoub Safdari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Masoumeh Khalili
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yaghoub Yazdani
- Infectious Diseases Research Center and Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Zhan L, Huang C, Meng XM, Song Y, Wu XQ, Yang Y, Li J. Hypoxia-inducible factor-1alpha in hepatic fibrosis: A promising therapeutic target. Biochimie 2014; 108:1-7. [PMID: 25447141 DOI: 10.1016/j.biochi.2014.10.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 10/17/2014] [Indexed: 02/08/2023]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1α) is a regulated subunit of the hypoxia-inducible factor 1 (HIF1), which functions as a key transcription factor in response to hypoxic stress by regulating genes involved in maintaining oxygen homeostasis. In recent years, a growing body of studies showed that HIF-1α was significantly increased in hepatic fibrotic tissues and activated hepatic stellate cells (HSCs). Furthermore, knockdown of HIF-1α expression inhibited the proliferation and activation of HSCs. In addition, HIF-1α-dependent genes and the extensive network of signaling cascades focus on HIF-1α have been reported to associate with the development of hepatic fibrosis, suggesting that HIF-1α might play a crucial role in hepatic fibrosis. However, the mechanisms by which HIF-1α regulates hepatic fibrosis are still undefined. In this review, we concentrate on multiple signaling pathways and genes related with HIF-1α which may be involved in the development of hepatic fibrosis, further discussing its potential as a novel therapeutic target for hepatic fibrosis.
Collapse
Affiliation(s)
- Lei Zhan
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Yang Song
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Xiao Qin Wu
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Yang Yang
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China.
| |
Collapse
|
28
|
Liu Y, Nie H, Zhang K, Ma D, Yang G, Zheng Z, Liu K, Yu B, Zhai C, Yang S. A feedback regulatory loop between HIF-1α and miR-21 in response to hypoxia in cardiomyocytes. FEBS Lett 2014; 588:3137-46. [PMID: 24983504 DOI: 10.1016/j.febslet.2014.05.067] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 05/21/2014] [Indexed: 12/12/2022]
Abstract
Accumulating evidence suggests that hypoxia-inducible factor 1α (HIF-1α) regulates numerous miRNAs and is crucial for cellular response to hypoxia. However, the relationship between HIF-1α and miR-21 in hypoxic cardiomyocytes is little known. We found that hypoxia induced HIF-1α and miR-21 expression. HIF-1α knockdown increased cell apoptosis and reduced miR-21 expression. Furthermore, we found that HIF-1α transcriptionally enhanced miR-21 promoter activity by binding to its promoter, which required the recruitment of CBP/p300. In addition, we found that miR-21 inhibition increased cell apoptosis and reduced HIF-1α expression, and modulated the PTEN/Akt pathway. Our results indicate that HIF-1α-miR-21 feedback contributes to the adaptation of cardiomyocytes to hypoxia, and has potential as therapeutic target for myocardial ischemia.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin 150086, China
| | - Honggang Nie
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin 150086, China
| | - Kuikui Zhang
- Department of Cardiology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150086, China
| | - Dan Ma
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin 150086, China
| | - Guang Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Zhilei Zheng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Kai Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin 150086, China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin 150086, China
| | - Changlin Zhai
- Department of Cardiology, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China.
| | - Shuang Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin 150086, China.
| |
Collapse
|
29
|
Zhao L, Yang YF, Gao YB, Wang SM, Wang LF, Zuo HY, Dong J, Xu XP, Su ZT, Zhou HM, Zhu LL, Peng RY. Upregulation of HIF-1α via activation of ERK and PI3K pathway mediated protective response to microwave-induced mitochondrial injury in neuron-like cells. Mol Neurobiol 2014; 50:1024-34. [PMID: 24627260 DOI: 10.1007/s12035-014-8667-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/20/2014] [Indexed: 01/01/2023]
Abstract
Microwave-induced learning and memory deficits in animal models have been gaining attention in recent years, largely because of increasing public concerns on growing environmental influences. The data from our group and others have showed that the injury of mitochondria, the major source of cellular adenosine triphosphate (ATP) in primary neurons, could be detected in the neuron cells of microwave-exposed rats. In this study, we provided some insights into the cellular and molecular mechanisms behind mitochondrial injury in PC12 cell-derived neuron-like cells. PC12 cell-derived neuron-like cells were exposed to 30 mW/cm(2) microwave for 5 min, and damages of mitochondrial ultrastructure could be observed by using transmission electron microscopy. Impairments of mitochondrial function, indicated by decrease of ATP content, reduction of succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) activities, decrease of mitochondrial membrane potential (MMP), and increase of reactive oxygen species (ROS) production, could be detected. We also found that hypoxia-inducible factor-1 (HIF-1α), a key regulator responsible for hypoxic response of the mammalian cells, was upregulated in microwave-exposed neuron-like cells. Furthermore, HIF-1α overexpression protected mitochondria from injury by increasing the ATP contents and MMP, while HIF-1α silence promoted microwave-induced mitochondrial damage. Finally, we demonstrated that both ERK and PI3K signaling activation are required in microwave-induced HIF-1α activation and protective response. In conclusion, we elucidated a regulatory connection between impairments of mitochondrial function and HIF-1α activation in microwave-exposed neuron-like cells. By modulating mitochondrial function and protecting neuron-like cells against microwave-induced mitochondrial injury, HIF-1α represents a promising therapeutic target for microwave radiation injury.
Collapse
Affiliation(s)
- Li Zhao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Haidian District, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|