1
|
Yashmi F, Fakhri S, Shiri Varnamkhasti B, Amin MN, Khirehgesh MR, Mohammadi-Noori E, Hosseini M, Khan H. Defining the mechanisms behind the hepatoprotective properties of curcumin. Arch Toxicol 2024; 98:2331-2351. [PMID: 38837048 DOI: 10.1007/s00204-024-03758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/09/2024] [Indexed: 06/06/2024]
Abstract
As a critical cause of human dysfunctionality, hepatic failure leads to approximately two million deaths per year and is on the rise. Considering multiple inflammatory, oxidative, and apoptotic mechanisms behind hepatotoxicity, it urges the need for finding novel multi-targeting agents. Curcumin is a phenolic compound with anti-inflammatory, antioxidant, and anti-apoptotic roles. Curcumin possesses auspicious health benefits and protects against several diseases with exceptional safety and tolerability. This review focused on the hepatoprotective mechanisms of curcumin. The need to develop novel delivery systems of curcumin (e.g., nanoparticles, self-micro emulsifying, lipid-based colloids, solid lipid nanoparticles, cyclodextrin inclusion, phospholipid complexes, and nanoemulsions) is also considered.
Collapse
Affiliation(s)
- Farinam Yashmi
- Department of Pharmacy, Acibadem University, Istanbul, Turkey
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammed Namiq Amin
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Hosseini
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
2
|
Das R, Mitra S, Tareq AM, Emran TB, Hossain MJ, Alqahtani AM, Alghazwani Y, Dhama K, Simal-Gandara J. Medicinal plants used against hepatic disorders in Bangladesh: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114588. [PMID: 34480997 DOI: 10.1016/j.jep.2021.114588] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver disease is a major cause of illness and death worldwide which accounts for approximately 2 million deaths per year worldwide, 1 million due to complications of cirrhosis and 1 million due to viral hepatitis and hepatocellular carcinoma. That's why it is seeking the researchers' attention to find out the effective treatment strategies. Phytochemicals from natural resources are the main leads for the development of noble hepatoprotective drugs. The majority of the natural sources whose active compounds are currently employed actually have an ethnomedical use. Ethnopharmacological research is essential for the development of these bioactive compounds. These studies not only provide scientific evidence on medicinal plants utilized for particular therapeutic purposes, but they also ensure cultural heritage preservation. Plenty of experimental studies have been well-documented that the ethnomedicinal plants are of therapeutics' interest for the advanced pharmacological intervention in terms of hepatic disorders. AIM OF THE STUDY This study summarizes the processes of hepatotoxicity induced by various toxins and explores identified hepatoprotective plants and their phytoconstituents, which can guide the extraction of novel phytochemical constituents from plants to treat liver injury. This review aimed to summarize the hepatoprotective activity of Bangladeshi medicinal plants where the bioactive compounds may be leads for the drug discovery in future. MATERIALS AND METHODS Literature searches in electronic databases, such as Web of Science, Science Direct, SpringerLink, PubMed, Google Scholar, Semantic Scholar, Scopus, BanglaJOL, and so on, were performed using the keywords 'Bangladesh', 'ethnomedicinal plants', 'Hepatoprotective agents' as for primary searches, and secondary search terms were used as follows, either alone or in combination: traditional medicine, medicinal plants, folk medicine, liver, hepatitis, therapeutic uses, and anti-inflammatory. Besides, several books, including the book entitled "Medicinal plants of Bangladesh: chemical constituents and uses" authored by Abdul Ghani, were carefully considered, which contained pharmacological properties and phytoconstituents of many medicinal plants growing and traditionally available in Bangladesh. Among them, the most promising plant species with their latest therapeutic effects against hepatic disorders were deeply considered in this review. RESULTS The results of this study revealed that in most cases, therapy using plant extracts stabilized altered hepatic biochemical markers induced by hepatotoxins. Initially, we investigated 32 plant species for hepatoprotective activity, however after extensive literature searching; we observed that 20 plants offer good pharmacological evidence of hepatoprotective function. Consequently, most bioactive compounds derived from the herbs including berberine, thymoquinone, andrographolide, ursolic acid, luteolin, naringenin, genistein, quercetin, troxerutin, morin, epigallocatechin-3-gallate, chlorogenic acid, emodin, curcumin, resveratrol, capsaicin, ellagic acid, etc. are appeared to be effective against hepatic disorders. CONCLUSIONS Flavonoids, phenolic acids, monoterpenoids, diterpenoids, triterpenoids, alkaloids, chromenes, capsaicinoids, curcuminoids, and anthraquinones are among the phytoconstituents were appraised to have hepatoprotective activities. All the actions displayed by these ethnomedicinal plants could make them serve as leads in the formulation of drugs with higher efficacy to treat hepatic disorders.
Collapse
Affiliation(s)
- Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareil-ly, 243122, Uttar Pradesh, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E32004, Ourense, Spain.
| |
Collapse
|
3
|
Jayasuriya R, Dhamodharan U, Ali D, Ganesan K, Xu B, Ramkumar KM. Targeting Nrf2/Keap1 signaling pathway by bioactive natural agents: Possible therapeutic strategy to combat liver disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153755. [PMID: 34583226 DOI: 10.1016/j.phymed.2021.153755] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor (Nrf2), a stress-activated transcription factor, has been documented to induce a defense mechanism against oxidative stress damage, and growing evidence considers this signaling pathway a key pharmacological target for the treatment of liver diseases. PURPOSE The present review highlights the role of phytochemical compounds in activating Nrf2 and mitigate toxicant-induced stress on liver injury. METHODS A comprehensive search of published articles was carried out to focus on original publications related to Nrf2 activators against liver disease using various literature databases, including the scientific Databases of Science Direct, Web of Science, Pubmed, Google, EMBASE, and Scientific Information (SID). RESULTS Nrf2 activators exhibited promising effects in resisting a variety of liver diseases induced by different toxicants in preclinical experiments and in vitro studies by regulating cell proliferation and apoptosis as well as an antioxidant defense mechanism. We found that the phytochemical compounds, such as curcumin, naringenin, sulforaphane, diallyl disulfide, mangiferin, oleanolic acid, umbelliferone, daphnetin, quercetin, isorhamnetin-3-O-galactoside, hesperidin, diammonium glycyrrhizinate, corilagin, shikonin, farrerol, and chenpi, had the potential to improve the Nrf2-ARE signaling thereby combat hepatotoxicity. CONCLUSION Nrf2 activators may offer a novel potential strategy for the prevention and treatment of liver diseases. More extensive studies are essential to identify the underlying mechanisms and establish future therapeutic potentials of these signaling modulators. Further clinical trials are warranted to determine the safety and effectiveness of Nrf2 activators for hepatopathy.
Collapse
Affiliation(s)
- Ravichandran Jayasuriya
- SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | | | - Daoud Ali
- Department of Zoology, College of Science, King Saud University P.O. Box 2455, Riyadh 11451 Saudi Arabia
| | - Kumar Ganesan
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai 519087, China.
| | - Kunka Mohanram Ramkumar
- SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
4
|
Rouf R, Ghosh P, Uzzaman MR, Sarker DK, Zahura FT, Uddin SJ, Muhammad I. Hepatoprotective Plants from Bangladesh: A Biophytochemical Review and Future Prospect. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:1633231. [PMID: 34504532 PMCID: PMC8423546 DOI: 10.1155/2021/1633231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Liver diseases are quite prevalant in many densely populated countries, including Bangladesh. The liver and its hepatocytes are targeted by virus and microbes, as well as by chemical environmental toxicants, causing wide-spread disruption of metabolic fuctions of the human body, leading to death from end-stage liver diseases. The aim of this review is to systematically explore and record the potential of Bangladeshi ethnopharmacological plants to treat liver diseases with focus on their sources, constituents, and therapeutic uses, including mechanisms of actions (MoA). A literature survey was carried out using Pubmed, Google Scholar, ScienceDirect, and Scopus databases with articles reported until July, 2020. A total of 88 Bangladeshi hepatoprotective plants (BHPs) belonging to 47 families were listed in this review, including Euphorbiaceae, Cucurbitaceae, and Compositae families contained 20% of plants, while herbs were the most cited (51%) and leaves were the most consumed parts (23%) as surveyed. The effect of BHPs against different hepatotoxins was observed via upregulation of antioxidant systems and inhibition of lipid peroxidation which subsequently reduced the elevated liver biomarkers. Different active constituents, including phenolics, curcuminoids, cucurbitanes, terpenoids, fatty acids, carotenoids, and polysaccharides, have been reported from these plants. The hepatoameliorative effect of these constituents was mainly involved in the reduction of hepatic oxidative stress and inflammation through activation of Nrf2/HO-1 and inhibition of NF-κB signaling pathways. In summary, BHPs represent a valuable resource for hepatoprotective lead therapeutics which may offer new alternatives to treat liver diseases.
Collapse
Affiliation(s)
- Razina Rouf
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Puja Ghosh
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md. Raihan Uzzaman
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Dipto Kumer Sarker
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Fatima Tuz Zahura
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Ilias Muhammad
- National Center for Natural Products Research, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
5
|
Eldamaty HS, Elbasiouny H, Elmoslemany AM, Abd El-Maoula LM, El-Desoky OI, Rehan M, Abd El Moneim D, Zedan A. Protective Effect of Wheat and Barley Grass Against the Acute Toxicological Effects of the Concurrent Administration of Excessive Heavy Metals in Drinking Water on the Rats Liver and Brain. APPLIED SCIENCES 2021; 11:5059. [DOI: 10.3390/app11115059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Heavy metal contaminated water is a great concern because of its high toxiciy, non-biodegradability, and bioaccumulation. Therefore, non-contaminated water is fundamental for a healthy life. Special attention is paid to the health-promoting ingredients of germinated whole cereal products. This study aimed to (1) examine the potentially harmful effects of Cu, Mn, and Zn on rat livers and brains, and (2) the potentially protective action of wheat and barley grasses against the expected harmful effects of these metals. The rats were treated with water contaminated by heavy metals (HMs) and germinated wheat and barley for 60 days. The rat liver functions and histopathological examinations were analyzed. Comet assay was evaluated to assess the damage in the DNA of rat livers and brains. The results indicated a significant alteration in liver functions in rats exposed to HMs; however, wheat and barley grasses at high doses decreased the harmful effects. An insignificant difference was noticed in total protein, albumin, and globulin of rats treated with HMs compared with the control. A significant increase in the serum and liver levels of HMs was recorded; however, they were reduced by wheat and barley grasses. Rat livers treated with HMs exhibited severe histological effects. The groups treated with wheat and barley grasses showed a normal liver architecture. A significant increase in DNA damage in the livers and brains was observed in rats treated with HMs, which was reduced when treated with wheat and barley grasses. Thus, using germinated seeds is promising to avoid damaging of HMs.
Collapse
|
6
|
Man S, Yao J, Lv P, Liu Y, Yang L, Ma L. Curcumin-enhanced antitumor effects of sorafenib via regulating the metabolism and tumor microenvironment. Food Funct 2021; 11:6422-6432. [PMID: 32613952 DOI: 10.1039/c9fo01901d] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Curcumin, the main active ingredient of turmeric, is widely used as a kind of food additive and also displays a range of pharmacological activities, such as anti-inflammation, anti-tumor, liver and kidney protection, and so forth. Sorafenib was the first targeted agent against hepatocellular carcinoma (HCC), whose intolerance is related to the promotion of lipid synthesis and epithelial-to-mesenchymal transition (EMT) formation. In this study, biochemical analysis, immune cells composition, the tumor microenvironment, metabolomics, and relative metabolic enzymes and transporters were detected in H22-bearing mice treated with curcumin combined with sorafenib vs. control groups. It was found that curcumin protected against liver cancer progression through reducing the level of alpha fetoprotein in liver tissues, increasing the number of immune cells, like NK cells, inhibiting EMT via the regulation of IL-6/JAK/STAT3 and IL-1β/NF-κB pathways, suppressing anaerobic glycolysis through the inhibition of LDH and HIF-1α, and decreasing the lipid synthesis via the downregulation of FASN, and upregulated the serum HDL-C and mRNA levels of apoA1 in the sorafenib-treated mice. Furthermore, curcumin regulation of the disorder of glycolipid metabolism and EMT was also based on the PI3K/AKT pathway. A docking study was performed and proved the strong affinity between curcumin and the proteins of STAT3, FASN, and AKT. All in all, this experiment provided evidence for the addition of curcumin in the diet to enhance the antitumor efficacy of sorafenib through activating immune function, downregulating EMT, and reversing disorders of the metabolism.
Collapse
Affiliation(s)
- Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | | | | | | | | | | |
Collapse
|
7
|
Wang H, Luo J, Zhang Y, He D, Jiang R, Xie X, Yang Q, Li K, Xie J, Zhang J. Phospholipid/hydroxypropyl-β-cyclodextrin supramolecular complexes are promising candidates for efficient oral delivery of curcuminoids. Int J Pharm 2020; 582:119301. [DOI: 10.1016/j.ijpharm.2020.119301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022]
|
8
|
Mangwani N, Singh PK, Kumar V. Medicinal plants: Adjunct treatment to tuberculosis chemotherapy to prevent hepatic damage. J Ayurveda Integr Med 2019; 11:522-528. [PMID: 31679802 PMCID: PMC7772497 DOI: 10.1016/j.jaim.2019.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/29/2018] [Accepted: 02/18/2019] [Indexed: 02/07/2023] Open
Abstract
The effectiveness of herbs for the management of chemically induced hepatotoxicity has been discussed by many researchers. However, there is a paucity of compressive literature on the significance of hepatoprotective plants for the management of anti-TB drug induced toxicity. Anti-TB drugs have been reported to causes hepatic damage, due to which, many patients across the globe discontinued the treatment. Medicinal plants have multiple therapeutic effects. The assessment of biological activity of plants against Mycobacterium and its use for hepatic recovery provides an effective treatment approach. Traditionally used medicinal plants are the rich source of phytochemicals and secondary metabolites. These compounds can restore normal function, enzymatic activity and structure of hepatic cells against anti-TB drug induced hepatotoxicity. The present review covers comprehensive details on different hepatoprotective and antimycobacterial plants studied during past few decades so that potential adjuvants can be studied for Tuberculosis chemotherapy.
Collapse
Affiliation(s)
- Neelam Mangwani
- Value Addition Research and Development-Human Health, National Innovation Foundation-India, Grambharti, Mahudi Road, Gandhinagar, 382650, Gujarat, India
| | - Pawan Kumar Singh
- Value Addition Research and Development-Human Health, National Innovation Foundation-India, Grambharti, Mahudi Road, Gandhinagar, 382650, Gujarat, India.
| | - Vipin Kumar
- Value Addition Research and Development-Human Health, National Innovation Foundation-India, Grambharti, Mahudi Road, Gandhinagar, 382650, Gujarat, India
| |
Collapse
|
9
|
Wang C, Yang X, Zheng Q, Moe B, Li XF. Halobenzoquinone-Induced Developmental Toxicity, Oxidative Stress, and Apoptosis in Zebrafish Embryos. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10590-10598. [PMID: 30125093 DOI: 10.1021/acs.est.8b02831] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The developmental toxicity of water disinfection byproducts remains unclear. Here we report the study of halobenzoquinone (HBQ)-induced in vivo developmental toxicity and oxidative stress using zebrafish embryos as a model. Embryos were exposed to 0.5-10 μM of individual HBQs and 0.5-5 mM haloacetic acids for up to 120 h postfertilization (hpf). LC50 values of the HBQs at 24 hpf were 4.6-9.8 μM, while those of three haloacetic acids were up to 200 times higher at 1900-2600 μM. HBQ exposure resulted in significant developmental malformations in larvae, including failed inflation of the gas bladder, heart malformations, and curved spines. An increase in reactive oxygen species was observed, together with a decrease in superoxide dismutase activity and glutathione content. Additionally, the antioxidant N-acetyl-l-cysteine significantly mitigated all HBQ-induced effects, supporting that oxidative stress contributes to HBQ toxicity. Further experiments examined HBQ-induced effects on DNA and genes. HBQ exposure increased 8-hydroxydeoxyguanosine levels, DNA fragmentation, and apoptosis in larvae, with apoptosis induction related to changes in the gene expression of p53 and mdm2. These results suggest that HBQs are acutely toxic, causing oxidative damage and developmental toxicity to zebrafish larvae.
Collapse
Affiliation(s)
- Chang Wang
- Institute of Environment and Health , Jianghan University , Wuhan 430056 , China
| | - Xue Yang
- Institute of Environment and Health , Jianghan University , Wuhan 430056 , China
- School of Environmental Ecology and Biological Engineering , Wuhan Institute of Technology , Wuhan 430025 , China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Institute of Environment and Health , Jianghan University , Wuhan 430056 , China
| | - Birget Moe
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G3
- Alberta Centre for Toxicology, Department of Physiology and Pharmacology, Faculty of Medicine , University of Calgary , Calgary , Alberta , Canada T2N 4N1
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G3
| |
Collapse
|
10
|
Nepali S, Ki HH, Lee JH, Lee HY, Kim DK, Lee YM. Wheatgrass-Derived Polysaccharide Has Antiinflammatory, Anti-Oxidative and Anti-Apoptotic Effects on LPS-Induced Hepatic Injury in Mice. Phytother Res 2017; 31:1107-1116. [DOI: 10.1002/ptr.5835] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/28/2017] [Accepted: 04/23/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Sarmila Nepali
- Department of Immunology and Institute of Medical Sciences, Medical School; Chonbuk National University; Jeonju Jeonbuk 54907 Korea
| | - Hyeon-Hui Ki
- Department of Immunology and Institute of Medical Sciences, Medical School; Chonbuk National University; Jeonju Jeonbuk 54907 Korea
| | - Ji-Hyun Lee
- Department of Immunology and Institute of Medical Sciences, Medical School; Chonbuk National University; Jeonju Jeonbuk 54907 Korea
| | - Hoon-Yeon Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute; Wonkwang University; Iksan Jeonbuk 54538 Korea
| | - Dae-Ki Kim
- Department of Immunology and Institute of Medical Sciences, Medical School; Chonbuk National University; Jeonju Jeonbuk 54907 Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute; Wonkwang University; Iksan Jeonbuk 54538 Korea
| |
Collapse
|
11
|
Qiu P, Sun J, Man S, Yang H, Ma L, Yu P, Gao W. Curcumin Attenuates N-Nitrosodiethylamine-Induced Liver Injury in Mice by Utilizing the Method of Metabonomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2000-2007. [PMID: 28198625 DOI: 10.1021/acs.jafc.6b04797] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
N-Nitrosodiethylamine (DEN) exists as a food additive in cheddar cheese, processed meats, beer, water, and so forth. It is a potent hepatocarcinogen in animals and humans. Curcumin as a natural dietary compound decreased DEN-induced hepatocarcinogenesis in this research. According to the histopathological examination of liver tissues and biomarker detection in serum and livers, it was demonstrated that curcumin attenuated DEN-induced hepatocarcinogenesis through parts of regulating the oxidant stress enzymes (T-SOD and CAT), liver function (ALT and AST) and LDHA, AFP level, and COX-2/PGE2 pathway. Furthermore, curcumin attenuated metabolic disorders via increasing concentration of glucose and fructose, and decreasing levels of glycine and proline, and mRNA expression of GLUT1, PKM and FASN. Docking study indicated that curcumin presented strong affinity with key metabolism enzymes such as GLUT1, PKM, FASN and LDHA. There were a number of amino acid residues involved in curcumin-targeting enzymes of hydrogen bonds and hydrophobic interactions. All in all, curcumin exhibited a potent liver protective agent inhibiting chemically induced liver injury through suppressing liver cellular metabolism in the prospective application.
Collapse
Affiliation(s)
- Peiyu Qiu
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Jiachen Sun
- Tianjin University of Traditional Chinese Medicine , Tianjin 300193, China
| | - Shuli Man
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - He Yang
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Long Ma
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Peng Yu
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072, China
| |
Collapse
|
12
|
The acute exposure of tetrachloro-p-benzoquinone (a.k.a. chloranil) triggers inflammation and neurological dysfunction via Toll-like receptor 4 signaling: The protective role of melatonin preconditioning. Toxicology 2017; 381:39-50. [PMID: 28238930 DOI: 10.1016/j.tox.2017.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 02/06/2023]
Abstract
This study is aimed to investigate the inflammation and neurological dysfunction induced by tetrachloro-p-benzoquinone (TCBQ) through Toll-like receptor 4 (TLR4) signaling. We also investigated the protective role of melatonin as an antioxidant and anti-inflammatory agent. In vitro model was established by rat pheochromocytoma PC12 cells, meanwhile, TLR4 wild-type (C57BL/6) and knockout mice (C57BL/10ScNJ TLR4-/-) were used as in vivo model. In vitro study showed TCBQ exposure enhanced the expression of TLR4, myeloid differentiation factor 88 (MyD88) at both transcriptional and post-transcriptional levels. By contrast, melatonin decreased TLR4 and MyD88 expressions. Moreover, our result indicated that melatonin disrupted the formation of TLR4/MyD88/MD2/CD14 complex. In addition, melatonin terminated TCBQ-mediated phosphorylation of c-Jun N-terminal kinase (JNK), p38, and extracellular regulated protein kinase (ERK) signaling and hampered its downstream pro-inflammatory cytokine releases. In vivo result also indicated TLR4 deficiency partially protected against TCBQ-induced morphological and neuropathological changes in mice brain, suggested the role of TLR4. In conclusion, melatonin modulates TCBQ-mediated inflammatory genes through TLR4/MyD88-dependent signaling pathway. Our current study, to the best of our knowledge, is the first time show melatonin not only disrupt the binding of TLR4 and MyD88, but also restricted the formation of TLR4/MD2/CD14 complex, suggesting that melatonin supplementary may represent a valuable therapeutic strategy for inflammatory neurological dysfunction.
Collapse
|
13
|
Li S, Hong M, Tan HY, Wang N, Feng Y. Insights into the Role and Interdependence of Oxidative Stress and Inflammation in Liver Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4234061. [PMID: 28070230 PMCID: PMC5192343 DOI: 10.1155/2016/4234061] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023]
Abstract
The crucial roles of oxidative stress and inflammation in the development of hepatic diseases have been unraveled and emphasized for decades. From steatosis to fibrosis, cirrhosis and liver cancer, hepatic oxidative stress, and inflammation are sustained and participated in this pathological progressive process. Notably, increasing evidences showed that oxidative stress and inflammation are tightly related, which are regarded as essential partners that present simultaneously and interact with each other in various pathological conditions, creating a vicious cycle to aggravate the hepatic diseases. Clarifying the interaction of oxidative stress and inflammation is of great importance to provide new directions and targets for developing therapeutic intervention. Herein, this review is concerned with the regulation and interdependence of oxidative stress and inflammation in a variety of liver diseases. In addition to classical mediators and signaling, particular emphasis is placed upon immune suppression, a potential linkage of oxidative stress and inflammation, to provide new inspiration for the treatment of liver diseases. Furthermore, since antioxidation and anti-inflammation have been extensively attempted as the strategies for treatment of liver diseases, the application of herbal medicines and their derived compounds that protect liver from injury via regulating oxidative stress and inflammation collectively were reviewed and discussed.
Collapse
Affiliation(s)
- Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ming Hong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
14
|
Man S, Li J, Liu J, Chai H, Liu Z, Wang J, Gao W. Curcumin alleviated the toxic reaction of Rhizoma Paridis saponins in a 45-day subchronic toxicological assessment of rats. ENVIRONMENTAL TOXICOLOGY 2016; 31:1935-1943. [PMID: 26390842 DOI: 10.1002/tox.22194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/30/2015] [Accepted: 09/02/2015] [Indexed: 06/05/2023]
Abstract
Rhizoma Paridis saponins (RPS), as steroid saponins, are the main components in Paris polyphylla. Curcumin (diferuloylmethane) is the most important component in the spice turmeric. In our previous research, RPS exhibited side effects such as nausea, vomiting, diarrhea, and so forth. Combination with curcumin not only alleviated the toxicity and gastric stimulus induced by RPS, but also improved the quality life of mice bearing tumor cells and enhanced their anticancer effect. This study evaluated subchronic toxicity of 45th dietary of RPS and curcumin on histopathology, biochemistry, and antioxidant index. As a result, RPS-treatment caused a slight liver injury (the elevation of serum AST, alkaline phosphatase (AKP), alanine transaminase (ALT), and gamma glutamyl transpeptidase (γ-GT), histopathological changes in liver section), oxidative stress (the enhancement of reactive oxygen species (ROS), malondialdehyde (MDA), and 8-hydroxy-2-deoxyguanosine (8-OHdG), separation of thioredoxin (Trx) and thioredoxin-interacting protein (TXNIP), but enhancement of heme oxygenase-1 (HO-1), glutathione S-transferase (GST), and nuclear factor-regulated factor 2 (Nrf2)), and inflammation (up-regulation of cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), and nuclear factor kappaB (NF-κB)). However, these changes were alleviated through co-treatment with curcumin. In conclusion, our work provided useful data for further research and new drug exploration of RPS and curcumin. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1935-1943, 2016.
Collapse
Affiliation(s)
- Shuli Man
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jing Li
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jing Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Hongyan Chai
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zhen Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jiaming Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wenyuan Gao
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
15
|
Chin KY. The spice for joint inflammation: anti-inflammatory role of curcumin in treating osteoarthritis. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3029-3042. [PMID: 27703331 PMCID: PMC5036591 DOI: 10.2147/dddt.s117432] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Osteoarthritis is a degenerative disease of the joint affecting aging populations worldwide. It has an underlying inflammatory cause, which contributes to the loss of chondrocytes, leading to diminished cartilage layer at the affected joints. Compounds with anti-inflammatory properties are potential treatment agents for osteoarthritis. Curcumin derived from Curcuma species is an anti-inflammatory compound as such. This review aims to summarize the antiosteoarthritic effects of curcumin derived from clinical and preclinical studies. Many clinical trials have been conducted to determine the effectiveness of curcumin in osteoarthritic patients. Extracts of Curcuma species, curcuminoids and enhanced curcumin, were used in these studies. Patients with osteoarthritis showed improvement in pain, physical function, and quality of life after taking curcumin. They also reported reduced concomitant usage of analgesics and side effects during treatment. In vitro studies demonstrated that curcumin could prevent the apoptosis of chondrocytes, suppress the release of proteoglycans and metal metalloproteases and expression of cyclooxygenase, prostaglandin E-2, and inflammatory cytokines in chondrocytes. These were achieved by blocking the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) system in the chondrocytes, by preventing the activation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, phosphorylation, and translocation of the p65 subunit of NF-κB complexes into the nucleus. In conclusion, curcumin is a potential candidate for the treatment of osteoarthritis. More well-planned randomized control trials and enhanced curcumin formulation are required to justify the use of curcumin in treating osteoarthritis.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Malaysia
| |
Collapse
|
16
|
Farkhondeh T, Samarghandian S. The hepatoprotective effects of curcumin against drugs and toxic agents: an updated review. TOXIN REV 2016. [DOI: 10.1080/15569543.2016.1215333] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Liu Z, Shi Q, Song X, Wang Y, Wang Y, Song E, Song Y. Activating Transcription Factor 4 (ATF4)-ATF3-C/EBP Homologous Protein (CHOP) Cascade Shows an Essential Role in the ER Stress-Induced Sensitization of Tetrachlorobenzoquinone-Challenged PC12 Cells to ROS-Mediated Apoptosis via Death Receptor 5 (DR5) Signaling. Chem Res Toxicol 2016; 29:1510-8. [PMID: 27484784 DOI: 10.1021/acs.chemrestox.6b00181] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetrachlorobenzoquinone (TCBQ) is a downstream metabolite of pentachlorophenol (PCP). Previously, we demonstrated that TCBQ caused cytotoxicity due to mitochondrial-related apoptosis. Here, we confirmed the upregulation of death receptor 5 (DR5) followed by the construction of the death-inducing signaling complex (DISC). We also detected the activation of the caspase cascade, which was correlated with TCBQ-induced apoptotic cell death in PC12 cells. The upregulation of DR5 included transcriptional activation and de novo protein synthesis in response to TCBQ. We also identified the endoplasmic reticulum (ER) as a new target for the TCBQ challenge in PC12 cells. The protein kinase R-like ER kinase/eukaryotic translation initiation factor 2α (PERK/eIF2α)-mediated activating transcription factor 4 (ATF4)-ATF3-C/EBP homologous protein (CHOP) signaling pathway contributed to the process of TCBQ-induced ER stress. Blocking ATF4, ATF3, or CHOP signaling by gene silencing technology resulted in decreased cell apoptosis after exposure to TCBQ. Finally, NAC ameliorated TCBQ-induced apoptosis and ER stress, which illustrated that TCBQ-induced apoptosis is somehow ROS-dependent. In summary, this study provided important mechanistic insight into how TCBQ utilizes ER stress-related signaling to exhibit pro-apoptotic activity in PC12 cells.
Collapse
Affiliation(s)
- Zixuan Liu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, People's Republic of China , 400715
| | - Qiong Shi
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, People's Republic of China , 400715
| | - Xiufang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, People's Republic of China , 400715
| | - Yuxin Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, People's Republic of China , 400715
| | - Yawen Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, People's Republic of China , 400715
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, People's Republic of China , 400715
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing, People's Republic of China , 400715
| |
Collapse
|
18
|
Fu J, Shi Q, Song X, Liu Z, Wang Y, Wang Y, Song E, Song Y. From the Cover: Tetrachlorobenzoquinone Exerts Neurological Proinflammatory Activity by Promoting HMGB1 Release, Which Induces TLR4 Clustering within the Lipid Raft. Toxicol Sci 2016; 153:303-15. [DOI: 10.1093/toxsci/kfw124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Liao Y, Zou X, Wang C, Zhao X. Insect tea extract attenuates CCl 4-induced hepatic damage through its antioxidant capacities in ICR mice. Food Sci Biotechnol 2016; 25:581-587. [PMID: 30263309 DOI: 10.1007/s10068-016-0081-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 12/22/2015] [Accepted: 01/13/2016] [Indexed: 12/16/2022] Open
Abstract
The Insect tea extract (ITE) contained many polyphenols, the aim of the present study was to determine the preventive effects of ITE on CCl4-induced hepatic damage in mice. ITE treated mice could reduce hepatic injury compared to the control mice. The 200 mg/kg ITE increased TC, ALB, SOD, CAT, GSH-Px serum levels, and decreased ALT, AST, ALP, TG, BUN, NO, MDA levels compared to the control group. By histological observation, ITE reduced injury to hepatic cells, and these effects were close to that seen with the drug silymarin. The antioxidant related mRNA and protein expressions of Mn SOD, Gu/Zn SOD, CAT, and GSH-Px increased with ITE treatment in hepatic damage mice. ITE treated mice also showed higher IκB-α mRNA and protein expression, and lower NF-κB-p65, iNOS, COX-2 expressions than those of control mice. These results proved ITE has a prophylactic effect in protecting against hepatic injury through the antioxidant capacities.
Collapse
Affiliation(s)
- Yuanjiang Liao
- Department of Nephrology, The Ninth People's Hospital of Chongqing, Chongqing, 400700 China
| | - Xiaochuan Zou
- 2Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067 China.,3Chongqing Collaborative Innovation Center of Functional Food, Chongqing University of Education, Chongqing, 400067 China.,4Chongqing Engineering Technology Research Center for Functional Food, Chongqing University of Education, Chongqing, 400067 China.,5Chongqing Engineering Laboratory of Functional Food, Chongqing University of Education, Chongqing, 400067 China
| | - Cun Wang
- 2Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067 China.,3Chongqing Collaborative Innovation Center of Functional Food, Chongqing University of Education, Chongqing, 400067 China.,4Chongqing Engineering Technology Research Center for Functional Food, Chongqing University of Education, Chongqing, 400067 China.,5Chongqing Engineering Laboratory of Functional Food, Chongqing University of Education, Chongqing, 400067 China
| | - Xin Zhao
- 2Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067 China.,3Chongqing Collaborative Innovation Center of Functional Food, Chongqing University of Education, Chongqing, 400067 China.,4Chongqing Engineering Technology Research Center for Functional Food, Chongqing University of Education, Chongqing, 400067 China.,5Chongqing Engineering Laboratory of Functional Food, Chongqing University of Education, Chongqing, 400067 China
| |
Collapse
|
20
|
Xia X, Shi Q, Song X, Fu J, Liu Z, Wang Y, Wang Y, Su C, Song E, Song Y. Tetrachlorobenzoquinone Stimulates NLRP3 Inflammasome-Mediated Post-Translational Activation and Secretion of IL-1β in the HUVEC Endothelial Cell Line. Chem Res Toxicol 2016; 29:421-9. [DOI: 10.1021/acs.chemrestox.6b00021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaomin Xia
- Key Laboratory
of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Qiong Shi
- Key Laboratory
of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Xiufang Song
- Key Laboratory
of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Juanli Fu
- Key Laboratory
of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Zixuan Liu
- Key Laboratory
of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yawen Wang
- Key Laboratory
of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yuxin Wang
- Key Laboratory
of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Chuanyang Su
- Key Laboratory
of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Erqun Song
- Key Laboratory
of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yang Song
- Key Laboratory
of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
21
|
Evaluating the Effects of Tetrachloro-1,4-benzoquinone, an Active Metabolite of Pentachlorophenol, on the Growth of Human Breast Cancer Cells. J Toxicol 2016; 2016:8253726. [PMID: 26981120 PMCID: PMC4769760 DOI: 10.1155/2016/8253726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 11/18/2022] Open
Abstract
Tetrachloro-1,4-benzoquinone (TCBQ), an active metabolite of pentachlorophenol (PCP), is genotoxic and potentially carcinogenic. As an electrophilic and oxidative molecule, TCBQ can conjugate with deoxyguanosine in DNA molecules and/or impose oxidative stress in cells. In the current study, we investigated the effects of TCBQ on intracellular ROS production, apoptosis, and cytotoxicity against three different subtypes of human breast cancer cells. Luminal A subtype MCF7 (ER+, PR+, HER2−) cells maintained the highest intracellular ROS level and were subjected to TCBQ-induced ROS reduction, apoptosis, and cytotoxicity. HER2 subtype Sk-Br-3 (ER−, PR−, HER2+) cells possessed the lowest intracellular ROS level. TCBQ promoted ROS production, inhibited apoptosis, and elevated cytotoxicity (due to necrosis) against Sk-Br-3 cells. Triple-negative/basal-like subtype MDA-MB-231 cells were less sensitive towards TCBQ treatment. Therefore, the effect of prolonged exposure to PCP and its active metabolites on cancer growth is highly cancer-cell-type specific.
Collapse
|
22
|
Liu L, Shang Y, Li M, Han X, Wang J, Wang J. Curcumin ameliorates asthmatic airway inflammation by activating nuclear factor-E2-related factor 2/haem oxygenase (HO)-1 signalling pathway. Clin Exp Pharmacol Physiol 2016; 42:520-9. [PMID: 25739561 DOI: 10.1111/1440-1681.12384] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 12/27/2022]
Abstract
Previous studies have shown that curcumin alleviates asthma in vivo. However, the relationship between curcumin and the nuclear factor-E2-related factor 2 (Nrf2)/haem oxygenase (HO)-1 pathway in asthma treatment remains unknown. The aim of the present study was to investigate the mechanisms of curcumin involved in the amelioration of airway inflammation in a mouse asthma model. Curcumin was administrated to asthmatic mice, and bronchoalveolar lavage fluid was collected. Inflammatory cell infiltration was measured by Giemsa staining. Immunoglobulin E production in bronchoalveolar lavage fluid was measured by enzyme-linked immunosorbent assay. Histological analyses were evaluated with haematoxylin-eosin and periodic acid-Schiff staining. Airway hyperresponsiveness was examined by whole-body plethysmography. Nuclear factor-E2-related factor 2, HO-1, nuclear factor-κB and inhibitory κB/p-inhibitory κB levels in lung tissues were detected by western blot, and Nrf2 activity was measured by electrophoretic mobility shift assay. Tumour necrosis factor-α, interleukin (IL)-1β, and IL-6 levels in the small interfering RNA-transfected cells were detected by enzyme-linked immunosorbent assay. Curcumin treatment significantly reduced immunoglobulin E production, attenuated inflammatory cell accumulation and goblet cell hyperplasia, and ameliorated mucus secretion and airway hyperresponsiveness. Nuclear factor-E2-related factor 2 and HO-1 levels in lung tissues were significantly increased. Meanwhile, Nrf2 activity was enhanced. Nuclear factor-κB and p-inhibitory κB levels were elevated in the lung tissue of ovalbumin-challenged mice. Both were restored to normal levels after curcumin treatment. Haem oxygenase-1 and nuclear Nrf2 levels were enhanced in dose- and time-dependent manners in curcumin-treated RAW264.7 cells. Curcumin blocked lipopolysaccharide-upregulated expression of tumour necrosis factor-α, IL-1β, and IL-6. After the cells were transfected with HO-1 or Nrf2 small interfering RNA, lipopolysaccharide-induced pro-inflammation cytokine expression was significantly restored. In summary, curcumin might alleviate airway inflammation in asthma through the Nrf2/HO-1 pathway, potentially making it an effective drug in asthma treatment.
Collapse
Affiliation(s)
- Liyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
23
|
Fu J, Shi Q, Song X, Xia X, Su C, Liu Z, Song E, Song Y. Tetrachlorobenzoquinone exhibits neurotoxicity by inducing inflammatory responses through ROS-mediated IKK/IκB/NF-κB signaling. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:241-250. [PMID: 26745386 DOI: 10.1016/j.etap.2015.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
Tetrachlorobenzoquinone (TCBQ) is a joint metabolite of persistent organic pollutants (POPs), hexachlorobenzene (HCB) and pentachlorophenol (PCP). Previous studies have been reported that TCBQ contributes to acute hepatic damage due to its pro-oxidative nature. In the current study, TCBQ showed the highest capacity on the cytotoxicity, ROS formation and inflammatory cytokines release among four compounds, i.e., HCB, PCP, tetrachlorohydroquinone (TCHQ, reduced form of TCBQ) and TCBQ, in PC 12 cells. Further mechanistic study illustrated TCBQ activates nuclear factor-kappa B (NF-κB) signaling. The activation of NF-κB was identified by measuring the protein expressions of inhibitor of nuclear factor kappa-B kinase (IKK) α/β, p-IKKα/β, an inhibitor of NF-κB (IκB) α, p-IκBα, NF-κB (p65) and p-p65. The translocation of NF-κB was assessed by Western blotting of p65 in nuclear/cytosolic fractions, electrophoretic mobility shift assay (EMSA) and luciferase reporter gene assay. In addition, TCBQ significantly induced protein and mRNA expressions of inflammatory cytokines and mediators, such as interleukin-1 beta (IL-1β), IL-6, tumor necrosis factor-alpha (TNF-α), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and the production of nitric oxide (NO) and prostaglandin E2 (PGE2). Pyrrolidine dithiocarbamate (PDTC), a specific NF-κB inhibitor inhibited these effects efficiently, further suggested TCBQ-induced inflammatory responses involve NF-κB signaling. Moreover, antioxidants, i.e., N-acetyl-l-cysteine (NAC), Vitamin E and curcumin, ameliorated TCBQ-induced ROS generation as well as the activation of NF-κB, which implied that ROS serve as the upstream molecule of NF-κB signaling. In summary, TCBQ exhibits a neurotoxic effect by inducing oxidative stress-mediated inflammatory responses via the activation of IKK/IκB/NF-κB pathway in PC12 cells.
Collapse
Affiliation(s)
- Juanli Fu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Qiong Shi
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Xiufang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Xiaomin Xia
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Chuanyang Su
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Zixuan Liu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China.
| |
Collapse
|
24
|
Domitrović R, Potočnjak I. A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives. Arch Toxicol 2015; 90:39-79. [DOI: 10.1007/s00204-015-1580-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
|
25
|
Hu L, Su C, Song X, Shi Q, Fu J, Xia X, Xu D, Song E, Song Y. Tetrachlorobenzoquinone triggers the cleavage of Bid and promotes the cross-talk of extrinsic and intrinsic apoptotic signalings in pheochromocytoma (PC) 12 cells. Neurotoxicology 2015; 49:149-57. [DOI: 10.1016/j.neuro.2015.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/14/2015] [Accepted: 06/15/2015] [Indexed: 12/01/2022]
|
26
|
Su C, Zhang P, Song X, Shi Q, Fu J, Xia X, Bai H, Hu L, Xu D, Song E, Song Y. Tetrachlorobenzoquinone Activates Nrf2 Signaling by Keap1 Cross-Linking and Ubiquitin Translocation but Not Keap1-Cullin3 Complex Dissociation. Chem Res Toxicol 2015; 28:765-74. [DOI: 10.1021/tx500513v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chuanyang Su
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Pu Zhang
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Xiufang Song
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Qiong Shi
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Juanli Fu
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Xiaomin Xia
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Huiyuan Bai
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Lihua Hu
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Demei Xu
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Erqun Song
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yang Song
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
27
|
Zhang P, Bai H, Liu G, Wang H, Chen F, Zhang B, Zeng P, Wu C, Peng C, Huang C, Song Y, Song E. MicroRNA-33b, upregulated by EF24, a curcumin analog, suppresses the epithelial-to-mesenchymal transition (EMT) and migratory potential of melanoma cells by targeting HMGA2. Toxicol Lett 2015; 234:151-61. [PMID: 25725129 DOI: 10.1016/j.toxlet.2015.02.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/16/2015] [Accepted: 02/24/2015] [Indexed: 12/21/2022]
Abstract
Diphenyl difluoroketone (EF24), a curcumin analog, exhibits potent anti-tumor activities by arresting cell cycle and inducing apoptosis. However, the efficacy and modes of action of EF24 on melanoma metastasis remain elusive. In this study, we found that at non-cytotoxic concentrations, EF24 suppressed cell motility and epithelial-to-mesenchymal Transition (EMT) of melanoma cell lines, Lu1205 and A375. EF24 also suppressed HMGA2 expression at mRNA and protein levels. miR-33b directly bound to HMGA2 3' untranslated region (3'-UTR) to suppress its expression as measured by dual-luciferase assay. EF24 increased expression of E-cadherin and decreased STAT3 phosphorylation and expression of the mesenchymal markers, vimentin and N-cadherin. miR-33b inhibition or HMGA2 overexpression reverted EF24-mediated suppression of EMT phenotypes. In addition, EF24 modulated the HMGA2-dependent actin stress fiber formation, focal adhesion assembly and FAK, Src and RhoA activation by targeting miR-33b. Thus, the results suggest that EF24 suppresses melanoma metastasis via upregulating miR-33b and concomitantly reducing HMGA2 expression. The observed activities of EF24 support its further evaluation as an anti-metastatic agent in melanoma therapy.
Collapse
Affiliation(s)
- Pu Zhang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University),Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China; Department of Bioengineering, Pennsylvania State University, University Park, PA 16801, United States.
| | - Huiyuan Bai
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University),Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Gentao Liu
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai 200433, People's Republic of China
| | - Heyong Wang
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai 200433, People's Republic of China
| | - Feng Chen
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University),Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Baoshun Zhang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University),Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Panying Zeng
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University),Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Chengxiang Wu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University),Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Cong Peng
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University),Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Changjin Huang
- Institute of Pathology, Third Military Medical University, Chongqing 400038, People's Republic of China; Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University),Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University),Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|