1
|
Al-Saidi A, Alzaim IF, Hammoud SH, Al Arab G, Abdalla S, Mougharbil N, Eid AH, El-Yazbi AF. Interruption of perivascular and perirenal adipose tissue thromboinflammation rescues prediabetic cardioautonomic and renovascular deterioration. Clin Sci (Lond) 2024; 138:289-308. [PMID: 38381744 DOI: 10.1042/cs20231186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
The cardiovascular and renovascular complications of metabolic deterioration are associated with localized adipose tissue dysfunction. We have previously demonstrated that metabolic impairment delineated the heightened vulnerability of both the perivascular (PVAT) and perirenal adipose tissue (PRAT) depots to hypoxia and inflammation, predisposing to cardioautonomic, vascular and renal deterioration. Interventions either addressing underlying metabolic disturbances or halting adipose tissue dysfunction rescued the observed pathological and functional manifestations. Several lines of evidence implicate adipose tissue thromboinflammation, which entails the activation of the proinflammatory properties of the blood clotting cascade, in the pathogenesis of metabolic and cardiovascular diseases. Despite offering valuable tools to interrupt the thromboinflammatory cycle, there exists a significant knowledge gap regarding the potential pleiotropic effects of anticoagulant drugs on adipose inflammation and cardiovascular function. As such, a systemic investigation of the consequences of PVAT and PRAT thromboinflammation and its interruption in the context of metabolic disease has not been attempted. Here, using an established prediabetic rat model, we demonstrate that metabolic disturbances are associated with PVAT and PRAT thromboinflammation in addition to cardioautonomic, vascular and renal functional decline. Administration of rivaroxaban, a FXa inhibitor, reduced PVAT and PRAT thromboinflammation and ameliorated the cardioautonomic, vascular and renal deterioration associated with prediabetes. Our present work outlines the involvement of PVAT and PRAT thromboinflammation during early metabolic derangement and offers novel perspectives into targeting adipose tissue thrombo-inflammatory pathways for the management its complications in future translational efforts.
Collapse
Affiliation(s)
- Aya Al-Saidi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ibrahim F Alzaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Safaa H Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Ghida Al Arab
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samaya Abdalla
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nahed Mougharbil
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ahmed F El-Yazbi
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy and Research and Innovation Hub, Alamein International University, Alamein, Matrouh, Egypt
| |
Collapse
|
2
|
Yang M, Du D, Zhu F, Qin H. Metabolic network and proteomic expression perturbed by cyclosporine A to model microbe Escherichia coli. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132975. [PMID: 38044020 DOI: 10.1016/j.jhazmat.2023.132975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023]
Abstract
Cyclosporine A (CsA) is a model drug that has caused great concern due to its widespread use and abuse in the environment. However, the potential harm of CsA to organisms also remains largely unknown, and this issue is exceptionally important for the health risk assessment of antibiotics. To address this concern, the crosstalk between CsA stress and cellular metabolism at the proteomic level in Escherichia coli was investigated and dissected in this study. The results showed that CsA inhibited E. coli growth in a time-dependent manner. CsA induced reactive oxygen species (ROS) overproduction in a dose- and time-dependent manner, leading to membrane depolarization followed by cell apoptosis. In addition, translation, the citric acid cycle, amino acid biosynthesis, glycolysis and responses to oxidative stress and heat were the central metabolic pathways induced by CsA stress. The upregulated proteins, including PotD, PotF and PotG, controlled cell growth. The downregulated proteins, including SspA, SspB, CstA and DpS, were regulators of self-feedback during the starvation process. And the up- and downregulated proteins, including AtpD, Adk, GroS, GroL and DnaK, controlled energy production. These results provide an important reference for the environmental health risk assessment of CsA.
Collapse
Affiliation(s)
- Meng Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fang Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huaming Qin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Nourmohammadi K, Bayrami A, Naderi R, Shirpoor A, Soraya H. Moderate exercise mitigates cardiac dysfunction and injury induced by cyclosporine A through activation of the PGI 2 / PPAR-γ signaling pathway. Res Pharm Sci 2023; 18:696-707. [PMID: 39005570 PMCID: PMC11246107 DOI: 10.4103/1735-5362.389958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose The present study investigated the role of the prostaglandin I2/peroxisome proliferator activator receptor (PGI2/PPAR) signaling pathway in cardiac cell proliferation, apoptosis, and systemic hemodynamic variables under cyclosporine A (CsA) exposure alone or combined with moderate exercises. Experimental approach Twenty-four male Wistar rats were classified into three groups, namely, control, CsA, and CsA + exercise. Findings/Results After 42 days of treatment, the findings showed a significant enhancement in the expression of the β-MHC gene, enhancement in protein expression of Bax and caspase-3, and a significant decline in the protein expression of Bcl-2 expression, as well as increased proliferation intensity in the heart tissue of the CsA group compared to the control group. Systolic pressure, pulse pressure, mean arterial pressure (MAP), QT and QRS duration, and T wave amplitude, as well as QTc amount in the CsA group, showed a significant increase compared to the control group. PPAR-γ and PGI2 showed no significant changes compared to the control group. Moderate exercise along with CsA significantly enhanced the protein expression of PPAR-γ and PGI2 and declined protein expression of Bax, and caspase-3 compared to those in the CsA group. In the CsA + exercise group, systolic pressure, MAP, and Twave showed a significant decrease compared to the CsA group. Moderate exercises along CsA improved heart cell proliferation intensity and significantly reduced β- MHC gene expression compared to the CsA group. Conclusions and implications The results showed moderate exercise alleviated CsA-induced heart tissue apoptosis and proliferation with the corresponding activation of the PGI2/PPAR-γ pathway.
Collapse
Affiliation(s)
- Khatereh Nourmohammadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Abolfazl Bayrami
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Roya Naderi
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Shirpoor
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamid Soraya
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Jiang LP, Zhu T, Tang K, Wu Y, Fu M, Ji JZ, Mi QY, Ge PX, Zhao XH, Tai T, Xie HG. Enhanced metabolic activation of and platelet response to clopidogrel in T cell-deficient mice through induction of Cyp2c and Cyp3a and inhibition of Ces1. J Thromb Haemost 2023; 21:1322-1335. [PMID: 36738827 DOI: 10.1016/j.jtha.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/15/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND T cells and platelets reciprocally coordinate mutual functions through crosstalk or interaction. However, it is not known whether metabolic activation of and platelet response to clopidogrel could be changed if T cells were deficient or impaired in some cases and, if any, how it would work. OBJECTIVES The objective of this study was to dissect the potential changes in platelet responses to and metabolic activation of clopidogrel in the case of T cell deficiency and to elucidate their mechanisms involved. METHODS BALB/c athymic nude mice or euthymic mice (controls) pretreated with cyclosporine A (CsA), thymosin α1 (Tα1), or their combination were used to investigate the changes in ADP-induced platelet activation and aggregation, systemic exposure of clopidogrel and its metabolites, and mRNA/protein expression and activity levels of clopidogrel-metabolizing enzymes in the liver, respectively. RESULTS Nude mice exhibited significantly enhanced antiplatelet effects of clopidogrel due to increased formation of clopidogrel active metabolite in the liver, where the enzyme activity levels of Cyp2c and Cyp3a were significantly elevated compared with control mice. Furthermore, the effects of CsA pretreatment on the metabolism of clopidogrel in euthymic mice were identical to those seen in athymic mice. As expected, concomitant use of Tα1 reversed all the observed effects of CsA on clopidogrel metabolism and relevant metabolic enzymes. CONCLUSIONS T cell deficiency or suppression enhances the antiplatelet effects of clopidogrel due to the boosted metabolic activation of clopidogrel in the liver through a dramatic induction of Cyp2c and Cyp3a in mice, suggesting that the metabolism of substrate drugs of Cyp2c and Cyp3a may be enhanced by T cell impairment.
Collapse
Affiliation(s)
- Li-Ping Jiang
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ting Zhu
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ke Tang
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu Wu
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Min Fu
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jin-Zi Ji
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qiong-Yu Mi
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng-Xin Ge
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiang-Hong Zhao
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ting Tai
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Hong-Guang Xie
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Department of Clinical Pharmacy, Nanjing Medical University School of Pharmacy, Nanjing, China.
| |
Collapse
|
5
|
Zhiqiang LEI, Chaoping WANG, Naeem A, Ning YIN, Meifang CAO, Jing LUO. Mechanism of volatile oil from Chuanxiong (Chuanxiong Rhizoma) - Suhexiang (Styrax) - Bingpian (Borneolum) in treating angina pectoris based on network pharmacology and its protective effects on myocardial damage in rats. DIGITAL CHINESE MEDICINE 2021. [DOI: 10.1016/j.dcmed.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
Habib YH, Gowayed MA, Abdelhady SA, El-Deeb NM, Darwish IE, El-Mas MM. Modulation by antenatal therapies of cardiovascular and renal programming in male and female offspring of preeclamptic rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:2273-2287. [PMID: 34468816 DOI: 10.1007/s00210-021-02146-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022]
Abstract
Morbidity and mortality risks are enhanced in preeclamptic (PE) mothers and their offspring. Here, we asked if sexual dimorphism exists in (i) cardiovascular and renal damage evolved in offspring of PE mothers, and (ii) offspring responsiveness to antenatal therapies. PE was induced by administering NG-nitro-L-arginine methyl ester (L-NAME, 50 mg/kg/day, oral gavage) to pregnant rats for 7 days starting from gestational day 14. Three therapies were co-administered orally with L-NAME, atrasentan (endothelin ETA receptor antagonist), terutroban (thromboxane A2 receptor antagonist, TXA2), or α-methyldopa (α-MD, central sympatholytic drug). Cardiovascular and renal profiles were assessed in 3-month-old offspring. Compared with offspring of non-PE rats, PE offspring exhibited elevated systolic blood pressure and proteinuria and reduced heart rate and creatinine clearance (CrCl). Apart from a greater bradycardia in male offspring, similar PE effects were noted in male and female offspring. While terutroban, atrasentan, or α-MD partially and similarly blunted the PE-evoked changes in CrCl and proteinuria, terutroban was the only drug that virtually abolished PE hypertension. Rises in cardiorenal inflammatory (tumor necrosis factor alpha, TNFα) and oxidative (isoprostane) markers were mostly and equally eliminated by all therapies in the two sexes, except for a greater dampening action of atrasentan, compared with α-MD, on tissue TNFα in female offspring only. Histopathologically, antenatal terutroban or atrasentan was more effective than α-MD in rectifying cardiac structural damage, myofiber separation, and cytoplasmic alterations, in PE offspring. The repair by antenatal terutroban or atrasentan of cardiovascular and renal anomalies in PE offspring is mostly sex-independent and surpasses the protection offered by α-MD, the conventional PE therapy.
Collapse
Affiliation(s)
- Yasser H Habib
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Sherien A Abdelhady
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Nevine M El-Deeb
- Department of Clinical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Inas E Darwish
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait.
| |
Collapse
|
7
|
Elzokm SS, Fouda MA, Abdel Moneim RA, El-Mas MM. Distinct effects of calcineurin dependent and independent immunosuppressants on endotoxaemia-induced nephrotoxicity in rats: Role of androgens. Clin Exp Pharmacol Physiol 2021; 48:1261-1270. [PMID: 34042216 DOI: 10.1111/1440-1681.13526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/05/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
Abstract
Evidence suggests that immunosuppressant therapies protect against harmful effects of endotoxaemia. In this study, we tested whether calcineurin-dependent (cyclosporine/tacrolimus) and -independent (sirolimus) immunosuppressants variably influence nephrotoxicity induced by endotoxaemia and whether this interaction is modulated by testosterone. We investigated the effects of immunosuppressants on renal histopathological, biochemical and inflammatory profiles in endotoxic male rats and the role of androgenic state in the interaction. Six-hour treatment of rats with lipopolysaccharide (LPS, 3 mg/kg) increased (i) serum urea/creatinine, (ii) width of proximal/distal tubules, (iii) tubular degeneration and vacuolation, (iv) Western protein expressions of renal toll-like receptor 4, monocyte chemoattractant protein-1, and NADPH oxidase-2, and (v) serum tumour necrosis factor-α and myeloperoxidase. These endotoxic manifestations were intensified and eliminated upon concurrent exposure to cyclosporine and sirolimus, respectively. The cyclosporine actions appear to be a class rather than a drug effect because similar exacerbation of LPS nephrotoxicity was observed in rats treated with tacrolimus, another calcineurin inhibitor (CNI). Moreover, the deteriorated renal outcomes in LPS/tacrolimus-treated rats were reduced after castration or androgen receptor blockade by flutamide. The data suggest opposite effects for calcineurin-dependent (exaggeration) and -independent immunosuppressants (amelioration) on renal defects of endotoxaemia and implicate androgenic pathways in the worsened endotoxic renal profile induced by CNIs.
Collapse
Affiliation(s)
- Shrouk S Elzokm
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mohamed A Fouda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rahab A Abdel Moneim
- Department of Histology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
8
|
Nicotine Improves Survivability, Hypotension, and Impaired Adenosinergic Renal Vasodilations in Endotoxic Rats: Role of α7-nAChRs/HO-1 Pathway. Shock 2021; 53:503-513. [PMID: 31135706 DOI: 10.1097/shk.0000000000001384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nicotinic/cholinergic antiinflammatory pathway protects against acute kidney injury and other end-organ damages induced by endotoxemia. In this study, we tested the hypothesis that functional α7-nAChRs/heme oxygenase-1 (HO-1) pathway is imperative for the nicotine counteraction of hemodynamic and renovascular dysfunction caused by acute endotoxemia in rats. Renal vasodilations were induced by cumulative bolus injections of acetylcholine (ACh, 0.01 nmol-7.29 nmol) or ethylcarboxamidoadenosine (NECA, adenosine receptor agonist, 1.6 nmol-100 nmol) in isolated phenylephrine-preconstricted perfused kidneys. The data showed that 6-h treatment with lipopolysaccharide (LPS, 5 mg/kg i.p.) decreased systolic blood pressure and renal vasodilations caused by NECA but not Ach. The endotoxic insult also increased the mortality rate and elevated serum urea and creatinine. These LPS effects were sex-unrelated, except hypotension, and enhanced mortality which were more evident in male rodents, and abrogated after co-administration of nicotine (0.5, 1 mg/kg and 2 mg/kg) in a dose-dependent fashion. The advantageous effects of nicotine on NECA vasodilations, survivability, and kidney biomarkers in endotoxic male rats disappeared upon concurrent exposure to methyllycaconitine citrate (α7-nAChR blocker) or zinc protoporphyrin (HO-1 inhibitor) and were reproduced after treatment with bilirubin, but not hemin (HO-1 inducer) or tricarbonyldichlororuthenium (II) dimer (carbon monoxide-releasing molecule). Together, current biochemical and pharmacological evidence suggests key roles for α7-nAChRs and the bilirubin byproduct of the HO-1 signaling in the nicotine counteraction of renal dysfunction and reduced adenosinergic renal vasodilator capacity in endotoxic rats.
Collapse
|
9
|
Habib YH, Abdelhady SA, Gowayed MA, El-Deeb NM, Darwish IE, El-Mas MM. Prenatal endothelin or thromboxane receptor antagonism surpasses sympathoinhibition in improving cardiorenal malfunctions in preeclamptic rats. Toxicol Appl Pharmacol 2021; 426:115615. [PMID: 34102242 DOI: 10.1016/j.taap.2021.115615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/20/2021] [Accepted: 06/04/2021] [Indexed: 01/06/2023]
Abstract
Current therapies for preeclampsia (PE) and its complications are limited and defective. Considering the importance of endothelin (ET) and thromboxane A2 (TXA2) signaling in PE pathophysiology, we tested the hypothesis that prenatal blockade of endothelin ETA or thromboxane TXA2 receptors favorably reprograms preeclamptic cardiovascular and renal insults. PE was induced by daily oral administration of L-NAME (50 mg/kg) to pregnant rats for 7 consecutive days starting from gestational day 14. The effects of co-exposure to atrasentan (ETA receptor blocker, 10 mg/kg/day) or terutroban (TXA2 receptor blocker, 10 mg/kg/day) on cardiovascular and renal anomalies induced by PE were assessed on gestational day 20 (GD20) and at weaning time and compared with those evoked by the sympatholytic drug α-methyldopa (α-MD, 100 mg/kg/day), a prototypic therapy for PE management. Among all drugs, terutroban was basically the most potent in ameliorating PE-evoked increments in blood pressure and decrements in creatinine clearance. Cardiorenal tissues of PE rats exhibited significant increases in ETA and TXA2 receptor expressions and these effects disappeared after treatment with atrasentan and to a lesser extent by terutroban or α-MD. Atrasentan was also the most effective in reversing the reduced ETB receptor expression in renal tissues of PE rats. Signs of histopathological damage in cardiac and renal tissues of PE rats were mostly improved by all therapies. Together, pharmacologic elimination of ETA or TXA2 receptors offers a relatively better prospect than α-MD in controlling perinatal cardiorenal irregularities sparked by PE.
Collapse
Affiliation(s)
- Yasser H Habib
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Sherien A Abdelhady
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Nevine M El-Deeb
- Department of Clinical Pathology, Faculty of Medicine, Alexandria University, Egypt
| | - Inas E Darwish
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt; Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
10
|
Hammoud SH, AlZaim I, Mougharbil N, Koubar S, Eid AH, Eid AA, El-Yazbi AF. Peri-renal adipose inflammation contributes to renal dysfunction in a non-obese prediabetic rat model: Role of anti-diabetic drugs. Biochem Pharmacol 2021; 186:114491. [PMID: 33647265 DOI: 10.1016/j.bcp.2021.114491] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy is a major health challenge with considerable economic burden and significant impact on patients' quality of life. Despite recent advances in diabetic patient care, current clinical practice guidelines fall short of halting the progression of diabetic nephropathy to end-stage renal disease. Moreover, prior literature reported manifestations of renal dysfunction in early stages of metabolic impairment prior to the development of hyperglycemia indicating the involvement of alternative pathological mechanisms apart from those typically triggered by high blood glucose. Here, we extend our prior research work implicating localized inflammation in specific adipose depots in initiating cardiovascular dysfunction in early stages of metabolic impairment. Non-obese prediabetic rats showed elevated glomerular filtration rates and mild proteinuria in absence of hyperglycemia, hypertension, and signs of systemic inflammation. Isolated perfused kidneys from these rats showed impaired renovascular endothelial feedback in response to vasopressors and increased flow. While endothelium dependent dilation remained functional, renovascular relaxation in prediabetic rats was not mediated by nitric oxide and prostaglandins as in control tissues, but rather an upregulation of the function of epoxy eicosatrienoic acids was observed. This was coupled with signs of peri-renal adipose tissue (PRAT) inflammation and renal structural damage. A two-week treatment with non-hypoglycemic doses of metformin or pioglitazone, shown previously to ameliorate adipose inflammation, not only reversed PRAT inflammation in prediabetic rats, but also reversed the observed functional, renovascular, and structural renal abnormalities. The present results suggest that peri-renal adipose inflammation triggers renal dysfunction early in the course of metabolic disease.
Collapse
Affiliation(s)
- Safaa H Hammoud
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Nahed Mougharbil
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Sahar Koubar
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Assaad A Eid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon.
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt.
| |
Collapse
|
11
|
Kumar P, Bharti VK, Mukesh M. Chemometric Analysis of Antioxidant and Mineral Elements in Colostrum of Native and Non-native Goat Breeds to Hypoxic Conditions at High Altitude. Biol Trace Elem Res 2020; 196:446-453. [PMID: 31667684 DOI: 10.1007/s12011-019-01940-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Colostrum of goat is a well-known nutritional source of animal product, which is attributed to innumerable nutritional properties. To enrich nutritional resources for understanding various nutritional values of animal product at high altitude, chemometric analysis of antioxidant and mineral element study was carried out by comparing antioxidants capacity, free radical scavenging activity, and certain mineral elements in colostrums of native and non-native goat breeds. Colostrum samples were collected from native Changthangi (CNG) and non-native Sirohi (SIRO) goat breeds, situated at naturally exposed high altitude of 3505.2 m above mean sea level. The antioxidant of samples was measured by ferric reducing ability of plasma (FRAP) and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) activity assay, and mineral elemental quantification of Fe, Mg, Mn, Zn, Co, Cu, K, Ca, B, Ni, and Cr was performed using ICP-OES. The values of FRAP, DPPH, and Fe, Mg, Mn, Zn, Co, Cu, K, and Ca in colostrums of native goat breed was significantly (p ≤ 0.05) higher than the non-native goat. These data conclude that high altitude native goat has more antioxidant and mineral elements in colostrum than non-native colostrum. This study could provide a basis for establishing the role of colostrum supplements as a natural source to strengthen the endurance to modalities for the survival of newborn kids of goat within the native high altitude environment. This is the first report of a comparative chemometric analysis of colostrums of goat species and can be utilized to characterize the nutritional aspect of animal product with unique antioxidant and mineral nutrients composition in colostrum of goat.
Collapse
Affiliation(s)
- Prabhat Kumar
- DRDO- Defence Institute of High Altitude Research (DIHAR), Leh, Ladakh, India.
| | - Vijay K Bharti
- DRDO- Defence Institute of High Altitude Research (DIHAR), Leh, Ladakh, India.
| | - M Mukesh
- ICAR - National Bureau of Animal Genetic Resources (NBAGR), Karnal, Haryana, India
| |
Collapse
|
12
|
Time and sex dependency of hemodynamic, renal, and survivability effects of endotoxemia in rats. Saudi Pharm J 2019; 28:127-135. [PMID: 31933528 PMCID: PMC6950976 DOI: 10.1016/j.jsps.2019.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/29/2019] [Indexed: 12/26/2022] Open
Abstract
Widely different exposure times to endotoxic insults have been employed in reported studies. The current experimental study systematically evaluated the time-course and sex influences of endotoxic insult on survivability and cardiovascular and renal functions. Rats received i.p. lipopolysaccharide (LPS, 5 mg/kg) once or twice (over 2 successive days). Systolic blood pressure (SBP), biomarkers of renal function and inflammation, and vasodilator responsiveness of isolated perfused kidneys to acetylcholine (ACh) or N-ethylcarboxamidoadenosine (NECA) were evaluated 6 hr after first LPS injection or 1, 2, or 6 days later. A single 6-hr LPS challenge caused (i) sex-unrelated elevations in serum urea and creatinine and reductions in NECA, but not ACh, vasodilations, (ii) more increases in renal NF-κB/iNOS expressions in male than in female rats, and (iii) hypotension and tachycardia only in male rats. These parameters, except for hemodynamic changes, were restored to near-control levels 1 day after single LPS dosing. The 2-days dosing with LPS had no effects on renal function biomarkers, but caused hypotension, tachycardia, and increases in renal NF-κB/iNOS expression and NECA and ACh vasodilations in both rat sexes. None of these parameters were different from control values when measured 6 days after the endotoxic insult. Alternatively, the rat mortality was observed during first 2 days of the study and was notably higher in male than in female rats. Our data suggest that the frequency and time elapsed after LPS exposure as well as rat sex are important determinants of the magnitude and direction of detrimental effects of endotoxemia.
Collapse
|
13
|
Wedn AM, El-Gowilly SM, El-Mas MM. Nicotine reverses the enhanced renal vasodilator capacity in endotoxic rats: Role of α7/α4β2 nAChRs and HSP70. Pharmacol Rep 2019; 71:782-793. [PMID: 31377559 DOI: 10.1016/j.pharep.2019.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Nicotine alleviates renal inflammation and injury induced by endotoxemia. This study investigated (i) the nicotine modulation of hemodynamic and renal vasodilatory responses to endotoxemia in rats, and (ii) roles of α7 or α4β2-nAChRs and related HSP70/TNFα/iNOS signaling in the interaction. METHODS Endotoxemia was induced by ip lipopolysaccharide (5 mg/kg/day, for 2 days) and changes in systolic blood pressure and vasodilator responsiveness of isolated perfused kidney to acetylcholine or 5'-N-ethylcarboxamidoadenosine (NECA, adenosine receptor agonist) were evaluated. RESULTS Lipopolysaccharide had no effect on serum creatinine, reduced blood pressure, and increased renal vasodilations induced by acetylcholine or NECA in male and female preparations. Immunohistochemical analyses showed that lipopolysaccharide reduced renal HSP70 expression, but increased α7-nAChRs, α4β2-nAChRs and iNOS expressions. The co-administration of aminoguanidine (iNOS inhibitor), pentoxifylline (TNFα inhibitor), or nicotine attenuated lipopolysaccharide mediation of renal vasodilations and elevations in α7/α4β2-nAChR and iNOS expressions. Nicotine also reversed the downregulating effect of lipopolysaccharide on HSP70 expression. α7-nAChRs (methyllycaconitine citrate, MLA) or α4β2-nAChRs (dihydro-β-erythroidine, DHβE) blockade potentiated the lipopolysaccharide enhancement of renal vasodilations, and abolished the depressant effect of nicotine on lipopolysaccharide responses. A similar abolition of nicotine effects was seen after HSP70 inhibition by quercetin. Alternatively, lipopolysaccharide hypotension was eliminated in rats treated with DHβE/nicotine or quercetin/nicotine regimen in contrast to no effect for nicotine alone or combined with MLA. CONCLUSIONS These findings establish that nicotine offsets lipopolysaccharide facilitation of renal vasodilations possibly through a crosstalk between HSP70 and nAChRs of the α7 and α4β2 types.
Collapse
Affiliation(s)
- Abdalla M Wedn
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
14
|
Li H, Liu Z, Liu L, Li W, Cao Z, Song Z, Yang Q, Lu A, Lu C, Liu Y. Vascular Protection of TPE-CA on Hyperhomocysteinemia-induced Vascular Endothelial Dysfunction through AA Metabolism Modulated CYPs Pathway. Int J Biol Sci 2019; 15:2037-2050. [PMID: 31592228 PMCID: PMC6775291 DOI: 10.7150/ijbs.35245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/05/2019] [Indexed: 12/28/2022] Open
Abstract
A high concentration of homocysteine (Hcy) in plasma induces vascular endothelial dysfunction, and it may ultimately accelerate the development of cardiovascular diseases (CVDs). Although several B vitamins have been clinically applied for hyperhomocysteinemia (HHcy) treatment, the outcomes are not satisfied due to their limited therapeutic mechanism. Hence, in order to improve the curative effect, development of new effective therapeutic strategies should be put on the agenda. Total phenolic extracts of Citrus aurantium L. (TPE-CA) is a naturally obtained phenolic mixture, mainly containing flavones, flavanones and their glycosyl derivatives, flavonols, polymethoxyflavones and coumarins. Previous reports indicated that bioactive phenolic compounds possessed potent vascular protective effects and regarded as a protective agent against CVDs. Intriguingly, the exact mechanism underlying the suppressed effects of TPE-CA on HHcy could assist in revealing their therapy on CVDs. Here, the multi-targeted synergistic mechanism of TPE-CA on HHcy-induced vascular endothelial dysfunction was uncovered in a deduced manner. TPE-CA treatment exhibited an obvious superiority than that of B vitamins treatment. Network pharmacology was employed to identify the interrelationships among compounds, potential targets and putative pathways. Further experimental validation suggested that the treatment of TPE-CA for HHcy could not only effectively reduce the Hcy level in plasma through up-regulating transsulfuration pathway in Hcy metabolism, but also restore the HHcy-induced vascular endothelial dysfunction by activating cytochrome P450 enzymes (CYPs) epoxygenase signal cascades and inhibiting CYPs hydroxylase signal cascades in arachidonic acid (AA) metabolism.
Collapse
Affiliation(s)
- Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenli Liu
- Institution of Basic Theory, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Linlin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhiqian Song
- Institution of Basic Theory, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qianqian Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hongkong, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
15
|
Hammoud SH, Alkhansa S, Mahjoub N, Omar AG, El-Mas MM, Eid AA. Molecular basis of the counteraction by calcium channel blockers of cyclosporine nephrotoxicity. Am J Physiol Renal Physiol 2018; 315:F572-F582. [PMID: 29767558 DOI: 10.1152/ajprenal.00275.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nephrotoxicity is a serious side effect for the immunosuppressant drug cyclosporine A(CSA). In this study, we tested the hypothesis that administration of calcium channel blockers such as verapamil or nifedipine ameliorates renal CSA-induced renal dysfunction. Furthermore, our study investigates the roles of inflammatory, oxidative, and fibrotic pathways in CSA-induced renal dysfunction. Six groups of male rats ( n = 6/group) were used and received one of the following treatments for seven consecutive days: vehicle (Cremophor EL ip), CSA (25 mg·kg-1·day-1 ip), verapamil (2 mg·kg-1·day-1 ip), nifedipine (3 mg·kg-1·day-1 ip), CSA in the presence or absence of either verapamil, or nifedipine. Biochemical and histomorphometric analyses showed that rats treated with CSA exhibited clear signs of nephrotoxicity that included 1) proteinuria and elevations in serum creatinine and blood urea nitrogen, 2) mesangial expansion, 3) increases in glomerular and tubular type IV collagen expression, and 4) increases in the glomerulosclerosis and tubulointerstitial fibrosis indices. Although the single administration of nifedipine or verapamil had no significant effect on renal pathology, or its biochemical and physiological function, the concurrent use of either calcium channel blockers significantly and equipotently ameliorated the biochemical, morphological, and functional derangements caused by CSA. More importantly, we report that the oxidative (reactive oxygen species production, NADPH-oxidase activity, and dual oxidase 1/2 levels), fibrotic (transforming growth factor-β1 expression), and inflammatory (NF-κB expression) manifestations of renal toxicity induced by CSA were significantly reversed upon administration of nifedipine or verapamil. Together, these results highlight the efficacy of calcium channel-blocking agents in attenuating CSA-induced nephrotoxicity and predisposing biochemical and molecular machineries.
Collapse
Affiliation(s)
- Safaa H Hammoud
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University , Beirut , Lebanon
| | - Sahar Alkhansa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut , Beirut , Lebanon
| | - Neamah Mahjoub
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut , Beirut , Lebanon
| | - Amal G Omar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University , Alexandria , Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University , Alexandria , Egypt
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut , Beirut , Lebanon
| |
Collapse
|
16
|
El-Yazbi AF, Eid AH, El-Mas MM. Cardiovascular and renal interactions between cyclosporine and NSAIDs: Underlying mechanisms and clinical relevance. Pharmacol Res 2018; 129:251-261. [DOI: 10.1016/j.phrs.2017.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/10/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022]
|