1
|
Fang J, Shen S, Wang H, He Y, Chao L, Cao Y, Chen X, Zhu Z, Hong Z, Chai Y. High-throughput BCRP inhibitors screening system based on styrene maleic acid polymer membrane protein stabilization strategy and surface plasmon resonance biosensor. Talanta 2024; 274:125987. [PMID: 38552478 DOI: 10.1016/j.talanta.2024.125987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 05/04/2024]
Abstract
Multidrug resistance (MDR) is a dominant challenge in cancer chemotherapy failure. The over-expression of breast cancer resistance protein (BCRP) in tumorous cells, along with its extensive substrate profile, is a leading cause of tumor MDR. Herein, on the basis of styrene maleic acid (SMA) polymer membrane protein stabilization strategy and surface plasmon resonance (SPR) biosensor, a novel high-throughput screening (HTS) system for BCRP inhibitors has been established. Firstly, LLC-PK1 and LLC-PK1/BCRP cell membranes were co-incubated with SMA polymers to construct SMA lipid particles (SMALPs). PK1-SMALPs were thus immobilized in channel 1 of the L1 chip as the reference channel, and BCRP-SMALPs were immobilized in channel 2 as the detection channel to establish the BCRP-SMALPs-SPR screening system. The methodological investigation demonstrated that the screening system was highly specific and stable. Three active compounds were screened out from 26 natural products and their affinity constants with BCRP were determined. The KD of xanthotoxin, bergapten, and naringenin were 5.14 μM, 4.57 μM, and 3.72 μM, respectively. The in vitro cell verification experiments demonstrated that xanthotoxin, bergapten, and naringenin all significantly increased the sensitivity of LLC-PK1/BCRP cells to mitoxantrone with possessing reversal BCRP-mediated MDR activity. Collectively, the developed BCRP-SMALPs-SPR screening system in this study has the advantages of rapidity, efficiency, and specificity, providing a novel strategy for the in-depth screening of BCRP inhibitors with less side effects and higher efficacy.
Collapse
Affiliation(s)
- Jiahao Fang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Shuqi Shen
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Hui Wang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Yuzhen He
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Liang Chao
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Xiaofei Chen
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Zhenyu Zhu
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Zhanying Hong
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Yifeng Chai
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| |
Collapse
|
2
|
Bartnik M, Sławińska-Brych A, Mizerska-Kowalska M, Kania AK, Zdzisińska B. Quantitative Analysis of Isopimpinellin from Ammi majus L. Fruits and Evaluation of Its Biological Effect on Selected Human Tumor Cells. Molecules 2024; 29:2874. [PMID: 38930940 PMCID: PMC11206288 DOI: 10.3390/molecules29122874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Ammi majus L. (Apiaceae) is a medicinal plant with a well-documented history in phytotherapy. The aim of the present work was to isolate isopimpinellin (5,8-methoxypsoralen; IsoP) from the fruit of this plant and evaluate its biological activity against selected tumor cell lines. The methanol extract obtained with the use of an accelerated solvent extraction (ASE) method was the most suitable for the quantitative analysis of coumarins in the A. majus fruit matrix. The coumarin content was estimated by RP-HPLC/DAD, and the amount of IsoP was found to be 404.14 mg/100 g dry wt., constituting 24.56% of the total coumarin fraction (1.65 g/100 g). This, along with the presence of xanthotoxin (368.04 mg/100 g, 22.36%) and bergapten (253.05 mg/100 g, 15.38%), confirmed A. majus fruits as an excellent source of these compounds. IsoP was isolated (99.8% purity) by combined liquid chromatography/centrifugal partition chromatography (LC/CPC) and tested for the first time on its antiproliferative activity against human colorectal adenocarcinoma (HT29, SW620), osteosarcoma (Saos-2, HOS), and multiple myeloma (RPMI8226, U266) cell lines. MTT assay results (96 h incubation) demonstrated a dose- and cell line-dependent decrease in cell proliferation/viability, with the strongest effect of IsoP against the Saos-2 cell line (IC50; 42.59 µM), medium effect against U266, HT-29, and RPMI8226 (IC50 = 84.14, 95.53, and 105.0 µM, respectively), and very weak activity against invasive HOS (IC50; 321.6 µM) and SW620 (IC50; 711.30 µM) cells, as well as normal human skin fibroblasts (HSFs), with IC50; 410.7 µM. The mechanistic study on the Saos-2 cell line showed that IsoP was able to reduce DNA synthesis and trigger apoptosis via caspase-3 activation. In general, IsoP was found to have more potency towards cancerous cells (except for HOS and SW620) than against healthy cells. The Selective Index (SI) was determined, underlining the higher selectivity of IsoP towards cancer cells compared to healthy cells (SI = 9.62 against Saos-2). All these results suggest that IsoP might be a promising molecule in the chemo-prevention and treatment of primary osteosarcoma.
Collapse
Affiliation(s)
- Magdalena Bartnik
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland;
| | - Adrianna Sławińska-Brych
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland;
| | - Magdalena Mizerska-Kowalska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (M.M.-K.); (B.Z.)
| | - Anna Karolina Kania
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland;
| | - Barbara Zdzisińska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (M.M.-K.); (B.Z.)
| |
Collapse
|
3
|
Singh A, Singh K, Kaur K, Singh A, Sharma A, Kaur K, Kaur J, Kaur G, Kaur U, Kaur H, Singh P, Bedi PMS. Coumarin as an Elite Scaffold in Anti-Breast Cancer Drug Development: Design Strategies, Mechanistic Insights, and Structure-Activity Relationships. Biomedicines 2024; 12:1192. [PMID: 38927399 PMCID: PMC11200728 DOI: 10.3390/biomedicines12061192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer is the most common cancer among women. Currently, it poses a significant threat to the healthcare system due to the emerging resistance and toxicity of available drug candidates in clinical practice, thus generating an urgent need for the development of new potent and safer anti-breast cancer drug candidates. Coumarin (chromone-2-one) is an elite ring system widely distributed among natural products and possesses a broad range of pharmacological properties. The unique distribution and pharmacological efficacy of coumarins attract natural product hunters, resulting in the identification of numerous natural coumarins from different natural sources in the last three decades, especially those with anti-breast cancer properties. Inspired by this, numerous synthetic derivatives based on coumarins have been developed by medicinal chemists all around the globe, showing promising anti-breast cancer efficacy. This review is primarily focused on the development of coumarin-inspired anti-breast cancer agents in the last three decades, especially highlighting design strategies, mechanistic insights, and their structure-activity relationship. Natural coumarins having anti-breast cancer efficacy are also briefly highlighted. This review will act as a guideline for researchers and medicinal chemists in designing optimum coumarin-based potent and safer anti-breast cancer agents.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | | | - Amandeep Singh
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA;
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | - Jaskirat Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | - Gurleen Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | - Uttam Kaur
- University School of Business Management, Chandigarh University, Gharuan 140413, Mohali, India;
| | - Harsimran Kaur
- Department of Pharmaceutical Chemistry, Khalsa College of Pharmacy, Amritsar 143005, Punjab, India; (H.K.); (P.S.)
| | - Prabhsimran Singh
- Department of Pharmaceutical Chemistry, Khalsa College of Pharmacy, Amritsar 143005, Punjab, India; (H.K.); (P.S.)
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
4
|
Feyzizadeh M, Barfar A, Nouri Z, Sarfraz M, Zakeri-Milani P, Valizadeh H. Overcoming multidrug resistance through targeting ABC transporters: lessons for drug discovery. Expert Opin Drug Discov 2022; 17:1013-1027. [PMID: 35996765 DOI: 10.1080/17460441.2022.2112666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The argument around cancer therapy is an old one. Using chemotherapeutic drugs, as one of the most effective strategies in treatment of malignancies, is restricted by various issues that progress during therapy and avoid achieving clinical endpoints. Multidrug resistance (MDR), frequently mediated by ATP-binding cassette (ABC) transporters, is one of the most recognized obstacles in the success of pharmacological anticancer approaches. These transporters efflux diverse drugs to extracellular environment, causing MDR and responsiveness of tumor cells to chemotherapy diminishes. AREAS COVERED Several strategies have been used to overcome MDR phenomenon. Succession in this field requires complete knowledge about features and mechanism of ABC transporters. In this review, conventional synthetic and natural inhibitors are discussed first and then novel approaches including RNA, monoclonal antibodies, nanobiotechnology, and structural modification techniques are represented. EXPERT OPINION With increasing frequency of MDR in cancer cells, it is essential to develop new drugs to inhibit MDR. Using knowledge acquired about ABC transporter's structure, rational design of inhibitors is possible. Also, some herbal products have shown to be potential lead compounds in drug discovery for reversal of MDR.
Collapse
Affiliation(s)
- Mohammad Feyzizadeh
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashkan Barfar
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Nouri
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
5
|
Wu A, Lu J, Zhong G, Lu L, Qu Y, Zhang C. Xanthotoxin (8-methoxypsoralen): A review of its chemistry, pharmacology, pharmacokinetics, and toxicity. Phytother Res 2022; 36:3805-3832. [PMID: 35913174 DOI: 10.1002/ptr.7577] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 11/11/2022]
Abstract
Xanthotoxin (XAT) is a natural furanocoumarins, a bioactive psoralen isolated from the fruit of the Rutaceae plant Pepper, which has received increasing attention in recent years due to its wide source and low cost. By collecting and compiling literature on XAT, the results show that XAT exhibits significant activity in the treatment of various diseases, including neuroprotection, skin repair, osteoprotection, organ protection, anticancer, antiinflammatory, antioxidative stress and antibacterial. In this paper, we review the pharmacological activity and potential molecular mechanisms of XAT for the treatment of related diseases. The data suggest that XAT can mechanistically induce ROS production and promote apoptosis through mitochondrial or endoplasmic reticulum pathways, regulate NF-κB, MAPK, JAK/STAT, Nrf2/HO-1, MAPK, AKT/mTOR, and ERK1/2 signaling pathways to exert pharmacological effects. In addition, the pharmacokinetics properties and toxicity of XAT are discussed in this paper, further elucidating the relationship between structure and efficacy. It is worth noting that data from clinical studies of XAT are still scarce, limiting the use of XAT in the clinic, and in the future, more in-depth studies are needed to determine the clinical efficacy of XAT.
Collapse
Affiliation(s)
- Anxin Wu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jing Lu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Guofeng Zhong
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Ling Lu
- Chengdu University of Technology, Chengdu, PR China
| | - Yan Qu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Chen Zhang
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| |
Collapse
|
6
|
Engle K, Kumar G. Cancer multidrug-resistance reversal by ABCB1 inhibition: A recent update. Eur J Med Chem 2022; 239:114542. [PMID: 35751979 DOI: 10.1016/j.ejmech.2022.114542] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/04/2022]
Abstract
Chemotherapy is one of the most common treatments for cancer that uses one or more anti-cancer drugs as a part of the standardized chemotherapy regimen. Cytotoxic chemicals delay and prevent cancer cells from multiplying, invading, and metastasizing. However, the significant drawbacks of cancer chemotherapy are the lack of selectivity of the cytotoxic drugs to tumour cells and normal cells and the development of resistance by cells for the particular drug or the combination of drugs. Multidrug resistance (MDR) is the low sensitivity of specific cells against drugs associated with cancer chemotherapy. The most common mechanisms of anticancer drug resistance are: (a) drug-dependent MDR (b) target-dependent MDR, and (c) drug target-independent MDR. In all the factors, the overexpression of multidrug efflux systems contributes significantly to the increased resistance in the cancer cells. Multidrug resistance due to efflux of anticancer drugs by membrane ABC transporters includes ABCB1, ABCC1, and ABCG2. ABCB1 inhibition can restore the sensitivity of the cancerous cells toward chemotherapeutic drugs. In this review, we discussed ABCB1 inhibitors under clinical studies with their mode of action, potency and selectivity. Also, we have highlighted the contribution of repurposing drugs, biologics and nano formulation strategies to combat multidrug resistance by modulating the ABCB1 activity.
Collapse
Affiliation(s)
- Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| |
Collapse
|
7
|
Quetglas-Llabrés MM, Quispe C, Herrera-Bravo J, Catarino MD, Pereira OR, Cardoso SM, Dua K, Chellappan DK, Pabreja K, Satija S, Mehta M, Sureda A, Martorell M, Satmbekova D, Yeskaliyeva B, Sharifi-Rad J, Rasool N, Butnariu M, Bagiu IC, Bagiu RV, Calina D, Cho WC. Pharmacological Properties of Bergapten: Mechanistic and Therapeutic Aspects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8615242. [PMID: 35509838 PMCID: PMC9060977 DOI: 10.1155/2022/8615242] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/01/2021] [Accepted: 03/31/2022] [Indexed: 01/03/2023]
Abstract
Bergapten (BP) or 5-methoxypsoralen (5-MOP) is a furocoumarin compound mainly found in bergamot essential oil but also in other citrus essential oils and grapefruit juice. This compound presents antibacterial, anti-inflammatory, hypolipemic, and anticancer effects and is successfully used as a photosensitizing agent. The present review focuses on the research evidence related to the therapeutic properties of bergapten collected in recent years. Many preclinical and in vitro studies have been evidenced the therapeutic action of BP; however, few clinical trials have been carried out to evaluate its efficacy. These clinical trials with BP are mainly focused on patients suffering from skin disorders such as psoriasis or vitiligo. In these trials, the administration of BP (oral or topical) combined with UV irradiation induces relevant lesion clearance rates. In addition, beneficial effects of bergamot extract were also observed in patients with altered serum lipid profiles and in people with nonalcoholic fatty liver. On the contrary, there are no clinical trials that investigate the possible effects on cancer. Although the bioavailability of BP is lower than that of its 8-methoxypsoralen (8-MOP) isomer, it has fewer side effects allowing higher concentrations to be administered. In conclusion, although the use of BP has therapeutic applications on skin disorders as a sensitizing agent and as components of bergamot extract as hypolipemic therapy, more trials are necessary to define the doses and treatment guidelines and its usefulness against other pathologies such as cancer or bacterial infections.
Collapse
Affiliation(s)
- Maria Magdalena Quetglas-Llabrés
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), 07122 Palma de Mallorca, Spain
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Marcelo D. Catarino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Olívia R. Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Kavita Pabreja
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Delhi G.T. Road (NH-1), Phagwara, 144411 Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Delhi G.T. Road (NH-1), Phagwara, 144411 Punjab, India
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Delhi G.T. Road (NH-1), Phagwara, 144411 Punjab, India
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), 07122 Palma de Mallorca, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, And Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Dinara Satmbekova
- High School of Medicine, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | | | - Naeem Rasool
- Department Pharmacology and Toxicology, University of Veterinary and Animals Science, Lahore, Pakistan
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Iulia Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Department of Microbiology, Timisoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Department of Microbiology, Timisoara, Romania
- Preventive Medicine Study Center, Timisoara, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
8
|
Juneja K, Beuerle T, Sircar D. Enhanced Accumulation of Biologically Active Coumarin and Furanocoumarins in Callus Culture and Field-grown Plants of Ruta chalepensis Through LED Light-treatment. Photochem Photobiol 2022; 98:1100-1109. [PMID: 35191044 DOI: 10.1111/php.13610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/18/2022] [Indexed: 11/28/2022]
Abstract
Ruta chalepensis, a medicinal plant, produces biologically active coumarins (CRs) and furanocoumarins (FCRs). However, their yield is quite low in cultivated plants. In this work, the influence of light emitting diodes (LEDs) was investigated on the accumulation of CRs and FCRs in the callus cultures and field-grown plants of R. chalepensis. Among the various tested wavelengths of LED lights, maximum accumulation of CR and FCRs was recorded under blue LED treatment in both the callus cultures as well as field-grown plants as compared to respective controls treated with white LED. Metabolite analyses of LED-treated field-grown plants showed that highest concentrations of CR (umbelliferone, 2.8-fold), and FCRs (psoralen, 2.3-fold; xanthotoxin, 3.8-fold; bergapten, 1.16-fold) were accumulated upon blue LED-treatment for six days. CR and FCRs contents were also analyzed in the blue- and red-LED-treated in vitro callus tissue. Upon blue LED-treatment, callus accumulated significantly high levels of umbelliferone (48.6 ± 1.2 µg/g DW), psoralen (370.12 ± 10.6 µg/g DW) and xanthotoxin (10.16 ± 0.48 µg/g DW). These findings imply that blue LED-treatment is a viable option as a non-invasive and low-cost elicitation technology for the enhanced production of biologically active CR and FCRs in field-grown plants and callus cultures of R. chalepensis.
Collapse
Affiliation(s)
- Kriti Juneja
- Plant Molecular Biology Group; Biosciences and Bioengineering Department, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
| | - Till Beuerle
- Institute for Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstrasse 1, D-38106, Braunschweig, Germany
| | - Debabrata Sircar
- Plant Molecular Biology Group; Biosciences and Bioengineering Department, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
| |
Collapse
|
9
|
Potential Anticancer Activity of the Furanocoumarin Derivative Xanthotoxin Isolated from Ammi majus L. Fruits: In Vitro and In Silico Studies. Molecules 2022; 27:molecules27030943. [PMID: 35164207 PMCID: PMC8839012 DOI: 10.3390/molecules27030943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Ammi majus L., an indigenous plant in Egypt, is widely used in traditional medicine due to its various pharmacological properties. We aimed to evaluate the anticancer properties of Ammi majus fruit methanol extract (AME) against liver cancer and to elucidate the active compound(s) and their mechanisms of action. Three fractions from AME (Hexane, CH2Cl2, and EtOAc) were tested for their anticancer activities against HepG2 cell line in vitro (cytotoxicity assay, cell cycle analysis, annexin V-FITC apoptosis assay, and autophagy efflux assay) and in silico (molecular docking). Among the AME fractions, CH2Cl2 fraction revealed the most potent cytotoxic activity. The structures of compounds isolated from the CH2Cl2 fraction were elucidated using 1H- and 13C-NMR and found that Compound 1 (xanthotoxin) has the strongest cytotoxic activity against HepG2 cells (IC50 6.9 ± 1.07 µg/mL). Treating HepG2 cells with 6.9 µg/mL of xanthotoxin induced significant changes in the DNA-cell cycle (increases in apoptotic pre-G1 and G2/M phases and a decrease in the S-phase). Xanthotoxin induced significant increase in Annexin-V-positive HepG2 cells both at the early and late stages of apoptosis, as well as a significant decrease in autophagic flux in cancer compared with control cells. In silico analysis of xanthotoxin against the DNA-relaxing enzyme topoisomease II (PDB code: 3QX3) revealed strong interaction with the key amino acid Asp479 in a similar fashion to that of the co-crystallized inhibitor (etoposide), implying that xanthotoxin has a potential of a broad-spectrum anticancer activity. Our results indicate that xanthotoxin exhibits anticancer effects with good biocompatibility toward normal human cells. Further studies are needed to optimize its antitumor efficacy, toxicity, solubility, and pharmacokinetics.
Collapse
|
10
|
Fu K, Zhang J, Wang L, Zhao X, Luo Y. Xanthotoxin induced photoactivated toxicity, oxidative stress and cellular apoptosis in Caenorhabditis elegans under ultraviolet A. Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109217. [PMID: 34673249 DOI: 10.1016/j.cbpc.2021.109217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023]
Abstract
Xanthotoxin (XAT) is widely present in many kinds of plants. Caenorhabditis elegans, a typical model organism, was used to study the effects of XAT on C. elegans developmental toxicity, neurotoxicity, reproductive toxicity induced under ultraviolet A (UVA), oxidative stress and apoptosis in C. elegans. The results showed that after XAT exposure treatment, the hatchability of C. elegans decreased significantly as the concentration increased; the body length and width increased markedly, the external morphology was swollen; the brood sizes had been decreased; and the frequencies of head thrashes and body bend decreased significantly. At 80 and 100 mg/L, XAT reduced the activities of mitochondrial complex enzymes I and III, resulting in the excessive production of ROS, and inhibited SOD and CAT so that the ROS could not be eliminated over time. ROS accumulation in the bodies further caused the contents of MDA, protein carbonyl and lipofuscin to increase significantly, the mitochondrial membrane potential to be severely damaged, apoptosis to occur, and the apoptosis genes ced-3 and ced-4 to be significantly upregulated. Thus, XAT showed photoactivated toxicity to C. elegans under UVA, which will help people to make full and rational use of plants containing XAT.
Collapse
Affiliation(s)
- Kan Fu
- College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
| | - Jianchun Zhang
- College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
| | - Lanying Wang
- College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
| | - Xu Zhao
- College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
| | - Yanping Luo
- College of Plant Protection, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
11
|
Liang Y, Xie L, Liu K, Cao Y, Dai X, Wang X, Lu J, Zhang X, Li X. Bergapten: A review of its pharmacology, pharmacokinetics, and toxicity. Phytother Res 2021; 35:6131-6147. [PMID: 34347307 DOI: 10.1002/ptr.7221] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/23/2021] [Accepted: 07/03/2021] [Indexed: 12/15/2022]
Abstract
Bergapten is a natural furocoumarin, also known as 5-methoxypsoralen, and its medicinal value has been paid more and more attention. By sorting out the pharmacological literature of bergapten, we found that bergapten has a wide range of pharmacological effects, including neuroprotection, organ protection, anticancer, antiinflammatory, antimicrobial, and antidiabetes effects. However,bergapten has complex impacts on the hepatic metabolic enzyme. Moreover, pharmacokinetic studies showed that bergapten has higher absolute bioavailability and can cross the blood-brain barrier and has a great potential for treating brain disease, but the mechanism needs further clarification to make greater use of its ability to treat brain diseases. Furthermore, the phototoxicity of bergapten combined with ultraviolet light has always been mentioned. In view of its wide range of pharmacological activities, bergapten is expected to be a potential drug candidate for the treatment of diabetes and diabetes-induced osteoporosis, epilepsy, Alzheimer's disease, depression, and cancer. However, further studies are needed to elucidate its molecular mechanisms and targets. The phototoxicity of bergapten as a side effect should be further avoided. On the other hand, the photoactivation of bergapten in the anticancer aspect can be better utilized.
Collapse
Affiliation(s)
- Youdan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xumin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Kolesnikova MA, Sen'kova AV, Pospelova TI, Zenkova MA. Drug responsiveness of leukemic cells detected in vitro at diagnosis correlates with therapy response and survival in patients with acute myeloid leukemia. Cancer Rep (Hoboken) 2021; 4:e1362. [PMID: 33675187 PMCID: PMC8388166 DOI: 10.1002/cnr2.1362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is the most common acute leukemia in adults, and chemotherapy remains the most commonly used treatment approach for this group of hematological disorders. Drug resistance is one of the predictors of unfavorable prognosis for leukemia patients. AIM The purpose of this study was to perform a retrospective analysis of the survival rate in AML patients according to age, tumor status, and chemotherapy regimen received and to analyze the therapy response of AML patients depending on the treatment received, initial responsiveness of tumor cells to chemotherapeutic drugs measured in vitro at diagnosis and expression of immunological markers. METHODS The survival of AML patients (n = 127) was analyzed using the Kaplan-Meier method. Drug sensitivity of tumor cells of AML patients (n = 37) and the expression of immunological markers were evaluated by the WST test and flow cytometry, respectively. Correlation analysis was performed using Spearman's rank order correlation coefficient. RESULTS We found the treatment regimen to be the defining factor in the patient survival rate. In addition, the initial responsiveness of tumor cells to chemotherapeutic drugs measured in vitro at diagnosis correlated with the therapy response of AML: patients with high tumor cell sensitivity to particular cytotoxic drugs demonstrated a good response to treatment including these drugs, and patients with initial resistance of tumor cells to a particular chemotherapeutic agents and received it according to the clinical protocols demonstrated a poor response to antitumor therapy. Correlations of drug resistance in leukemic cells with the expression of immature and aberrant immunophenotype markers as established unfavorable prognostic factors confirm our assumption. CONCLUSION The evaluation of the responsiveness of tumor cells to chemotherapy in vitro at diagnosis can be a useful tool for predicting the response of leukemia patients to planned chemotherapy.
Collapse
Affiliation(s)
- Maria A Kolesnikova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia.,Novosibirsk Hematology Center, Novosibirsk, Russia
| | | | | | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|
13
|
Yan LH, Zhang D, Mo SS, Yuan H, Mo XW, Zhao JM. Anlotinib suppresses metastasis and multidrug resistance via dual blockade of MET/ABCB1 in colorectal carcinoma cells. J Cancer 2021; 12:2092-2104. [PMID: 33754008 PMCID: PMC7974540 DOI: 10.7150/jca.45618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Anlotinib, a highly selective multi-targeted tyrosine kinase inhibitor (TKI) has therapeutic effects on non-small-cell lung cancer (NSCLC). In this study, the anti-tumor activity and molecular mechanism of anlotinib in metastatic colorectal cancer (mCRC) was explored. The anti-angiogenesis, anti-metastasis, anti-proliferative, and anti-multidrug resistance efficacy of anlotinib were analyzed by using in vitro and in vivo models of human CRC cells. The results indicated that anlotinib boosted chemo-sensitivity of CRC cells, and restrained its proliferation. Besides the suppression of the MET signaling pathway, anlotinib also inhibited invasion and migration of CRC cells. Furthermore, anlotinib prevented VEGF-induced angiogenesis, N-cadherin (CDH2)-induced cell migration, and reversed ATP-binding cassette subfamily B member 1 (ABCB1) -mediated CRC multidrug resistance in CRC. The CRC liver metastasis and subcutaneously implanted xenograft model testified that anlotinib could inhibit proliferation and liver metastasis in CRC cells. Such an observation suggested that a combination of anlotinib with anti-cancer drugs could attenuate angiogenesis, metastasis, proliferative, and multidrug resistance, which constitutes a novel treatment strategy for CRC patients with metastasis.
Collapse
Affiliation(s)
- Lin-Hai Yan
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Di Zhang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Si-Si Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hao Yuan
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xian-Wei Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jin-Min Zhao
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
14
|
Wróblewska-Łuczka P, Grabarska A, Florek-Łuszczki M, Plewa Z, Łuszczki JJ. Synergy, Additivity, and Antagonism between Cisplatin and Selected Coumarins in Human Melanoma Cells. Int J Mol Sci 2021; 22:ijms22020537. [PMID: 33430369 PMCID: PMC7827586 DOI: 10.3390/ijms22020537] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 12/26/2022] Open
Abstract
(1) Cisplatin (CDDP) is used in melanoma chemotherapy, but it has many side effects. Hence, the search for natural substances that can reduce the dose of CDDP, and CDDP-related toxicity, is highly desired. Coumarins have many biological properties, including anticancer and antiproliferative effects. (2) An in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay on two human melanoma cell lines (FM55P and FM55M2) examined the antitumor properties of CDDP and five naturally occurring coumarins (osthole, xanthotoxin, xanthotoxol, isopimpinellin, and imperatorin). The antiproliferative effects produced by combinations of CDDP with the coumarins were assessed using type I isobolographic analysis. (3) The most potent anticancer properties of coumarins were presented by osthole and xanthotoxol. These compounds were characterized by the lowest median inhibitory concentration (IC50) values relative to the FM55P and FM55M2 melanoma cells. Isobolographic analysis showed that for both melanoma cell lines, the combination of CDDP and osthole exerted synergistic and additive interactions, while the combination of CDDP and xanthotoxol exerted additive interactions. Combinations of CDDP with xanthotoxin, isopimpinellin, and imperatorin showed antagonistic and additive interactions in two melanoma cell lines. (4) The combination of CDDP and osthole was characterized by the most desirable synergistic interaction. Isobolographic analysis allows the selection of potential candidates for cancer drugs among natural substances.
Collapse
Affiliation(s)
| | - Aneta Grabarska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-090 Lublin, Poland;
| | | | - Zbigniew Plewa
- Department of General, Oncological, and Minimally Invasive Surgery, 1 Military Clinical Hospital with the Outpatient Clinic in Lublin, 20-400 Lublin, Poland;
| | - Jarogniew J. Łuszczki
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-448-65-03
| |
Collapse
|
15
|
Ahmed S, Khan H, Aschner M, Mirzae H, Küpeli Akkol E, Capasso R. Anticancer Potential of Furanocoumarins: Mechanistic and Therapeutic Aspects. Int J Mol Sci 2020; 21:E5622. [PMID: 32781533 PMCID: PMC7460698 DOI: 10.3390/ijms21165622] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most extreme medical conditions in both developing and developed countries around the world, causing millions of deaths each year. Chemotherapy and/or radiotherapy are key for treatment approaches, but both have numerous adverse health effects. Furthermore, the resistance of cancerous cells to anticancer medication leads to treatment failure. The rising burden of cancer overall requires novel efficacious treatment modalities. Natural medications offer feasible alternative options against malignancy in contrast to western medication. Furanocoumarins' defensive and restorative impacts have been observed in leukemia, glioma, breast, lung, renal, liver, colon, cervical, ovarian, and prostate malignancies. Experimental findings have shown that furanocoumarins activate multiple signaling pathways, leading to apoptosis, autophagy, antioxidant, antimetastatic, and cell cycle arrest in malignant cells. Additionally, furanocoumarins have been shown to have chemo preventive and chemotherapeutic synergistic potential when used in combination with other anticancer drugs. Here, we address different pathways which are activated by furanocoumarins and their therapeutic efficacy in various tumors. Ideally, this review will trigger interest in furanocoumarins and their potential efficacy and safety as a cancer lessening agents.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10463, USA;
| | - Hamed Mirzae
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan 8715973474, Iran;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Turkey;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| |
Collapse
|
16
|
Acid-responsive dextran-based therapeutic nanoplatforms for photodynamic-chemotherapy against multidrug resistance. Int J Biol Macromol 2020; 155:233-240. [DOI: 10.1016/j.ijbiomac.2020.03.197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 11/21/2022]
|
17
|
Wang J, Wang JQ, Cai CY, Cui Q, Yang Y, Wu ZX, Dong X, Zeng L, Zhao L, Yang DH, Chen ZS. Reversal Effect of ALK Inhibitor NVP-TAE684 on ABCG2-Overexpressing Cancer Cells. Front Oncol 2020; 10:228. [PMID: 32175279 PMCID: PMC7056829 DOI: 10.3389/fonc.2020.00228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/10/2020] [Indexed: 12/23/2022] Open
Abstract
Failure of cancer chemotherapy is mostly due to multidrug resistance (MDR). Overcoming MDR mediated by overexpression of ATP binding cassette (ABC) transporters in cancer cells remains a big challenge. In this study, we explore whether NVP-TAE684, a novel ALK inhibitor which has the potential to inhibit the function of ABC transport, could reverse ABC transporter-mediated MDR. MTT assay was carried out to determine cell viability and reversal effect of NVP-TAE684 in parental and drug resistant cells. Drug accumulation and efflux assay was performed to examine the effect of NVP-TAE684 on the cellular accumulation and efflux of chemotherapeutic drugs. The ATPase activity of ABCG2 transporter in the presence or absence of NVP-TAE684 was conducted to determine the impact of NVP-TAE684 on ATP hydrolysis. Western blot analysis and immunofluorescence assay were used to investigate protein molecules related to MDR. In addition, the interaction between NVP-TAE684 and ABCG2 transporter was investigated via in silico analysis. MTT assay showed that NVP-TAE684 significantly decreased MDR caused byABCG2-, but not ABCC1-transporter. Drug accumulation and efflux tests indicated that the effect of NVP-TAE684 in decreasing MDR was due to the inhibition of efflux function of ABCG2 transporter. However, NVP-TAE684 did not alter the expression or change the subcellular localization of ABCG2 protein. Furthermore, ATPase activity analysis indicated that NVP-TAE684 could stimulate ABCG2 ATPase activity. Molecular in silico analysis showed that NVP-TAE684 interacts with the substrate binding sites of the ABCG2 transporter. Taken together, our study indicates that NVP-TAE684 could reduce the resistance of MDR cells to chemotherapeutic agents, which provides a promising strategy to overcome MDR.
Collapse
Affiliation(s)
- Jingqiu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Xingduo Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Leli Zeng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,Tomas Lindahl Nobel Laureate Laboratory, Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Linguo Zhao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
18
|
Mirzaei SA, Dinmohammadi F, Alizadeh A, Elahian F. Inflammatory pathway interactions and cancer multidrug resistance regulation. Life Sci 2019; 235:116825. [PMID: 31494169 DOI: 10.1016/j.lfs.2019.116825] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multidrug resistances against chemotherapeutics are among the major challenges related to cancer treatment. Recent studies have demonstrated that different conditions may tune the expression and activity of MDR transporters. For instance, inflammation occurs through a complex cytological process and chemical reactions in the most tumor microenvironment; it can play a critical role in cancer development and is capable of altering the expression and function of MDR transporters. Cytokines, interleukins, and prostaglandins are potent inflammatory mediators that can modulate the expression of MDRs at transcriptional and post-transcriptional levels in the most human cancer cells and tissues and potentially contribute to balance bioavailability of chemotherapeutic agents. Since cancer cases are usually accompanied by inflammatory responses, glucocorticoids and NSAIDs are the primary useful combination chemotherapies in a variety of cancer treatment protocols. In addition to the anti-inflammatory activities of these agents, they exert diverse modulatory effects on MDR-mediated drug resistance via specific mechanisms. Several factors, including cell and MDR-protein types, pharmacokinetics, and pharmacogenetics, mainly influence the regulatory mechanisms. Uncovering the networks between inflammation and multidrug resistance will be clinically helpful in the treatment of malignant cancers and decreasing the cancer mortality rates.
Collapse
Affiliation(s)
- Seyed Abbas Mirzaei
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Farideh Dinmohammadi
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Akram Alizadeh
- Department of Tissue Engineering, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
19
|
Singh G, Singh A, Singh P, Bhatti R. Bergapten Ameliorates Vincristine-Induced Peripheral Neuropathy by Inhibition of Inflammatory Cytokines and NFκB Signaling. ACS Chem Neurosci 2019; 10:3008-3017. [PMID: 31064179 DOI: 10.1021/acschemneuro.9b00206] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bergapten, a furanocoumarin derivative found in a variety of medicinal plants, is documented to possess anti-inflammatory activity. However, whether bergapten is useful in alleviating the symptoms as well as the progress of peripheral neuropathy is not yet studied. The current investigation has been designed to explore the effect of bergapten on vincristine-induced neuropathic pain. Rats were grouped as normal, neuropathic control (vincristine), gabapentin, and bergapten treated groups with five animals in each group. Vincristine (100 μg/kg, i.p.) was administered for 10 days with 2 days break. Gabapentin (60 mg/kg, i.p.) and bergapten (10 mg/kg i.p.) treatments were given once daily for 14 days. The animals were assessed for hyperalgesia and allodynia. After 14 days, animals were sacrificed to detect plasma pro-inflammatory cytokines (TNF α, IL-1β), spinal cord, and sciatic nerve oxidative stress and expression of iNOS, COX-2, and NFkB in the spinal cord. There was a marked reduction in pain behaviors in the bergapten group as compared to the vincristine group. Bergapten also attenuated pro-inflammatory cytokines (TNFα and IL-1β), oxidative stress, and expression of NFkB, COX-2, and iNOS. Overall the current study concludes that bergapten could serve as a potential lead to drug development for the treatment of neuropathic pain.
Collapse
|
20
|
Ham JR, Choi RY, Lee HI, Lee MK. Methoxsalen and Bergapten Prevent Diabetes-Induced Osteoporosis by the Suppression of Osteoclastogenic Gene Expression in Mice. Int J Mol Sci 2019; 20:1298. [PMID: 30875838 PMCID: PMC6471636 DOI: 10.3390/ijms20061298] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/01/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
This study evaluated whether bergapten and methoxsalen could prevent diabetes-induced osteoporosis and its underlying mechanism. For 10 weeks, bergapten or methoxsalen (0.02%, w/w) was applied to diabetic mice that were provided with a high-fat diet and streptozotocin. Bone mineral density (BMD) and microarchitecture quality were significantly reduced in the diabetic control group; however, both bergapten and methoxsalen reversed serum osteocalcin, bone-alkaline phosphatase and femur BMD. These coumarin derivatives significantly increased bone volume density and trabecular number, whereas they decreased the structure model index of femur tissue in diabetic mice. Conversely, tartrate-resistant acid phosphatase 5 (TRAP) staining revealed that these derivatives reduced osteoclast numbers and formation in diabetic bone tissue. Additionally, both bergapten and methoxsalen tended to downregulate the expression of osteoclast-related genes such as receptor activator of nuclear factor kappa-B ligand (RANKL), nuclear of activated T-cells, cytoplasmic 1 (NFATc1) and TRAP in diabetic femurs, with NFATc1 and TRAP expression showing significant reductions. Our data suggest that both bergapten and methoxsalen prevent diabetic osteoporosis by suppressing bone resorption.
Collapse
Affiliation(s)
- Ju Ri Ham
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea.
| | - Ra-Yeong Choi
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea.
| | - Hae-In Lee
- Mokpo Marin Food-Industry Research Center, Mokpo 58621, Korea.
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea.
| |
Collapse
|
21
|
Lin CP, Lin CS, Lin HH, Li KT, Kao SH, Tsao SM. Bergapten induces G1 arrest and pro-apoptotic cascade in colorectal cancer cells associating with p53/p21/PTEN axis. ENVIRONMENTAL TOXICOLOGY 2019; 34:303-311. [PMID: 30576070 DOI: 10.1002/tox.22685] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/04/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Bergapten is a natural compound and has potent anticancer activities. In this study, we explored the cytotoxicity of bergapten on colorectal cancer (CRC) cell DLD-1 and LoVo and its underlying mechanisms. We observed that bergapten (30 and 50 μM) decreased the viability of the CRC cells and induced the G0/G1 and sub-G1 phase arrest. Furthermore, immunoblotting results indicated that bergapten increased p53, phospho-p53(Ser-46), p21, PUMA, Bax, PTEN, and the caspase-9 and caspase-3 cleavage, but decreased cyclin E, CDK2, and phosphor-AKT(Ser-473) in the CRC cells. Inhibition of p53 by pifithrin-α reversed the bergapten-induced p53-mediated apoptotic cascade and restored the survival signaling and cell viability. Collectively, our findings reveal that bergapten decrease the cell viability and induce cell cycle arrest in the CRC cells, which may be attributed to p53-mediated apoptotic cascade, upregulation of p21 and PTEN, and inhibition of AKT.
Collapse
Affiliation(s)
- Ching-Pin Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Division of Hepatology and Gastroenterology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Shiang Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Han Lin
- Division of Cardiovascular Surgery, Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Kuan-Te Li
- Department of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shao-Hsuan Kao
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Medical Laboratory, Department of Medical Science, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shih-Ming Tsao
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Sections of Infectious Diseases, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
22
|
Isolation and in silico prediction of potential drug-like compounds from Anethum sowa L. root extracts targeted towards cancer therapy. Comput Biol Chem 2019; 78:242-259. [DOI: 10.1016/j.compbiolchem.2018.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/22/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
|
23
|
Mottaghipisheh J, Nové M, Spengler G, Kúsz N, Hohmann J, Csupor D. Antiproliferative and cytotoxic activities of furocoumarins of Ducrosia anethifolia. PHARMACEUTICAL BIOLOGY 2018; 56:658-664. [PMID: 31070540 PMCID: PMC6300088 DOI: 10.1080/13880209.2018.1548625] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/12/2018] [Accepted: 11/02/2018] [Indexed: 01/15/2023]
Abstract
CONTEXT Phytochemical and pharmacological data on Ducrosia anethifolia (DC.) Boiss. (Apiaceae), an Iranian medicinal plant, are scarce; however, furocoumarins are characteristic compounds of D. anethifolia. OBJECTIVE Our experiments identify the secondary metabolites of D. anethifolia and assess their antitumor and anti-multidrug resistance activities. MATERIALS AND METHODS Pure compounds were isolated from the extract of aerial parts of the plant by chromatographic methods. Bioactivities were tested on multidrug resistant and sensitive mouse T-lymphoma cell lines. The inhibition of the cancer MDR efflux pump ABCB1 was evaluated by flow cytometry (at 2 and 20 µM). A checkerboard microplate method was applied to study the interactions of furocoumarins and doxorubicin. Toxicity was studied using normal murine NIH/3T3 fibroblasts. RESULTS Thirteen pure compounds were isolated, nine furocoumarins namely, pabulenol (1), (+)-oxypeucedanin hydrate (2), oxypeucedanin (3), oxypeucedanin methanolate (4), (-)-oxypeucedanin hydrate (5), imperatorin (6), isogospherol (7), heraclenin (8), heraclenol (9), along with vanillic aldehyde (10), harmine (11), 3-hydroxy-α-ionone (12) and 2-C-methyl-erythrytol (13). Oxypeucedanin showed the highest in vitro antiproliferative and cytotoxic activity against parent (IC50 = 25.98 ± 1.27, 40.33 ± 0.63 µM) and multidrug resistant cells (IC50 = 28.89 ± 0.73, 66.68 ± 0.00 µM), respectively, and exhibited slight toxicity on normal murine fibroblasts (IC50 = 57.18 ± 3.91 µM). DISCUSSION AND CONCLUSIONS Compounds 2, 3, 5, 7, 10-13 were identified for the first time from the Ducrosia genus. Here, we report a comprehensive in vitro assessment of the antitumor activities of D. anethifolia furocoumarins. Oxypeucedanin is a promising compound for further investigations for its anticancer effects.
Collapse
Affiliation(s)
- Javad Mottaghipisheh
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Márta Nové
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Kúsz
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Interdisciplinary Centre for Natural Products, University of Szeged, Szeged, Hungary
| | - Judit Hohmann
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Interdisciplinary Centre for Natural Products, University of Szeged, Szeged, Hungary
| | - Dezső Csupor
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Interdisciplinary Centre for Natural Products, University of Szeged, Szeged, Hungary
| |
Collapse
|
24
|
Abd Al-Hay H, Mohamed Ha M, Fayad W, Abd El-Gha M. Prospective Role of Solanum Cultures in Producing Bioactive Agents against Melanoma, Breast, Hematologic Carcinomas Cell Lines and Associated Microbiome. JOURNAL OF BIOLOGICAL SCIENCES 2018; 18:297-306. [DOI: 10.3923/jbs.2018.297.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
25
|
Mirzaei SA, Safari Kavishahi M, Keshavarz Z, Elahian F. Unlike Butylcycloheptylprodigiosin, Isolated Undecylprodigiosin from Streptomyces parvulus Is Not a MDR1 and BCRP Substrate in Multidrug-Resistant Cancers. DNA Cell Biol 2018; 37:535-542. [PMID: 29672160 DOI: 10.1089/dna.2018.4161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The search for new chemotherapeutics unaffected by efflux pumps would significantly increase life expectancy in patients with malignant cancers. In this study, butylcycloheptylprodigiosin and undecylprodigiosin were HPLC-purified and verified, using nuclear magnetic resonance spectroscopy. Cell cytotoxicity and transportation kinetics on multiple-drug resistance (MDR) cells were evaluated. Daunorubicin and butylcycloheptylprodigiosin were less toxic in the MDR1 overexpressing line, but undecylprodigiosin revealed potent toxicity toward MDR1 and BCRP expressing malignant cells. There was no noticeable change in MDR1 and BCRP transcripts during 3 days of treatment with prodiginines. While daunorubicin and mitoxantrone uptake from the cell environment significantly decreased with increasing multidrug resistance up to 46% and 62%, respectively, the accumulation of undecylprodigiosin and to a lesser extent butylcycloheptylprodigiosin in the resistance cells occurred cell- and dose-dependently via a passive diffusion process and were almost equally sensitive to the parent lines. The efflux of xenobiotics commenced immediately with different kinetics in various cells. A greater amount of daunorubicin and mitoxantrone were rapidly thrown out of their corresponding MDR cells in the absence of the specific inhibitor (3.01 and 1.81 dF/min, respectively) and represented functional efflux pumps. MDR pumps did not apparently influence undecylprodigiosin efflux patterns; but butylcycloheptylprodigiosin was partially removed from EPG85.257RDB cells at the rate of 2.66 and 1.41 dF/min in the absence and presence of verapamil, respectively.
Collapse
Affiliation(s)
- Seyed Abbas Mirzaei
- 1 Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences , Shahrekord, Iran .,2 Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord, Iran
| | - Mansureh Safari Kavishahi
- 1 Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences , Shahrekord, Iran
| | - Zhila Keshavarz
- 1 Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences , Shahrekord, Iran
| | - Fatemeh Elahian
- 1 Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences , Shahrekord, Iran .,2 Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord, Iran
| |
Collapse
|
26
|
Elshimali YI, Wu Y, Khaddour H, Wu Y, Gradinaru D, Sukhija H, Chung SS, Vadgama JV. Optimization Of Cancer Treatment Through Overcoming Drug Resistance. JOURNAL OF CANCER RESEARCH AND ONCOBIOLOGY 2018; 1:107. [PMID: 29932172 PMCID: PMC6007995 DOI: 10.31021/jcro.20181107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer Drug resistance is a medical concern that requires extensive research and a thorough understanding in order to overcome. Remarkable achievements related to this field have been accomplished and further work is needed in order to optimize the cure for cancer and serve as the basis for precise medicine with few or no side effects.
Collapse
Affiliation(s)
- Yahya I. Elshimali
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, USA
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, USA
| | - Hussein Khaddour
- Faculty of Pharmacy, Mazzeh (17th April Street), Damascus University, Damascus, Syria
- Carol Davila - University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Romania
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, USA
| | - Daniela Gradinaru
- Carol Davila - University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Romania
| | - Hema Sukhija
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
| | - Seyung S. Chung
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, USA
| |
Collapse
|
27
|
Mirzaei SA, Reiisi S, Ghiasi Tabari P, Shekari A, Aliakbari F, Azadfallah E, Elahian F. Broad blocking of MDR efflux pumps by acetylshikonin and acetoxyisovalerylshikonin to generate hypersensitive phenotype of malignant carcinoma cells. Sci Rep 2018; 8:3446. [PMID: 29472576 PMCID: PMC5823906 DOI: 10.1038/s41598-018-21710-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
Cytotoxic activities of acetylshikonin and acetoxyisovalerylshikonin alone and in combination with chemotherapeutic agents against parental and drug resistant cell lines were determined using the MTT assay. Effects of Shikonin derivatives on BCRP, MDR1 and MRP transcript and protein levels were relatively measured. Finally, accumulation and efflux kinetics were conducted. The results revealed cell- and concentration-dependency of the cell cytotoxicity. Acetylshikonin and acetoxyisovalerylshikonin transiently made the mRNA ocean turbulent, but FACS analyses using fluorescent-labeled antibodies showed no significant change in the MDR-protein levels. Functional kinetics revealed significant block of MDR1, BCRP and MRP transporter in the presence of shikonin derivatives. Maximum accumulation fold changes was quantified to be 4.4 and consequently, acetoxyisovalerylshikonin pretreated EPG85.257RDB cells was chemosensitized to daunorubicin tension 3.1-fold. Although, the MDR blockage was reported to follow time- and cell-dependent patterns, MDR1, BCRP and MRP2 responses to the shikonins are concentration-independent. These data suggest uncompetitive transporter blockage behavior of these agents. The results indicated that shikonin derivatives stimulate uptake and reduce efflux of chemotherapeutic agents in the malignant cancer cells, suggesting that chemotherapy in combination with shikonin compounds may be beneficial to cancer cells that overexpress multidrug resistance transporters.
Collapse
Affiliation(s)
- Seyed Abbas Mirzaei
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | | | - Abolfazl Shekari
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Aliakbari
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elaheh Azadfallah
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Elahian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
28
|
Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomed Pharmacother 2018; 100:335-348. [PMID: 29453043 DOI: 10.1016/j.biopha.2018.02.038] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/27/2023] Open
Abstract
Indeed, multi-drug resistance (MDR) is a significant obstacle to effective chemotherapy. The overexpression of ATP-binding cassette (ABC) membrane transporters is a principal cause of enhanced cytotoxic drug efflux and treatment failure in various types of cancers. At cellular level, the pumps of ABC family regulate the transportation of numerous substances including drugs in and out of the cells. In past, the overexpression of ABC pumps suggested a well-known mechanism of drug resistance in cancers as well as infectious diseases. In oncology, the search for new compounds for the inhibition of these hyperactive ABC pumps either genetically or functionally, growing interest to reverse multi-drug resistance and increase chemotherapeutic effects. Several ABC pump inhibitor/modulators has been explored to address the cancer associated MDR. However, the clinical results are still disappointing and conventional chemotherapies are constantly failed in successful eradication of MDR tumors. In this context, the structural and functional understanding of different ATP pumps is most important. In this concise review, we elaborated basic crystal structure of ABC transporter proteins as well as its critical elements such as different domains, motifs as well as some important amino acids which are responsible for ATP binding and drug efflux as well as demonstrated an ATP-switch model employed by various ABC membrane transporters. Furthermore, we briefly summarized different newly identified MDR inhibitors/modulators, deployed alone or in combination with cytotoxic agents to deal with MDR in different types of cancers.
Collapse
|