1
|
Zhang J, Lv C, Yu Z, Zhou Y. Step-wise reproductive toxicities of imidazolium- and pyridinium-based ionic liquids on Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136458. [PMID: 39536357 DOI: 10.1016/j.jhazmat.2024.136458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Reproductive toxicities of imidazolium- ([EMIM]X) and pyridinium-based ([APYR]X) ionic liquids (ILs) are essential to fully assess their hazards. Presently, effects of five ILs on the intricate processes of reproduction, including sperm-oocyte interactions, were explored in Caenorhabditis elegans. Results showed that 1-ethylpyridinium bromide ([EPYR]Br) stimulated oocytes, zygotes and total reproduction. 1-Octylpyyridinium bromide ([OPYR]Br) inhibited oocytes and stimulated zygotes, it inhibited the initial and total reproduction. 1-Dodecylpyridinium bromide ([DPYR]Br) inhibited oocytes and zygotes, but stimulated the initial and total reproduction. 1-Ethyl-3-methylimidazolium bromide ([EMIM]Br) inhibited oocytes, but stimulated zygotes and reproduction. 1-Ethyl-3-methylimidazolium iodide ([EMIM]I) inhibited germcells and oocytes but stimulated zygotes and reproduction. Regarding hormones and lipid metabolism, the ILs commonly reduced main sperm protein, sperm transmembrane protein 9 and spermatocyte protein 8. The qRT-PCR results showed that the ILs commonly down-regulated the expressions of mpk-1, while up-regulated those of inx-14, with influences on the expressions of vab-1, unc-43 and rme-2. These biochemicals and genes were directly connected with the sperm-oocyte interactions. Transcriptomic analysis results supported the involvement of cAMP and cGMP-PKG signaling pathways underlying the effects on the sperm-oocyte interactions. The results also implied ILs' impacts on neural and immune diseases and even cancers that should be considered in the future.
Collapse
Affiliation(s)
- Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - Chengcheng Lv
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China
| | - Zhenyang Yu
- Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yangyuan Zhou
- Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China
| |
Collapse
|
2
|
Gao Q, Huan C, Jia Z, Cao Q, Yuan P, Li X, Wang C, Mao Z, Huo W. SOCS3 Methylation Partially Mediated the Association of Exposure to Triclosan but Not Triclocarban with Type 2 Diabetes Mellitus: A Case-Control Study. Int J Mol Sci 2024; 25:12113. [PMID: 39596180 PMCID: PMC11594987 DOI: 10.3390/ijms252212113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
This study aimed to evaluate the association of TCs (triclosan (TCS) and triclocarban) exposure with T2DM and glucose metabolism-related indicators and the mediating effect of SOCS3 methylation on their associations. A total of 956 participants (330 T2DM and 626 controls) were included in this case-control study. Logistic regression and generalized linear models were used to assess the effect of TCs on T2DM and glucose metabolism-related indicators. The dose-response relationship between TCs and T2DM was analyzed by restricted cubic spline. Finally, after evaluating the association between TCs and SOCS3 methylation levels, the mediating effect of SOCS3 methylation on the TC-associated T2DM was estimated. Each 1-unit increase in TCS levels was associated with a 13.2% increase in the risk of T2DM (OR = 1.132, 95% CI: 1.062, 1.207). A linear dose-response relationship was found between TCS and T2DM. TCS was negatively associated with Chr17:76356190 methylation. Moreover, mediation analysis revealed that Chr17:76356190 methylation mediated 14.54% of the relationship between TCS exposure and T2DM. Exposure to TCS was associated with a higher prevalence of T2DM. SOCS3 methylation partially mediated the association of TCS with T2DM. Our findings may provide new insights into the treatment of T2DM, and the study of the biological mechanisms of T2DM.
Collapse
Affiliation(s)
- Qian Gao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (Q.G.)
| | - Changsheng Huan
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (Q.G.)
| | - Zexin Jia
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (Q.G.)
| | - Qingqing Cao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (Q.G.)
| | - Pengcheng Yuan
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (Q.G.)
| | - Xin Li
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (Q.G.)
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wenqian Huo
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (Q.G.)
| |
Collapse
|
3
|
Mo J, Guo J, Iwata H, Diamond J, Qu C, Xiong J, Han J. What Approaches Should be Used to Prioritize Pharmaceuticals and Personal Care Products for Research on Environmental and Human Health Exposure and Effects? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:488-501. [PMID: 36377688 DOI: 10.1002/etc.5520] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are released from multiple anthropogenic sources and thus have a ubiquitous presence in the environment. The environmental exposure and potential effects of PPCPs on biota and humans has aroused concern within the scientific community and the public. Risk assessments are commonly conducted to evaluate the likelihood of chemicals including PPCPs that pose health threats to organisms inhabiting various environmental compartments and humans. Because thousands of PPCPs are currently used, it is impractical to assess the environmental risk of all of them due to data limitations; in addition, new PPCPs are continually being produced. Prioritization approaches, based either on exposure, hazard, or risk, provide a possible means by which those PPCPs that are likely to pose the greatest risk to the environment are identified, thereby enabling more effective allocation of resources in environmental monitoring programs in specific geographical locations and ecotoxicological investigations. In the present review, the importance and current knowledge concerning PPCP occurrence and risk are discussed and priorities for future research are proposed, in terms of PPCP exposure (e.g., optimization of exposure modeling in freshwater ecosystems and more monitoring of PPCPs in the marine environment) or hazard (e.g., differential risk of PPCPs to lower vs. higher trophic level species and risks to human health). Recommended research questions for the next 10 years are also provided, which can be answered by future studies on prioritization of PPCPs. Environ Toxicol Chem 2024;43:488-501. © 2022 SETAC.
Collapse
Affiliation(s)
- Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | | | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Jiuqiang Xiong
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Guan M, Cao Y, Wang X, Xu X, Ning C, Qian J, Ma F, Zhang X. Characterizing temporal variability and repeatability of dose-dependent functional genomics approach for evaluating triclosan toxification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165209. [PMID: 37391155 DOI: 10.1016/j.scitotenv.2023.165209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Dose-dependent functional genomics approach has shown great advantage in identifying the molecular initiating event (MIE) of chemical toxification and yielding point of departure (POD) at genome-wide scale. However, POD variability and repeatability derived from experimental design (settings of dose, replicate number, and exposure time) has not been fully determined. In this work, we evaluated POD profiles perturbed by triclosan (TCS) using dose-dependent functional genomics approach in Saccharomyces cerevisiae at multiple time points (9 h, 24 h and 48 h). The full dataset (total 9 concentrations with 6 replicates per treatment) at 9 h was subsampled 484 times to generate subsets of 4 dose groups (Dose A - Dose D with varied concentration range and spacing) and 5 replicate numbers (2 reps - 6 reps). Firstly, given the accuracy of POD and the experimental cost, the POD profiles from 484 subsampled datasets demonstrated that the Dose C group (space narrow at high concentrations and wide dose range) with three replicates was best choice at both gene and pathway levels. Secondly, the variability of POD was found to be relatively robustness and stability across different experimental designs, but POD was more dependent on the dose range and interval than the number of replicates. Thirdly, MIE of TCS toxification was identified to be the glycerophospholipid metabolism pathway at all-time points, supporting the ability of our approach to accurately recognize MIE of chemical toxification at both short- and long-term exposure. Finally, we identified and validated 13 key mutant strains involved in MIE of TCS toxification, which could serve as biomarkers for TCS exposure. Taken together, our work evaluated the repeatability of dose-dependent functional genomics approach and the variability of POD and MIE of TCS toxification, which will benefit the experimental design for future dose-dependent functional genomics study.
Collapse
Affiliation(s)
- Miao Guan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China
| | - Yuqi Cao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China
| | - Xiaoyang Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China
| | - Xinyuan Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China
| | - Can Ning
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China
| | - Jinjun Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Ave., Nanjing, Jiangsu 210023, China.
| | - Fei Ma
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China.
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China
| |
Collapse
|
5
|
Mo J, Han L, Lv R, Chiang MWL, Fan R, Guo J. Triclosan toxicity in a model cyanobacterium (Anabaena flos-aquae): Growth, photosynthesis and transcriptomic response. J Environ Sci (China) 2023; 127:82-90. [PMID: 36522109 DOI: 10.1016/j.jes.2022.03.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/17/2023]
Abstract
Exposure to triclosan (TCS) has been reported to reduce photosynthetic pigments, suppress photosynthesis, and inhibit growth in both prokaryotic and eukaryotic algae including Anabaena flos-aquae (a model cyanobacterium). In particular, cyanobacteria are more sensitive to TCS toxicity compared to eukaryotic algae possibly due to the structural similarity to bacteria (target organisms); however, whether TCS exerts its toxicity to cyanobacteria by targeting signaling pathways of fatty acid biosynthesis as in bacteria remains virtually unknown, particularly at environmental exposure levels. With the complete genome sequence of A. flos-aquae presented in this study, the transcriptomic alterations and potential toxic mechanisms in A. flos-aquae under TCS stress were revealed. The growth, pigments and photosynthetic activity of A. flos-aquae were markedly suppressed following a 7-day TCS exposure at 0.5 µg/L but not 0.1 µg/L (both concentrations applied are environmentally relevant). The transcriptomic sequencing analysis showed that signaling pathways, such as biofilm formation - Pseudomonas aeruginosa, two-component system, starch and sucrose metabolism, and photosynthesis were closely related to the TCS-induced growth inhibition in the 0.5 µg/L TCS treatment. Photosynthesis systems and potentially two-component system were identified to be sensitive targets of TCS toxicity in A. flos-aquae. The present study provides novel insights on TCS toxicity at the transcriptomic level in A. flos-aquae.
Collapse
Affiliation(s)
- Jiezhang Mo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Linrong Han
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Runnan Lv
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Michael W L Chiang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Rong Fan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
6
|
Li Q, Zhao Q, Guo J, Li X, Song J. Transcriptomic Analysis of Diethylstilbestrol in Daphnia Magna: Energy Metabolism and Growth Inhibition. TOXICS 2023; 11:197. [PMID: 36851071 PMCID: PMC9962875 DOI: 10.3390/toxics11020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
With the widespread use of diethylstilbestrol (DES), it has become a common contaminant in the aquatic environment. It is toxic to a wide range of aquatic organisms, disrupting the water flea growth and further interfering with several ecosystem services. Nevertheless, the molecular mechanism of DES in water fleas is still unexplicit. In this study, the 21-day chronic test showed that a negative effect of growth and reproduction can be observed with DES exposure. Subsequently applied transcriptomic analysis illustrated the molecular mechanism in mode freshwater invertebrate Daphnia magna (D. magna) exposed to 2, 200, and 1000 μg·L-1 of DES for 9 days. Meanwhile, exposure to DES at 200 and 1000 μg·L-1 significantly restrains the growth (body length) and reproduction (first spawning time) of D. magna. Identified differentially expressed genes (DEGs) are majorly enriched relative to energy metabolism, lipid metabolism, the digestive system, transport and catabolism pathways which were remarkably changed. These repressed and up-regulated pathways, in relation to energy synthesis and metabolism, may be the reasons for the reduced body length and delayed first spawning time. Taken together, this study revealed that DES is a threat to D. magna in the aquatic environment and clarifies the molecular mechanism of the toxicity.
Collapse
Affiliation(s)
- Qi Li
- Correspondence: ; Tel.: +86-135-7200-0931
| | | | | | | | | |
Collapse
|
7
|
Ziętara P, Dziewięcka M, Augustyniak M. Why Is Longevity Still a Scientific Mystery? Sirtuins-Past, Present and Future. Int J Mol Sci 2022; 24:728. [PMID: 36614171 PMCID: PMC9821238 DOI: 10.3390/ijms24010728] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The sirtuin system consists of seven highly conserved regulatory enzymes responsible for metabolism, antioxidant protection, and cell cycle regulation. The great interest in sirtuins is associated with the potential impact on life extension. This article summarizes the latest research on the activity of sirtuins and their role in the aging process. The effects of compounds that modulate the activity of sirtuins were discussed, and in numerous studies, their effectiveness was demonstrated. Attention was paid to the role of a caloric restriction and the risks associated with the influence of careless sirtuin modulation on the organism. It has been shown that low modulators' bioavailability/retention time is a crucial problem for optimal regulation of the studied pathways. Therefore, a detailed understanding of the modulator structure and potential reactivity with sirtuins in silico studies should precede in vitro and in vivo experiments. The latest achievements in nanobiotechnology make it possible to create promising molecules, but many of them remain in the sphere of plans and concepts. It seems that solving the mystery of longevity will have to wait for new scientific discoveries.
Collapse
Affiliation(s)
| | | | - Maria Augustyniak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, ul. Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
8
|
Catalán V, Avilés-Olmos I, Rodríguez A, Becerril S, Fernández-Formoso JA, Kiortsis D, Portincasa P, Gómez-Ambrosi J, Frühbeck G. Time to Consider the "Exposome Hypothesis" in the Development of the Obesity Pandemic. Nutrients 2022; 14:1597. [PMID: 35458158 PMCID: PMC9032727 DOI: 10.3390/nu14081597] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
The obesity epidemic shows no signs of abatement. Genetics and overnutrition together with a dramatic decline in physical activity are the alleged main causes for this pandemic. While they undoubtedly represent the main contributors to the obesity problem, they are not able to fully explain all cases and current trends. In this context, a body of knowledge related to exposure to as yet underappreciated obesogenic factors, which can be referred to as the "exposome", merits detailed analysis. Contrarily to the genome, the "exposome" is subject to a great dynamism and variability, which unfolds throughout the individual's lifetime. The development of precise ways of capturing the full exposure spectrum of a person is extraordinarily demanding. Data derived from epidemiological studies linking excess weight with elevated ambient temperatures, in utero, and intergenerational effects as well as epigenetics, microorganisms, microbiota, sleep curtailment, and endocrine disruptors, among others, suggests the possibility that they may work alone or synergistically as several alternative putative contributors to this global epidemic. This narrative review reports the available evidence on as yet underappreciated drivers of the obesity epidemic. Broadly based interventions are needed to better identify these drivers at the same time as stimulating reflection on the potential relevance of the "exposome" in the development and perpetuation of the obesity epidemic.
Collapse
Affiliation(s)
- Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.C.); (A.R.); (S.B.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 31008 Pamplona, Spain;
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Iciar Avilés-Olmos
- Department of Neurology, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.C.); (A.R.); (S.B.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 31008 Pamplona, Spain;
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.C.); (A.R.); (S.B.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 31008 Pamplona, Spain;
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | | | - Dimitrios Kiortsis
- Department of Nuclear Medicine, Medical School, University of Ioannina, 45110 Ioannina, Greece;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.C.); (A.R.); (S.B.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 31008 Pamplona, Spain;
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.C.); (A.R.); (S.B.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 31008 Pamplona, Spain;
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
9
|
Homburg M, Rasmussen ÅK, Ramhøj L, Feldt-Rasmussen U. The Influence of Triclosan on the Thyroid Hormone System in Humans - A Systematic Review. Front Endocrinol (Lausanne) 2022; 13:883827. [PMID: 35721761 PMCID: PMC9202756 DOI: 10.3389/fendo.2022.883827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Triclosan is an antibacterial agent suspected to disrupt the endocrine system. The aim of this study was to investigate the influence of triclosan on the human thyroid system through a systematic literature review of human studies. METHODS Eligibility criteria and method of analysis were registered at Prospero (registration number: CRD42019120984) before a systematic search was conducted in Pubmed and Embase in October 2020. Seventeen articles were found eligible for inclusion. Thirteen studies were observational, while four had a triclosan intervention. Participants consisted of pregnant women in eight studies, of men and non-pregnant women in seven studies and of chord samples/newborns/children/adolescents in six studies. The outcomes were peripheral thyroid hormones and thyroid-stimulating hormone (TSH) in blood samples. RESULTS Several studies found a negative association between triclosan and triiodothyronine and thyroxine, and a positive association with TSH; however, the opposite associations or no associations were also found. In general, the studies had limited measurement timepoints of thyroid outcomes, and the interventional studies used low concentrations of triclosan. Thus, study design limitations influence the quality of the dataset and it is not yet possible to conclude whether triclosan at current human exposure levels adversely affects the thyroid hormone system. CONCLUSIONS Further larger studies with more continuity and more elaborate outcome measurements of thyroid function are needed to clarify whether triclosan, at current exposure levels, affects the human thyroid hormone system. SYSTEMATIC REVIEW REGISTRATION http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42019120984, identifier PROSPERO (CRD42019120984).
Collapse
Affiliation(s)
- Mai Homburg
- Department of Medical Endocrinology and Metabolism, Copenhagen University Hospital, Copenhagen, Denmark
| | - Åse Krogh Rasmussen
- Department of Medical Endocrinology and Metabolism, Copenhagen University Hospital, Copenhagen, Denmark
| | - Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ulla Feldt-Rasmussen
- Department of Medical Endocrinology and Metabolism, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Ulla Feldt-Rasmussen,
| |
Collapse
|
10
|
Zhang X, Levia DF, Ebikade EO, Chang J, Vlachos DG, Wu C. The impact of differential lignin S/G ratios on mutagenicity and chicken embryonic toxicity. J Appl Toxicol 2021; 42:423-435. [PMID: 34448506 DOI: 10.1002/jat.4229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 12/25/2022]
Abstract
Lignin and lignin-based materials have received considerable attention in various fields due to their promise as sustainable feedstocks. Guaiacol (G) and syringol (S) are two primary monolignols that occur in different ratios for different plant species. As methoxyphenols, G and S have been targeted as atmospheric pollutants and their acute toxicity examined. However, there is a rare understanding of the toxicological properties on other endpoints and mixture effects of these monolignols. To fill this knowledge gap, our study investigated the impact of different S/G ratios (0.5, 1, and 2) and three lignin depolymerization samples from poplar, pine, and miscanthus species on mutagenicity and developmental toxicity. A multitiered method consisted of in silico simulation, in vitro Ames test, and in vivo chicken embryonic assay was employed. In the Ames test, syringol showed a sign of mutagenicity, whereas guaiacol did not, which agreed with the T.E.S.T. simulation. For three S and G mixture and lignin monomers, mutagenic activity was related to the proportion of syringol. In addition, both S and G showed developmental toxicity in the chicken embryonic assay and T.E.S.T. simulation, and guaiacol had a severe effect on lipid peroxidation. A similar trend and comparable developmental toxicity levels were detected for S and G mixtures and the three lignin depolymerized monomers. This study provides data and insights on the differential toxicity of varying S/G ratios for some important building blocks for bio-based materials.
Collapse
Affiliation(s)
- Xinwen Zhang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Delphis F Levia
- Department of Geography and Spatial Sciences, University of Delaware, Newark, DE, USA.,Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA
| | | | - Jeffrey Chang
- Department of Geography and Spatial Sciences, University of Delaware, Newark, DE, USA
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
11
|
Guo J, Ma Z, Peng J, Mo J, Li Q, Guo J, Yang F. Transcriptomic analysis of Raphidocelis subcapitata exposed to erythromycin: The role of DNA replication in hormesis and growth inhibition. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123512. [PMID: 32738783 DOI: 10.1016/j.jhazmat.2020.123512] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of hormesis in the algal growth inhibition test is a major challenge in the dose-response characterization, whereas the molecular mechanism remains unraveled. The aim of this study is therefore to investigate the changes in the molecular pathways in a model green alga Raphidocelis subcapitata treated with erythromycin (ERY; 4, 80, 120 μg L-1) by transcriptomic analysis. After 7 day exposure, ERY at 4 μg L-1 caused hormetic effects (21.9 %) on cell density, whereas 52.0 % and 65.4 % were inhibited in two higher exposures. By using adj p < 0.05 and absolute log2 fold change> 1 as a cutoff, we identified 218, 950, and 2896 differentially expressed genes in 4, 80, 120 μg L-1 treatment groups, respectively. In two higher ERY treated groups, genes involved in phases I, II & III metabolism processes and porphyrin and chlorophyll metabolism pathway were consistently suppressed. Interestingly, genes (e.g., pri2, mcm2, and mcm6) enriched in DNA replication process were up-regulated in 4 μg L-1 group, whereas these genes were all repressed in 120 μg L-1 group. Alteration trend in gene expression was consistent with algal growth. Taken together, our results unveiled the molecular mechanism of action in ERY- stimulated/ inhibited growth in green alga.
Collapse
Affiliation(s)
- Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Zhihua Ma
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jianglin Peng
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qi Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jipu Guo
- State Grid Shaanxi Electric Power Research Institute, Xi'an, 710100, China
| | - Fangshe Yang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
12
|
Kanda K, Ito S, Koh DH, Kim EY, Iwata H. Effects of tris(2-chloroethyl) phosphate exposure on chicken embryos in a shell-less incubation system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111263. [PMID: 32916532 DOI: 10.1016/j.ecoenv.2020.111263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/22/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Tris(2-chloroethyl) phosphate (TCEP) is an organophosphate flame retardant that used in textiles, industrial materials, and furniture to delay the spread of fire after ignition. TCEP has been detected in the tissues and eggs of fish and birds. However, there are no studies regarding the effects of TCEP on avian embryos. In the present study, we investigated the developmental toxicity of TCEP exposure on chicken embryos in a shell-less incubation system, which enables in situ observation. Chicken embryos were treated with graded doses of TCEP (50, 250, and 500 nmol/g egg) on incubation day 0. The survival rate, morphological biometrics, heart rate, and length and branch number of extraembryonic blood vessels were measured on incubation days 3-9. Survival rates were reduced from incubation day 3 and were significantly decreased until day 9. Body length, head + bill length and eye diameter were significantly reduced by TCEP exposure. Regarding skeletal effects, spine length was decreased in a dose-dependent manner on day 9. Body weight on day 9 significantly reduced in all TCEP treatment groups. These results suggest that TCEP exposure to >50 nmol/g egg retards development in chicken embryos. TCEP exposure to 500 nmol/g egg significantly increased heart weight to body weight ratio in the embryos. More than 250 nmol/g egg of TCEP significantly reduced the heart rate of embryos in the early developmental stage. The formation of extraembryonic blood vessels and the number of erythrocytes were significantly reduced even with 50 nmol/g egg of TCEP. These findings suggest that TCEP exposure specifically affects the cardiovascular system in chicken embryos, which leads to developmental delay. The results of this study also demonstrate that the shell-less incubation system can be used to continuously monitor the effects of chemicals on developing avian embryos.
Collapse
Affiliation(s)
- Kazuki Kanda
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 790-8577, Japan
| | - Shohei Ito
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 790-8577, Japan
| | - Dong-Hee Koh
- Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | - Eun-Young Kim
- Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 790-8577, Japan.
| |
Collapse
|
13
|
Bao S, He C, Ku P, Xie M, Lin J, Lu S, Nie X. Effects of triclosan on the RedoximiRs/Sirtuin/Nrf2/ARE signaling pathway in mosquitofish (Gambusia affinis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105679. [PMID: 33227666 DOI: 10.1016/j.aquatox.2020.105679] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
Triclosan (TCS) has been widely used in daily life for its broad-spectrum antibacterial property and subsequently detected frequently in aquatic waterborne. Environmental relevant concentrations of TCS in water (ng-μg/L) may pose potential unexpected impact on non-target aquatic organisms. In the present work, we investigated the transcriptional responses of Nrf2 as well as its downstream genes, sirtuins and redox-sensitive microRNAs (RedoximiRs) in livers of the small freshwater fish mosquitofish (Gambusia affinis) which were exposed to environmental relevant concentrations of TCS (0.05 μg/L, 0.5 μg/L and 5 μg/L for 24 h and 168 h). Results showed there were similar up-regulations in Nrf2 and its target genes (e. g. NQO1, CAT and SOD) at transcriptional, enzymatic and protein levels, reflecting oxidative stress of TCS to mosquitofish. Meanwhile, up-regulations of Sirt1, Sirt2 and down-regulations of miR-34b, miR-200b-5p and miR-21 could modulate antioxidant system via the Nrf2/ARE signaling pathway by the post-transcriptional regulations. Some oxidative stress-related biomarkers displayed in concentration-dependent manners (e. g. NQO1 mRNA, CAT mRNA) and/or time-dependent manners (e. g. GSH contents). This study indicated that the RedoximiRs/Sirtuin/Nrf2/ARE signaling pathway played a crucial role in mosquitofish exposed to TCS, and there might be potentially profound effects for TCS on the aquatic ecological safety.
Collapse
Affiliation(s)
- Shuang Bao
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou, 510632, China
| | - Cuiping He
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou, 510632, China
| | - Peijia Ku
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| | - Meinan Xie
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou, 510632, China
| | - Jiawei Lin
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou, 510632, China
| | - Songhui Lu
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou, 510632, China.
| | - Xiangping Nie
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
14
|
Kanerva M, Tue NM, Kunisue T, Vuori K, Iwata H. Effects on the Liver Transcriptome in Baltic Salmon: Contributions of Contamination with Organohalogen Compounds and Origin of Salmon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15246-15256. [PMID: 33166131 DOI: 10.1021/acs.est.0c04763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hatchery-reared Atlantic salmon (Salmo salar) has been released to support the wild salmon stocks in the Baltic Sea for decades. During their feeding migration, salmon are exposed to organohalogen compounds (OHCs). Here, we investigated the OHC levels and transcriptome profiles in the liver of wild and hatchery-reared salmon collected from the Baltic main basin (BMB), the Bothnian Sea (BS), and the Gulf of Finland (GoF) and examined whether salmon origin and OHC levels contributed to the hepatic transcriptome profiles. There were no differences in the OHC concentrations between wild and reared fish but larger differences between areas. Several transcript levels were associated with non-dioxin-like polychlorinated biphenyls, polybrominated diphenylethers, chlordanes, and dichlorodiphenyltrichloroethane in a concentration-dependent manner. Between wild and reared salmon, lipid metabolism and related signaling pathways were enriched within the BMB and BS, while amino acid metabolism was altered within the GoF. When comparing the different areas, lipid metabolism, environmental stress and cell growth, and death-related pathways were enriched. Class coinertia analysis showed that the covariation in the OHC levels and the transcriptome were significantly similar. These results suggest that the hepatic transcriptomes in wild and hatchery-reared salmon are more affected by the OHC levels rather than the origin of salmon.
Collapse
Affiliation(s)
- Mirella Kanerva
- CMES, Lab. of Environmental Toxicology, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Nguyen Minh Tue
- CMES, Lab. of Environmental Chemistry, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Tatsuya Kunisue
- CMES, Lab. of Environmental Chemistry, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Kristiina Vuori
- Department of Equine and Small Animal Medicine, University of Helsinki, P.O. Box 57, Koetilantie 2, Helsinki FI-00014, Finland
| | - Hisato Iwata
- CMES, Lab. of Environmental Toxicology, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| |
Collapse
|
15
|
Tanoue R, Nozaki K, Nomiyama K, Kunisue T, Tanabe S. Rapid analysis of 65 pharmaceuticals and 7 personal care products in plasma and whole-body tissue samples of fish using acidic extraction, zirconia-coated silica cleanup, and liquid chromatography-tandem mass spectrometry. J Chromatogr A 2020; 1631:461586. [PMID: 33010711 DOI: 10.1016/j.chroma.2020.461586] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 11/15/2022]
Abstract
The presence of pharmaceuticals and personal care products (PPCPs) in aquatic systems has raised concern about their potential adverse effects on aquatic organisms. Considering the fact that the physiological/biological effects of PPCPs are triggered when their concentrations in the organism exceeds the respective threshold values, it is important to understand the bioconcentration and toxicokinetics of PPCPs in aquatic organisms. In the present study, we developed a convenient analytical method for the determination of 65 pharmaceuticals and 7 personal care products (log Kow = 0.14-6.04) in plasma and whole-body tissues of fish. The analytical method consists of ultrasound-assisted extraction in methanol/acetonitrile (1:1, v/v,) acidified with acetic acid-ammonium acetate buffer (pH 4), cleanup on a HybridSPE®-Phospholipid cartridge (zirconia-coated silica cartridge), and quantification with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Acceptable accuracy (internal standard-corrected recovery: 70%-120%) and intra- and inter-day precision (coefficient of variation: <15%) were obtained for both plasma and whole-body tissue samples. In addition, low method detection limits were achieved for both plasma (0.0077 to 0.93 ng mL-1) and whole-body tissue (0.022 to 4.3 ng g - 1 wet weight), although the developed method is simple and fast - a batch of 24 samples can be prepared within 6 h, excluding the time for measurement with LC-MS/MS. The developed method was successfully applied to the analysis of PPCPs in plasma and whole-body tissue samples of fish collected in a treated wastewater-dominated stream, for a comprehensive evaluation of their bioconcentration properties. The analytical method developed in the present study is sufficiently accurate, sensitive, and rapid, and thus highly useful for the comprehensive evaluation of PPCP residues in fish and would aid in future exposome and risk assessment.
Collapse
Affiliation(s)
- Rumi Tanoue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| | - Kazusa Nozaki
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
16
|
Guo J, Bai Y, Chen Z, Mo J, Li Q, Sun H, Zhang Q. Transcriptomic analysis suggests the inhibition of DNA damage repair in green alga Raphidocelis subcapitata exposed to roxithromycin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110737. [PMID: 32505758 DOI: 10.1016/j.ecoenv.2020.110737] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Macrolide antibiotics are common contaminants in the aquatic environment. They are toxic to a wide range of primary producers, inhibiting the algal growth and further hindering the delivery of several ecosystem services. Yet the molecular mechanisms of macrolides in algae remain undetermined. The objectives of this study were therefore to: 1. evaluate whether macrolides at the environmentally relevant level inhibit the growth of algae; and 2. test the hypothesis that macrolides bind to ribosome and inhibit protein translocation in algae, as it does in bacteria. In this study, transcriptomic analysis was applied to elucidate the toxicological mechanism in a model green alga Raphidocelis subcapitata treated with 5 and 90 μg L-1 of a typical macrolide roxithromycin (ROX). While exposure to ROX at 5 μg L-1 for 7 days did not affect algal growth and the transciptome, ROX at 90 μg L-1 resulted in 45% growth inhibition and 2306 (983 up- and 1323 down-regulated) DEGs, which were primarily enriched in the metabolism of energy, lipid, vitamins, and DNA replication and repair pathways. Nevertheless, genes involved in pathways in relation to translation and protein translocation and processing were dysregulated. Surprisingly, we found that genes involved in the base excision repair process were mostly repressed, suggesting that ROX may be genotoxic and cause DNA damage in R. subcapitata. Taken together, ROX was unlikely to pose a threat to green algae in the environment and the mode of action of macrolides in bacteria may not be directly extrapolated to green algae.
Collapse
Affiliation(s)
- Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Yi Bai
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Qi Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
17
|
Guo J, Mo J, Zhao Q, Han Q, Kanerva M, Iwata H, Li Q. De novo transcriptomic analysis predicts the effects of phenolic compounds in Ba River on the liver of female sharpbelly (Hemiculter lucidus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114642. [PMID: 32408079 DOI: 10.1016/j.envpol.2020.114642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
This work aimed at predicting the toxic effects of phenolic compounds in Ba River on the health of female sharpbelly (Hemiculter lucidus) by the de novo transcriptomic analysis of the liver. Sharpbelly, a native fish living in freshwater ecosystem of East Asia, were sampled upstream, near, and downstream of a wastewater discharge to the Ba river. Based on the occurrence of bisphenol A (BPA), nonylphenol (NP), and 4-tert-octylphenol (4-t-OP) in the water and fish sampled from each site, up-, mid-, and down-stream were interpreted as control, high, and low treatment groups, respectively. In the mid-stream group the Fulton's condition factor (CF) and body weight were remarkably increased by approximate 20%; the gonado-somatic index (GSI) and hepatosomatic index (HSI) in mid-stream fish showed a similar increasing trend but lacking of statistical difference. Exposure to wastewater effluent caused 160 and 162 differentially expressed genes (DEGs) in up-mid and down-mid stream groups, respectively. Two sets of DEGs were primarily enriched in the signaling pathways of drug metabolism, endocrine system, cellular process, and lipid metabolism in the mid-stream sharpbelly, which may alter the fish behavior, disrupt the reproductive function, and lead to hypothyroidism, hepatic steatosis, etc. Taken together, our results linked the disrupted signaling pathways with activities of phenolic compounds to predict the potential effects of wastewater effluent on the health of wild fish.
Collapse
Affiliation(s)
- Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qian Zhao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Qizhi Han
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Mirella Kanerva
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime prefecture, 790-8577, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime prefecture, 790-8577, Japan
| | - Qi Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
18
|
Li X, Shang Y, Yao W, Li Y, Tang N, An J, Wei Y. Comparison of Transcriptomics Changes Induced by TCS and MTCS Exposure in Human Hepatoma HepG2 Cells. ACS OMEGA 2020; 5:10715-10724. [PMID: 32455190 PMCID: PMC7240827 DOI: 10.1021/acsomega.0c00075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/24/2020] [Indexed: 05/06/2023]
Abstract
Triclosan (TCS) has been a widely used antibacterial agent in medical and personal care products in the last few decades. Methyl TCS (MTCS) is the major biotransformation product of TCS through replacement of the hydroxyl group with methoxy. Previous studies revealed that MTCS showed reduced toxicity but enhanced environmental persistence, when compared with TCS. Till date, the toxicological molecular mechanisms of TCS and MTCS remain to be clarified. This study aimed to investigate the transcriptomic changes in HepG2 cells induced by TCS and MTCS using microarray chips and to identify key target genes and related signal pathways. The microarray data showed that there were 1664 and 7144 differentially expressed genes (DEGs) in TCS- and MTCS-treated groups, respectively. Gene ontology (GO) enrichment and Kyoto Encyclopedia of genes and genomes (KEGG) analysis revealed that TCS and MTCS induced overlapping as well as distinct transcriptome signatures in HepG2 cells. Both TCS and MTCS could result in various biological responses in HepG2 cells mainly responding to biosynthetic and metabolic processes but probably through different regulatory pathways. Among the selected 50 GO terms, 9 GO terms belonging to the cellular component category were only enriched in the MTCS group, which are mainly participating in the regulation of cellular organelle's function. KEGG analysis showed that 19 and 59 pathway terms were separately enriched in TCS and MTCS groups, with only seven identical pathways. The selected 10 TCS-specific signal pathways are mainly involved in cell proliferation and apoptosis, while the selected 10 MTCS-specific pathways mainly take part in the regulation of protein synthesis and modification. The overall data suggested that MTCS induced more enriched DEGs, GO terms, and pathway terms than TCS. In conclusion, compared with TCS, MTCS presents lower polarity and stronger lipophilicity, enabling MTCS to cause more extensive transcriptomic changes in HepG2 cells, activate differentiated signal pathways, and finally lead to differences in biological responses.
Collapse
Affiliation(s)
- Xiaoqian Li
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Shang
- School
of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Weiwei Yao
- School
of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yi Li
- State
Key Laboratory of Severe Weather & Key Laboratory of Atmospheric
Chemistry of CMA, Chinese Academy of Meteorological
Sciences, Beijing 100081, China
| | - Ning Tang
- Institute
of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Jing An
- School
of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongjie Wei
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
19
|
Huang W, Xie P, Cai Z. Lipid metabolism disorders contribute to hepatotoxicity of triclosan in mice. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121310. [PMID: 31586915 DOI: 10.1016/j.jhazmat.2019.121310] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 05/05/2023]
Abstract
Previous in vivo exposure studies focused mainly on nuclear receptors involved in hepatotoxicity of triclosan (TCS). As liver plays a vital role in metabolic processes, dysregulations in lipid metabolism have been identified as potential drivers of pathogenesis. Investigation of changes in lipid metabolism might widen our understanding of toxicological effects as well as the underlying mechanism occurring in the liver. In this study, we comprehensively assessed the effect of TCS exposure on hepatic lipid metabolism in mice. Our results showed that TCS induced significant changes in hepatic free fatty acid pool by upregulation of fatty acid uptake and de novo fatty acid synthesis. Besides, hepatic levels of lipids, including acyl carnitine (AcCa), ceramide (Cer), triacylglycerols (TG), phosphatidylcholine (PC), lysophosphatidylcholine (LPC), phosphatidylethanolamine (PE) were also increased, together with upreguation of genes associated to TG synthesis, fatty acid oxidation and inflammation in TCS exposure group. These changes in lipid homeostasis could contribute to membrane instability, lipid accumulation, oxidative stress and inflammation. Our results suggested that TCS exposure could induce hepatic lipid metabolism disorders in mice, which would further contribute to the liver damage effects of TCS.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, PR China; College of Chemistry and Molecular Science, Wuhan University, Hubei, PR China
| | - Peisi Xie
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, PR China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, PR China.
| |
Collapse
|
20
|
Triclosan: An Update on Biochemical and Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1607304. [PMID: 31191794 PMCID: PMC6525925 DOI: 10.1155/2019/1607304] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/28/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022]
Abstract
Triclosan (TCS) is a synthetic, chlorinated phenolic antimicrobial agent commonly used in commercial and healthcare products. Items made with TCS include soaps, deodorants, shampoos, cosmetics, textiles, plastics, surgical sutures, and prosthetics. A wealth of information obtained from in vitro and in vivo studies has demonstrated the therapeutic effects of TCS, particularly against inflammatory skin conditions. Nevertheless, extensive investigations on the molecular aspects of TCS action have identified numerous adversaries associated with the disinfectant including oxidative injury and influence of physiological lifespan and longevity. This review presents a summary of the biochemical alterations pertaining to TCS exposure, with special emphasis on the diverse molecular pathways responsive to TCS that have been elucidated during the present decade.
Collapse
|
21
|
Guo J, Nguyen HT, Ito S, Bean T, Iwata H. Hazard assessment of chemicals in avian embryos by using "OMICS" approaches: What are the challenges? INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2019; 15:482-484. [PMID: 31034716 DOI: 10.1002/ieam.4137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Jiahua Guo
- College of Urban and Environmental Science, Northwest University, Xi'an, ShaaniX, China
| | - Hoa Thanh Nguyen
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime Prefecture, Japan
| | - Shohei Ito
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime Prefecture, Japan
| | - Thomas Bean
- Smithers Viscient, Carolina Research Center, Snow Camp, North Carolina, USA
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime Prefecture, Japan
| |
Collapse
|
22
|
Possenti CD, Poma G, Defossé S, Caprioli M, De Felice B, Romano A, Saino N, Covaci A, Parolini M. Embryotoxic effects of in-ovo triclosan injection to the yellow-legged gull. CHEMOSPHERE 2019; 218:827-835. [PMID: 30508801 DOI: 10.1016/j.chemosphere.2018.11.187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Triclosan (TCS) is an antimicrobial agent used in diverse personal care products that is considered as an emerging contaminant of both aquatic and terrestrial ecosystems. Although TCS aquatic ecotoxicity is well known, information on the presence and effects on terrestrial organisms is still scarce. This study was aimed at exploring the embryotoxicity of TCS to the yellow-legged gull (Larus michahellis) induced by the in-ovo injection of 150 ng TCS/g egg weight. Effects of TCS on embryo morphological traits (i.e. body mass, tarsus length and head size). Moreover, oxidative and genetic effects were assessed in the embryo liver, by measuring the amount of reactive oxygen species (ROS), the activity of antioxidant (superoxide dismutase and catalase) and detoxifying (glutathione S-transferase - GST) enzymes, the levels of lipid peroxidation and DNA fragmentation. After the injection, the concentration of TCS measured in the yolk of unincubated eggs (159 ± 35 ng/g wet weight, ww) was close to the expected concentration. Triclosan was found in residual yolk (2.9 ± 1.1 ng/g ww), liver (2.3 ± 1.1 ng/g ww) and brain (0.2 ± 0.1 ng/g ww) of embryos soon before hatching. Triclosan did not significantly affect embryo morphological traits, while it increased ROS levels and promoted GST activity, inducing the onset of both oxidative and genetic damage. This study demonstrated, for the first time in a wild euriecious bird species with mixed habits, that TCS can be maternally transferred to developing embryos, representing a potential threat for offspring.
Collapse
Affiliation(s)
- Cristina Daniela Possenti
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Saskia Defossé
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Manuela Caprioli
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Andrea Romano
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133 Milan, Italy; Department of Ecology and Evolution, University of Lausanne, Building Biophore, CH-1015, Lausanne, Switzerland
| | - Nicola Saino
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
23
|
Guo J, Nguyen HT, Ito S, Yamamoto K, Kanerva M, Iwata H. In ovo exposure to triclosan alters the hepatic proteome in chicken embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:495-504. [PMID: 30219713 DOI: 10.1016/j.ecoenv.2018.09.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 06/08/2023]
Abstract
The occurrence of triclosan (TCS) in the eggs of wild avian species is an emerging concern. We previously evaluated the effects of in ovo exposure to TCS on the liver transcriptome of chicken embryos and proposed adverse outcome pathways (AOPs). However, the key molecular events identified to be affected need to be verified at the protein level. Herein, we investigated the changes in the spectrum of hepatic proteins in TCS-treated chicken embryos by proteomic analysis to validate the key signaling pathways involved in the AOPs. We identified and quantified 894 unique proteins using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry. In the 0.1 (low dose), 1 (median dose), and 10 μg triclosan/g egg (high dose) groups, TCS caused significant changes in the levels of 195, 233, and 233 proteins in males and 237, 188, and 156 proteins in females, respectively (fold changes > 1.3 or < 0.7). TCS exposure modulated the expression of proteins, predominantly involved in signaling pathways of lipid and energy metabolism in both genders. Among the proteins associated with TCS metabolism in the liver, phase I (e.g., CYP2C23a) and phase II (e.g., UGT1A1) enzymes mediated by chicken xenobiotic receptor, were only induced in males. In consonance with the malondialdehyde levels, which were increased upon TCS exposure in females in a dose-dependent manner, a battery of antioxidant enzymes, notably SOD2, GST, GSTz1, and PRDX1, was decreased and SOD1 and GSTK1 were increased in the embryos. Taken together, this proteome analysis complements the transcriptome profiling reported in our previous study and authenticates the AOPs proposed for chicken embryos in ovo exposed to TCS.
Collapse
Affiliation(s)
- Jiahua Guo
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Ehime prefecture, Japan
| | - Hoa Thanh Nguyen
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Ehime prefecture, Japan
| | - Shohei Ito
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Ehime prefecture, Japan
| | - Kimika Yamamoto
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Ehime prefecture, Japan
| | - Mirella Kanerva
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Ehime prefecture, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Ehime prefecture, Japan.
| |
Collapse
|
24
|
Guo J, Ito S, Nguyen HT, Yamamoto K, Iwata H. Effects on the hepatic transcriptome of chicken embryos in ovo exposed to phenobarbital. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:94-103. [PMID: 29793206 DOI: 10.1016/j.ecoenv.2018.05.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
This work aimed at evaluating the toxic effects of in ovo exposure to phenobarbital (PB) and unveiling the mode of action by transcriptome analysis in the embryonic liver of a model avian species, chicken (Gallus gallus). Embryos were initially treated with saline or 1 μg PB /g egg at Hamburger Hamilton Stage (HHS) 1 (1st day), followed by 20 days of incubation to HHS 46. At 21st day, chicks that pipped successfully were euthanized and dissected for assessing the PB caused effects on phenotypes and the liver transcriptome in both genders. In the PB treatment group, a 7% attenuation in tarsus length was found in females. While no adverse phenotypic effect on the liver somatic index (LSI) was observed, PB caused significant changes in the expressions of 52 genes in males and 516 genes in females (False Discovery Rate < 0.2, p value < 0.05, and absolute fold change > 2). PB exposure modulated the genes primarily enriched in the biological pathways of the cancer, cardiac development, immune response, lipid metabolism, and skeletal development in both genders, and altered expressions of genes related to the cellular process and neural development in females. However, mRNA expressions of chicken xenobiotic receptor (CXR)-mediated CYP genes were not induced in the PB treatment groups, regardless of males and females. On the contrary, PB exposure repressed the mRNA expressions of CYP2AC2 in males and CYP2R1, CYP3A37, and CYP8B1 in females. Although transcription factors (TFs) including SREBF1 and COUP-TFII were predicted to be commonly activated in both genders, some TFs were activated in a gender-dependent manner, such as PPARa in males and BRCA1 and IRF9 in females. Taken together, our results provided an insight into the mode of action of PB on the chicken embryos.
Collapse
Affiliation(s)
- Jiahua Guo
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime prefecture, 790-8577 Japan
| | - Shohei Ito
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime prefecture, 790-8577 Japan
| | - Hoa Thanh Nguyen
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime prefecture, 790-8577 Japan
| | - Kimika Yamamoto
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime prefecture, 790-8577 Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime prefecture, 790-8577 Japan.
| |
Collapse
|