1
|
Wang W, Jin Y, Liu MK, Zhang SY, Chen H, Song J. Current Progress of Hederagenin and Its Derivatives for Disease Therapy (2017-Present). Molecules 2025; 30:1275. [PMID: 40142049 PMCID: PMC11944430 DOI: 10.3390/molecules30061275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Natural products have emerged as crucial sources of biologically active compounds, holding promise for applications in drug development. Among the extensively researched pentacyclic triterpenes, hederagenin (HG) stands out for its diverse biological activities and serves as a valuable scaffold for synthesizing novel derivatives. These derivatives hold significant promise for the development of novel therapeutic agents aimed at treating a wide range of diseases. Over the past years, a multitude of HG derivatives with varied bioactivities have been synthesized through chemical modifications. This review article consolidates the most recent findings (since 2017) on HG derivatives, emphasizing their biological effects and mechanisms of action in both in vitro and in vivo models. The objective of this compilation is to offer insights and direct future research endeavors in the realm of HG.
Collapse
Affiliation(s)
- Wang Wang
- Luoyang Key Laboratory of Organic Functional Molecules, School of Food and Drug, Luoyang Normal University, Luoyang 471934, China; (W.W.); (Y.J.); (M.-K.L.)
| | - Yan Jin
- Luoyang Key Laboratory of Organic Functional Molecules, School of Food and Drug, Luoyang Normal University, Luoyang 471934, China; (W.W.); (Y.J.); (M.-K.L.)
| | - Meng-Ke Liu
- Luoyang Key Laboratory of Organic Functional Molecules, School of Food and Drug, Luoyang Normal University, Luoyang 471934, China; (W.W.); (Y.J.); (M.-K.L.)
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, School of Food and Drug, Luoyang Normal University, Luoyang 471934, China; (W.W.); (Y.J.); (M.-K.L.)
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| |
Collapse
|
2
|
Yu L, Liu S, Liu J, Li J, Zhang W, Lin L, Yang L, Zheng G. Smilaxchina L. polyphenols inhibit LPS-induced macrophage M1 polarization to alleviate inflammation through NF-κB signaling pathway in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119355. [PMID: 39800244 DOI: 10.1016/j.jep.2025.119355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As an important component of the cell wall of Gram-negative bacteria, lipopolysaccharide (LPS) is an important inducer of inflammation in humans. Smilax china L. is known for its diverse bioactive functions, particularly its anti-inflammatory effects. AIM OF THE STUDY This study aimed to investigate the bioactive function of Smilax china L. polyphenols (SCLP) on LPS-induced inflammation. MATERIALS AND METHODS Inflammation in RAW264.7 macrophages and mice were induced using LPS. The cytotoxicity of SCLP was investigated by MTT assay. Inflammatory factors were detected by ELISA and RT-PCR. The expression of NF-κB pathway-related proteins was analyzed by Western Blotting. RESULTS The results demonstrated that SCLP significantly reduced the levels of pro-inflammatory factors (TNF-α, IL-1β, and IL-6) and inhibited M1 polarization of macrophages in both RAW264.7 macrophages and mice (p < 0.05). Western Blotting analysis revealed that the levels of NF-κB signaling pathway-associated proteins (p-p65, p-IKB, p-IKK) were significantly reduced (p < 0.05). Notably, SCLP significantly downregulated the expression of pro-apoptotic proteins, while upregulating the expression of anti-apoptotic proteins in RAW264.7 macrophages (p < 0.05). Additionally, the levels of antioxidant enzymes were enhanced in mice, suggesting a potential reduction in the inflammatory response. CONCLUSIONS These findings indicated that SCLP might inhibit LPS-induced M1 polarization through the NF-κB signaling pathway, thereby reducing inflammation. Consequently, SCLP might serve as a promising bioactive substance for preventing inflammation-related injury.
Collapse
Affiliation(s)
- Longhui Yu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shanshan Liu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiluan Liu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jingen Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wenkai Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lezhen Lin
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Licong Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
3
|
Kim HM, Yoo DH, Kang JW, Lee IC, Bae JS. Anti-Inflammatory Effect of Extract from Fragaria ananassa Duch. Calyx via MAPK and NF-κB Signaling Pathway. J Microbiol Biotechnol 2024; 34:2662-2674. [PMID: 39604003 PMCID: PMC11733547 DOI: 10.4014/jmb.2409.09044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Currently, Fragaria ananassa Duch. are discarded as by-products except for the fruit part, so we developed a natural material using the top (= calyx), one of the by-products, and prepared an extract using 70% ethanol to investigate its effects on anti-inflammatory mechanisms. The polyphenol content of 70% ethanol extracts from Fragaria ananassa Duch. calyx was measured to be 265.86 ± 0.85 mg TAE/100 g, respectively. The antioxidant activity was confirmed through the electron donating ability and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) radical scavenging ability measurements. When extracts from Fragaria ananassa Duch. calyx was treated to LPS-induced RAW 264.7 cells, it was confirmed that the production of inflammation-related factors, NO, PGE2, iNOS, COX-2, TNF-a, and IL-6, was inhibited. In addition, it was confirmed that extracts from Fragaria ananassa Duch. calyx affected the MAPK signaling pathway by reducing the protein expression of p-ERK, p-JNK, and p-p38, which are the upper signaling pathways. In addition, it was confirmed to reduce the protein expression of p-p65 and p-IκB, which are NF-κB signaling pathways. Therefore, this study suggests that extracts from Fragaria ananassa Duch. calyx affect the regulation of the production of major inflammation-related factors by inhibiting the MAPK and NF-κB signaling pathway. These results confirmed that extracts from Fragaria ananassa Duch. calyx have the potential to be developed as a new natural material with anti-inflammatory activity.
Collapse
Affiliation(s)
- Hyo-Min Kim
- College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dan-Hee Yoo
- College of Fusion and Convergence, Seowon University, Cheongju 28674, Republic of Korea
| | - Jung-Wook Kang
- College of Fusion and Convergence, Seowon University, Cheongju 28674, Republic of Korea
| | - In-Chul Lee
- Department of Bio-Cosmetic Science, Seowon University, Cheongju 28674, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Kwak JE, Lee JY, Baek JY, Kim SW, Ahn MR. The Antioxidant and Anti-Inflammatory Properties of Bee Pollen from Acorn ( Quercus acutissima Carr.) and Darae ( Actinidia arguta). Antioxidants (Basel) 2024; 13:981. [PMID: 39199227 PMCID: PMC11352170 DOI: 10.3390/antiox13080981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/01/2024] Open
Abstract
Aging is a complex biological process characterized by a progressive decline in physical function and an increased risk of age-related chronic diseases. Additionally, oxidative stress is known to cause severe tissue damage and inflammation. Pollens from acorn and darae are extensively produced in Korea. However, the underlying molecular mechanisms of these components under the conditions of inflammation and oxidative stress remain largely unknown. This study aimed to investigate the effect of bee pollen components on lipopolysaccharide (LPS)-induced RAW 264.7 mouse macrophages. This study demonstrates that acorn and darae significantly inhibit the LPS-induced production of inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), in RAW 264.7 cells. Specifically, bee pollen from acorn reduces NO production by 69.23 ± 0.04% and PGE2 production by 44.16 ± 0.08%, while bee pollen from darae decreases NO production by 78.21 ± 0.06% and PGE2 production by 66.23 ± 0.1%. Furthermore, bee pollen from acorn and darae reduced active oxygen species (ROS) production by 47.01 ± 0.5% and 60 ± 0.9%, respectively. It increased the nuclear potential of nuclear factor erythroid 2-related factor 2 (Nrf2) in LPS-stimulated RAW 264.7 cells. Moreover, treatment with acorn and darae abolished the nuclear potential of nuclear factor κB (NF-κB) and reduced the expression of extracellular signal-associated kinase (ERK) and c-Jun N-terminal kinase (JNK) phosphorylation in LPS-stimulated RAW 264.7 cells. Specifically, acorn decreased NF-κB nuclear potential by 90.01 ± 0.3%, ERK phosphorylation by 76.19 ± 1.1%, and JNK phosphorylation by 57.14 ± 1.2%. Similarly, darae reduced NF-κB nuclear potential by 92.21 ± 0.5%, ERK phosphorylation by 61.11 ± 0.8%, and JNK phosphorylation by 59.72 ± 1.12%. These results suggest that acorn and darae could be potential antioxidants and anti-inflammatory agents.
Collapse
Affiliation(s)
- Jeong-Eun Kwak
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-E.K.); (J.-Y.L.); (J.-Y.B.)
| | - Joo-Yeon Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-E.K.); (J.-Y.L.); (J.-Y.B.)
| | - Ji-Yoon Baek
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-E.K.); (J.-Y.L.); (J.-Y.B.)
| | - Sun Wook Kim
- Research and Business Planning Team, Panolos Bioscience Inc., Hwaseong 18471, Republic of Korea;
| | - Mok-Ryeon Ahn
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-E.K.); (J.-Y.L.); (J.-Y.B.)
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
5
|
de Oliveira Alves JV, da Rocha Barbosa BVD, da Silva Aguiar IF, Galvão LRL, Ferreira RJ, de Lima Maux JM, da Costa Silva Neto J, de Oliveira AM, Napoleão TH, Dos Santos Correia MT, Costa WK, da Silva MV. Fixed oil from the Caatinga palm Syagrus coronata with effect on Complete Freund's Adjuvant (CFA)-induced arthritis. Inflammopharmacology 2024:10.1007/s10787-024-01548-2. [PMID: 39126571 DOI: 10.1007/s10787-024-01548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Syagrus coronata, a native palm tree in the Caatinga domain, produces fixed oil (ScFO) used therapeutically and dietary by Northeast Brazilian communities. This study evaluated its anti-inflammatory potential of CFA-induced arthritis and its effect on behavioral parameters. In the acute model, ScFO at 25, 50, and 100 mg/kg showed edematogenic effects similar to indomethacin at 4 mg/kg (p > 0.05). In the arthritis model, 100 mg/kg ScFO treatment was comparable to indomethacin (4 mg/kg) (p > 0.05). TNF-α and IL-1β levels were significantly reduced in ScFO-treated groups at 25, 50, and 100 mg/kg, and the indomethacin group (4 mg/kg) versus the positive control (p > 0.05). Radiographs showed severe soft-tissue swelling and bone deformities in the control group, while the 100 mg/kg ScFO group had few alterations, similar to the indomethacin group. Histopathological analysis revealed intense lymphocytic infiltration in the control group, mild diffuse lymphocytic infiltration in the indomethacin group, and mild lymphoplasmacytic infiltration with focal polymorphonuclear infiltrates in the 100 mg/kg ScFO group. Behavioral analysis showed improved exploratory stimuli in ScFO and indomethacin-treated mice compared to the positive control (p > 0.05). ScFO demonstrated anti-inflammatory effects in both acute and chronic arthritis models, reducing edema and pro-inflammatory cytokines, and improved exploratory behavior due to its analgesic properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Julliano Matheus de Lima Maux
- Laboratório de Pesquisa Citológicas E Moleculares, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Jacinto da Costa Silva Neto
- Laboratório de Pesquisa Citológicas E Moleculares, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Alisson Macário de Oliveira
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande, PB, 58429-500, Brazil
| | | | | | - Wêndeo Kennedy Costa
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil.
| | - Marcia Vanusa da Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| |
Collapse
|
6
|
Raina S, Hübner E, Samuel E, Nagel G, Fuchs H. DT-13 attenuates inflammation by inhibiting NLRP3-inflammasome related genes in RAW264.7 macrophages. Biochem Biophys Res Commun 2024; 708:149763. [PMID: 38503169 DOI: 10.1016/j.bbrc.2024.149763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Plant derived saponins or other glycosides are widely used for their anti-inflammatory, antioxidant, and anti-viral properties in therapeutic medicine. In this study, we focus on understanding the function of the less known steroidal saponin from the roots of Liriope muscari L. H. Bailey - saponin C (also known as DT-13) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages in comparison to the well-known saponin ginsenoside Rk1 and anti-inflammatory drug dexamethasone. We proved that DT-13 reduces LPS-induced inflammation by inhibiting nitric oxide (NO) production, interleukin-6 (IL-6) release, cycloxygenase-2 (COX-2), tumour necrosis factor-alpha (TNF-α) gene expression, and nuclear factor kappa-B (NFκB) translocation into the nucleus. It also inhibits the inflammasome component NOD-like receptor family pyrin domain containing protein 3 (NLRP3) regulating the inflammasome activation. This was supported by the significant inhibition of caspase-1 and interleukin-1 beta (IL-1β) expression and release. This study demonstrates the anti-inflammatory effect of saponins on LPS-stimulated macrophages. For the first time, an in vitro study shows the attenuating effect of DT-13 on NLRP3-inflammasome activation. In comparison to the existing anti-inflammatory drug, dexamethasone, and triterpenoid saponin Rk1, DT-13 more efficiently inhibits inflammation in the applied cell culture model. Therefore, DT-13 may serve as a lead compound for the development of new more effective anti-inflammatory drugs with minimised side effects.
Collapse
Affiliation(s)
- Shikha Raina
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany
| | - Emely Hübner
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany; Hochschule Bonn-Rhein Sieg, 53359, Rheinbach, Germany; HAN University of Applied Sciences, Groenewoudseweg, 6524, Nijmegen, Netherlands
| | - Esther Samuel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany
| | - Gregor Nagel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany
| | - Hendrik Fuchs
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353, Berlin, Germany.
| |
Collapse
|
7
|
Luo Y, Yu Y, He H, Fan N. Acute ketamine induces neuronal hyperexcitability and deficits in prepulse inhibition by upregulating IL-6. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110913. [PMID: 38103855 DOI: 10.1016/j.pnpbp.2023.110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Acute ketamine administration results in psychotic symptoms similar to those observed in schizophrenia and is regarded as a pharmacological model of schizophrenia. Accumulating evidence suggests that patients with schizophrenia show increased IL-6 levels in the blood and cerebrospinal fluid and that IL-6 levels are associated with the severity of psychotic symptoms. In the present study, we found that a single ketamine exposure led to increased expression of IL-6 and IL-6Rα, decreased dendritic spine density, increased expression and currents of T-type calcium channels, and increased neuron excitability in the hippocampal CA1 area 12 h after exposure. Acute ketamine administration also led to impaired prepulse inhibition (PPI) 12 h after administration. Additionally, we found that the expression of signaling molecules IKKα/β, NF-κB, JAK2, and STAT3 was upregulated 12 h after a single ketamine injection. The decreases in dendritic spine density, the increases in calcium currents and neuron excitability, and the impairments in PPI were ameliorated by blocking IL-6 or IL-6Rα. Our findings show that blocking IL-6 or its receptor may protect hippocampal neurons from hyperexcitability, thereby ameliorating ketamine-induced psychotic effects. Our study provides additional evidence that targeting IL-6 and its receptor is a potential strategy for treating psychotic symptoms in acute ketamine-induced psychosis and schizophrenia.
Collapse
Affiliation(s)
- Yayan Luo
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Yang Yu
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Hongbo He
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Ni Fan
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China.
| |
Collapse
|
8
|
Cai M, Xu YC, Deng B, Chen JB, Chen TF, Zeng KF, Chen S, Deng SH, Tan ZB, Ding WJ, Zhang SW, Liu B, Zhang JZ. Radix Glycyrrhizae extract and licochalcone a exert an anti-inflammatory action by direct suppression of toll like receptor 4. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115869. [PMID: 36309116 DOI: 10.1016/j.jep.2022.115869] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Glycyrrhizae (GL), a herbal medicine that is widely available, has shown advantages for a variety of inflammatory diseases. Toll like receptor 4 (TLR4) pathway has been shown to play a key role in the progression of inflammation. AIM OF THE STUDY The purpose of this study was to investigate the involvement of TLR4 in the anti-inflammatory mechanism of GL extract and its active constituent on acute lung injury (ALI). MATERIALS AND METHODS A model of inflammation produced by lipopolysaccharide (LPS) was established in C57BL/6 mice and macrophages derived from THP-1. To screen the active components of GL, molecular docking was used. Molecular dynamics and surface plasmon resonance imaging (SPRi) were used to study the interaction of a specific drug with the TLR4-MD2 complex. TLR4 was overexpressed by adenovirus to confirm TLR4 involvement in the anti-inflammatory activities of GL and the chosen chemical. RESULTS We observed that GL extract significantly reduced both LPS-induced ALI and the production of pro-inflammatory factors including TNF-α, IL-6 and IL-1β. Additionally, GL inhibited the binding of Alexa 488-labeled LPS (LPS-488) to the membrane of THP-1 derived macrophages. GL drastically reduce on the expression of TLR4 and the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-B (NF-κB). Furthermore, molecular docking revealed that Licochalcone A (LicoA) docked into the LPS binding site of TLR4-MD2 complex. MD2-LicoA binding conformation was found to be stable using molecular dynamic simulations. SPRi indicated that LicoA bound to TLR4-MD2 recombinant protein with a KD of 3.87 × 10-7 M. LicoA dose-dependently reduced LPS-488 binding to the cell membrane. LicoA was found to significantly inhibit LPS-induced lung damage and inflammation. Furthermore, LicoA inhibited TLR4 expression, MAPK and NF-κB activation in a dose-dependent manner. The inhibitory effects of GL and LicoA on LPS-induced inflammation and TLR4 signaling activation were partly eliminated by TLR4 overexpression. CONCLUSION Our findings imply that GL and LicoA exert inhibitory effects on inflammation by targeting the TLR4 directly.
Collapse
Affiliation(s)
- Min Cai
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China; Guangzhou Emergency Medical Command Center, Guangzhou, 510030, China.
| | - You-Cai Xu
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Bo Deng
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Jun-Bang Chen
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Ting-Fang Chen
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Ke-Feng Zeng
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Si Chen
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Sui-Hui Deng
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Zhang-Bin Tan
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Wen-Jun Ding
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Shuang-Wei Zhang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Bin Liu
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Jing-Zhi Zhang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
9
|
Yang Y, Shao M, Cheng W, Yao J, Ma L, Wang Y, Wang W. A Pharmacological Review of Tanshinones, Naturally Occurring Monomers from Salvia miltiorrhiza for the Treatment of Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3801908. [PMID: 36793978 PMCID: PMC9925269 DOI: 10.1155/2023/3801908] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/23/2022] [Accepted: 11/25/2022] [Indexed: 02/09/2023]
Abstract
Cardiovascular diseases (CVDs) are a set of heart and blood vessel disorders that include coronary heart disease (CHD), rheumatic heart disease, and other conditions. Traditional Chinese Medicine (TCM) has definite effects on CVDs due to its multitarget and multicomponent properties, which are gradually gaining national attention. Tanshinones, the major active chemical compounds extracted from Salvia miltiorrhiza, exhibit beneficial improvement on multiple diseases, especially CVDs. At the level of biological activities, they play significant roles, including anti-inflammation, anti-oxidation, anti-apoptosis and anti-necroptosis, anti-hypertrophy, vasodilation, angiogenesis, combat against proliferation and migration of smooth muscle cells (SMCs), as well as anti-myocardial fibrosis and ventricular remodeling, which are all effective strategies in preventing and treating CVDs. Additionally, at the cellular level, Tanshinones produce marked effects on cardiomyocytes, macrophages, endothelia, SMCs, and fibroblasts in myocardia. In this review, we have summarized a brief overview of the chemical structures and pharmacological effects of Tanshinones as a CVD treatment to expound on different pharmacological properties in various cell types in myocardia.
Collapse
Affiliation(s)
- Ye Yang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
| | - Mingyan Shao
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenkun Cheng
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Junkai Yao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
| | - Lin Ma
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Wang
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Design, Synthesis, Biological Evaluation, and Preliminary Mechanistic Study of a Novel Mitochondrial-Targeted Xanthone. Molecules 2023; 28:molecules28031016. [PMID: 36770683 PMCID: PMC9920806 DOI: 10.3390/molecules28031016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
α-Mangostin, a natural xanthone, was found to have anticancer effects, but these effects are not sufficient to be effective. To increase anticancer potential and selectivity, a triphenylphosphonium cation moiety (TPP) was introduced to α-mangostin to specifically target cancer cell mitochondria. Compared to the parent compound, the cytotoxicity of the synthesized compound 1b increased by one order of magnitude. Mechanistic analysis revealed that the anti-tumor effects were involved in the mitochondrial apoptotic pathway by prompting apoptosis and arresting the cell cycle at the G0/G1 phase, increasing the production of reactive oxygen species (ROS), and reducing mitochondrial membrane potential (Δψm). More notably, the antitumor activity of compound 1b was further confirmed by zebrafish models, which remarkably inhibited cancer cell proliferation and migration, as well as zebrafish angiogenesis. Taken together, our results for the first time indicated that TPP-linked 1b could lead to the development of new mitochondrion-targeting antitumor agents.
Collapse
|
11
|
PAN Y, LEE Y, CHUNG JH, KWACK K, ZHAO X, PARK KY. The anti-oxidative capacity of fermented lemon peel and its inhibitory effects on Lipopolysaccharide (LPS)-induced RAW 264.7 cell inflammatory response and cell apoptosis. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yanni PAN
- CHA University, South Korea; Chongqing University of Education, China
| | | | | | | | - Xin ZHAO
- Chongqing University of Education, China; Chongqing University of Education, China
| | - Kun-Young PARK
- Chongqing University of Education, China; CHA University, South Korea
| |
Collapse
|
12
|
Zhou L, Chu L, Du J, Nie Z, Cao L, Gao J, Xu G. Oxidative stress and immune response of hepatopancreas in Chinese mitten crab Eriocheir sinensis under lipopolysaccharide challenge. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109495. [PMID: 36280105 DOI: 10.1016/j.cbpc.2022.109495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022]
Abstract
Chinese mitten crab (Eriocheir sinensis; H. Milne Edwards, 1853) is one of the important farmed crustaceans in China. Lipopolysaccharide (LPS), as a harmful factor, is prone to occur during the farming process of crabs. Aiming to test the hypothesis that damage degrees of the hepatopancreas in E. sinensis is correlated to LPS concentrations, in this study, E. sinensis were injected with LPS (50 μg/kg, and 500 μg/kg) and analyzed for the activity of antioxidant and immune-related enzymes, immune-related gene expression, and histopathological of hepatopancreas. As result, the hepatopancreas of E. sinensis immune-related genes, i.e., Dorsal, HSP90, Toll2, TLRs, Tube, and proPO, were significantly affected by LPS challenge. Among immune-related genes, Dorsal and proPO might play key roles in combating the LPS challenge. The activity of CAT gradually decreased with the increase of time, and the total antioxidant capacity was decreased after LPS challenge, indicating the inhibition of LPS on the antioxidant system. Interestingly, the decreasing trend of AKP and ACP activity suggested the immune system of crabs was affected by LPS challenge. The hepatopancreas section showed that the damage degree of hepatopancreas was different under the challenge of LPS with different concentrations, and the damage degree was proportional to the concentration. Our findings provide useful information for understanding the mechanism of hepatopancreas injury of E. sinensis induced by LPS infection.
Collapse
Affiliation(s)
- Lin Zhou
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Lanlu Chu
- Wuxi Biologics, 108 Meiliang Road, Mashan, Wuxi 214092, China
| | - Jinliang Du
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhijuan Nie
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Gangchun Xu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
13
|
Son H, Park SC, Kim YM, Lee JK, Park S, Guk T, Yoon AM, Lim HS, Jang MK, Lee JR. Potent Anti-Inflammatory Effects of a Helix-to-Helix Peptide against Pseudomonas aeruginosa Endotoxin-Mediated Sepsis. Antibiotics (Basel) 2022; 11:1675. [PMID: 36421317 PMCID: PMC9686674 DOI: 10.3390/antibiotics11111675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 08/27/2023] Open
Abstract
Although considerable scientific research data is available for sepsis and cytokine storm syndrome, there is a need to develop new treatments or drugs for sepsis management. Antimicrobial peptides (AMPs) possess anti-bacterial and anti-inflammatory activity, neutralizing toxins such as lipopolysaccharides (LPS, endotoxin). Most AMPs have been designed as a substitute for conventional antibiotics, which kill drug-resistant pathogens. The present study aimed to determine the anti-inflammatory potential of 10 designed XIW (X: lysine, arginine, or glutamic acid) α-helical peptides in macrophages and a mouse model in the presence of LPS. Among them, WIKE-14, a peptide with a helix-to-helix structure, having the 12th amino acid substituted with glutamic acid, suppressed pro-inflammatory cytokines in RAW 264.7 macrophages. This reaction was mediated by the inhibition of the binding between LPS and macrophages. In addition, the WIKE-14 peptide exhibited a potent anti-inflammatory activity in mice ears and lungs inflamed using LPS. Thus, our results may provide useful insights for the development of anti-sepsis agents via the sequence and structure information of the WIKE-14 peptide.
Collapse
Affiliation(s)
- Hyosuk Son
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
- Department of Exhibition and Education, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Seong-Cheol Park
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Young-Min Kim
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jong-Kook Lee
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Soyoung Park
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Taeuk Guk
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - A-Mi Yoon
- LMO Team, National Institute of Ecology (NIE), Seocheon 33657, Republic of Korea
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hye Song Lim
- LMO Team, National Institute of Ecology (NIE), Seocheon 33657, Republic of Korea
| | - Mi-Kyeong Jang
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jung Ro Lee
- LMO Team, National Institute of Ecology (NIE), Seocheon 33657, Republic of Korea
| |
Collapse
|
14
|
Yang L, He J. Anti-inflammatory effects of flavonoids and phenylethanoid glycosides from Hosta plantaginea flowers in LPS-stimulated RAW 264.7 macrophages through inhibition of the NF-κB signaling pathway. BMC Complement Med Ther 2022; 22:55. [PMID: 35241056 PMCID: PMC8895762 DOI: 10.1186/s12906-022-03540-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/23/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The flower of Hosta plantaginea (Lam.) Aschers has traditionally been used in China as an important Mongolian medicine for the treatment of inflammatory diseases with limited scientific evidence. In previous studies, 16 flavonoids and 3 phenylethanoid glycosides (1-19) were isolated from the ethanolic extract of H. plantaginea flowers. Nevertheless, the anti-inflammatory effects of these constituents remain unclear. In the present study, the anti-inflammatory effects of these 19 constituents and their underlying mechanisms were assessed in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. METHODS The viability of RAW 264.7 macrophages was detected by Cell Counting Kit-8 (CCK-8) assay. Meanwhile, nitric oxide (NO) production was measured by Griess assay, while the secretion of tumor necrosis factor α (TNF-α), prostaglandin E2 (PGE2), interleukin 1β (IL-1β) and IL-6 in LPS-induced macrophages was determined by enzyme-linked immunosorbent assay (ELISA). Furthermore, the protein expression of nuclear factor kappa B (NF-κB) p65 and phosphorylated NF-κB p65 was evaluated by Western blot analysis. RESULTS All constituents effectively suppressed excessive NO production at a concentration of 40 μM with no toxicity to LPS-induced RAW 264.7 macrophages. Among them, five flavonoids (1, 4-6 and 15) and one phenylethanoid glycoside (17) remarkably prevented the overproduction of NO with median inhibitory concentration (IC50) values in the range of 12.20-19.91 μM. Moreover, compounds 1, 4-6, 15 and 17 potently inhibited the secretion of TNF-α, PGE2, IL-1β and IL-6, and had a prominent inhibitory effect on the down-regulation of the phosphorylated protein level of NF-κB p65. CONCLUSION Taken together, compounds 1, 4-6, 15 and 17 may be useful in managing inflammatory diseases by blocking the NF-κB signaling pathway and suppressing the overproduction of inflammatory mediators.
Collapse
Affiliation(s)
- Li Yang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004 China
| | - Junwei He
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, No. 1688, Meiling Road, Nanchang, 330004 China
| |
Collapse
|
15
|
Structure-activity relationship study of dihydroartemisinin C-10 hemiacetal derivatives as Toll-like receptor 4 antagonists. Bioorg Chem 2021; 114:105107. [PMID: 34175717 DOI: 10.1016/j.bioorg.2021.105107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022]
Abstract
Dihydroartemisinin (DHA), a natural product isolated from the traditional Chinese herb Artemisia annua and one of the clinical frontline drugs against malarial infections, has recently been discovered as a Toll-like Receptor 4 (TLR4) antagonist. However, the TLR4 antagonistic activity of DHA is modest and it exhibits cellular toxicity. In this work, the structure-activity relationship (SAR) of DHA as TLR4 antagonist was explored. Since destroying the sesquiterpene endoperoxide scaffold substantially compromised the TLR4 antagonistic activity and molecular dynamics analysis showed that the C-10 hydroxyl group formed a hydrogen bond with E72 of myeloid differentiation factor 2 (MD2) to prevent it moving deeper into MD2, SAR of DHA was focused on the C-10 hemiacetal position. With extending the length of the linear alkane chain at C10 position, the TLR4 antagonistic activity of DHA analogs increased first and then decreased with the best TLR4 antagonism occurring at the length of the carbon chain of 3-4 carbons. In contrast, the cellular toxicity of DHA analogs was raised with the increasing length of the linear alkane chain. The TLR4 antagonistic activity of DHA derivatives with substituted halogen as the terminal functional group decreased with the decrease of electronegativity of the substituted halogen, which implies the electron-rich functional group at the end of the alkane chain appears preferred. Therefore, DHA derivative 2k with alkynyl as the end functional group, exhibited 14 times more potent TLR4 antagonistic activity than DHA. Moreover, 2k showed less cellular toxicity than DHA. Cellular signaling characterizations indicated that 2k inhibited LPS-induced TLR4 dimerization and endocytosis and suppressed LPS-induced NF-κB but not MAPKs activation, culminating in blocking LPS-induced TLR4 signaling downstream pro-inflammatory factors NO and IL-1β. Further, 2k was active in vivo; it significantly increased and prolonged morphine analgesia. Collectively, this study provides a structural guidance to reposition DHA derivatives as TLR4 antagonists.
Collapse
|
16
|
Hou Z, Liang Z, Li Y, Su F, Chen J, Zhang X, Yang D. Quantitative Determination and Validation of Four Phenolic Acids in Salvia Miltiorrhiza Bunge using 1H-NMR Spectroscopy. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916666191231104909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Although chromatography and spectrometry-based methods have been used to
analyse phenolic acids in Chinese traditional medicine Salvia miltiorrhiza Bunge (SMB), quantitative
nuclear magnetic resonance (qNMR) has never previously been used to analyse fresh SMB root extracts.
Objective:
To establish a fast and simple method of quantitating danshensu, lithospermic acid, rosmarinic
acid, and salvianolic acid B content in fresh SMB root using 1H-NMR spectroscopy.
Method:
Fresh SMB root was extracted using a 70% methanol aqueous solution and quantitatively
analysed for danshensu, lithospermic acid, rosmarinic acid, and salvianolic acid B using 1H-NMR
spectroscopy. Different internal standards were compared and the results were validated using highperformance
liquid chromatography.
Results:
The established method was accurate and precise with good recovery. The LOD and LOQ
indicated the excellent sensitivity of the method. The robustness was testified by the modification of
four different parameters, and the differences among each parameter were all less than 2%.
Conclusion:
qNMR offers a fast, reliable, and accurate method of identifying and quantifying danshensu,
lithospermic acid, rosmarinic acid, and salvianolic acid B in fresh SMB root extracts.
Collapse
Affiliation(s)
- Zhuoni Hou
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou,China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou,China
| | - Yuanyuan Li
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou,China
| | - Feng Su
- College of Pharmaceutical Sciences, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou,China
| | - Jipeng Chen
- College of Pharmaceutical Sciences, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou,China
| | - Xiaodan Zhang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou,China
| | - Dongfeng Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou,China
| |
Collapse
|
17
|
Park WJ, Han JS. Gryllus bimaculatus extract protects against lipopolysaccharide and palmitate-induced production of proinflammatory cytokines and inflammasome formation. Mol Med Rep 2021; 23:206. [PMID: 33495809 PMCID: PMC7821350 DOI: 10.3892/mmr.2021.11845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/08/2020] [Indexed: 01/22/2023] Open
Abstract
Inflammation and the inflammasome complex formation are associated with numerous diseases, and palmitates or lipopolysaccharides (LPS) have been identified as potential links between these disorders. Recently, edible insects such as the Gryllus bimaculatus (GB) and the larva of Tenebrio molitor have emerged as alternative food sources. In the present study, the effect of GB on LPS- or palmitate-induced production of inflammatory cytokines, the formation of the inflammasome complex, reactive oxygen species (ROS) generation, endoplasmic reticulum (ER) stress and cell death was investigated in RAW264.7 cells. The results revealed that GB extract downregulated the production of inflammatory cytokines (such as TNF-α, IL-1β and IL-6). Since the role of the MAP kinase and NF-κB signalling pathways in the production of inflammatory cytokines is well established, the translocation of p65 into the nucleus and the phosphorylation of IκB and MAP kinases were further examined. Both these processes were upregulated following LPS and palmitate treatment, but they were inhibited by the GB extract. Moreover, GB extract decreased LPS/palmitate-induced inflammasome complex formation (assessed via analysing the levels of the apoptosis-associated speck-like protein containing a caspase-recruitment domain, NOD-like receptor family pyrin domain containing 3, cleaved caspase-1 and IL-1β), the generation of ROS, ER stress and cell death. Treatment with SB203580 (a p38 inhibitor), SP600125 (a JNK inhibitor) and pyrrolidinedithiocarbamate ammonium (an NF-κB inhibitor) decreased the production of inflammatory cytokines, as well as helped in the recovery of LPS/palmitate-induced cell death. Overall, GB extract served an inhibitory role in LPS/palmitate-induced inflammation via inhibiting the MAP kinase and NF-κB signalling pathways, inflammasome complex formation, ROS generation, ER stress and cell death.
Collapse
Affiliation(s)
- Woo-Jae Park
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Jung-Soon Han
- Research Institute of Human Ecology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
18
|
Wang QQ, Han S, Li XX, Yuan R, Zhuo Y, Chen X, Zhang C, Chen Y, Gao H, Zhao LC, Yang S. Nuezhenide Exerts Anti-Inflammatory Activity through the NF-κB Pathway. Curr Mol Pharmacol 2021; 14:101-111. [PMID: 32525787 PMCID: PMC8778660 DOI: 10.2174/1874467213666200611141337] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/04/2020] [Accepted: 04/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nuezhenide (NZD), an iridoid glycoside isolated from Ilex pubescens Hook. & Arn. var. kwangsiensis Hand.-Mazz., used as a traditional Chinese medicine for clearing away heat and toxic materials, displays a variety of biological activities such as anti-tumor, antioxidant, and other life-protecting activities. However, a few studies involving anti-inflammatory activity and the mechanism of NZD have also been reported. In the present study, the anti-inflammatory and antioxidative effects of NZD are illustrated. OBJECTIVE This study aims to test the hypothesis that NZD suppresses LPS-induced inflammation by targeting the NF-κB pathway in RAW264.7 cells. METHODS LPS-stimulated RAW264.7 cells were employed to detect the effect of NZD on the release of cytokines by ELISA. Protein expression levels of related molecular markers were quantitated by western blot analysis. The levels of ROS, NO, and Ca2+ were detected by flow cytometry. The changes in mitochondrial reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were observed and verified by fluorescence microscopy. Using immunofluorescence assay, the translocation of NF-κB/p65 from the cytoplasm into the nucleus was determined by confocal microscopy. RESULTS NZD exhibited anti-inflammatory activity and reduced the release of inflammatory cytokines such as nitrite, TNF-α, and IL-6. NZD suppressed the expression of the phosphorylated proteins like IKKα/β, IκBα, and p65. Besides, the flow cytometry results indicated that NZD inhibited the levels of ROS, NO, and Ca2+ in LPS-stimulated RAW264.7 cells. JC-1 assay data showed that NZD reversed LPS-induced MMP loss. Furthermore, NZD suppressed LPS-induced NF-B/p65 translocation from the cytoplasm into the nucleus. CONCLUSION NZD exhibits anti-inflammatory effects through the NF-κB pathway on RAW264.7 cells.
Collapse
Affiliation(s)
- Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Xin-Xing Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Renyikun Yuan
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Youqiong Zhuo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Xinxin Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Chenwei Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Yangling Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Li-Chun Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| |
Collapse
|
19
|
Li R, Cui Y, Zheng X, Qin X, Cao J, Li Z. Characterization of chemical components in the Guanxinning injection by liquid chromatography-mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4662. [PMID: 33166042 DOI: 10.1002/jms.4662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Guanxinning injection (GXNI) is widely used in the treatments of cerebral thrombosis, cerebral hemorrhage, sequela, coronary disease, stenocardia, arrhythmia, and so on. For the herbal injections, more components should be characterized and quantified as much as possible to guarantee the drug safety. However, large numbers of the chemical constituents in the GXNI still remain unknown. In this study, ultrahigh performance liquid chromatography-Q Exactive hybrid quadrupole-orbitrap high-resolution accurate mass spectrometry (UHPLC-Q Orbitrap HRMS), in combination of nuclear magnetic resonance (NMR), was used to identify the components in GXNI, which led to the identification of 194 compounds. With the aid of solvent partition, more phthalides, diterpenoid quinines, and salvianolic acids were tentatively identified, and minor compounds with the other structural types were also detected. The structural diversity of phthalides and diterpenoid quinones were revealed by the structural network, and six phthalides and 13 diterpenoid quinones were further detected in GXNI with the help of the characteristic fragmentation pattern and structural network. In addition, NMR also revealed the presence of a series of primary metabolites in the GXNI, which could be used as a complimentary approach for the rapid identification of the chemical components in the traditional Chinese medicines (TCM). However, the unknown NMR signals of GXNI needed to be further identified to guarantee the drug safety.
Collapse
Affiliation(s)
- Rongrong Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
| | - Yifan Cui
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
| | - Xiaofen Zheng
- Yabao Pharmaceutical Group Ltd., Yuncheng, 044600, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
| | - Jianjun Cao
- Yabao Pharmaceutical Group Ltd., Yuncheng, 044600, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
20
|
Hou Z, Li Y, Su F, Chen J, Zhang X, Xu L, Yang D, Liang Z. Application of 1H-NMR combined with qRT-PCR technology in the exploration of rosmarinic acid biosynthesis in hair roots of Salvia miltiorrhiza Bunge and Salvia castanea f. tomentosa Stib. PLANTA 2020; 253:2. [PMID: 33247370 PMCID: PMC7695671 DOI: 10.1007/s00425-020-03506-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/29/2020] [Indexed: 05/06/2023]
Abstract
MAIN CONCLUSION Methyl jasmonate promotes the synthesis of rosmarinic acid in Salvia miltiorrhiza Bunge and Salvia castanea f. tomentosa Stib, and it promotes the latter more strongly. Salvia miltiorrhiza Bunge (SMB) is a traditional Chinese medicinal material, its water-soluble phenolic acid component rosmarinic acid has very important medicinal value. Salvia castanea f. tomentosa Stib (SCT) mainly distributed in Nyingchi, Tibet. Its pharmacological effects are similar to SMB, but its rosmarinic acid is significantly higher than the former. Methyl jasmonate (MJ) as an inducer can induce the synthesis of phenolic acids in SMB and SCT. However, the role of MJ on rosmarinic acid in SMB is controversial. Therefore, this study used SMB and SCT hair root as an experimental material and MJ as a variable. On one hand, exploring the controversial reports in SMB; on the other hand, comparing the differences in the mechanism of action of MJ on the phenolic acids in SMB and SCT. The content of related metabolites and the expression of key genes in the synthesis pathway of rosmarinic acid was analyzed by 1H-NMR combined with qRT-PCR technology. Our research has reached the following conclusions: first of all, MJ promotes the accumulation of rosmarinic acid and related phenolic acids in the metabolic pathways of SMB and SCT. After MJ treatment, the content of related components and gene expression are increased. Second, compared to SMB, SCT has a stronger response to MJ. It is speculated that the different responses of secondary metabolism-related genes to MJ may lead to different metabolic responses of salvianolic acid between the two.
Collapse
Affiliation(s)
- Zhuoni Hou
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuanyuan Li
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Feng Su
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chao Wang Road, Hangzhou, 310014, China
| | - Jipeng Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chao Wang Road, Hangzhou, 310014, China
| | - Xiaodan Zhang
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ling Xu
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dongfeng Yang
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zongsuo Liang
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
21
|
Khan HU, Aamir K, Jusuf PR, Sethi G, Sisinthy SP, Ghildyal R, Arya A. Lauric acid ameliorates lipopolysaccharide (LPS)-induced liver inflammation by mediating TLR4/MyD88 pathway in Sprague Dawley (SD) rats. Life Sci 2020; 265:118750. [PMID: 33188836 DOI: 10.1016/j.lfs.2020.118750] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Lipopolysaccharide (LPS) is an endotoxin that leads to inflammation in many organs, including liver. It binds to pattern recognition receptors, that generally recognise pathogen expressed molecules to transduce signals that result in a multifaceted network of intracellular responses ending up in inflammation. Aim In this study, we used lauric acid (LA), a constituent abundantly found in coconut oil to determine its anti-inflammatory role in LPS-induced liver inflammation in Sprague Dawley (SD) rats. METHOD Male SD rats were divided into five groups (n = 8), injected with LPS and thereafter treated with LA (50 and 100 mg/kg) or vehicle orally for 14 days. After fourteen days of LA treatment, all the groups were humanely killed to investigate biochemical parameters followed by pro-inflammatory cytokine markers; tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β. Moreover, liver tissues were harvested for histopathological studies and evaluation of targeted protein expression with western blot and localisation through immunohistochemistry (IHC). RESULTS The study results showed that treatment of LA 50 and 100 mg/kg for 14 days were able to reduce the elevated level of pro-inflammatory cytokines, liver inflammation, and downregulated the expression of TLR4/NF-κB mediating proteins in liver tissues. CONCLUSION These findings suggest that treatment of LA has a protective role against LPS-induced liver inflammation in rats, thus, warrants further in-depth investigation through mechanistic approaches in different study models.
Collapse
Affiliation(s)
- Hidayat Ullah Khan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Khurram Aamir
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Patricia Regina Jusuf
- School of Biosciences, Faculty of Science, The University of Melbourne, Victoria 3010, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sreenivas Patro Sisinthy
- Faculty of Pharmacy and Health Sciences, University of Kuala Lumpur, Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia
| | - Reena Ghildyal
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Aditya Arya
- School of Biosciences, Faculty of Science, The University of Melbourne, Victoria 3010, Australia; Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia; Department of Pharmacology and Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
22
|
Correlation between Mitochondrial Dysfunction, Cardiovascular Diseases, and Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2902136. [PMID: 33101442 PMCID: PMC7568168 DOI: 10.1155/2020/2902136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/19/2020] [Indexed: 12/26/2022]
Abstract
Cardiovascular disease (CVD) is the number one threat that seriously endangers human health. However, the mechanism of their occurrence is not completely clear. Increasing studies showed that mitochondrial dysfunction is closely related to CVD. Possible causes of mitochondrial dysfunction include oxidative stress, Ca2+ disorder, mitochondrial DNA mutations, and reduction of mitochondrial biosynthesis, all of which are closely related to the development of CVD. At present, traditional Chinese medicine (TCM) is widely used in the treatment of CVD. TCM has the therapeutic characteristics of multitargets and multipathways. Studies have shown that TCM can treat CVD by protecting mitochondrial function. Via systematic literature review, the results show that the specific mechanisms include antioxidant stress, regulation of calcium homeostasis, antiapoptosis, and regulation of mitochondrial biosynthesis. This article describes the relationship between mitochondrial dysfunction and CVD, summarizes the TCM commonly used for the treatment of CVD in recent years, and focuses on the regulatory effect of TCM on mitochondrial function.
Collapse
|
23
|
Anti-Inflammatory Activity and ROS Regulation Effect of Sinapaldehyde in LPS-Stimulated RAW 264.7 Macrophages. Molecules 2020; 25:molecules25184089. [PMID: 32906766 PMCID: PMC7570554 DOI: 10.3390/molecules25184089] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022] Open
Abstract
We evaluated the anti-inflammatory effects of SNAH in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages by performing nitric oxide (NO) assays, cytokine enzyme-linked immunosorbent assays, Western blotting, and real-time reverse transcription-polymerase chain reaction analysis. SNAH inhibited the production of NO (nitric oxide), reactive oxygen species (ROS), tumor necrosis factor (TNF)-α, and interleukin (IL)-6. Additionally, 100 μM SNAH significantly inhibited total NO and ROS inhibitory activity by 93% (p < 0.001) and 34% (p < 0.05), respectively. Protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) stimulated by LPS were also decreased by SNAH. Moreover, SNAH significantly (p < 0.001) downregulated the TNF-α, IL-6, and iNOS mRNA expression upon LPS stimulation. In addition, 3–100 µM SNAH was not cytotoxic. Docking simulations and enzyme inhibitory assays with COX-2 revealed binding scores of −6.4 kcal/mol (IC50 = 47.8 μM) with SNAH compared to −11.1 kcal/mol (IC50 = 0.45 μM) with celecoxib, a known selective COX-2 inhibitor. Our results demonstrate that SNAH exerts anti-inflammatory effects via suppression of ROS and NO by COX-2 inhibition. Thus, SNAH may be useful as a pharmacological agent for treating inflammation-related diseases.
Collapse
|
24
|
Wu A, Yang Z, Huang Y, Yuan H, Lin C, Wang T, Zhao Z, Zhou Y, Zhu C. Natural phenylethanoid glycosides isolated from Callicarpa kwangtungensis suppressed lipopolysaccharide-mediated inflammatory response via activating Keap1/Nrf2/HO-1 pathway in RAW 264.7 macrophages cell. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112857. [PMID: 32298752 DOI: 10.1016/j.jep.2020.112857] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Callicarpa kwangtungensis, as a characteristic traditional herb in China, has been widely used as indigenous medicine for thousands of years in the treatment of upper respiratory tract infection, tonsillitis, pneumonia and traumatic bleeding in China. Phenylethanoid glycosides (PhGs), as natural polyphenols, are especially abundant in this herb and can be regarded as the representative active ingredients in C. kwangtungensis. AIM OF THIS STUDY This study was performed to investigate the anti-inflammatory pharmacodynamic basis of six PhGs (acteoside, forsythoside B, poliumoside, alyssonoside, parvifloroside A, and syringalide A 3'-α-L-rhanmnopyranoside) isolated from C. kwangtungensis from the perspective of antioxidation. MATERIALS AND METHODS Six PhGs were isolated from the anti-inflammatory extracts of C. kwangtungensis by various chromatographic techniques and their anti-inflammatory activity on RAW 264.7 murine macrophages induced by LPS was investigated by measuring the release of tumor necrosis factor (TNF-α), the colonic interleukin-6 (IL-6), nitric oxide (NO) and reactive oxygen species (ROS). Further, the underlying anti-inflammatory mechanism of two PhGs (forsythoside B and alyssonoside) was explored by determining the expression of Kelch-like ECH-association protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (OH-1) and quinone oxidoreductase 1 (NQO1). Besides, molecular simulation was also employed to evaluate the binding capacity of two PhGs with Keap1. RESULTS Compared with the model group, six PhGs revealed obviously inhibitory effects on TNF-α, IL-6, NO and the generation of ROS in RAW 264.7 macrophages. Moreover, forsythoside B and alyssonoside could act as the inhibitors of Keap1-Nrf2 interaction, then activated the nuclear translocation of Nrf2 and promoted the upregulated protein expression of HO-1 and NQO1, finally suppressed LPS-induced inflammatory response in RAW 264.7 macrophages. Molecular modeling exhibited hydrogen bonds played a crucial role for the binding of PhGs with the Nrf2 binding site in Keap1 protein. CONCLUSIONS Natural PhGs-induced protection against LPS-induced inflammatory response via activating Keap1/Nrf2/HO-1 signaling pathway in RAW 264.7 macrophages were confirmed, which provided experimental and theoretical basis for the deeper use of C. Kwangtungensis in the treatment and prevention of diseases related to inflammation and oxidative stress.
Collapse
Affiliation(s)
- Aizhi Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Zhiying Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yimin Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Huan Yuan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Tao Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yuan Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| |
Collapse
|
25
|
Linghu KG, Zhao GD, Xiong W, Sang W, Xiong SH, Tse AKW, Hu Y, Bian Z, Wang Y, Yu H. Comprehensive comparison on the anti-inflammatory effects of three species of Sigesbeckia plants based on NF-κB and MAPKs signal pathways in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112530. [PMID: 31883476 DOI: 10.1016/j.jep.2019.112530] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/15/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sigesbeckiae Herba (SH), a traditional anti-inflammatory Chinese herbal medicine, is originated from the plants of Sigesbeckia pubescens Makino (SP), S. orientalis L. (SO) and S. glabrescens Makino (SG). The current studies reported that the chemical constituents in the three species of plants were different. AIM OF THE STUDY The aim of this study is to provide a systemic comparison on the anti-inflammatory effects and the underlying molecular mechanisms among the three plants based on their effects on nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) signal pathways in vitro. MATERIAL AND METHODS Twenty-four batches of three Sigesbeckia herbs were collected from different regions of China and extracted with 50% ethanol. The distribution of 6 compounds in the 24 batches of SH extracts were characterized by UPLC analysis. The cytotoxicity of all extracts to RAW264.7 cells in the absence or presence of lipopolysaccharide (LPS) were examined by 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The anti-inflammatory effects of the extracts were investigated using Griess reagent and enzyme-linked immunosorbent assay. The underlying mechanisms of the representative samples (SP007, SO005 and SG003) for individual species were examined by western blotting and immunofluorescence staining. RESULTS The estimated average sub-lethal dose (LD15) of SP, SO and SG on RAW264.7 cells were 181.7 ± 15.7, 291.5 ± 33.9 and 317.1 ± 16.3 μg/mL, respectively. In LPS-stimulated RAW264.7 cells, the inhibitory effects of SH species were determined to be SP > SO > SG on NO release, while SP ~ SO > SG on secretion of post-inflammatory cytokines (TNF-α, IL-6 and MCP-1). Moreover, suppression on LPS-induced excessive expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), as well as the activation of NF-κB and phosphorylation of MAPKs were investigated to be associated to the anti-inflammatory effects for all SH species. CONCLUSIONS We firstly reported a systemic comparison on the anti-inflammatory properties for the three main plant origins of SH. Although SG showed lower toxicity and less anti-inflammatory effects compared with SP and SO in LPS-induced RAW264.7 cells, comparable inhibitory effects on NF-κB and MAPKs pathways and the reduction of LPS-induced iNOS and COX-2 were observed in the anti-inflammatory process for all Sigesbeckia plants.
Collapse
Affiliation(s)
- Ke-Gang Linghu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Guan Ding Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Wei Xiong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Wei Sang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shi Hang Xiong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Anfernee Kai Wing Tse
- Programme of Food Science and Technology, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China
| | - Yuanjia Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China; HKBU Shenzhen Research Center, Shenzhen, Guangdong, China; School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
26
|
Li XX, Zheng X, Liu Z, Xu Q, Tang H, Feng J, Yang S, Vong CT, Gao H, Wang Y. Cryptotanshinone from Salvia miltiorrhiza Bunge (Danshen) inhibited inflammatory responses via TLR4/MyD88 signaling pathway. Chin Med 2020; 15:20. [PMID: 32158495 PMCID: PMC7053069 DOI: 10.1186/s13020-020-00303-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background Cryptotanshinone (CPT), as a major component of Salvia miltiorrhiza Bunge (Danshen), displays many pharmacological activities including anti-inflammatory effects. However, the exact cellular and molecular mechanisms of the anti-inflammatory activities of CPT remain to be elucidated. The present study was aimed to clarify its mechanisms on lipopolysaccharide (LPS)-induced inflammatory responses in mouse macrophages, RAW264.7 cells. Methods In the current study, the anti-inflammatory properties of CPT were evaluated using LPS-stimulated RAW264.7 cell model. MTT assay was used to determine the viability of RAW264.7 cells. The anti-inflammatory effects of CPT were measured based on the detection of nitric oxide (NO) production (Griess and flow cytometry assay), and tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release (ELISA). Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) enzyme expressions were also determined by western blotting. Besides, by using flow cytometry, we also evaluated the effect of CPT on LPS-induced calcium influx. Finally, the underlying anti-inflammatory mechanisms of CPT were investigated using western blotting to assess the protein levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphatidylinositol 3-kinase (PI3K)/AKT, nuclear factor erythroid 2 related factor 2 (Nrf2), mitogen-activated protein kinase (MAPK), and nuclear factor-kappa B (NF-κB) pathways. Results Our data showed that CPT inhibited LPS-induced pro-inflammatory cytokine release like IL-6, and TNF-α, as well as NO production. It displayed a significant inhibitory effect on the protein expressions such as iNOS, COX-2, NF-κB pathway like inhibitor of kappa B kinase (IKK)α/β, inhibitor of kappa B (IκB)-α and NF-κB/p65, PI3K/AKT pathway like PI3K and AKT, and MAPK pathway like c-Jun N-terminal kinase (JNK)1/2, extracellular signal-regulated kinase (ERK)1/2, and p38, in LPS-stimulated RAW264.7 macrophages. Moreover, the immunofluorescence results indicated that CPT suppressed NF-κB/p65 translocation from the cytoplasm into the nucleus. Further investigations showed that CPT treatment increased NAD(P)H quinone oxidoreductase-1 (NQO1) and heme oxygenase-1 (HO-1) expressions together with its upstream mediator, Nrf2. In addition, CPT inhibited LPS-induced toll-like receptor 4 (TLR4) and MyD88 expressions in RAW264.7 macrophages. Conclusions Collectively, we suggested that CPT exerted significant anti-inflammatory effects via modulating TLR4-MyD88/PI3K/Nrf2 and TLR4-MyD88/NF-κB/MAPK pathways.
Collapse
Affiliation(s)
- Xin-Xing Li
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Xiaoting Zheng
- 3State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 1050, N22 Research Building, Macao, China
| | - Zhenjie Liu
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Qiongming Xu
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,4College of Pharmaceutical Science, Soochow University, Suzhou, 215123 China
| | - Hongzhen Tang
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Jianfang Feng
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Shilin Yang
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Chi Teng Vong
- 3State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 1050, N22 Research Building, Macao, China
| | - Hongwei Gao
- 1College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000 China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530020 China
| | - Yitao Wang
- 3State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 1050, N22 Research Building, Macao, China
| |
Collapse
|
27
|
Zuo H, Wan Y. Metabolic Reprogramming in Mitochondria of Myeloid Cells. Cells 2019; 9:cells9010005. [PMID: 31861356 PMCID: PMC7017304 DOI: 10.3390/cells9010005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
The myeloid lineage consists of multiple immune cell types, such as macrophages, monocytes, and dendritic cells. It actively participates in both innate and adaptive immunity. In response to pro- or anti-inflammatory signals, these cells undergo distinct programmed metabolic changes especially in mitochondria. Pro-inflammatory signals induce not only a simple shift from oxidative phosphorylation to glycolysis, but also complicated metabolic alterations during the early and tolerant stages in myeloid cells. In mitochondria, a broken Krebs cycle leads to the accumulation of two metabolites, citrate and succinate, both of which trigger pro-inflammatory responses of myeloid cells. A deficient electron transport chain induces pro-inflammatory responses in the resting myeloid cells while it suppresses these responses in the polarized cells during inflammation. The metabolic reprogramming in mitochondria is also associated with altered mitochondrial morphology. On the other hand, intact oxidative phosphorylation is required for the anti-inflammatory functions of myeloid cells. Fatty acid synthesis is essential for the pro-inflammatory effect and glutamine metabolism in mitochondria exhibits the anti-inflammatory effect. A few aspects of metabolic reprogramming remain uncertain, for example, glycolysis and fatty acid oxidation in anti-inflammation. Overall, metabolic reprogramming is an important element of immune responses in myeloid cells.
Collapse
Affiliation(s)
- Hao Zuo
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yihong Wan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: ; Tel.: +1-214-645-6062
| |
Collapse
|
28
|
Leocarpinolide B attenuates LPS-induced inflammation on RAW264.7 macrophages by mediating NF-κB and Nrf2 pathways. Eur J Pharmacol 2019; 868:172854. [PMID: 31837308 DOI: 10.1016/j.ejphar.2019.172854] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Macrophages-mediated inflammation is involved in the regulation of rheumatoid arthritis (RA). Sigesbeckiae Herba (SH) has been traditionally used for rheumatism. However, the bioactive ingredients of SH are still unclear. Recently, we isolated a compound (Leocarpinolide B, LB) from SH and identified its potent anti-inflammatory and antioxidant effects on RAW264.7 macrophages for the first time. LB effectively inhibited excessive production of nitric oxide (NO), prostaglandin E2 (PGE2), cytokines (IL-6, TNF-α and MCP-1), and the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthases (iNOS) in lipopolysaccharide (LPS)-induced RAW264.7 cells. LB blocked the degradation of inhibitor of kappa B (IκBα) and translocation of nuclear factor kappa B (NF-κB) p65. Additionally, LB reduced the intracellular reactive oxygen species, and increased the expression of heme oxygenase-1 (HO-1) and the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) in the presence or absence of LPS. The results suggested that LB might be one of the bioactive components of SH, and be potential for the treatment of RA and valuable to be further investigated.
Collapse
|
29
|
Phytosterols Suppress Phagocytosis and Inhibit Inflammatory Mediators via ERK Pathway on LPS-Triggered Inflammatory Responses in RAW264.7 Macrophages and the Correlation with Their Structure. Foods 2019; 8:foods8110582. [PMID: 31744147 PMCID: PMC6915509 DOI: 10.3390/foods8110582] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/08/2019] [Accepted: 11/13/2019] [Indexed: 01/24/2023] Open
Abstract
Phytosterols, found in many commonly consumed foods, exhibit a broad range of physiological activities including anti-inflammatory effects. In this study, the anti-inflammatory effects of ergosterol, β-sitosterol, stigmasterol, campesterol, and ergosterol acetate were investigated in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Results showed that all phytosterol compounds alleviated the inflammatory reaction in LPS-induced macrophage models; cell phagocytosis, nitric oxide (NO) production, release of tumor necrosis factor-α (TNF-α), and expression and activity of pro-inflammatory mediator cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and phosphorylated extracellular signal-regulated protein kinase (p-ERK) were all inhibited. The anti-inflammatory activity of β-sitosterol was higher than stigmasterol and campesterol, which suggests that phytosterols without a double bond on C-22 and with ethyl on C-24 were more effective. However, inconsistent results were observed upon comparison of ergosterol and ergosterol acetate (hydroxy or ester group on C-3), which suggest that additional research is still needed to ascertain the contribution of structure to their anti-inflammatory effects.
Collapse
|
30
|
Li H, Xu CX, Gong RJ, Chi JS, Liu P, Liu XM. How does Helicobacter pylori cause gastric cancer through connexins: An opinion review. World J Gastroenterol 2019; 25:5220-5232. [PMID: 31558869 PMCID: PMC6761244 DOI: 10.3748/wjg.v25.i35.5220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium with a number of virulence factors, such as cytotoxin-associated gene A, vacuolating cytotoxin A, its pathogenicity island, and lipopolysaccharide, which cause gastrointestinal diseases. Connexins function in gap junctional homeostasis, and their downregulation is closely related to gastric carcinogenesis. Investigations into H. pylori infection and the fine-tuning of connexins in cells or tissues have been reported in previous studies. Therefore, in this review, the potential mechanisms of H. pylori-induced gastric cancer through connexins are summarized in detail.
Collapse
Affiliation(s)
- Huan Li
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Can-Xia Xu
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Ren-Jie Gong
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Jing-Shu Chi
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Peng Liu
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Xiao-Ming Liu
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
31
|
Yang YL, Liu M, Cheng X, Li WH, Zhang SS, Wang YH, Du GH. Myricitrin blocks activation of NF-κB and MAPK signaling pathways to protect nigrostriatum neuron in LPS-stimulated mice. J Neuroimmunol 2019; 337:577049. [PMID: 31526918 DOI: 10.1016/j.jneuroim.2019.577049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 01/02/2023]
Abstract
Myricitrin, a bioactive and natural flavonoids, is well known for its anti-inflammatory and antioxidant properties. However, the anti-neuroinflammation and possible mechanism has not been fully elucidated. Therefore, the present study was to investigate the possible mechanism of its neuroprotection and anti-neuroinflammation in the nigrostriatum of LPS-stimulated mice. The results showed that myricitrin improved neuron injury and raised the expressions of PSD-95 protein and TH protein in the nigrostriatum of LPS-stimulated mice. In addition, myricitrin decreased the production of pro-inflammatory factors including IL-1β, IL-6 and TNFα, decreased the level of chemokine MCP-1, and suppressed the expressions of COX-2 and iNOS. Meanwhile, myricitrin suppressed HMGB1, TLR4, and MyD88 expression in the nigrostriatum of LPS-stimulated mice. Furthermore, myricitrin inhibited NF-κB and MAPK signaling pathways activated by LPS. In conclusion, our studies suggest that myricitrin blocks activation of protects NF-κB and MAPK signaling pathways to nigrostiatum neuron from injury in LPS-stimulated mice and is beneficial to treatment nigrostriatum inflammation of PD.
Collapse
Affiliation(s)
- Ying-Lin Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Man Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao Cheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wei-Han Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shan-Shan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yue-Hua Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
32
|
Li H, Xu CX, Gong RJ, Chi JS, Liu P, Liu XM. How does Helicobacter pyloricause gastric cancer through connexins: An opinion review. World J Gastroenterol 2019. [DOI: 10.3748/wjg.v25.i355220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
33
|
Zhang F, Tang B, Zhang Z, Xu D, Ma G. DUSP6 Inhibitor (E/Z)-BCI Hydrochloride Attenuates Lipopolysaccharide-Induced Inflammatory Responses in Murine Macrophage Cells via Activating the Nrf2 Signaling Axis and Inhibiting the NF-κB Pathway. Inflammation 2019; 42:672-681. [PMID: 30506106 DOI: 10.1007/s10753-018-0924-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Macrophages play a fundamental role in human chronic diseases such as rheumatoid arthritis, atherosclerosis, and cancer. In the present study, we demonstrated that dual-specificity phosphatase 6 (DUSP6) was upregulated by lipopolysaccharide (LPS) treatment of macrophages. (E/Z)-BCI hydrochloride (BCI) functions as a small molecule inhibitor of DUSP6, and BCI treatment inhibited DUSP6 expression in LPS-activated macrophages. BCI treatment inhibited LPS-triggered inflammatory cytokine production, including IL-1β and IL-6, but not TNF-α, and also affected macrophage polarization to an M1 phenotype. In addition, BCI treatment decreased reactive oxygen species (ROS) production and significantly elevated the levels of Nrf2. Interestingly, pharmacological inhibition of DUSP6 attenuated LPS-induced inflammatory responses was independent of extracellular signal-regulated kinase (ERK) signaling. Furthermore, BCI treatment inhibited phosphorylation of P65 and nuclear P65 expression in LPS-activated macrophages. These results demonstrated that pharmacological inhibition of DUSP6 attenuated LPS-induced inflammatory mediators and ROS production in macrophage cells via activating the Nrf2 signaling axis and inhibiting the NF-κB pathway. These anti-inflammatory effects indicated that BCI may be considered as a therapeutic agent for blocking inflammatory disorders.
Collapse
Affiliation(s)
- Fan Zhang
- School of Stomatology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Bufu Tang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University, Lishui, China
| | - Zijiao Zhang
- School of Stomatology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Di Xu
- School of Stomatology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, Dalian, 116044, People's Republic of China.
| |
Collapse
|
34
|
High Molecular Weight Hyaluronan Suppresses Macrophage M1 Polarization and Enhances IL-10 Production in PM 2.5-Induced Lung Inflammation. Molecules 2019; 24:molecules24091766. [PMID: 31067702 PMCID: PMC6539614 DOI: 10.3390/molecules24091766] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 12/18/2022] Open
Abstract
PM2.5 is particulate matter with a diameter of 2.5 μm or less. Airway macrophages are the key players regulating PM2.5-induced inflammation. High molecular weight hyaluronan (HMW-HA) has previously been shown to exert protective effects on PM2.5-induced acute lung injury and inflammation. However, little is known about the detailed mechanism. In this study, we aimed to determine whether HMW-HA alleviates PM2.5-induced pulmonary inflammation by modulating macrophage polarization. The levels of M1 biomarkers TNF-α, IL-1β, IL-6, CXCL1, CXCL2, NOS2 and CD86, as well as M2 biomarkers IL-10, MRC1, and Arg-1 produced by macrophages were measured by ELISA, qPCR, and flow cytometry. In addition, the amount of M1 macrophages in lung tissues was examined by immunofluorescence of CD68 and NOS2. We observed a decline in PM2.5-induced M1 polarization both in macrophages and lung tissues when HMW-HA was administered simultaneously. Meanwhile, western blot analysis revealed that PM2.5-induced JNK and p38 phosphorylation was suppressed by HMW-HA. Furthermore, in vitro and in vivo studies showed that co-stimulation with HMW-HA and PM2.5 promoted the expression and release of IL-10, but exhibited limited effects on the transcription of MRC1 and ARG1. In conclusion, our results demonstrated that HMW-HA ameliorates PM2.5-induced lung inflammation by repressing M1 polarization through JNK and p38 pathways and promoting the production of pro-resolving cytokine IL-10.
Collapse
|
35
|
Chen X, Yu J, Zhong B, Lu J, Lu JJ, Li S, Lu Y. Pharmacological activities of dihydrotanshinone I, a natural product from Salvia miltiorrhiza Bunge. Pharmacol Res 2019; 145:104254. [PMID: 31054311 DOI: 10.1016/j.phrs.2019.104254] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022]
Abstract
Salvia miltiorrhiza Bunge (Danshen), a famous traditional Chinese herb, has been used clinically for the treatment of various diseases for centuries. Document data showed that tanshinones, a class of lipophilic abietane diterpenes rich in this herb, possess multiple biological effects in vitro and in vivo models. Among which, 15,16-dihydrotanshinone I (DHT) has received much attention in recent years. In this systematical review, we carefully selected, analyzed, and summarized high-quality publications related to pharmacological effects and the underlying mechanisms of DHT. DHT has anti-cancer, cardiovascular protective, anti-inflammation, anti-Alzheimer's disease, and other effects. Furthermore, several molecules such as hypoxia-inducible factor (HIF-1α), human antigen R (HuR), acetylcholinesterase (AchE), etc. have been identified as the potential targets for DHT. The diverse pharmacological activities of DHT provide scientific evidence for the local and traditional uses of Salvia miltiorrhiza Bunge. We concluded that DHT might serve as a lead compound for drug discovery in related diseases while further in-depth investigations are still needed.
Collapse
Affiliation(s)
- Xiuping Chen
- Medical College, Qingdao University, Qingdao 266071, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Bingling Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shaojing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yang Lu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
36
|
Sha J, Zhang H, Zhao Y, Feng X, Hu X, Wang C, Song M, Fan H. Dexmedetomidine attenuates lipopolysaccharide-induced liver oxidative stress and cell apoptosis in rats by increasing GSK-3β/MKP-1/Nrf2 pathway activity via the α2 adrenergic receptor. Toxicol Appl Pharmacol 2019; 364:144-152. [DOI: 10.1016/j.taap.2018.12.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 12/28/2022]
|