1
|
Asadzadeh N, Masoudi R, Nateghi R, Davachi ND, Barfourooshi HJ, Bartlewski PM. The effects of mitoquinol mesylate on post-thaw characteristics and fertilizing ability of rooster semen cryopreserved in the Beltsville medium. Theriogenology 2025; 235:114-120. [PMID: 39818001 DOI: 10.1016/j.theriogenology.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Cryopreservation of rooster semen is a reproductive technology carried out to boost genetic gain and productivity in commercial flocks of chicken. However, semen freezing significantly reduces the quality and fertilizing potential of spermatozoa. This study examined cryoprotective effects of the mitochondria-targeted antioxidant mitoquinol mesylate added to the freezing extender by assessing post-thaw characteristics of rooster sperm. Semen samples were diluted in the Beltsville extender supplemented with 0, 1, 10, 100 or 1000 nM of mitoquinol mesylate. Following the thawing of cryopreserved semen doses, we evaluated the following sperm parameters: motility and morphology, membrane integrity and mitochondrial function, acrosome integrity, apoptosis status, lipid peroxidation, DNA fragmentation, reactive oxygen species (ROS) accumulation, epigenetic patterns (DNA methylation and histone modifications), and fertilizing ability. Semen diluted in extenders containing 10 or 100 nM of mitoquinol mesylate significantly exceeded all other groups of frozen-thawed semen samples in sperm motility, average path velocity as well as membrane/acrosome integrity, mitochondrial function indices and DNA/histone modification. Moreover, the addition of 10 and 100 nM of mitoquinol mesylate significantly reduced lipid peroxidation, apoptosis rate, DNA fragmentation and ROS concentrations compared with all other dilutions and was associated with a higher (P ≤ 0.05) fertilization rate compared with a non-supplemented control group, albeit it was still significantly lower compared with that obtained using fresh semen. It can be, however, concluded that mitoquinol mesylate significantly improved an array of quality parameters and fertilizing potential of rooster semen, and hence can be recommended for use as a diluent additive in semen cryopreservation procedures employed in commercial poultry operations.
Collapse
Affiliation(s)
- N Asadzadeh
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - R Masoudi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - R Nateghi
- Department of Animal and Poultry Physiology, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - N D Davachi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - H J Barfourooshi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - P M Bartlewski
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Wang H, Ye Y, Xu J, Xu X, Zhang P, Suo Y, Zhang Y. The protective effect of tiger nut (Cyperus esculentus L.) oil on a male rat model of reproductive disorders induced by cigarette smoke. Food Chem Toxicol 2025; 197:115289. [PMID: 39892734 DOI: 10.1016/j.fct.2025.115289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Cigarette smoke contains many harmful components that can damage the blood-testis barrier, cause changes in testicular tissue structure, and directly or indirectly affect sperm production. Tiger nut (Cyperus esculentus L.) is an underground tuber of a perennial herbaceous plant, and its extract has been shown to have antioxidant properties and the potential to improve male reproductive function. In view of the above, this experiment was designed to investigate the fatty acid composition of tiger nut oil and its protective effect as a daily dietary supplement against cigarette smoke-induced reproductive damage in male rats. By establishing a rat reproductive toxicity model and administering different doses of tiger nut oil by gavage, the protective effect of tiger nut oil on reproductive damage in rats was evaluated. Daily status and signs of the rats were analyzed, serum levels of key hormones were measured, oxidative stress markers and testicular tissue sections were measured, and the results were statistically analysed using Principal Component Analysis. The experimental results indicate that daily consumption of tiger nut oil can improve the reproductive system function in male rats, stabilise related hormone levels and enhance antioxidant capacity.
Collapse
Affiliation(s)
- Haoyu Wang
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| | - Yunshu Ye
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| | - Jiayuan Xu
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| | - Xinyu Xu
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| | - Panpan Zhang
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| | - Yizhen Suo
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| | - Yuhong Zhang
- Key Laboratory of Forestry Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin, 150040, China.
| |
Collapse
|
3
|
Alipour-Jenaghard P, Daghigh-Kia H, Masoudi R, Hatefi A. MitoQ Preserves Epigenetic Modifications and Quality Parameters of Rooster Sperm During Cryopreservation Process. Reprod Domest Anim 2025; 60:e70012. [PMID: 39963986 DOI: 10.1111/rda.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/21/2025]
Abstract
Cryopreservation in rooster semen is a helpful procedure to spread qualified semen samples for reproductive goals. Nevertheless, some post-thawed qualified semen samples showed a considerably poor fertility rate that might be related to epigenetic modifications during the cryopreservation process. This study aims to investigate the effect of the cryopreservation process in the presence of MitoQ as a mitochondrial-targeted antioxidant on epigenetic changes and other quality parameters (motility, morphology, mitochondrial activity, acrosome integrity, lipid peroxidation, DNA fragmentation, apoptosis status, and ROS concentration) of rooster sperm. The collected semen samples were divided into four groups of fresh samples and three groups that were supplemented by MitoQ 0, 10, and 100 nM and cryopreserved. The cryopreservation process reduced (p ≤ 0.05) DNA methylation, H3K9 acetylation, H3K4 methylation, motility parameters, membrane integrity, mitochondrial activity, acrosome integrity, viability, and increased (p ≤ 0.05) lipid peroxidation, DNA fragmentation, ROS concentration, and apoptotic-like changes compared to the fresh semen group. However, in frozen sperm groups, MitoQ 10 and 100 nM resulted in significant improvements (p ≤ 0.05) in the epigenetic modifications and other mentioned quality parameters compared to the control group (MitoQ 0). Generally, although the cryopreservation process reduced semen quality, using MitoQ could be useful in cryopreserved rooster semen quality.
Collapse
Affiliation(s)
| | - Hossein Daghigh-Kia
- Department of Animal Science, College of Agriculture, University of Tabriz, Tabriz, Iran
| | - Reza Masoudi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Ali Hatefi
- Department of Animal Science, University of Tehran, Karaj, Iran
| |
Collapse
|
4
|
Jinjin W, De J, Qin Z. Research Progress on Reproductive Toxicity and Reversibility of Tripterygium wilfordii Based on Gender Differences. Pharmacogn Mag 2025. [DOI: 10.1177/09731296251313623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025] Open
Abstract
Tripterygium wilfordii Hook F. (TwHF), a member of the Celastraceae family and belonging to the genus Tripterygium, is a vine-like shrub. It contains numerous active components, such as Tripterygium glycosides (GTW) and triptolide (TP), widely known for their significant reproductive toxicity. This toxicity is characterized by its detrimental effects on the testes and ovaries, leading to reduced libido, apoptosis of germ and follicle cells, and abnormal secretion of sex hormones. Thus, it is necessary to explore the mechanisms behind TwHF’s reproductive toxicity, which will lead to advancements in detoxification and efficacy enhancement strategies. This article offers a comprehensive overview and analysis of the research conducted on reproductive toxicity and its reversibility induced by TwHF, aiming to provide a reference for its rational use in clinical settings.
Collapse
Affiliation(s)
- Wang Jinjin
- Department of Nephrology, Organization Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jin De
- Department of Nephrology, Organization Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhu Qin
- Department of Nephrology, Organization Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Farshad A, Diel E, Wehrend A. Evaluating the Protective Effects of MitoQ and Antifreeze Protein III on Cryopreserved Canine Sperm. Animals (Basel) 2025; 15:270. [PMID: 39858270 PMCID: PMC11763333 DOI: 10.3390/ani15020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Cryopreservation can adversely affect sperm motility, structural integrity, and fertilization ability. This study investigated the effects of MitoQ and antifreeze protein III (AFP III) on frozen-thawed semen from eight adult dogs using a Tris-fructose extender. Ejaculates were divided and diluted with a standard Tris-fructose-egg yolk extender containing MitoQ (200 nM/mL) and AFP III (0.75, 1.0, 2.0 µg/mL), individually or combined. Post-thaw, samples were evaluated for motility, viability, membrane and acrosome integrity, lipid peroxidation, apoptosis indicators, mitochondrial function, and reactive oxygen species (ROS-H2O2). The results showed significant (p < 0.05) improvements in motility rate, progressive motility, VAP, VSL, VCL, ALH, and BCF with MitoQ or AFP alone. AFP III (0.75, 1.0 µg/mL) showed higher values than controls (p > 0.05), while MitoQ alone showed no significant effect. Viability and acrosome integrity improved with AFP III. Membrane integrity and lipid peroxidation were better in 0.75 and 1.0 µg/mL AFP III groups. ROS-H2O2 levels and mitochondrial membrane potential were unaffected except at 1.0 µg/mL AFP III. The phosphatidylserine translocation assay showed no significant differences in dead sperm between controls and individual treatments, but significant differences occurred with combined MitoQ/AFP III. In conclusion, AFP III and MitoQ in diluents protect canine sperm cells from cryodamage.
Collapse
Affiliation(s)
- Abbas Farshad
- Veterinary Clinic for Reproductive Medicine and Neonatology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (E.D.); (A.W.)
| | | | | |
Collapse
|
6
|
Zhao J, Cao M, Yi H, He G, Chen T, Liu L, Guo K, Cao Y, Li C, Zhou X, Zhang B, Wang H. Triptolide Causes Spermatogenic Disorders by Inducing Apoptosis in the Mitochondrial Pathway of Mouse Testicular Spermatocytes. TOXICS 2024; 12:896. [PMID: 39771111 PMCID: PMC11728831 DOI: 10.3390/toxics12120896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Triptolide (TP) is a diterpenoid compound extracted from the traditional Chinese medicinal herb Tripterygium wilfordii. It has antitumor and anti-inflammatory effects and stimulates immunity. However, its serious side effects, especially reproductive toxicity, limit its clinical application. This study employed a testicular injury model established by intraperitoneally injecting TP (0.2 mg/kg) in C57BL/6J male mice (age = 7-8 weeks) for 14 days. The control and TP mice's testicular tissues were subjected to transcriptome sequencing to assess potential testicular damage mechanisms. Based on the transcriptome sequencing results and relevant literature reports, further experiments were performed. In addition, to alleviate triptolide-induced testicular damage, we treated the mice with N-acetyl-L-cysteine (NAC). The acquired data revealed that compared with the control mice, the TP-treated mice's testes indicated severe damage. Transcriptome sequencing identified differentially expressed genes that showed enrichment in cell differentiation, apoptotic process, cell cycle, glutathione (GSH) metabolism, and the p53 signaling pathway. Furthermore, TUNEL assays and Western blot analysis showed that in the TP mice's testicular tissues, the spermatocytes had mitochondrial pathway apoptosis as well as abnormal mitochondrial morphology and structure. Triptolide induces oxidative stress in testicular tissue by enhancing pro-oxidative systems and inhibiting antioxidant systems. NAC reduced testicular damage and apoptosis by alleviating TP-induced oxidative stress. This study also employed a GC2 cell line for in-vitro analyses, and the results were consistent with the in vivo experiments. This study provides evidence for alleviating TP's adverse effects on the male reproductive system for better clinical application.
Collapse
Affiliation(s)
- Jiantao Zhao
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Haisheng Yi
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Guitian He
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Tong Chen
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lingyun Liu
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Kaimin Guo
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Yin Cao
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Boqi Zhang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongliang Wang
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| |
Collapse
|
7
|
Nateghi R, Masoudi R, Asadzadeh N. Supplementing the Beltsville Extender With Mitoquinol Improves the Quality and Fertility Potential of the Rooster's Cooled Sperm. Reprod Domest Anim 2024; 59:e14740. [PMID: 39484791 DOI: 10.1111/rda.14740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
Supplementing freeze diluents with certain antioxidants can maintain the quality of chilled sperm. The present study was an attempt to investigate the effect of Beltsville extender supplementation with the mitochondrial-targeted antioxidant 'Mitoquinol' on the quality parameters and fertility potential of rooster sperm during the cooling process. Semen samples were diluted in Beltsville extender, divided into five groups, and supplemented with 0, 1, 10, 100 and 1000 nM Mitoquinol. Samples were stored at 5°C for up to 50 h and then assayed for sperm motility, viability, mitochondrial function, membrane integrity and malondialdehyde concentration after 0, 25 and 50 h of cooling. To assess reproductive performance, artificial insemination was performed using sperm cooled for 25 h. The results showed no differences between groups at the beginning time. Extender supplementation with 10 and 100 nM Mitoquinol resulted in an improvement in total motility, progressive motility, membrane integrity, mitochondrial function and viability (p ≤ 0.05), as well as a lower malondialdehyde concentration (p ≤ 0.05) in comparison to the other groups during 25 and 50 h storage. Fertility rates were higher when roosters were inseminated with semen samples supplemented with 10 and 100 nM Mitoquinol, compared to the control group. Therefore, supplementing Beltsville extender with Mitoquinol (10 and 100 nM) effective in improving the quality and fertility potential of cooled rooster sperm.
Collapse
Affiliation(s)
- Reihaneh Nateghi
- Department of Animal and Poultry Physiology, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Reza Masoudi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Nader Asadzadeh
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
8
|
Li J, Chen D, Suo J, Li J, Zhang Y, Wang Y, Deng Z, Zhang Q, Ma B. Triptolide induced spermatogenesis dysfunction via ferroptosis activation by promoting K63-linked GPX4 polyubiquitination in spermatocytes. Chem Biol Interact 2024; 399:111130. [PMID: 38960301 DOI: 10.1016/j.cbi.2024.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Triptolide (TP) is a major bioactive compound derived from Tripterygium wilfordii Hook. F. (TwHF) known for its medicinal properties, but it also exhibits potential toxic effects. It has been demonstrated to induce severe male reproductive toxicity, yet the precise mechanism behind this remains unclear, which limits its broad clinical application. This study aimed to investigate the mechanisms underlying testicular damage and spermatogenesis dysfunction induced by TP in mice, using both mouse models and the spermatocyte-derived cell line GC-2spd. In the present study, it was found that TP displayed significant testicular microstructure damaged and spermatogenesis defects including lower concentration and abnormal morphology by promoting ROS formation, MDA production and restraining GSH level, glutathione peroxidase 4 (GPX4) expression in vivo. Furthermore, Ferrostatin-1 (FER-1), a ferroptosis inhibitor, was found to significantly reduce the accumulation of lipid peroxidation, alleviate testicular microstructural damage, and enhance spermatogenic function in mice. Besides, notably decreased cell viability, collapsed mitochondrial membrane potential, and elevated DNA damage were observed in vitro. The above-mentioned phenomenon could be reversed by pre-treatment of FER-1, indicating that ferroptosis participated in the TP-mediated spermatogenesis dysfunction. Mechanistically, TP could enhance GPX4 ubiquitin degradation via triggering K63-linked polyubiquitination of GPX4, thereby stimulating ferroptosis in spermatocytes. Functionally, GPX4 deletion intensified ferroptosis and exacerbated DNA damage in GC-2 cells, while GPX4 overexpression mitigated ferroptosis induced by TP. Overall, these findings for the first time indicated a vital role of ferroptosis in TP induced-testicular injury and spermatogenic dysfunction through promoting GPX4 K63-linked polyubiquitination, which hopefully offers a potential therapeutic avenue for TP-related male reproductive damage. In addition, this study also provides a theoretical foundation for the improved clinical application of TP or TwHF in the future.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Dezhi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Jialiang Suo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Yimu Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Yu Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Zhewen Deng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
9
|
Zhang H, Li N, Zhang Y, Xu Y, Lu F, Lin D, Lin S, Li M, Yang B. Ganoderma lucidum Polysaccharide Peptide Alleviates Cyclophosphamide-Induced Male Reproductive Injury by Reducing Oxidative Stress and Apoptosis. Biomedicines 2024; 12:1632. [PMID: 39200097 PMCID: PMC11351902 DOI: 10.3390/biomedicines12081632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Chemotherapy is an important factor leading to male infertility. It is crucial to discover safe and effective treatments to prevent male reproductive injury caused by chemotherapy. The Ganoderma lucidum polysaccharide peptide (GLPP) has multiple pharmacological activities. The purpose of this study was to determine whether GLPP could protect the male sperm production from chemotherapeutic injury using a mouse model, with testicular damage induced by cyclophosphamide (CP). CP (50 mg/kg/day) was injected intraperitoneally into male ICR mice gavaged with different doses of GLPP at certain spermatogenic stages. The experimental results showed that GLPP alleviated the CP-induced reduction in reproductive organ coefficients and sperm parameters and reduced the morphological damage of testicular tissues in a dose-dependent manner. GLPP significantly improved the reproductive index, sperm-related parameters, sex hormone levels, and histological testis architecture at different spermatogenic stages. Furthermore, GLPP significantly increased superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), Nrf2, and HO-1, and decreased malondialdehyde (MDA) and Keap-1 in the testicular tissue, indicating reduced oxidative stress. In addition, GLPP limited CP-induced apoptosis via a reduction in Bax expression and increase in Bcl-2 expression. This study suggests that GLPP plays a protective role in spermatogenesis by reducing chemotherapeutic injury and might be developed into drug for male patients receiving chemotherapy.
Collapse
Affiliation(s)
- Hang Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Nannan Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Yukun Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Yue Xu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Feng Lu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Dongmei Lin
- China National Engineering Research Center on JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuqian Lin
- China National Engineering Research Center on JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Min Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Baoxue Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| |
Collapse
|
10
|
Hatami M, Masoudi R, Hatefi A, Alipour-Jenaghard P, Esmaeili V. The effects of MitoQ as a mitochondrial-targeted antioxidant in a plant-based extender on buck sperm quality parameters during cryopreservation. Anim Reprod Sci 2024; 266:107517. [PMID: 38823234 DOI: 10.1016/j.anireprosci.2024.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Sperm cryopreservation plays an important role in the artificial insemination (AI) industry of small ruminants. It, however the use of frozen-thawed goat semen is limited due to the insufficient number of sperm with good biological functions. Mitochondria are the most sensitive organelles to cryopreservation damage in sperm. This study was conducted to determine the effects of MitoQ, the mitochondrial-targeted antioxidant, in a plant-based extender on the quality parameters of Markhoz goat sperm after the freezing and thawing process. Semen samples were collected and diluted in the extender, divided into five equal aliquots and supplemented with 0, 1, 10, 100 and 1000 nM MitoQ and cryopreserved in liquid nitrogen. After thawing, sperm motility, membrane functionality, abnormal morphology, mitochondrial activity, acrosome integrity, lipid peroxidation (LPO), DNA fragmentation, reactive oxygen species (ROS) concentration, viability and apoptotic-like changes were measured. The use of 10 and 100 nM MitoQ resulted in higher (P≤0.05) total motility (TM), progressive motility (PM), viability, membrane functionality, mitochondrial activity, and acrosome integrity compared to the other groups. On the other hand, LPO, apoptotic-like changes, DNA fragmentation and ROS concentration were lower (P≤0.05) in MQ10 and MQ100 groups compared to the other groups. MitoQ has no effect (P>0.05) on sperm abnormal morphology and velocity parameters. In conclusion, MitoQ can reduce oxidative stress by regulating mitochondrial function during the cryopreservation process of buck sperm and could be an effective additive in the cryopreservation media to protect sperm quality.
Collapse
Affiliation(s)
- Maryam Hatami
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Reza Masoudi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Ali Hatefi
- Department of Animal Science, University of Tehran, Karaj, Iran
| | | | - Vahid Esmaeili
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
11
|
Yang X, He L, Li X, Wang L, Bu T, Yun D, Lu X, Gao S, Huang Q, Li J, Zheng B, Yu J, Sun F. Triptolide exposure triggers testicular vacuolization injury by disrupting the Sertoli cell junction and cytoskeletal organization via the AKT/mTOR signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116502. [PMID: 38788563 DOI: 10.1016/j.ecoenv.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Despite the known reproductive toxicity induced by triptolide (TP) exposure, the regulatory mechanism underlying testicular vacuolization injury caused by TP remains largely obscure. METHODS Male mice were subjected to TP at doses of 15, 30, and 60 μg/kg for 35 consecutive days. Primary Sertoli cells were isolated from 20-day-old rat testes and exposed to TP at concentrations of 0, 40, 80, 160, 320, and 640 nM. A Biotin tracer assay was conducted to assess the integrity of the blood-testis barrier (BTB). Transepithelial electrical resistance (TER) assays were employed to investigate BTB function in primary Sertoli cells. Histological structures of the testes and epididymides were stained with hematoxylin and eosin (H&E). The expression and localization of relevant proteins or pathways were assessed through Western blotting or immunofluorescence staining. RESULTS TP exposure led to dose-dependent testicular injuries, characterized by a decreased organ coefficient, reduced sperm concentration, and the formation of vacuolization damage. Furthermore, TP exposure disrupted BTB integrity by reducing the expression levels of tight junction (TJ) proteins in the testes without affecting basal ectoplasmic specialization (basal ES) proteins. Through the TER assay, we identified that a TP concentration of 160 nM was optimal for elucidating BTB function in primary Sertoli cells, correlating with reductions in TJ protein expression. Moreover, TP exposure induced changes in the distribution of the BTB and cytoskeleton-associated proteins in primary Sertoli cells. By activating the AKT/mTOR signaling pathway, TP exposure disturbed the balance between mTORC1 and mTORC2, ultimately compromising BTB integrity in Sertoli cells. CONCLUSION This investigation sheds light on the impacts of TP exposure on testes, elucidating the mechanism by which TP exposure leads to testicular vacuolization injury and offering valuable insights into comprehending the toxic effects of TP exposure on testes.
Collapse
Affiliation(s)
- Xiwen Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Lei He
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xinyao Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Lingling Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Tiao Bu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Damin Yun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xinran Lu
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Sheng Gao
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Qiuru Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiaxin Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou 215002, China.
| | - Jun Yu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Fei Sun
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
12
|
Liu H, Du X, Zhang Z, Ge K, Chen X, Losiewicz MD, Guo H, Zhang H. Co-exposure of microcystin and nitrite enhanced spermatogenic disorders: The role of mtROS-mediated pyroptosis and apoptosis. ENVIRONMENT INTERNATIONAL 2024; 188:108771. [PMID: 38805914 DOI: 10.1016/j.envint.2024.108771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Microcystins (MCs) and nitrites are coexisted in the environment and have reproductive toxicity. The combined toxic effect and mechanism of MCs and nitrite on spermatogenesis remain largely unclear. In the present study, co-exposure to microcystin-leucine arginine (MC-LR) and sodium nitrite (NaNO2) aggravated testicular damage of Balb/c mice and mitochondrial impairment of spermatogonia, Sertoli cells, and sperm. Furthermore, MC-LR and NaNO2 reduced sperm density with a synergistic effect. In addition, MC-LR and NaNO2 synergistically induced oxidative stress in the reproductive system by decreasing superoxide dismutase (SOD) activity and glutathione (GSH) levels and increasing levels of mitochondrial reactive oxygen species (mtROS) and reactive oxygen species (ROS). More importantly, mitoquidone mesylate (MitoQ), an inhibitor of mtROS, blocked MC-LR and NaNO2-induced spermatogonia and Sertoli cell apoptosis by inhibiting high expression of Bax, Fadd, Caspase-8, and cleaved-Caspase-3. On the other hand, MitoQ suppressed pyroptosis of Sertoli cells by inhibiting the expression of NLRP3, N-GSDMD, and cleaved-Caspase-1. Additionally, MitoQ alleviated co-exposure-induced sperm density reduction and organ index disorders in F1 generation mice. Together, co-exposure of MC-LR and NaNO2 can enhance spermatogenic disorders by mitochondrial oxidative impairment-mediated germ cell death. This study emphasizes the potential risks of MC-LR and NaNO2 on reproduction in realistic environments and highlights new insights into the cause and treatment of spermatogenic disorders.
Collapse
Affiliation(s)
- Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Department of Public Health, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Michael D Losiewicz
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
13
|
Valipour J, Taghizadeh F, Esfahani R, Ramesh M, Rastegar T. Role of nuclear factor erythroid 2-related factor 2 (Nrf2) in female and male fertility. Heliyon 2024; 10:e29752. [PMID: 38720768 PMCID: PMC11076650 DOI: 10.1016/j.heliyon.2024.e29752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Oxidative stress refers to a condition where there is an imbalance between the production of reactive oxygen species and their removal by antioxidants. While the function of reactive oxygen species as specific second messengers under physiological conditions is necessary, their overproduction can lead to numerous instances of cell and tissue damage. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of many cytoprotective genes that respond to redox stresses. Nrf2 is regularly degraded by kelch-like ECH-associated protein 1 through the ubiquitin-proteasome pathway. The kelch-like ECH-associated protein 1 and Nrf2 complex have attracted attention in both basic and clinical infertility research fields. Oxidative stress is implicated in the pathogenesis of female infertility, including primary ovarian insufficiency, polycystic ovarian syndrome, and endometriosis, as well as male infertility, namely varicocele, cryptorchidism, spermatic cord torsion, and orchitis. Most scientists believe that Nrf2 is a potential therapeutic method in female and male infertility disorders due to its antioxidant effect. Here, the potential roles of oxidative stress and Nrf2 in female and male infertility disorders are reviewed. Moreover, the key role of Nrf2 in the inhibition or induction of these diseases is discussed.
Collapse
Affiliation(s)
- Jamal Valipour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taghizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Esfahani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahya Ramesh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Jalili C, Ranjbar Shamsi R, Amiri B, Kakebaraie S, Jalili F, Nasta TZ. Genotoxic and cytotoxic effects of aflatoxin on the reproductive system: Focus on cell cycle dynamics and apoptosis in testicular tissue. Toxicology 2024; 504:153773. [PMID: 38484789 DOI: 10.1016/j.tox.2024.153773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Aflatoxins (AFs) are inevitable environmental contaminants that are detrimental to human and animal health. AFs interfere with metabolic processes, metabolizing into different hydroxylated derivatives in the liver, as well as mechanistically induce ROS accumulation, S-phase arrest, DNA damage, and cell apoptosis. Chronic consumption of aflatoxin-contaminated foods can adversely affect the male reproductive system, cause testicular damage, prevent testosterone synthesis, decline sperm quality, and cause infertility. Oxidative stress is the fundamental pathogenesis of aflatoxin-induced reproductive toxicity. The overproduction of reactive oxygen substances can cause testicular failure and disturb the process of spermatogenesis. Mitochondria are susceptible to being impaired by oxidative stress, and its damage is associated with infertility. AFs also disturb the process of spermatogenesis by disrupting the regulation of genes related to the progression of the cell cycle such as cyclins and inducing genes related to apoptosis, thereby weakening fertility and negatively affecting the testicular endocrine potential by suppressing androgen synthesis. Additionally, AFs downregulate ERα expression, potentially negatively impacting spermatogenesis by enhancing the apoptotic mechanism. In this review, we provide new insights into the genotoxic and cytotoxic effects of AFB1 on the male reproductive system with a focus on the cell cycle and apoptosis destruction of testicular tissue.
Collapse
Affiliation(s)
- Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran
| | - Rahele Ranjbar Shamsi
- Department of Clinical Biochemistry, Faculty of Veterinary Medicine, Tabriz, Islamic Republic of Iran
| | - Bita Amiri
- Department of Chemistry and Biochemistry, University of Texas at Arlington, TX, USA
| | - Seyran Kakebaraie
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran
| | - Faramarz Jalili
- School of Health Administration, Faculty of Health, Dalhousie University, Halifax, NS, Canada
| | - Touraj Zamir Nasta
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran.
| |
Collapse
|
15
|
Ali W, Buriro RS, Gandahi JA, Chen Y, Aabdin ZU, Bhutto S, Sun J, Zhu J, Liu Z, Zou H. A critical review on male-female reproductive and developmental toxicity induced by micro-plastics and nano-plastics through different signaling pathways. Chem Biol Interact 2024; 394:110976. [PMID: 38552764 DOI: 10.1016/j.cbi.2024.110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
It is widely accepted that humans are constantly exposed to micro-plastics and nano-plastics through various routes, including inhalation of airborne particles, exposure to dust, and consumption of food and water. It is estimated that humans may consume thousand to millions of micro-plastic particles, equating to several milligrams per day. Prolonged exposure to micro-plastics and nano-plastics has been linked to negative effects on different living organisms, including neurotoxicity, gastrointestinal toxicity, nephrotoxicity, and hepatotoxicity, and developmental toxicities. The main purpose of this review is to explore the effect of micro-plastics and nano-plastics on the male and female reproductive system, as well as their offspring, and the associated mechanism implicated in the reproductive and developmental toxicities. Micro-plastics and nano-plastics have been shown to exert negative effects on the reproductive system of both male and female mammals and aquatic animals, including developmental impacts on gonads, gametes, embryo, and their subsequent generation. In addition, micro-plastics and nano-plastics impact the hypothalamic-pituitary axes, leading to oxidative stress, reproductive toxicity, neurotoxicity, cytotoxicity, developmental abnormalities, poor sperm quality, diminishes ovarian ovulation and immune toxicity. This study discusses the so many different signaling pathways associated in the male and female reproductive and developmental toxicity induced by micro-plastics and nano-plastics.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Rehana Shahnawaz Buriro
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Jameel Ahmed Gandahi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Zain Ul Aabdin
- Department of Preventive Veterinary Medicine and Public Health Faculty of Veterinary and Animal Sciences, Ziauddin University, Pakistan
| | - Sahar Bhutto
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China.
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
16
|
Wei L, Li S, Ma Y, Ye S, Yuan Y, Zeng Y, Raza T, Xiao F. Curcumin attenuates diphenyl phosphate-induced apoptosis in GC-2spd(ts) cells through activated autophagy via the Nrf2/P53 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2032-2042. [PMID: 38095090 DOI: 10.1002/tox.24092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/19/2023] [Accepted: 12/01/2023] [Indexed: 03/09/2024]
Abstract
Diphenyl phosphate (DPhP) is one of the frequently used derivatives of aryl phosphate esters and is used as a plasticizer in industrial production. Like other plasticizers, DPhP is not chemically bound and can easily escape into the environment, thereby affecting human health. DPhP has been associated with developmental toxicity, reproductive toxicity, neurodevelopmental toxicity, and interference with thyroid homeostasis. However, understanding of the underlying mechanism of DPhP on the reproductive toxicity of GC-2spd(ts) cells remains limited. For the first time, we investigated the effect of DPhP on GC-2spd(ts) cell apoptosis. By decreasing nuclear factor erythroid-derived 2-related factor (Nrf2)/p53 signaling, DPhP inhibited autophagy and promoted apoptosis. DPhP reduced total antioxidant capacity and nuclear Nrf2 and its downstream target gene expression. In addition, we investigated the protective effects of Curcumin (Cur) against DPhP toxicity. Cur attenuated the DPhP-induced rise in p53 expression while increasing Nrf2 expression. Cur inhibited DPhP-induced apoptosis in GC-2spd(ts) cells by activating autophagy via Nrf2/p53 signaling. In conclusion, our study provides new insights into the reproductive toxicity hazards of DPhP and demonstrates that Cur is an important therapeutic agent for alleviating DPhP-induced reproductive toxicity by regulating Nrf2/p53 signaling.
Collapse
Affiliation(s)
- Lai Wei
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Siwen Li
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Yu Ma
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Shuzi Ye
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Yu Yuan
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Yuan Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Tausif Raza
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| |
Collapse
|
17
|
Masoudi R, Dadashpour-Davachi N, Asadzadeh N, Hatefi A, Alipour-Jenaghard P. MitoQ preserves the quality and fertility of liquid-preserved ram sperm. Theriogenology 2024; 216:8-11. [PMID: 38142498 DOI: 10.1016/j.theriogenology.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Supplementing the semen extender with some antioxidants may preserve sperm quality following liquid preservation. The aim of the current study was to evaluate the influence of the use of MitoQ in the semen extender on quality parameters and fertility of liquid-preserved ram semen. In this study, diluted semen samples were divided into five parts and supplemented with 0, 1, 10, 100 and 1000 nM MitoQ. The prepared samples were stored at 3-5 °C for up to 50 h. Motility, viability, mitochondrial activity, membrane integrity, and malondialdehyde concentration of the chilled sperm were assessed at 0, 25, and 50 h. To evaluate reproductive performance, artificial insemination was performed with semen liquid-preserved for 25 h. In results, at 0 h, no difference between the groups was observed. The use of 10 and 100 nM MitoQ resulted in higher (P ≤ 0.05) total motility, progressive motility, membrane integrity, mitochondrial activity, viability, and lower malondialdehyde concentration than the other groups after 25- and 50-h storage. Pregnancy, parturition and lambing rates were higher (P ≤ 0.05) when ewes were inseminated with 25-h chilled semen samples containing 10 and 100 nM MitoQ compared to the control. Therefore, supplementing the semen extender with MitoQ (10 and 100 nM) could be an efficient method to improve the quality and fertility rate of liquid-preserved ram semen.
Collapse
Affiliation(s)
- Reza Masoudi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Navid Dadashpour-Davachi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Nader Asadzadeh
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Ali Hatefi
- Department of Animal Science, University of Tehran, Karaj, Iran
| | | |
Collapse
|
18
|
Shafiey SI, Ahmed KA, Abo-Saif AA, Abo-Youssef AM, Mohamed WR. Galantamine mitigates testicular injury and disturbed spermatogenesis in adjuvant arthritic rats via modulating apoptosis, inflammatory signals, and IL-6/JAK/STAT3/SOCS3 signaling. Inflammopharmacology 2024; 32:405-418. [PMID: 37429998 PMCID: PMC10907493 DOI: 10.1007/s10787-023-01268-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/17/2023] [Indexed: 07/12/2023]
Abstract
Rheumatoid arthritis (RA) affects the joints and the endocrine system via persistent immune system activation. RA patients have a higher frequency of testicular dysfunction, impotence, and decreased libido. This investigation aimed to evaluate the efficacy of galantamine (GAL) on testicular injury secondary to RA. Rats were allocated into four groups: control, GAL (2 mg/kg/day, p.o), CFA (0.3 mg/kg, s.c), and CFA + GAL. Testicular injury indicators, such as testosterone level, sperm count, and gonadosomatic index, were evaluated. Inflammatory indicators, such as interleukin-6 (IL-6), p-Nuclear factor kappa B (NF-κB p65), and anti-inflammatory cytokine interleukin-10 (IL-10), were assessed. Cleaved caspase-3 expression was immunohistochemically investigated. Protein expressions of Janus kinase (JAK), signal transducers and activators of transcription (STAT3), and Suppressors of Cytokine Signaling 3 (SOCS3) were examined by Western blot analysis. Results show that serum testosterone, sperm count, and gonadosomatic index were increased significantly by GAL. Additionally, GAL significantly diminished testicular IL-6 while improved IL-10 expression relative to CFA group. Furthermore, GAL attenuated testicular histopathological abnormalities by CFA and downregulated cleaved caspase-3 and NF-κB p65 expressions. It also downregulated JAK/STAT3 cascade with SOCS3 upregulation. In conclusion, GAL has potential protective effects on testicular damage secondary to RA via counteracting testicular inflammation, apoptosis, and inhibiting IL-6/JAK/STAT3/SOCS3 signaling.
Collapse
Affiliation(s)
- Sara I Shafiey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62514, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ali A Abo-Saif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62514, Egypt
| | - Amira M Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
19
|
Ji B, Liu J, Ma Y, Yin Y, Xu H, Shen Q, Yu J. Minnelide Markedly Reduces Proteinuria in Mice with Adriamycin Nephropathy by Protecting Against Podocyte Injury. Appl Biochem Biotechnol 2023; 195:7379-7396. [PMID: 37000351 PMCID: PMC10754751 DOI: 10.1007/s12010-023-04333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 04/01/2023]
Abstract
Minimal change disease (MCD) is the most common cause of idiopathic nephrotic syndrome in children. The current major therapy is hormones for most steroid-sensitive patients. However, many patients have recurrent relapses of the disease and require long-term immunosuppression, leading to significant morbidity due to the side effects of the drugs. Therefore, better drugs need to be urgently explored to treat nephrotic syndrome while avoiding the side effects of drugs. Minnelide, a water-soluble prodrug of triptolide, has been proved to be effective in treating cancers in many clinical trials. This study aimed to investigate the therapeutic effect of minnelide in mice with adriamycin (ADR) nephropathy, its underlying protection mechanisms, and its reproductive toxicity. Minnelide was administered intraperitoneally to 6-8-week female mice with adriamycin nephropathy for 2 weeks, and the urine, blood, and kidney tissues were taken to analyze the therapeutic effect. In addition, we evaluated reproductive toxicity by measuring the levels of gonadal hormones and observing the histological changes in ovaries and testes. Primary mouse podocytes were exposed to puromycin (PAN) to damage the cytoskeleton and induce apoptosis, and then, triptolide was used to evaluate the therapeutic effect and underlying protection mechanisms in vitro. It was observed that minnelide dramatically alleviated proteinuria and apoptosis in mice with adriamycin nephropathy. In vitro, triptolide ameliorated puromycin-induced cytoskeletal rearrangement and apoptosis via reactive oxygen species-mediated mitochondrial pathway. In addition, minnelide caused no reproductive toxicity to male and female mice. The results suggested that minnelide might be a promising drug for nephrotic syndrome.
Collapse
Affiliation(s)
- Baowei Ji
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Junchao Liu
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yanli Ma
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Ye Yin
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China.
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Jian Yu
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
20
|
Ding J, Lu B, Liu L, Zhong Z, Wang N, Li B, Sheng W, He Q. Guilu-Erxian-Glue alleviates Tripterygium wilfordii polyglycoside-induced oligoasthenospermia in rats by resisting ferroptosis via the Keap1/Nrf2/GPX4 signaling pathway. PHARMACEUTICAL BIOLOGY 2023; 61:213-227. [PMID: 36688426 PMCID: PMC9873281 DOI: 10.1080/13880209.2023.2165114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/18/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
CONTEXT Guilu-Erxian-Glue (GLEXG) is a traditional Chinese formula used to improve male reproductive dysfunction. OBJECTIVE To investigate the ferroptosis resistance of GLEXG in the improvement of semen quality in the oligoasthenospermia (OAS) rat model. MATERIALS AND METHODS Male Sprague-Dawley (SD) rats were administered Tripterygium wilfordii polyglycoside, a compound extracted from Tripterygium wilfordii Hook F. (Celastraceae), at a dose of 40 mg/kg/day, to establish an OAS model. Fifty-four SD rats were randomly divided into six groups: sham, model, low-dose GLEXG (GLEXGL, 0.25 g/kg/day), moderate-dose GLEXG (GLEXGM, 0.50 g/kg/day), high-dose GLEXG (GLEXGH, 1.00 g/kg/day) and vitamin E (0.01 g/kg/day) group. The semen quality, structure and function of sperm mitochondria, histopathology, levels of oxidative stress and iron, and mRNA levels and protein expression in the Keap1/Nrf2/GPX4 pathway, were analyzed. RESULTS Compared with the model group, GLEXGH significantly improved sperm concentration (35.73 ± 15.42 vs. 17.40 ± 4.12, p < 0.05) and motility (58.59 ± 11.06 vs. 28.59 ± 9.42, p < 0.001), and mitigated testicular histopathology. Moreover, GLEXGH markedly reduced the ROS level (5684.28 ± 1345.47 vs. 15500.44 ± 2307.39, p < 0.001) and increased the GPX4 level (48.53 ± 10.78 vs. 23.14 ± 11.04, p < 0.01), decreased the ferrous iron level (36.31 ± 3.66 vs. 48.64 ± 7.74, p < 0.05), and rescued sperm mitochondrial morphology and potential via activating the Keap1/Nrf2/GPX4 pathway. DISCUSSION AND CONCLUSIONS Ferroptosis resistance from GLEXG might be driven by activation of the Keap1/Nrf2/GPX4 pathway. Targeting ferroptosis is a novel approach for OAS therapy.
Collapse
Affiliation(s)
- Jin Ding
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Department of Andrology Clinic, Affiliated Bao’an Hospital of Traditional Chinese Medicine, The Seventh Clinical Medical College, Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Baowei Lu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Lumei Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Zixuan Zhong
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Wang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Bonan Li
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Wen Sheng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Qinghu He
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
- Hunan University of Medicine, Huaihua, China
| |
Collapse
|
21
|
Diniz MS, Magalhães CC, Tocantins C, Grilo LF, Teixeira J, Pereira SP. Nurturing through Nutrition: Exploring the Role of Antioxidants in Maternal Diet during Pregnancy to Mitigate Developmental Programming of Chronic Diseases. Nutrients 2023; 15:4623. [PMID: 37960276 PMCID: PMC10649237 DOI: 10.3390/nu15214623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic diseases represent one of the major causes of death worldwide. It has been suggested that pregnancy-related conditions, such as gestational diabetes mellitus (GDM), maternal obesity (MO), and intra-uterine growth restriction (IUGR) induce an adverse intrauterine environment, increasing the offspring's predisposition to chronic diseases later in life. Research has suggested that mitochondrial function and oxidative stress may play a role in the developmental programming of chronic diseases. Having this in mind, in this review, we include evidence that mitochondrial dysfunction and oxidative stress are mechanisms by which GDM, MO, and IUGR program the offspring to chronic diseases. In this specific context, we explore the promising advantages of maternal antioxidant supplementation using compounds such as resveratrol, curcumin, N-acetylcysteine (NAC), and Mitoquinone (MitoQ) in addressing the metabolic dysfunction and oxidative stress associated with GDM, MO, and IUGR in fetoplacental and offspring metabolic health. This approach holds potential to mitigate developmental programming-related risk of chronic diseases, serving as a probable intervention for disease prevention.
Collapse
Affiliation(s)
- Mariana S. Diniz
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Carina C. Magalhães
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Carolina Tocantins
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Luís F. Grilo
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Teixeira
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Susana P. Pereira
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
22
|
Javaheri Barfourooshi H, Asadzadeh N, Masoudi R. The mitochondria-targeted antioxidant "MitoQ" preserves quality and reproductive performance of ram spermatozoa cryopreserved in soybean lecithin-based extender. Theriogenology 2023; 208:71-76. [PMID: 37301168 DOI: 10.1016/j.theriogenology.2023.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Cryopreservation of ram semen is helpful for distributing proved spermatozoa for reproductive goals, but cold shock has destructive effects on fertility ability of frozen sperm cells. This study was performed to investigate the effect of the novel mitochondria-targeted antioxidant "MitoQ" on ram sperm quality and fertility potential during cryopreservation process. Semen samples were diluted in extenders supplemented with 0, 1, 10, 100 and 1000 nM MitoQ and then frozen according to the standard protocol. Motility and velocity characteristics, lipid peroxidation, acrosome integrity, membrane functionality, mitochondria active potential, viability, apoptosis status, DNA fragmentation, ROS concentration and reproductive performance were evaluated after thawing. In results, 10 and 100 nM MitoQ presented higher (P ≤ 0.05) total motility, progressive motility, average path velocity, acrosome integrity, membrane functionality, mitochondria active potential and viability as well as lower (P ≤ 0.05) lipid peroxidation, apoptosis status, DNA fragmentation and ROS concentration compared to the control group and the other treatments. Moreover, after fertility trial, 10 and 100 nM MitoQ resulted in higher (P ≤ 0.05) pregnancy, parturition and lambing rates than control group. Therefore, MitoQ is able to preserve quality parameters and fertility potential of post-thawed spermatozoa in sheep and it could be an effective additive for supplementation of ram's semen cryopreservation medium during reproductive programs.
Collapse
Affiliation(s)
- Hoda Javaheri Barfourooshi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Nader Asadzadeh
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Reza Masoudi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
23
|
Alipour-Jenaghard P, Daghigh-Kia H, Masoudi R. Preservation of the quality and fertility potential of post-thawed rooster sperm using MitoQ. Theriogenology 2023; 208:165-170. [PMID: 37336065 DOI: 10.1016/j.theriogenology.2023.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/22/2023] [Accepted: 06/11/2023] [Indexed: 06/21/2023]
Abstract
Cryopreservation of rooster spermatozoa is an efficient procedure to spread qualified semen samples for reproductive goals in commercial flocks, but the freeze-thawing process reduces the quality and fertility potential of post-thawed sperm cells. This study was aimed to investigate the effect of the mitochondria-targeted antioxidant MitoQ on rooster sperm quality and fertility potential preservation during freeze-thawing process. Semen samples were collected and diluted in the Lake medium, assigned into five equal aliquots, supplemented with 0, 1, 10, 100 and 1000 nM MitoQ, and cryopreserved in liquid nitrogen. After thawing, sperm motility, membrane functionality, abnormal morphology, mitochondria active potential, acrosome integrity, viability, apoptosis status, lipid peroxidation, DNA fragmentation, ROS concentration and fertility potential were evaluated. According to the results, freezing extender supplementation with 10 and 100 nM MitoQ presented higher (P ≤ 0.05) total motility, progressive motility, average path velocity, membrane functionality, mitochondria active potential, acrosome integrity and viability compared to the other groups. On the other hand, lipid peroxidation, apoptosis rate, DNA fragmentation and ROS concentration were lower (P ≤ 0.05) in groups received 10 and 100 nM MitoQ compared to other groups. Moreover, fertility rate was higher in groups received 10 and 100 nM MitoQ compared to control group. Therefore, MitoQ is able to preserve quality parameters and fertility potential of post-thawed spermatozoa in rooster and it could be an effective additive for supplementation of rooster's semen cryopreservation medium during reproductive programs.
Collapse
Affiliation(s)
- P Alipour-Jenaghard
- Department of Animal Science, College of Agriculture, University of Tabriz, Tabriz, Iran
| | - H Daghigh-Kia
- Department of Animal Science, College of Agriculture, University of Tabriz, Tabriz, Iran.
| | - R Masoudi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
24
|
Zheng M, Liu Y, Zhang G, Yang Z, Xu W, Chen Q. The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Antioxidants (Basel) 2023; 12:1675. [PMID: 37759978 PMCID: PMC10525108 DOI: 10.3390/antiox12091675] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Superoxide dismutase (SOD) is a class of enzymes that restrict the biological oxidant cluster enzyme system in the body, which can effectively respond to cellular oxidative stress, lipid metabolism, inflammation, and oxidation. Published studies have shown that SOD enzymes (SODs) could maintain a dynamic balance between the production and scavenging of biological oxidants in the body and prevent the toxic effects of free radicals, and have been shown to be effective in anti-tumor, anti-radiation, and anti-aging studies. This research summarizes the types, biological functions, and regulatory mechanisms of SODs, as well as their applications in medicine, food production, and cosmetic production. SODs have proven to be a useful tool in fighting disease, and mimetics and conjugates that report SODs have been developed successively to improve the effectiveness of SODs. There are still obstacles to solving the membrane permeability of SODs and the persistence of enzyme action, which is still a hot spot and difficulty in mining the effect of SODs and promoting their application in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
25
|
Qin Z, Song J, Huang J, Jiang S, Zhang G, Huang M, Huang Z, Jin J. Mitigation of triptolide-induced testicular Sertoli cell damage by melatonin via regulating the crosstalk between SIRT1 and NRF2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154945. [PMID: 37437414 DOI: 10.1016/j.phymed.2023.154945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Triptolide (TP) is an important active compound from Tripterygium wilfordii Hook F (TwHF), however, it is greatly limited in clinical practice due to its severe toxicity, especially testicular injury. Melatonin is an endogenous hormone and has beneficial effects on the reproductive system. However, whether triptolide-induced testicular injury can be alleviated by melatonin and the underlying mechanism are not clear. PURPOSE In this study, we aimed to explore whether triptolide-induced testicular Sertoli cells toxicity can be mitigated by melatonin and the underlying mechanisms involved. METHODS Cell apoptosis was assessed by flow cytometry, western blot, immunofluorescence and immunohistochemistry. Fluorescent probe Mito-Tracker Red CMXRos was used to observe the mitochondria morphology. Mitochondrial membrane potential and Ca2+ levels were used to investigate mitochondrial function by confocal microscope and flow cytometry. The expression levels of SIRT1/Nrf2 pathway were detected by western blot, immunofluorescence and immunohistochemistry. Small interfering RNA of NRF2 and SIRT1 inhibitor EX527 was used to confirm the role of SIRT1/NRF2 pathway in the mitigation of triptolide-induced Sertoli cell damage by melatonin. Co-Immunoprecipitation assay was used to determine the interaction between SIRT1 and NRF2. RESULTS Triptolide-induced dysfunction of testicular Sertoli cells was significantly improved by melatonin treatment. Specifically, triptolide-induced oxidative stress damage and changes of mitochondrial morphology, mitochondrial membrane potential, and BTB integrity were alleviated by melatonin. Mechanistically, triptolide inhibited SIRT1 and then reduced the activation of NRF2 pathway via regulating the interaction between SIRT1 and NRF2, thereby downregulating the downstream antioxidant genes, which was reversed by melatonin. Nevertheless, knockdown of NRF2 or inhibition of SIRT1 abolished the protective effect of melatonin. CONCLUSION Triptolide-induced testicular Sertoli cell damage could be alleviated by melatonin via regulating the crosstalk between SIRT1 and NRF2, which is helpful for developing a new strategy to alleviate triptolide-induced toxicity.
Collapse
Affiliation(s)
- Zhiyan Qin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianxun Song
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Junyuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shiqin Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Gengyi Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Institute of Clinical Pharmacology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Institute of Clinical Pharmacology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
26
|
Huang W, Cao Z, Cui Y, Huo S, Shao B, Song M, Cheng P, Li Y. Lycopene ameliorates aflatoxin B 1-induced testicular lesion by attenuating oxidative stress and mitochondrial damage with Nrf2 activation in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114846. [PMID: 37018856 DOI: 10.1016/j.ecoenv.2023.114846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Aflatoxin B1 (AFB1) is an extremely hazardous and unavoidable pollutant for cereals and feedstuff. AFB1 can cause testicular lesion, and how to alleviate its testicular toxicity has received much attention in recent years. Lycopene (LYC), a foodborne nutrient derived from red fruits and vegetables, has protective effects against sperm abnormality and testicular lesions. To confirm the beneficial effects and mechanisms of LYC on AFB1-induced testicular lesion, 48 male mice were exposed to 0.75 mg/kg AFB1 or/and 5 mg/kg LYC for consecutive 30 days. Results demonstrated the LYC significantly restored the lesions of testicular microstructure and ultrastructure, and sperm abnormalities in AFB1-exposed mice. Furthermore, LYC effectively attenuated AFB1-induced oxidative stress and mitochondrial damage, including ameliorative mitochondrial structural, and elevated mitochondrial biogenesis for maintaining mitochondrial function. Meanwhile, LYC resisted AFB1-induced mitochondrial-dependent apoptosis. In addition, LYC promoted nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, and upregulated the Nrf2 signaling pathway. Collectively, our findings demonstrate LYC ameliorates AFB1-induced testicular lesion by attenuating oxidative stress and mitochondrial damage, which is related to the activation of Nrf2.
Collapse
Affiliation(s)
- Wanyue Huang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Zheng Cao
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yilong Cui
- College of Animal Science and Technology, Inner Mongolia Minzu University, 028000 Tongliao, China
| | - Siming Huo
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bing Shao
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ping Cheng
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Yanfei Li
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
27
|
Rezaei A, Bahmani HR, Mafakheri S, Farshad A, Nazari P, Masoudi R. Protective effects of different doses of MitoQ separately and combined with trehalose on oxidative stress and sperm function of cryopreserved Markhoz goat semen. Cryobiology 2023; 110:36-43. [PMID: 36581061 DOI: 10.1016/j.cryobiol.2022.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
The mitochondria-targeted antioxidant MitoQ has been regarded as an effective antioxidant agent against cryo-induced oxidative cellular damage. This study aimed to evaluate the use of different doses of MitoQ combined with trehalose to minimize mitochondrial impairment and oxidative stress during sperm cryopreservation of Markhoz goat. For this, semen samples (n = 50) were collected by electroejaculation every 5 days from 5 bucks in 10 replicates. On each collection day, 5 ejaculates (one ejaculate for each buck) were pooled and then diluted in eight different Tris-based extenders as follows: no additives (control), 20, 200, 2000 nM of MitoQ (MT20, MT200, MT 2000, respectively), 150 mM of trehalose (Tr), MT20+Tr, MT200+Tr, MT2000+Tr. The semen samples were frozen using a standard protocol, and sperm function and oxidative stress were evaluated after thawing. The semen extender supplemented with MT200+Tr had higher (P < 0.05) total and progressive motility, acrosome and membrane integrity, superoxide dismutase, glutathione peroxidase, total antioxidant capacity, and lower (P < 0.05) DNA fragmentation, malondialdehyde and intracellular hydrogen peroxide levels than the all other groups except MT200; meanwhile, MT200 was also improved (P < 0.05) in these parameters than in the control group. Furthermore, MT200 and MT200+Tr showed higher (P < 0.05) percentages of live cryopreserved sperm with high mitochondrial activity than other groups. However, abnormality percentage and catalase activity of frozen-thawed sperm were not affected by treatments (P > 0.05). To conclude, we have found that supplementation of 200 nM MitoQ alone or in combination with 150 mM trehalose to semen extender improved the quality of cryopreserved sperm in goats, which is associated with enhanced antioxidant enzymatic defense and mitochondrial activity and reduced DNA fragmentation.
Collapse
Affiliation(s)
- Ako Rezaei
- Department of Animal Science, Kurdistan Agricultural and Natural Resources Research and Education Center, AREEO, Sanandaj, 6616936311, Iran; Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, 661715175, Iran.
| | - Hamid Reza Bahmani
- Department of Animal Science, Kurdistan Agricultural and Natural Resources Research and Education Center, AREEO, Sanandaj, 6616936311, Iran.
| | - Shiva Mafakheri
- Department of Animal Science, Kurdistan Agricultural and Natural Resources Research and Education Center, AREEO, Sanandaj, 6616936311, Iran.
| | - Abbas Farshad
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, 661715175, Iran.
| | - Parisa Nazari
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, 661715175, Iran.
| | - Reza Masoudi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, 3146618361, Iran.
| |
Collapse
|
28
|
Mitochondria-targeted antioxidant "MitoQ" improves rooster's cooled sperm quality indicators and reproductive performance. Theriogenology 2023; 197:26-30. [PMID: 36462333 DOI: 10.1016/j.theriogenology.2022.11.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
The cell membrane of rooster sperm is sensitive to cold due to the high content of polyunsaturated fatty acids, which are very susceptible to lipid peroxidation. The present study was conducted to determine the effect of different concentrations of the mitochondrial-targeting antioxidant "MitoQ" on sperm quality and fertility potential of chilled semen in roosters. Semen samples were collected from 10 roosters, diluted in Lake extender, assigned into 5 groups according to MitoQ concentrations (0, 1, 10, 100 and 1000 nM MitoQ) and stored at 5 °C up to 48 h. Motility, mitochondrial activity, viability, membrane integrity, and lipid peroxidation were assessed at 0, 24, and 48 h of cold storage periods. In addition, the fertility potential was assessed using 24 h-cooled semen samples. Our results showed that extender supplementation with MitoQ had no effect (P > 0.05) on chilled semen samples quality parameters at time 0, while at times 24 and 48 h storage, samples contained 100 nM MitoQ presented higher (P ≤ 0.05) total motility, progressive motility, viability and membrane integrity compared to the other groups. In addition, semen samples containing 10 and 100 nM MitoQ showed higher (P ≤ 0.05) mitochondrial activity and lower (P ≤ 0.05) lipid peroxidation than other groups at 24 and 48 h storage. Fertility rate was higher (P ≤ 0.05) when the hens were artificially inseminated with 24 h-chilled semen samples containing 100 nM MitoQ. In conclusion, supplementing Lake Extender with 100 nM MitoQ could be a helpful strategy to preserve chilled semen quality and fertility potential in the rooster.
Collapse
|
29
|
Tsui KH, Li CJ. Mitoquinone shifts energy metabolism to reduce ROS-induced oxeiptosis in female granulosa cells and mouse oocytes. Aging (Albany NY) 2023; 15:246-260. [PMID: 36626243 PMCID: PMC9876626 DOI: 10.18632/aging.204475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023]
Abstract
The female reproductive system is quite sensitive to regulation, and external environmental stimuli may cause oxidative stress which in turn may lead to accelerated aging and programmed cell death in female reproductive cells. The aim of this study was to investigate whether or not mitoquinone (MitoQ) could resist ROS-induced apoptosis in human granulosa cells and mouse oocytes. We found that the MitoQ treatment significantly reduced production of reactive oxygen species (ROS) and imbalance in mitochondrial membrane potential. The MitoQ treatment prevented an excessive mitochondrial fragmentation by upregulating Drp1 S637 and decreasing Drp1 S637 phosphorylation. More importantly, MitoQ maintained aerobic respiration and reduced anaerobic respiration by regulating reprogramming of intracellular energy metabolism, which enhanced cellular ATP production. MitoQ effectively reduced the expressions of AIFM1 and PGAM5, key molecules whose expressions were reversed not only in granulosa cells but also in mouse oocytes. Our findings suggest that MitoQ can ameliorate the mitochondrial deterioration caused by ROS and reprogram cellular energy metabolism, providing protection to cells against apoptosis. The presence of MitoQ may help in protecting human germ cells under in vitro culture conditions.
Collapse
Affiliation(s)
- Kuan-Hao Tsui
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei 112, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County 907, Taiwan
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- College of Health and Nursing, Meiho University, Pingtung County 912, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
30
|
Pierre CJ, Azeez TA, Rossetti ML, Gordon BS, La Favor JD. Long-term administration of resveratrol and MitoQ stimulates cavernosum antioxidant gene expression in a mouse castration model of erectile dysfunction. Life Sci 2022; 310:121082. [PMID: 36252696 PMCID: PMC9746260 DOI: 10.1016/j.lfs.2022.121082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
AIMS Erectile dysfunction is a common complication within many pathological conditions associated with low testosterone. Testosterone deficiency increases oxidative stress in the penile tissue that contributes to endothelial dysfunction and subsequent erectile dysfunction. Current therapies do not ameliorate oxidative stress so targeting oxidative stress may improve erectile dysfunction. Resveratrol and MitoQ are two prospective drugs that have antioxidant-like properties and may be useful to improve erectile dysfunction induced by androgen deprivation. MATERIALS AND METHODS We castrated 12-week-old male C57BL/6 mice and performed an eight-week intervention with oral delivery of resveratrol or MitoQ at low and high doses. We assessed vascular reactivity of the corpus cavernosum and internal pudendal arteries (IPA) through dose-dependent responses to vasodilatory, vasocontractile, and neurogenic stimuli in a myograph system. We performed qRT-PCR to measure expression changes of 18 antioxidant genes in the corpus cavernosum. KEY FINDINGS Castration significantly impaired erectile function via impaired endothelial-dependent and-independent relaxation, and increased constriction of the corpus cavernosum, and induced severe endothelial dysfunction of the IPA. Castration decreased expression of 8 of the antioxidant genes investigated. Resveratrol and MitoQ were ineffective in reversing the effects of androgen deprivation on vascular reactivity, however high-dose resveratrol treatment upregulated several key antioxidant genes, including Cat, Sod1, Gstm1, and Prdx3. SIGNIFICANCE Our findings suggest that oral resveratrol and MitoQ treatment may provide protection to the corpus cavernosum under androgen deprived conditions by stimulating endogenous antioxidant systems. However, they may need to be paired with vasoactive drugs to reverse erectile dysfunction under androgen deprived conditions.
Collapse
Affiliation(s)
- Clifford J Pierre
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Tooyib A Azeez
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Michael L Rossetti
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Bradley S Gordon
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Justin D La Favor
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States.
| |
Collapse
|
31
|
Han L, Zhang W, Wang J, Jing J, Zhang L, Liu Z, Gao A. Shikonin targets to m6A-modified oxidative damage pathway to alleviate benzene-induced testicular injury. Food Chem Toxicol 2022; 170:113496. [DOI: 10.1016/j.fct.2022.113496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
|
32
|
Escada-Rebelo S, Cristo MI, Ramalho-Santos J, Amaral S. Mitochondria-Targeted Compounds to Assess and Improve Human Sperm Function. Antioxid Redox Signal 2022; 37:451-480. [PMID: 34847742 DOI: 10.1089/ars.2021.0238] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Currently 10%-15% of couples in reproductive age face infertility issues. More importantly, male factor contributes to 50% of these cases (either alone or in combination with female causes). Among various reasons, impaired sperm function is the main cause for male infertility. Furthermore, mitochondrial dysfunction and oxidative stress due to increased reactive oxygen species (ROS) production, particularly of mitochondrial origin, are believed to be the main contributors. Recent Advances: Mitochondrial dysfunction, particularly due to increased ROS production, has often been linked to impaired sperm function/quality. For decades, different methods and approaches have been developed to assess mitochondrial features that might correlate with sperm functionality. This connection is now completely accepted, with mitochondrial functionality assessment used more commonly as a readout of sperm functionality. More recently, mitochondria-targeted compounds are on the frontline for both assessment and therapeutic approaches. Critical Issues: In this review, we summarize the current methods for assessing key mitochondrial parameters known to reflect sperm quality as well as therapeutic strategies using mitochondria-targeted antioxidants aiming to improve sperm function in various situations, particularly after sperm cryopreservation. Future Directions: Although more systematic research is needed, mitochondria-targeted compounds definitely represent a promising tool to assess as well as to protect and improve sperm function. Antioxid. Redox Signal. 37, 451-480.
Collapse
Affiliation(s)
- Sara Escada-Rebelo
- PhD Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra, Portugal
| | - Maria Inês Cristo
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sandra Amaral
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
33
|
Shen Y, You Y, Zhu K, Fang C, Yu X, Chang D. Bibliometric and visual analysis of blood-testis barrier research. Front Pharmacol 2022; 13:969257. [PMID: 36071829 PMCID: PMC9441755 DOI: 10.3389/fphar.2022.969257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Extensive research on the blood-testis barrier has been undertaken in recent years. However, no systematic bibliometric study has been conducted on this subject. Our research aimed to identify the hotspots and frontiers of blood-testis barrier research and to serve as a guide for future scientific research and decision-making in the field.Methods: Studies on the blood-testis barrier were found in the Web of Science Core Collection. VOSviewer, CiteSpace, and Microsoft Excel were used to conduct the bibliometric and visual analyses.Results: We found 942 blood-testis barrier studies published in English between 1992 and 2022. The number of annual publications and citations increased significantly between 2011 and 2022, notably in the United States. China and the United States, the US Population Council, Endocrinology, and Cheng C. Yan were the most productive countries, institution, journal, and author, respectively. The study keywords indicated that blood-testis barrier research involves a variety of compositional features (tight junctions, cytoskeleton, adherens junctions), cell types (Sertoli cells, germ cells, Leydig cells, stem cells), reproductive toxicity (cadmium, nanoparticles, bisphenol-a), and relevant mechanisms (spermatogenesis, apoptosis, oxidative stress, dynamics, inflammation, immune privilege).Conclusion: The composition and molecular processes of the blood-testis barrier as well as the blood-testis barrier in male infertility patients are the primary research hotspots in this field. In addition, future research will likely focus on treatment and the development of novel medications that target signal pathways in oxidative stress and apoptosis to preserve the blood-testis barrier. Further studies must extend to clinical diagnosis and therapy.
Collapse
|
34
|
Li S, Ma Y, Ye S, Su Y, Hu D, Xiao F. Endogenous hydrogen sulfide counteracts polystyrene nanoplastics-induced mitochondrial apoptosis and excessive autophagy via regulating Nrf2 and PGC-1α signaling pathway in mouse spermatocyte-derived GC-2spd(ts) cells. Food Chem Toxicol 2022; 164:113071. [DOI: 10.1016/j.fct.2022.113071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 02/07/2023]
|
35
|
Aslan A, Gok O, Beyaz S, Uslu H, Erman F, Erman O, Baspinar S. Ellagic acid inhibits proinflammatory intermediary manufacture by suppressing NF-κB/Akt, VEGF and activating Nrf-2/Caspase-3 signaling pathways in rat testicular damage: a new way for testicular damage cure and in silico approach. Toxicol Mech Methods 2022; 32:463-476. [PMID: 35236242 DOI: 10.1080/15376516.2022.2046668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ellagic acid (EA) has protective effect on testicular damage and this natural compound decreases oxidative damage. The present study aims to examine the preventive effect of ellagic acid (EA) against carbon tetrachloride (CCl4)-induced testicular tissue damage in rats. In testicular tissue, tumor necrosis factor-α (TNF-α), Nuclear factor erythroid-2 related factor 2 (Nrf-2), B-cell lymphoma-2 (Bcl-2), vascular endothelial growth factor (VEGF), Nuclear factor-kappa B (NF-κB), cysteine aspartic proteases (caspase-3) and protein kinase B (Akt) synthesis levels were analyzed by western blot method, reactive oxygen species (ROS) was measured by malondialdehyde (MDA) levels, Glutathione (GSH) level and catalase (CAT) by spectrophotometer. As a result, in comparison with the CCl4 group, caspase-3 and Nrf-2 protein synthesis levels increased in EA + CCl4 group, however, VEGF, Bcl-2, NF-κB, TNF-α and Akt protein synthesis levels decreased, EA application raised GSH levels and CAT activity, reduced MDA levels. In this study, in silico tools were applied to confirm the activity of EA against the cancer with macromolecules such as the above mentioned transcription factors. EA, turned out to show significant activity similarly to some cocrystal ligands, particularly against cancer. These results points out that EA can be used as a testicular damage cure drug in future.
Collapse
Affiliation(s)
- Abdullah Aslan
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Ozlem Gok
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Seda Beyaz
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Harun Uslu
- Department of Medical Services and Techniques, Vocational School of Health Services, Firat University, Elazig, Turkey
| | - Fazilet Erman
- Faculty of Health Sciences, Firat University, Elazig, Turkey
| | - Orhan Erman
- Faculty of Science, Department of Biology, Firat University, Elazig, Turkey
| | - Serpil Baspinar
- Department of Medical Imaging, Health Services Vocational High School, Firat University, Elazig, Turkey
| |
Collapse
|
36
|
Câmara DR, Ibanescu I, Siuda M, Bollwein H. Mitoquinone does not improve sperm cryo-resistance in bulls. Reprod Domest Anim 2022; 57:10-18. [PMID: 34626138 PMCID: PMC9298030 DOI: 10.1111/rda.14024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/06/2021] [Indexed: 12/04/2022]
Abstract
Oxidative stress is associated with impaired post-thaw sperm quality. As mitochondria are the main source of reactive oxygen species (ROS) in sperm, the goal of this study was to evaluate effects of the mitochondria-targeting antioxidant Mitoquinone (MitoQ) during cryopreservation of bull sperm. Semen was collected from 11 Simmental bulls (two ejaculates per bull) and diluted in Triladyl® supplemented with various concentrations of MitoQ (0, 0.2, 2, and 20 nM) to a final concentration of 65 × 106 sperm/ml. After thawing (0 and 3 hr), we assessed the following sperm traits: sperm motility by computer-assisted sperm analysis (CASA), DNA fragmentation index by SCSA® and plasma and acrosome membrane integrity, intracellular calcium concentration, esterase activity, mitochondrial membrane potential and synthesis of ROS using two multicolour flow cytometric assays. After 3 hr of incubation, 20 nM MitoQ increased (p < .05) sperm ROS synthesis compared to Control, whereas none of the other quality parameters were altered (p > .05). Therefore, we concluded that addition of MitoQ to semen extender before cryopreservation of bull sperm was unable to improve post-thaw sperm quality. Furthermore, 20 nM of MitoQ increased frozen-thawed sperm ROS synthesis, without apparent negative effects on the evaluated sperm traits.
Collapse
Affiliation(s)
| | - Iulian Ibanescu
- Clinic of Reproductive MedicineVetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Mathias Siuda
- Clinic of Reproductive MedicineVetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Heinrich Bollwein
- Clinic of Reproductive MedicineVetsuisse FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
37
|
Wang Y, Li J, Gu J, He W, Ma B, Fan H. OUP accepted manuscript. J Pharm Pharmacol 2022; 74:985-995. [PMID: 35325199 DOI: 10.1093/jpp/rgac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/09/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Yucheng Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Jingyu Gu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei He
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Hongqi Fan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
38
|
Huang T, Zhou Y, Lu X, Tang C, Ren C, Bao X, Deng Z, Cao X, Zou J, Zhang Q, Ma B. Cordycepin, a major bioactive component of Cordyceps militaris, ameliorates diabetes-induced testicular damage through the Sirt1/Foxo3a pathway. Andrologia 2021; 54:e14294. [PMID: 34811786 DOI: 10.1111/and.14294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022] Open
Abstract
Diabetes-induced male dysfunction is considered as a worldwide challenge, and testicular damage mainly caused by oxidative stress is its most common manifestation. Cordycepin, a natural antioxidant, has been used in the treatment of diabetic complications. However, the protective action and underlying mechanism of cordycepin on hyperglycaemia-induced testicular damage are unclear. This study aimed to investigate the protective effects and molecular mechanisms of cordycepin against diabetes-induced testicular damage. The type 2 diabetes model was established in C57BL/6 male mice via high-fat diet for 4 weeks and injected intraperitoneally with 50 mg/kg/day streptozotocin for five consecutive days. Then mice were treated with cordycepin (10 and 20 mg/kg, respectively) for 8 weeks. At the end of experiment, biochemical indicators, microstructure of testicular tissue, sperm morphology, TUNEL staining and protein expressions were evaluated. In the present study, cordycepin alleviated the testicular damage, restored disruption of the blood-testis barrier, and improved spermatogenic function via the antiapoptotic and antioxidant capacity. Mechanistically, cordycepin significantly enhanced SIRT1 expression and triggered the activity of Foxo3a, further to induce the expression of its downstream antioxidant enzymes, including Mn-SOD and CAT. These findings indicated that cordycepin could improve hyperglycaemia-induced testicular damage by regulating downstream antioxidant enzymes activity through the SIRT1/Foxo3a signalling pathway.
Collapse
Affiliation(s)
- Tao Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Yanfen Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Xuanzhao Lu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Chenglun Tang
- Luzhou Pinchuang Technology Co. Ltd., Luzhou, China.,Nanjing Sheng Ming Yuan Health Technology Co. Ltd., Nanjing, China
| | - Chaoxing Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Xiaowen Bao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Zhewen Deng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Xiaomei Cao
- Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| |
Collapse
|
39
|
Zhang X, Peng Z, Zheng H, Zhang C, Lin H, Qin X. The Potential Protective Effect and Possible Mechanism of Peptides from Oyster ( Crassostrea hongkongensis) Hydrolysate on Triptolide-Induced Testis Injury in Male Mice. Mar Drugs 2021; 19:566. [PMID: 34677464 PMCID: PMC8539321 DOI: 10.3390/md19100566] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Peptides from oyster hydrolysate (OPs) have a variety of biological activities. However, its protective effect and exact mechanism on testicular injury remain poorly understood. This study aimed to evaluate the protective effect of OPs on triptolide (TP)-induced testis damage and spermatogenesis dysfunction and investigate its underlying mechanism. In this work, the TP-induced testis injury model was created while OPs were gavaged in mice for 4 weeks. The results showed that OPs significantly improved the sperm count and motility of mice, and alleviated the seminiferous tubule injury. Further study showed that OPs decreased malonaldehyde (MDA) level and increased antioxidant enzyme (SOD and GPH-Px) activities, attenuating oxidative stress and thereby reducing the number of apoptotic cells in the testis. In addition, OPs improved the activities of enzymes (LDH, ALP and ACP) related to energy metabolism in the testis and restored the serum hormone level of mice to normal. Furthermore, OPs promoted the expression of Nrf2 protein, and then increased the expression of antioxidant enzyme regulatory protein (HO-1 and NQO1) in the testis. OPs inhibited JNK phosphorylation and Bcl-2/Bax-mediated apoptosis. In conclusion, OPs have a protective effect on testicular injury and spermatogenesis disorders caused by TP, suggesting the potential protection of OPs on male reproduction.
Collapse
Affiliation(s)
- Xueyan Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
| | - Zhilan Peng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Chaohua Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
40
|
Wang K, Hu H, Cui W, Zhang X, Tang Q, Liu N, Lan X, Pan C. Palliative effects of metformin on testicular damage induced by triptolide in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112536. [PMID: 34303043 DOI: 10.1016/j.ecoenv.2021.112536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
As a widely existing traditional Chinese medicine component, TP (triptolide) has serious reproductive toxicity which causes severe damage to the reproductive system and limits its application prospect. TP and MET (metformin) have shown great potential in combined with each other in anticancer and anti-inflammatory. Whether metformin can resist the reproductive toxicity caused by triptolide, the effects of MET on TP-induced reproductive capacity has not been reported. In this study, metformin was used to investigate the therapeutic effect on reproductive toxicity induced by TP in rat. The results showed that metformin had significant therapeutic effects on oxidative stress damage, destruction of the blood-testosterone barrier and apoptosis. And it proved that its therapeutic effect is mainly to restore the structural and functional stability of testis through antioxidant stress. It will provide guidance for the treatment of reproductive toxicity caused by TP and the adjuvant detoxification of TP application.
Collapse
Affiliation(s)
- Ke Wang
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China.
| | - Huina Hu
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China.
| | - Wenbo Cui
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China.
| | - Xuelian Zhang
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Qi Tang
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Nuan Liu
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, No. 22 Xinong Road, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
41
|
Zhao G, Wang Y, Lai Z, Zheng L, Zhao D. Echinacoside Protects Against Dysfunction of Spermatogenesis Through the MAPK Signaling Pathway. Reprod Sci 2021; 29:1586-1596. [PMID: 34424528 PMCID: PMC9005439 DOI: 10.1007/s43032-021-00707-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/30/2021] [Indexed: 11/23/2022]
Abstract
Dysfunction at various levels of spermatogenesis (SD) is one of the important causes of infertility in men of reproductive age and requires advanced treatment strategies. Increasing evidence suggests that the therapeutic effects of echinacoside (ECH) mainly depend on their capacity to inhibit cell death. This study aimed to explore the therapeutic potential of ECH in SD rat models. Treatment with ECH reverted the morphological changes observed in testes with spermatogenesis dysfunction. It improved total sperm number, decreased the sperm deformity rate, and increased the sperm forward motility rate. The level of glutathione (GSH) was significantly higher in ECH-treated mice, whereas the lactate dehydrogenase (LDH) and SOD activities were improved compared with those in the spermatogenesis dysfunction model. Moreover, the increased expression of p38 and JNK was partially reversed by ECH. The number of normal TM3 cells increased gradually in an Echinacea dosage-dependent manner, suggesting that ECH promoted the proliferation of TM3 cells. In addition, treatment with ECH partially reversed the increased expression of p38 and JNK in TM3 cells. ECH protects against oxidative stress damage by activating antioxidant enzymes and MAPK signaling-related factors (p38 and JNK). It suggested that treatment with ECH alleviated spermatogenetic dysfunction of testes in male mice and it could be a promising strategy for patients suffering severe SD.
Collapse
Affiliation(s)
- Guifang Zhao
- Department of Pathology, Jilin Medical University, No. 126 Jilin Street, Jilin, 130013, China
| | - Ying Wang
- Department of Pathology, Jilin Medical University, No. 126 Jilin Street, Jilin, 130013, China
| | - Zengyan Lai
- Department of Pathology, Jilin Medical University, No. 126 Jilin Street, Jilin, 130013, China
| | - Lianwen Zheng
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Donghai Zhao
- Department of Pathology, Jilin Medical University, No. 126 Jilin Street, Jilin, 130013, China.
| |
Collapse
|
42
|
Ohta S. Direct Targets and Subsequent Pathways for Molecular Hydrogen to Exert Multiple Functions: Focusing on Interventions in Radical Reactions. Curr Pharm Des 2021; 27:595-609. [PMID: 32767925 DOI: 10.2174/1381612826666200806101137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/27/2020] [Indexed: 01/10/2023]
Abstract
Molecular hydrogen (H2) was long regarded as non-functional in mammalian cells. We overturned the concept by demonstrating that H2 exhibits antioxidant effects and protects cells against oxidative stress. Subsequently, it has been revealed that H2 has multiple functions in addition to antioxidant effects, including antiinflammatory, anti-allergic functions, and as cell death and autophagy regulation. Additionally, H2 stimulates energy metabolism. As H2 does not readily react with most biomolecules without a catalyst, it is essential to identify the primary targets with which H2 reacts or interacts directly. As a first event, H2 may react directly with strong oxidants, such as hydroxyl radicals (•OH) in vivo. This review addresses the key issues related to this in vivo reaction. •OH may have a physiological role because it triggers a free radical chain reaction and may be involved in the regulation of Ca2+- or mitochondrial ATP-dependent K+-channeling. In the subsequent pathway, H2 suppressed a free radical chain reaction, leading to decreases in lipid peroxide and its end products. Derived from the peroxides, 4-hydroxy-2-nonenal functions as a mediator that up-regulates multiple functional PGC-1α. As the other direct target in vitro and in vivo, H2 intervenes in the free radical chain reaction to modify oxidized phospholipids, which may act as an antagonist of Ca2+-channels. The resulting suppression of Ca2+-signaling inactivates multiple functional NFAT and CREB transcription factors, which may explain H2 multi-functionality. This review also addresses the involvement of NFAT in the beneficial role of H2 in COVID-19, Alzheimer's disease and advanced cancer. We discuss some unsolved issues of H2 action on lipopolysaccharide signaling, MAPK and NF-κB pathways and the Nrf2 paradox. Finally, as a novel idea for the direct targeting of H2, this review introduces the possibility that H2 causes structural changes in proteins via hydrate water changes.
Collapse
Affiliation(s)
- Shigeo Ohta
- Department of Neurology Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| |
Collapse
|
43
|
Hou L, Zhang J, Liu Y, Fang H, Liao L, Wang Z, Yuan J, Wang X, Sun J, Tang B, Chen H, Ye P, Ding Z, Lu H, Wang Y, Wang X. MitoQ alleviates LPS-mediated acute lung injury through regulating Nrf2/Drp1 pathway. Free Radic Biol Med 2021; 165:219-228. [PMID: 33539948 DOI: 10.1016/j.freeradbiomed.2021.01.045] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 12/12/2022]
Abstract
Lipopolysaccharide (LPS) has been known to cause alveolar epithelial cell (AEC) apoptosis and barrier breakdown that characterize acute lung injury (ALI) and acute respiratory distress syndrome. We aimed to investigate whether mitoquinone (MitoQ), a mitochondria-targeted antioxidant, could alleviate LPS-induced AEC damage in ALI and its underlying mechanisms. In vitro studies in AEC A549 cell line, we noted that LPS could induce dynamin-related protein 1 (Drp1)-mediated mitochondrial fission, AEC apoptosis and barrier breakdown, which could be reversed with MitoQ and mitochondrial division inhibitor 1 treatment. Moreover, the protective role of MitoQ was attenuated with Drp1 overexpression. Nuclear factor E2-related factor 2 (Nrf2) downregulation could block the effect of MitoQ by decreasing the expression of Nrf2 target genes in LPS-treated AEC, such as heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1). Nrf2 gene knockdown in LPS-treated A549 cells prevented the protective effect of MitoQ from decreasing Drp1-mediated mitochondrial fission, AEC apoptosis and barrier breakdown. The lung protective effect of MitoQ by regulating the Drp1-mediated mitochondrial fission, AEC apoptosis and barrier breakdown was further confirmed in vivo with LPS-induced ALI mouse model. Additionally, the protective effect of MitoQ was inhibited by Nrf2 inhibitor ML385. We therefore conclude that MitoQ exerts ALI-protective effects by preventing Nrf2/Drp1-mediated mitochondrial fission, AEC apoptosis as well as barrier breakdown.
Collapse
Affiliation(s)
- Lei Hou
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Jinyuan Zhang
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Yajing Liu
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Hongwei Fang
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Lijun Liao
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Zhankui Wang
- Department of Orthopedics, The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Jie Yuan
- Department of Pain, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Xuebin Wang
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Jixiong Sun
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Bing Tang
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Hongfei Chen
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Pengcheng Ye
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Zhenmin Ding
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, China
| | - Huihong Lu
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, China.
| | - Yinglin Wang
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, China.
| | - Xiangrui Wang
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, China.
| |
Collapse
|
44
|
Yang D, Xu D, Wang T, Yuan Z, Liu L, Shen Y, Wen F. Mitoquinone ameliorates cigarette smoke-induced airway inflammation and mucus hypersecretion in mice. Int Immunopharmacol 2021; 90:107149. [PMID: 33191175 DOI: 10.1016/j.intimp.2020.107149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cigarette smoking, which induces airway inflammation and mucus hypersecretion, is a major risk factor for the development of cigarette smoke (CS)-induced airway disorders. In this study, we investigated the effects and mechanisms of mitoquinone (MitoQ), a mitochondria-targeted antioxidant, on CS-induced airway inflammation and mucus hypersecretion in mice. METHODS C57BL/6J mice were exposed to CS for 75 min twice daily, 5 days per week for 4 weeks. MitoQ (2.5, 5 mg/kg/day) was administered intraperitoneally 1 h before CS exposure. Bronchoalveolar lavage fluid (BALF) was obtained for cell counting and determination of pro-inflammatory cytokine levels. Lung tissue was collected for histological examination; Western blotting was used to measure levels of Mfn2, Drp1, cytochrome c, NF-κB p65, and IκBα. RESULTS Pretreatment with MitoQ significantly attenuated CS-induced thickening of the airway epithelium, peribronchial inflammatory cell infiltration, goblet cell hyperplasia and Muc5ac staining. The numbers of total cells, neutrophils and macrophages, as well as levels of TNF-α and IL-6 in BALF were remarkably decreased by MitoQ in a dose-dependent manner. MitoQ attenuated oxidative stress by preventing the CS-induced increase in malondialdehyde level and decrease in superoxide dismutase activity and GSH/GSSG ratio. MitoQ decreased the expression of mitochondrial fission protein Drp1 and increased that of mitochondrial fusion protein Mfn2, as well as reduced cytochrome c release into the cytosol. Furthermore, MitoQ suppressed IκBα degradation and NF-κB p65 nuclear translocation. CONCLUSIONS MitoQ attenuates inflammation, mucus hypersecretion, and oxidative stress induced by CS. It may exert these effects in part by modulating mitochondrial function and the NF-κB signal pathway.
Collapse
Affiliation(s)
- Deqing Yang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Dan Xu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zhicheng Yuan
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Lian Liu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yongchun Shen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China.
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
45
|
Cui L, Zhou Q, Zheng X, Sun B, Zhao S. Mitoquinone attenuates vascular calcification by suppressing oxidative stress and reducing apoptosis of vascular smooth muscle cells via the Keap1/Nrf2 pathway. Free Radic Biol Med 2020; 161:23-31. [PMID: 33011276 DOI: 10.1016/j.freeradbiomed.2020.09.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/13/2020] [Accepted: 09/26/2020] [Indexed: 12/26/2022]
Abstract
Oxidative stress and apoptosis of vascular smooth muscle cells (VSMCs) are key to vascular calcification in patients with chronic kidney disease (CKD). The mitochondria-targeted antioxidant, mitoquinone (MitoQ), which reduces oxidative stress and apoptosis, has a protective effect in acute models of renal injury but whether MitoQ can attenuate vascular calcification in CKD patients is unknown. This study was conducted to investigate whether MitoQ can prevent calcification, both in vitro and in vivo. Adenine was used to induce calcification in rats, and inorganic phosphate was used to induce calcification in VSMCs. To elucidate the underlying molecular mechanism, a specific inhibitor of Nrf2, ML385, was used 1 h before MitoQ administration. Histological staining, ELISA, flow cytometry, alizarin red staining and western blotting were used to test this hypothesis. Administration of MitoQ alleviated calcification and oxidative stress. The anti-apoptotic effect of MitoQ was associated with upregulation of Bcl-2, downregulation of Bax, and increased Nrf2 expression. The effects of MitoQ were reversed by treatment with ML385. This study offers evidence that MitoQ attenuates vascular calcification by suppressing oxidative stress and apoptosis of VSMCs through the Keap1/Nrf2 pathway. MitoQ should be further investigated as a potential therapy to prevent vascular calcification in CKD patients.
Collapse
Affiliation(s)
- Lei Cui
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, China.
| | - Qi Zhou
- Scientific Research Management Office, The First Affiliated Hospital of Harbin Medical University, China
| | - Xiufeng Zheng
- Department of Cardiology, Heilongjiang Provincial Hospital, China
| | - Bowen Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
| | - Shilei Zhao
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, China.
| |
Collapse
|
46
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
47
|
Liu JX, Yang C, Liu ZJ, Su HY, Zhang WH, Pan Q, Liu HF. Protection of procyanidin B2 on mitochondrial dynamics in sepsis associated acute kidney injury via promoting Nrf2 nuclear translocation. Aging (Albany NY) 2020; 12:15638-15655. [PMID: 32805725 PMCID: PMC7467384 DOI: 10.18632/aging.103726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
In septic acute kidney injury (SAKI), the positive feedback between damaged mitochondria and accumulation of reactive oxygen species results in cell and tissue damage through multiple mechanisms. Removing the damaged mitochondria or neutralizing the reactive oxygen species has been considered beneficial to alleviating cell damage. The antioxidant Procyanidin B2 has been reported to inhibits reactive oxygen species and thereby reduces cell injury. However, it is unclear whether this effect is associated with clearance of damaged mitochondria. Here, we evaluated the efficacy of procyanidin B2 on SAKI, and focused on its effects on mitochondrial dynamics and removing damaged mitochondria via mitophagy. The results showed that the renal function, renal tubular cell vacuolization and oxidative stress were decreased in SAKI mice treated with procyanidin B2, moreover, skewed mitochondrial fusion/fission, mitochondrial mediated apoptosis and impaired mitophagy were improved in SAKI mice treated with procyanidin B2. In mechanism, the improvement of procyanidin B2 on mitochondrial dynamics were associated with increased nuclear translocation of the transcription factor, Nrf2. In summary, our findings highlighted that the protective efficacy of procyanidin B2 in reducing cellular damage in SAKI, and mechanisms improving mitochondrial dynamics and quality control at least in part by promoting Nrf2 translocation into the nucleus.
Collapse
Affiliation(s)
- Jian-Xing Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Ze-Jian Liu
- Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Hong-Yong Su
- Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Wei-Huang Zhang
- Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| |
Collapse
|
48
|
Kyei G, Sobhani A, Nekonam S, Shabani M, Ebrahimi F, Qasemi M, Salahi E, Fardin A. Assessing the effect of MitoQ 10 and Vitamin D3 on ovarian oxidative stress, steroidogenesis and histomorphology in DHEA induced PCOS mouse model. Heliyon 2020; 6:e04279. [PMID: 32760818 PMCID: PMC7393412 DOI: 10.1016/j.heliyon.2020.e04279] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/13/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) continues to be one of the most complex reproductive and endocrine disorder among women of reproductive age. Recent reports have identified close interaction of Vitamin D deficiency and oxidative stress (OS) in exacerbating the pathophysiology of PCOS. This current study aims at assessing the combine effect of MitoQ10 and Vitamin D3 on dehydroepiandrosterone (DHEA) induced PCOS. Following successful induction of PCOS using DHEA, mice were organized into five groups (n = 8) namely: Negative Control (NC), Vitamin D3 Vehicle (VDV), Vitamin D3 (VD), MitoQ10 (MQ), Vitamin D3 plus MitoQ10 (V+M) and DHEA, ethanol and distilled water, Vitamin D3, MitoQ10 and Vitamin D3 plus MitoQ10 were respectively administered for 20 consecutive days. The study also included positive control (PC) group (n = 8) in which no treatment was applied. Treatment effects were assessed using hormonal assays, biochemical assays, Real-Time PCR, western blotting and histological analysis. Combination of Vitamin D3 and MitoQ10 significantly reduced levels of estradiol, progesterone, FSH, LH, LH/FSH, SOD and MDA. The expression rate of mRNAs of 3β-HSD, Cyp19a1, Cyp11a1, StAR, Keap1, HO-1 and Nrf2 were also significantly low in V+M group. Moreover, the histomorphological inspection of ovaries from this group revealed many healthy follicles at various stages of development including few atretic follicles, pre-antral and antral follicles and many corpora lutea. The characteristics observed in this group were in many ways similar to that of the PC group. The combination of MitoQ10 and Vitamin D3 may be potential candidate to ameliorate PCOS.
Collapse
Affiliation(s)
- Gordon Kyei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aligholi Sobhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Nekonam
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ebrahimi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Qasemi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Salahi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amidi Fardin
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
MitoQ Modulates Lipopolysaccharide-Induced Intestinal Barrier Dysfunction via Regulating Nrf2 Signaling. Mediators Inflamm 2020; 2020:3276148. [PMID: 32351320 PMCID: PMC7171662 DOI: 10.1155/2020/3276148] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 01/12/2023] Open
Abstract
Background Gut barrier dysfunction with alterant mucosal permeability during sepsis is a challenge problem in clinical practice. Intestinal epithelial cells (IECs) are strongly involved in mucosal oxidative stress and inflammatory response. The current study aimed at investigating the effect of MitoQ, a mitochondrial targeted antioxidant, in the treatment of intestinal injury and its potential mechanism during sepsis. Methods 30 minutes before sepsis induction by lipopolysaccharide (LPS) treatment, mice were treated with MitoQ. Intestinal histopathology, mucosal permeability, inflammatory cytokines, and mucosal barrier proteins were evaluated in the present study. Results MitoQ pretreatment significantly decreased the levels of plasma diamine oxidase, D-lactate, and intestinal histological damage and markedly restored the levels of tight junction proteins (ZO-1 and occludin) following LPS challenge. Furthermore, MitoQ inhibited the LPS-induced intestinal oxidative stress and inflammatory response, evidenced by increased levels of intestinal superoxide dismutase and glutathione, and decreased levels of intestinal IL-1, IL-6, TNF-α, and nitric oxide levels. Mechanically, we found that MitoQ inhibited the oxidative stress via activating nuclear factor E2-related factor 2 (Nrf2) signaling pathway and its downstream antioxidant genes, including HO-1, NQO-1, and GCLM. Conclusions MitoQ exerts antioxidative and anti-inflammatory effects against sepsis-associated gut barrier injury by promoting Nrf2 signaling pathway.
Collapse
|
50
|
Wang JY, Li JQ, Xiao YM, Fu B, Qin ZH. Triphenylphosphonium (TPP)-Based Antioxidants: A New Perspective on Antioxidant Design. ChemMedChem 2020; 15:404-410. [PMID: 32020724 DOI: 10.1002/cmdc.201900695] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/29/2020] [Indexed: 12/21/2022]
Abstract
Mitochondrial oxidative damage and dysfunction contribute to a wide range of human diseases. Considering the limitation of conventional antioxidants and that mitochondria are the main source of reactive oxygen species (ROS) which induce oxidative damage, mitochondria-targeted antioxidants which can selectively block mitochondrial oxidative damage and prevent various types of cell death have been widely developed. As a lipophilic cation, triphenylphosphonium (TPP) has been commonly used in designing mitochondria-targeted antioxidants. Conjugated with the TPP moiety, antioxidants can achieve more than 1000-fold higher mitochondrial concentration depending on cell membrane potentials and mitochondrial membrane potentials. Herein we discuss the deficiencies of conventional antioxidants and the advantages of mitochondrial targeting, and review various types of TPP-based mitochondria-targeted antioxidants. These provide theoretical and background support for the design of new anti-oxidant.
Collapse
Affiliation(s)
- Jiayao Y Wang
- Department of Applied Chemistry College of Science, China Agricultural University Haidian District, Beijing, 100089, China
| | - Jiaqi Q Li
- Department of Applied Chemistry College of Science, China Agricultural University Haidian District, Beijing, 100089, China
| | - Yumei M Xiao
- Department of Applied Chemistry College of Science, China Agricultural University Haidian District, Beijing, 100089, China
| | - Bin Fu
- Department of Applied Chemistry College of Science, China Agricultural University Haidian District, Beijing, 100089, China
| | - Zhaohai H Qin
- Department of Applied Chemistry College of Science, China Agricultural University Haidian District, Beijing, 100089, China
| |
Collapse
|