1
|
Elshamy AM, El Tantawy AF, Basha EH, Eltabaa EF, Arakeeb HM, Ahmed AS, Abdelsattar AM, Ibrahim RR, El Deeb OS, Eid AM, Mashal SS, Safa MA, Shalaby AM, Ibrahim HA. Ganoderic acid a potential protective impact on bleomycin (BLM) -induced lung fibrosis in albino mice: Targeting caveolin 1/TGF-β/ Smad and P38MAPK signaling pathway. Arch Biochem Biophys 2025; 764:110284. [PMID: 39740698 DOI: 10.1016/j.abb.2024.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/25/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Bleomycin (BLM), an anticancer medication, can exacerbate pulmonary fibrosis by inducing oxidative stress and inflammation. Anti-inflammatory, anti-fibrotic, and antioxidant properties are exhibited by ganoderic acid A (GAA). AIM So, we aim to assess GAA's protective impact on lung fibrosis induced via BLM. METHOD Forty mice were randomly classified into four groups. Lung fibrosis was induced by injection of BLM intraperitoneally (15 mg/kg body weight). GAA was given by oral gavage (25 mg/kg body weight). Lung tissue MDA, TAC, and GSH were assessed spectrophotometrically. As well, TGFβ, p38 MAPK, TNF-α, IL-1β, and CAV1 levels were measured by enzyme-linked immunosorbent assay. Gene expression of tumor growth factor beta (TGF-β), Smad2, Smad3, and glutamate-cysteine ligase (GCL) were also evaluated. RESULTS GAA had significantly improved biochemical biomarkers as well as histopathology of the lung. The protective impact of GAA may be linked to the upregulation of GCL gene expression and subsequent GSH levels. In addition, the GAA-treated group showed a significant decrement in the levels of TGF-β, Smad2&3, P38 MAPK, TNF-α, IL1β, and MDA compared to BLM induced lung fibrosis group. GAA has a protective impact on lung fibrosis induced by BLM via downregulation of TGF-β and upregulation of CAV1 level and GCL expression which may play a critical role in the improvement of the pathogenesis of lung fibrosis induced via BLM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hoda A Ibrahim
- Medical Biochemistry & Molecular Biology Department, Egypt
| |
Collapse
|
2
|
Du C, Ma C, Geng R, Wang X, Wang X, Yang J, Hu J. Bruceine A inhibits TGF-β1/Smad pathway in pulmonary fibrosis by blocking gal3/TGF-β1 interaction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156267. [PMID: 39615217 DOI: 10.1016/j.phymed.2024.156267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/13/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Bruceine A(BA) has many pharmacological activities and significantly inhibits fibrosis in keloid fibroblasts. However, the underlying mechanisms have not yet been fully elucidated. OBJECTIVE This study aimed to investigate the effects of BA on pulmonary fibrosis(PF) and explore its underlying mechanisms. METHODS PF models were constructed by BLM-induced C57BL/6 J mice, TGF-β1- induced MRC-5 and HFL-1 cells. Cell proliferation, MMP, apoptosis, and ROS levels were analyzed in vitro. In vivo, experiments were performed to evaluate the therapeutic effect of BA on PF by detecting respiratory function, histopathology, and collagen level. Fibro-associated, ECM, and EMT key proteins were used to assess the degree of PF. To predict the target of BA by molecular docking technology, and verified by DARTS, CETSA, MST,and SPR. Then overexpression gal3-lentivirus, GB1107 gal3 inhibitor, and BA addition were used to verify the TGF-β1/Smad pathway key protein by western blot. RESULTS We found that BA inhibited PF both in vitro and in vivo. The predicted and validated results showed that gal3 was the target of BA, and the binding site was Arg144, His158, and Trp181. Mechanistically, BA disrupts the interaction between gal3 and TGF-β1. BA reduced Smad2/3 and p-Smad2/3 protein content and inhibited TGF-β1/Smad pathway in the overexpressing gal3 HFL-1 cells. After adding GB1107, the inhibitory effect of BA on TGF-β1/Smad pathway disappeared. CONCLUSION This study is the first to demonstrate that BA can target gal3, interfere with the interaction between gal3 and TGF-β1 protein, inhibit the downstream TGF-β1/Smad pathway, and act as a "brake" to reverse the PF process. These findings provide a solid scientific basis for the clinical application of BA in the prevention and treatment of PF.
Collapse
Affiliation(s)
- Chao Du
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, China.
| | - Chong Ma
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, China.
| | - Ruoyu Geng
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, China.
| | - Xiaomei Wang
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China; Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, China.
| | - Xinling Wang
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China; Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, China.
| | - Jianhua Yang
- Department of Pharmacy, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Clinical Drug Research, China.
| | - Junping Hu
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China; Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, China.
| |
Collapse
|
3
|
Hao W, Yu TT, Li W, Wang GG, Hu HX, Zhou PP. Hemin attenuates bleomycin-induced lung fibrosis in mice by regulating the TGF-β1/MAPK and AMPK/SIRT1/PGC-1α/HO-1/NF-κB pathways. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:559-568. [PMID: 39467719 PMCID: PMC11519717 DOI: 10.4196/kjpp.2024.28.6.559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 10/30/2024]
Abstract
The objective of this study was to investigate the protective effect and potential mechanism of action of hemin on bleomycin-induced pulmonary fibrosis in mice. Male C57BL/6 mice were randomly divided into control, bleomycin and bleomycin + hemin groups. Mice in the bleomycin and bleomycin + hemin groups were injected intratracheally with bleomycin to establish the pulmonary fibrosis model. The bleomycin + hemin group mice were injected intraperitoneally with hemin starting 7 days before modeling until the end of Day 21 after modeling. Pathological changes in lung tissue were assessed by HE and Masson staining. Malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) levels were determined in lung tissue. Immunohistochemistry was performed to assess the expression of α-SMA and collagen I. The serum levels of IL-6 and TNF-α were measured via ELISA. Western blotting was used to determine the expression of TGF-β1, SIRT1, PGC-1α and HO-1 and the phosphorylation levels of p38, ERK1/2, JNK, AMPK and NF-κB p65 in lung tissue. Hemin significantly reduced lung indices, increased terminal body weight. It also significantly increased SOD and CAT activities; decreased MDA, IL-6 and TNF-α levels; reduced the levels of α-SMA and collagen I-positive cells; upregulated SIRT1, PGC-1α and HO-1 expression; promoted AMPK phosphorylation; and downregulated TGF-β1 expression and p38, ERK1/2, JNK and NF-κB p65 phosphorylation. Hemin might attenuate oxidative damage and inflammatory responses and reduces extracellular matrix deposition by regulating the expression and phosphorylation of proteins associated with the TGF-β1/MAPK and AMPK/SIRT1/PGC-1α/HO-1/NF-κB pathways, thereby alleviating bleomycin-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Wei Hao
- Department of Functional Experimental Training Center, Wu Hu 241002, China
| | - Ting-ting Yu
- Department of Functional Experimental Training Center, Wu Hu 241002, China
| | - Wei Li
- Department of Pathophysiology, Basic Medical College, Wannan Medical College, Wu Hu 241002, China
| | - Guo-guang Wang
- Department of Pathophysiology, Basic Medical College, Wannan Medical College, Wu Hu 241002, China
| | - Hui-xian Hu
- Department of Medical Imageology, Wannan Medical College, Wu Hu 241002, China
| | - Ping-ping Zhou
- Department of Physiology, Basic Medical College, Wannan Medical College, Wu Hu 241002, China
| |
Collapse
|
4
|
Touny AA, Venkataraman B, Ojha S, Pessia M, Subramanian VS, Hariharagowdru SN, Subramanya SB. Phytochemical Compounds as Promising Therapeutics for Intestinal Fibrosis in Inflammatory Bowel Disease: A Critical Review. Nutrients 2024; 16:3633. [PMID: 39519465 PMCID: PMC11547603 DOI: 10.3390/nu16213633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVE Intestinal fibrosis, a prominent consequence of inflammatory bowel disease (IBD), presents considerable difficulty owing to the absence of licensed antifibrotic therapies. This review assesses the therapeutic potential of phytochemicals as alternate methods for controlling intestinal fibrosis. Phytochemicals, bioactive molecules originating from plants, exhibit potential antifibrotic, anti-inflammatory, and antioxidant activities, targeting pathways associated with inflammation and fibrosis. Compounds such as Asperuloside, Berberine, and olive phenols have demonstrated potential in preclinical models by regulating critical signaling pathways, including TGF-β/Smad and NFκB, which are integral to advancing fibrosis. RESULTS The main findings suggest that these phytochemicals significantly reduce fibrotic markers, collagen deposition, and inflammation in various experimental models of IBD. These phytochemicals may function as supplementary medicines to standard treatments, perhaps enhancing patient outcomes while mitigating the adverse effects of prolonged immunosuppressive usage. Nonetheless, additional clinical trials are necessary to validate their safety, effectiveness, and bioavailability in human subjects. CONCLUSIONS Therefore, investigating phytochemicals may lead to crucial advances in the formulation of innovative treatment approaches for fibrosis associated with IBD, offering a promising avenue for future therapeutic development.
Collapse
Affiliation(s)
- Aya A. Touny
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Ahram Canadian University, Giza 12581, Egypt
| | - Balaji Venkataraman
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Mauro Pessia
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | | | - Shamanth Neralagundi Hariharagowdru
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sandeep B. Subramanya
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
5
|
Focaccio A, Rossi L, De Luca A. A spotlight on the role of copper in the epithelial to mesenchymal transition. Life Sci 2024; 354:122972. [PMID: 39142503 DOI: 10.1016/j.lfs.2024.122972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The complex process known as epithelial to mesenchymal transition (EMT) plays a fundamental role in several biological settings, encompassing embryonic development, wound healing, and pathological conditions such as cancer and fibrosis. In recent years, a bulk of research has brought to light the key role of copper, a trace element with essential functions in cellular metabolism, cancer initiation and progression. Indeed, copper, besides functioning as cofactor of enzymes required for essential cellular processes, such as energy production and oxidation reactions, has emerged as an allosteric regulator of kinases whose activity is required to fulfill cancer dissemination through the EMT. In this comprehensive review, we try to describe the intricate relationship between the transition metal copper and EMT, spanning from the earliest foundational studies to the latest advancements. Our aim is to shed light on the multifaceted roles undertaken by copper in EMT in cancer and to unveil the diverse mechanisms by which copper homeostasis exerts its influence over EMT regulators, signaling pathways, cell metabolic reprogramming and transcription factors ultimately contributing to the spread of cancer. Therefore, this review not only may contribute to a deeper comprehension of copper-mediated mechanisms in EMT but also supports the hypothesis that targeting copper may contribute to counteract the progression of EMT-associated pathologies.
Collapse
Affiliation(s)
- Antonio Focaccio
- PhD School in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
6
|
Yuan Y. Imbalance of dendritic cell function in pulmonary fibrosis. Cytokine 2024; 181:156687. [PMID: 38963940 DOI: 10.1016/j.cyto.2024.156687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/08/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Pulmonary fibrosis (PF) is a chronic, irreversible interstitial lung disease. The pathogenesis of PF remains unclear, and there are currently no effective treatments or drugs that can completely cure PF. The primary cause of PF is an imbalance of inflammatory response and inappropriate repair following lung injury. Dendritic cells (DCs), as one of the immune cells in the body, play an important role in regulating immune response, immune tolerance, and promoting tissue repair following lung injury. However, the role of DCs in the PF process is ambiguous or even contradictory in the existing literature. On the one hand, DCs can secrete transforming growth factor β(TGF-β), stimulate Th17 cell differentiation, stimulate fibroblast proliferation, and promote the generation of inflammatory factors interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α), thereby promoting PF. On the other hand, DCs suppress PF through mechanisms including the secretion of IL-10 to inhibit effector T cell activity in the lungs and promote the function of regulatory T cells (Tregs), as well as by expressing matrix metalloproteinases (MMPs) which facilitate the degradation of the extracellular matrix (ECM). This article will infer possible reasons for the different roles of DCs in PF and analyze possible reasons for the functional imbalance of DCs in pulmonary fibrosis from the complexity and changes of the pulmonary microenvironment, autophagy defects of DCs, and changes in the pulmonary physical environment.
Collapse
Affiliation(s)
- Yuan Yuan
- Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China.
| |
Collapse
|
7
|
Liao T, Shi L, He C, Liu D, Wei Y, Ma Z, Wang P, Mao J, Wu P. Suppression of NUPR1 in fibroblast-like synoviocytes reduces synovial fibrosis via the Smad3 pathway. J Transl Med 2024; 22:715. [PMID: 39090667 PMCID: PMC11295884 DOI: 10.1186/s12967-024-05540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Synovial fibrosis is a common complication of knee osteoarthritis (KOA), a pathological process characterized by myofibroblast activation and excessive extracellular matrix (ECM) deposition. Fibroblast-like synoviocytes (FLSs) are implicated in KOA pathogenesis, contributing to synovial fibrosis through diverse mechanisms. Nuclear protein 1 (NUPR1) is a recently identified transcription factor with crucial roles in various fibrotic diseases. However, its molecular determinants in KOA synovial fibrosis remain unknown. This study aims to investigate the role of NUPR1 in KOA synovial fibrosis through in vivo and in vitro experiments. METHODS We examined NUPR1 expression in the murine synovium and determined the impact of NUPR1 on synovial fibrosis by knockdown models in the destabilization of the medial meniscus (DMM)-induced KOA mouse model. TGF-β was employed to induce fibrotic response and myofibroblast activation in mouse FLSs, and the role and molecular mechanisms in synovial fibrosis were evaluated under conditions of NUPR1 downexpression. Additionally, the pharmacological effect of NUPR1 inhibitor in synovial fibrosis was assessed using a surgically induced mouse KOA model. RESULTS We found that NUPR1 expression increased in the murine synovium after DMM surgical operation. The adeno-associated virus (AAV)-NUPR1 shRNA promoted NUPR1 deficiency, attenuating synovial fibrosis, inhibiting synovial hyperplasia, and significantly reducing the expression of pro-fibrotic molecules. Moreover, the lentivirus-mediated NUPR1 deficiency alleviated synoviocyte proliferation and inhibited fibroblast to myofibroblast transition. It also decreased the expression of fibrosis markers α-SMA, COL1A1, CTGF, Vimentin and promoted the activation of the SMAD family member 3 (SMAD3) pathway. Importantly, trifluoperazine (TFP), a NUPR1 inhibitor, attenuated synovial fibrosis in DMM mice. CONCLUSIONS These findings indicate that NUPR1 is an antifibrotic modulator in KOA, and its effect on anti-synovial fibrosis is partially mediated by SMAD3 signaling. This study reveals a promising target for developing novel antifibrotic treatment.
Collapse
Affiliation(s)
- Taiyang Liao
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Lei Shi
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Chenglong He
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Deren Liu
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yibao Wei
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Zhenyuan Ma
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Peimin Wang
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Jun Mao
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| | - Peng Wu
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
8
|
Ke HL, Li RJ, Yu CC, Wang XP, Wu CY, Zhang YW. Network pharmacology and experimental verification to decode the action of Qing Fei Hua Xian Decotion against pulmonary fibrosis. PLoS One 2024; 19:e0305903. [PMID: 38913698 PMCID: PMC11195996 DOI: 10.1371/journal.pone.0305903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a common interstitial pneumonia disease, also occurred in post-COVID-19 survivors. The mechanism underlying the anti-PF effect of Qing Fei Hua Xian Decotion (QFHXD), a traditional Chinese medicine formula applied for treating PF in COVID-19 survivors, is unclear. This study aimed to uncover the mechanisms related to the anti-PF effect of QFHXD through analysis of network pharmacology and experimental verification. METHODS The candidate chemical compounds of QFHXD and its putative targets for treating PF were achieved from public databases, thereby we established the corresponding "herb-compound-target" network of QFHXD. The protein-protein interaction network of potential targets was also constructed to screen the core targets. Furthermore, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to predict targets, and pathways, then validated by in vivo experiments. RESULTS A total of 188 active compounds in QFHXD and 50 target genes were identified from databases. The key therapeutic targets of QFHXD, such as PI3K/Akt, IL-6, TNF, IL-1β, STAT3, MMP-9, and TGF-β1 were identified by KEGG and GO analysis. Anti-PF effects of QFHXD (in a dose-dependent manner) and prednisone were confirmed by HE, Masson staining, and Sirius red staining as well as in vivo Micro-CT and immunohistochemical analysis in a rat model of bleomycin-induced PF. Besides, QFXHD remarkably inhibits the activity of PI3K/Akt/NF-κB and TGF-β1/Smad2/3. CONCLUSIONS QFXHD significantly attenuated bleomycin-induced PF via inhibiting inflammation and epithelial-mesenchymal transition. PI3K/Akt/NF-κB and TGF-β1/Smad2/3 pathways might be the potential therapeutic effects of QFHXD for treating PF.
Collapse
Affiliation(s)
- Hao-Liang Ke
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rui-Jie Li
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Chao-Chao Yu
- Department of Rehabilitation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiu-Ping Wang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chao-Yan Wu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ying-Wen Zhang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Taherian M, Bayati P, Mojtabavi N. Stem cell-based therapy for fibrotic diseases: mechanisms and pathways. Stem Cell Res Ther 2024; 15:170. [PMID: 38886859 PMCID: PMC11184790 DOI: 10.1186/s13287-024-03782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Fibrosis is a pathological process, that could result in permanent scarring and impairment of the physiological function of the affected organ; this condition which is categorized under the term organ failure could affect various organs in different situations. The involvement of the major organs, such as the lungs, liver, kidney, heart, and skin, is associated with a high rate of morbidity and mortality across the world. Fibrotic disorders encompass a broad range of complications and could be traced to various illnesses and impairments; these could range from simple skin scars with beauty issues to severe rheumatologic or inflammatory disorders such as systemic sclerosis as well as idiopathic pulmonary fibrosis. Besides, the overactivation of immune responses during any inflammatory condition causing tissue damage could contribute to the pathogenic fibrotic events accompanying the healing response; for instance, the inflammation resulting from tissue engraftment could cause the formation of fibrotic scars in the grafted tissue, even in cases where the immune system deals with hard to clear infections, fibrotic scars could follow and cause severe adverse effects. A good example of such a complication is post-Covid19 lung fibrosis which could impair the life of the affected individuals with extensive lung involvement. However, effective therapies that halt or slow down the progression of fibrosis are missing in the current clinical settings. Considering the immunomodulatory and regenerative potential of distinct stem cell types, their application as an anti-fibrotic agent, capable of attenuating tissue fibrosis has been investigated by many researchers. Although the majority of the studies addressing the anti-fibrotic effects of stem cells indicated their potent capabilities, the underlying mechanisms, and pathways by which these cells could impact fibrotic processes remain poorly understood. Here, we first, review the properties of various stem cell types utilized so far as anti-fibrotic treatments and discuss the challenges and limitations associated with their applications in clinical settings; then, we will summarize the general and organ-specific mechanisms and pathways contributing to tissue fibrosis; finally, we will describe the mechanisms and pathways considered to be employed by distinct stem cell types for exerting anti-fibrotic events.
Collapse
Affiliation(s)
- Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Cao S, Yin H, Li X, Zeng X, Liu J. Nickel induces epithelial-mesenchymal transition in pulmonary fibrosis in mice via activation of the oxidative stress-mediated TGF-β1/Smad signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:3597-3611. [PMID: 38488660 DOI: 10.1002/tox.24229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 05/16/2024]
Abstract
Nickel (Ni) is recognized as a carcinogenic metal, and its widespread use has led to severe environmental and health problems. Although the lung is among the main organs affected by Ni, the precise mechanisms behind this effect remain poorly understood. This study aimed to elucidate the physiological mechanisms underlying Ni-induced pulmonary fibrosis (PF), using various techniques including histopathological detection, biochemical analysis, immunohistochemistry, western blotting, and quantitative real-time PCR. Mice were treated with nickel chloride (NiCl2), which induced PF (detected by Masson staining), up-regulation of α-smooth muscle actin (α-SMA), and collagen-1 mRNA and protein expression. NiCl2 was found to induce PF by: activation of the epithelial-mesenchymal transition (EMT) and the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway; up-regulation of protein and mRNA expression of TGF-β1, p-Smad2, p-Smad3, vimentin, and N-cadherin; and down-regulation of protein and mRNA expression of E-cadherin. In addition, NiCl2 treatment increased malondialdehyde content while inhibiting antioxidant activity, as indicated by decreased catalase, total antioxidant capacity, and superoxide dismutase activities, and glutathione content. Co-treatment with the effective antioxidant and free radical scavenger N-acetyl cysteine (NAC) plus NiCl2 was used to study the effects of oxidative stress in NiCl2-induced PF. The addition of NAC significantly mitigated NiCl2-induced PF, and reversed activation of the TGF-β1/Smad signaling pathway and EMT. NiCl2-induced PF was therefore shown to be due to EMT activation via the TGF-β1/Smad signaling pathway, mediated by oxidative stress.
Collapse
Affiliation(s)
- Shanchuan Cao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea
| | - Heng Yin
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xinglai Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xin Zeng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
11
|
Li M, Jia D, Li J, Li Y, Wang Y, Wang Y, Xie W, Chen S. Scutellarin Alleviates Ovalbumin-Induced Airway Remodeling in Mice and TGF-β-Induced Pro-fibrotic Phenotype in Human Bronchial Epithelial Cells via MAPK and Smad2/3 Signaling Pathways. Inflammation 2024; 47:853-873. [PMID: 38168709 PMCID: PMC11147947 DOI: 10.1007/s10753-023-01947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness (AHR), inflammation, and remodeling. Epithelial-mesenchymal transition (EMT) is an essential player in these alterations. Scutellarin is isolated from Erigeron breviscapus. Its vascular relaxative, myocardial protective, and anti-inflammatory effects have been well established. This study was designed to detect the biological roles of scutellarin in asthma and its related mechanisms. The asthma-like conditions were induced by ovalbumin challenges. The airway resistance and dynamic compliance were recorded as the results of AHR. Bronchoalveolar lavage fluid (BALF) was collected and processed for differential cell counting. Hematoxylin and eosin staining, periodic acid-Schiff staining, and Masson staining were conducted to examine histopathological changes. The levels of asthma-related cytokines were measured by enzyme-linked immunosorbent assay. For in vitro analysis, the 16HBE cells were stimulated with 10 ng/mL transforming growth beta-1 (TGF-β1). Cell migration was estimated by Transwell assays and wound healing assays. E-cadherin, N-cadherin, and α-smooth muscle actin (α-SMA) were analyzed by western blotting, real-time quantitative polymerase chain reaction, immunofluorescence staining, and immunohistochemistry staining. The underlying mechanisms of the mitogen-activated protein kinase (MAPK) and Smad pathways were investigated by western blotting. In an ovalbumin-induced asthmatic mouse model, scutellarin suppressed inflammation and inflammatory cell infiltration into the lungs and attenuated AHR and airway remodeling. Additionally, scutellarin inhibited airway EMT (upregulated E-cadherin level and downregulated N-cadherin and α-SMA) in ovalbumin-challenged asthmatic mice. For in vitro analysis, scutellarin prevented the TGF-β1-induced migration and EMT in 16HBE cells. Mechanistically, scutellarin inhibits the phosphorylation of Smad2, Smad3, ERK, JNK, and p38 in vitro and in vivo. In conclusion, scutellarin can inactivate the Smad/MAPK pathways to suppress the TGF-β1-stimulated epithelial fibrosis and EMT and relieve airway inflammation and remodeling in asthma. This study provides a potential therapeutic strategy for asthma.
Collapse
Affiliation(s)
- Minfang Li
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Dan Jia
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Jinshuai Li
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Yaqing Li
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Yaqiong Wang
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Yuting Wang
- Department of Respiratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, China.
| | - Wei Xie
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| | - Sheng Chen
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| |
Collapse
|
12
|
Song W, Yue Y, Zhang Q, Wang X. Copper homeostasis dysregulation in respiratory diseases: a review of current knowledge. Front Physiol 2024; 15:1243629. [PMID: 38883186 PMCID: PMC11176810 DOI: 10.3389/fphys.2024.1243629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/22/2024] [Indexed: 06/18/2024] Open
Abstract
Cu is an essential micronutrient for various physiological processes in almost all human cell types. Given the critical role of Cu in a wide range of cellular processes, the local concentrations of Cu and the cellular distribution of Cu transporter proteins in the lung are essential for maintaining a steady-state internal environment. Dysfunctional Cu metabolism or regulatory pathways can lead to an imbalance in Cu homeostasis in the lungs, affecting both acute and chronic pathological processes. Recent studies have identified a new form of Cu-dependent cell death called cuproptosis, which has generated renewed interest in the role of Cu homeostasis in diseases. Cuproptosis differs from other known cell death pathways. This occurs through the direct binding of Cu ions to lipoylated components of the tricarboxylic acid cycle during mitochondrial respiration, leading to the aggregation of lipoylated proteins and the subsequent downregulation of Fe-S cluster proteins, which causes toxic stress to the proteins and ultimately leads to cell death. Here, we discuss the impact of dysregulated Cu homeostasis on the pathogenesis of various respiratory diseases, including asthma, chronic obstructive pulmonary disease, idiopathic interstitial fibrosis, and lung cancer. We also discuss the therapeutic potential of targeting Cu. This study highlights the intricate interplay between copper, cellular processes, and respiratory health. Copper, while essential, must be carefully regulated to maintain the delicate balance between necessity and toxicity in living organisms. This review highlights the need to further investigate the precise mechanisms of copper interactions with infections and immune inflammation in the context of respiratory diseases and explore the potential of therapeutic strategies for copper, cuproptosis, and other related effects.
Collapse
Affiliation(s)
- Wei Song
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyi Yue
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xueqing Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Jihu Y, Leng R, Liu M, Ren H, Xie D, Yao C, Yan H. Angiotensin (1-7) Inhibits Transforming Growth Factor-Β1-Induced Epithelial-Mesenchymal Transition of Human Keratinocyte Hacat Cells in vitro. Clin Cosmet Investig Dermatol 2024; 17:1049-1058. [PMID: 38737946 PMCID: PMC11088851 DOI: 10.2147/ccid.s441596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/24/2024] [Indexed: 05/14/2024]
Abstract
Introduction Angiotensin (1-7) (Ang-(1-7)) is an emerging component of the renin-angiotensin system (RAS) with effective anti-fibrosis properties and has been shown to interfere with epithelial-mesenchymal transition (EMT) by numerous studies. In recent years, EMT has been proposed as a new therapeutic target for skin fibrotic diseases such as keloids. However, the effect of Ang-(1-7) on EMT in skin is still unclear. Hence, the purpose of this study was to explore the effect of Ang-(1-7) on Transforming growth factor-β1(TGF-β1)-induced EMT of human immortalized keratinocytes HaCaT in vitro. Methods The study involved the use of the human immortalized keratinocyte cell line (HaCaT). The cells were cultured in high-glucose DMEM medium with 10% fetal bovine serum and 1% penicillin-streptomycin. Four groups were created for experimentation: control group (Group C), TGF-β1-treated group (Group T), Ang-(1-7)-treated group (Group A), and a group treated with both TGF-β1 and Ang-(1-7) (Group A + T). Various assays were conducted, including a cell proliferation assay using CCK-8 solution, a scratch wound healing assay to evaluate cell migration, and Western blotting to detect protein expressions related to cell characteristics. Additionally, quantitative real-time polymerase chain reaction (PCR) was performed to analyze epithelial-mesenchymal transition (EMT) related gene expression levels. The study aimed to investigate the effects of TGF-β1 and Ang-(1-7) on HaCaT cells. Results We found that Ang-(1-7) not only reduced the migration of HaCaT cells induced by TGF-β1 in vitro but also reduced the expression of α-SMA and vimentin, and restored the protein expression of E-cadherin and claudin-1. Mechanistically, Ang-(1-7) inhibits the phosphorylation levels of Smad2 and Smad3 in the TGF-β1 canonical pathway, and suppresses the expression of EMT-related transcription factors (EMT-TFs) such as SNAI2, TWIST1, and ZEB1. Discussion Taken together, our findings suggest that Ang-(1-7) inhibits TGF-β1-induced EMT in HaCaT cells in vitro by disrupting the TGF-β1-Smad canonical signaling pathway. These results may be helpful in the treatment of EMT in skin fibrotic diseases such as keloids.
Collapse
Affiliation(s)
- Yueda Jihu
- Clinical College of Medicine, Southwest Medical University, Lu zhou, People’s Republic of China
- Department of Plastic and Burn Surgery, the Affiliated Hospital of Southwest Medical University, Lu zhou, People’s Republic of China
| | - Ruobing Leng
- Clinical College of Medicine, Southwest Medical University, Lu zhou, People’s Republic of China
| | - Mengchang Liu
- Clinical College of Medicine, Southwest Medical University, Lu zhou, People’s Republic of China
- Department of Plastic and Burn Surgery, the Affiliated Hospital of Southwest Medical University, Lu zhou, People’s Republic of China
| | - Hongjing Ren
- Clinical College of Medicine, Southwest Medical University, Lu zhou, People’s Republic of China
- Department of Plastic and Burn Surgery, the Affiliated Hospital of Southwest Medical University, Lu zhou, People’s Republic of China
| | - Defu Xie
- Clinical College of Medicine, Southwest Medical University, Lu zhou, People’s Republic of China
- Department of Plastic and Burn Surgery, the Affiliated Hospital of Southwest Medical University, Lu zhou, People’s Republic of China
| | - Chong Yao
- Clinical College of Medicine, Southwest Medical University, Lu zhou, People’s Republic of China
- Department of Plastic and Burn Surgery, the Affiliated Hospital of Southwest Medical University, Lu zhou, People’s Republic of China
| | - Hong Yan
- Clinical College of Medicine, Southwest Medical University, Lu zhou, People’s Republic of China
- Department of Plastic and Burn Surgery, the Affiliated Hospital of Southwest Medical University, Lu zhou, People’s Republic of China
| |
Collapse
|
14
|
Dinarvand N, Afarin R, Shakerian E, Bavarsad SS, Mohammadtaghvaei N. The effect of saraglitazar on TGF-β-induced smad3 phosphorylation and expression of genes related to liver fibrosis in LX2 cell line. Mol Biol Rep 2024; 51:541. [PMID: 38642208 DOI: 10.1007/s11033-024-09443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/12/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND AND PURPOSE Liver fibrosis is a reversible liver injury that occurs as a result of many chronic inflammatory diseases and can lead to cirrhosis, which is irreversible and fatal. So, we studied the anti-fibrotic effects of saroglitazar on LX-2 cell lines, as a dual PPARα/γ agonist. METHODS Cells, after 80% confluence, were treated with TGF-β (2 ng/mL) for 24 h. Then cells were treated with saroglitazar at different doses (2.5, 5, 10 µM) for 24 h. After same incubation, the cells of control group, TGF-β group, and TGF-β + saroglitazar group were harvested for RNA and protein extraction to determine the effects of saroglitazar. RT-PCR and western blot methods were used to express genes related to fibrosis. RESULTS Our results show that the relative expression of α-SMA, collagen1α, N-cadherin, NOX (1, 2, and 4), and phosphorylated Smad3 protein was significantly higher in TGF-β-treated cells compared with the normal group, and E-cadherin expression was decreased in TGF-β-treated cells. After TGF-β-treated cells were exposed to saroglitazar, the expression of these genes was significantly reversed (P < 0.05). CONCLUSIONS Our results clearly show the short-term inhibitory role of saroglitazar in the expression of fibrotic factors using the TGF-β/Smad signaling pathway. These results suggest that saroglitazar can be considered as a suitable therapeutic strategy for fibrotic patients. Although more studies are needed.
Collapse
Affiliation(s)
- Negar Dinarvand
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Afarin
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Shakerian
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Narges Mohammadtaghvaei
- Department of Laboratory Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
15
|
Yang Y, Pan X, Chen S. Effect of Semaglutide and Empagliflozin on Pulmonary Structure and Proteomics in Obese Mice. Diabetes Metab Syndr Obes 2024; 17:1217-1233. [PMID: 38496002 PMCID: PMC10942255 DOI: 10.2147/dmso.s456336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Objective This study utilized proteomics to investigate changes in protein expression associated with lung health in obese mice exposed to semaglutide and empagliflozin through a high-fat diet. Methods Twenty-eight male C57BL/6JC mice were randomly assigned to two groups: a control diet group (n = 7) and a high-fat diet group (n = 21). The HFD group was further divided into three groups: HFD group (n = 7), Sema group (n = 7), and Empa group (n = 7). Post-treatment, mice underwent assessments including glucose tolerance, lipids, oxidative stress markers, body weight, lung weight, and structure. Proteomics identified differentially expressed proteins (DEPs) in lung tissue, and bioinformatics analyzed the biological processes and functions of these proteins. Results Semaglutide and empagliflozin significantly attenuated obesity-induced hyperglycemia, abnormal lipid metabolism, oxidative stress response, and can decrease alveolar wall thickness, enlarge alveolar lumen, and reduce collagen content in lung tissue. Both medications also attenuated lung elastic fibre cracking and disintegration. In the HFD/NCD group, there were 66 DEPs, comprising 30 proteins that were increased and 36 that were decreased. Twenty-three DEPs overlapped between Sema/HFD and Empa/HFD, with 11 up-regulated and 12 down-regulated simultaneously. After analysing DEPs in different groups, four proteins - LYVE1, BRAF, RGCC, and CHMP5 - were all downregulated in the HFD group and upregulated by semaglutide and empagliflozin treatment. Conclusion This study demonstrates that obesity induced by a high-fat diet causes a reduction in the expression of LYVE1, BRAF, RGCC, and CHMP5 proteins, potentially affecting lung function and structure in mice. Significantly, the administration of semaglutide and empagliflozin elevates the levels of these proteins, potentially offering therapeutic benefits against lung injury caused by obesity. Merging semaglutide with empagliflozin may exert a more pronounced impact.
Collapse
Affiliation(s)
- Yu Yang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Xiaoyu Pan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Shuchun Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
16
|
Hadpech S, Thongboonkerd V. Epithelial-mesenchymal plasticity in kidney fibrosis. Genesis 2024; 62:e23529. [PMID: 37345818 DOI: 10.1002/dvg.23529] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is an important biological process contributing to kidney fibrosis and chronic kidney disease. This process is characterized by decreased epithelial phenotypes/markers and increased mesenchymal phenotypes/markers. Tubular epithelial cells (TECs) are commonly susceptible to EMT by various stimuli, for example, transforming growth factor-β (TGF-β), cellular communication network factor 2, angiotensin-II, fibroblast growth factor-2, oncostatin M, matrix metalloproteinase-2, tissue plasminogen activator (t-PA), plasmin, interleukin-1β, and reactive oxygen species. Similarly, glomerular podocytes can undergo EMT via these stimuli and by high glucose condition in diabetic kidney disease. EMT of TECs and podocytes leads to tubulointerstitial fibrosis and glomerulosclerosis, respectively. Signaling pathways involved in EMT-mediated kidney fibrosis are diverse and complex. TGF-β1/Smad and Wnt/β-catenin pathways are the major venues triggering EMT in TECs and podocytes. These two pathways thus serve as the major therapeutic targets against EMT-mediated kidney fibrosis. To date, a number of EMT inhibitors have been identified and characterized. As expected, the majority of these EMT inhibitors affect TGF-β1/Smad and Wnt/β-catenin pathways. In addition to kidney fibrosis, these EMT-targeted antifibrotic inhibitors are expected to be effective for treatment against fibrosis in other organs/tissues.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
17
|
Li J, Deng B, Zhang J, Zhang X, Cheng L, Li G, Su P, Miao X, Yang W, Xie J, Wang R. The Peptide DH α-(4-pentenyl)-ANPQIR-NH 2 Exhibits Antifibrotic Activity in Multiple Pulmonary Fibrosis Models Induced by Particulate and Soluble Chemical Fibrogenic Agents. J Pharmacol Exp Ther 2024; 388:701-714. [PMID: 38129127 DOI: 10.1124/jpet.123.001849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023] Open
Abstract
Interstitial lung diseases (ILDs) are a group of restrictive lung diseases characterized by interstitial inflammation and pulmonary fibrosis. The incidence of ILDs associated with exposure to multiple hazards such as inhaled particles, fibers, and ingested soluble chemicals is increasing yearly, and there are no ideal drugs currently available. Our previous research showed that the novel and low-toxicity peptide DHα-(4-pentenyl)-ANPQIR-NH2 (DR3penA) had a strong antifibrotic effect on a bleomycin-induced murine model. Based on the druggability of DR3penA, we sought to investigate its effects on respirable particulate silicon dioxide (SiO2)- and soluble chemical paraquat (PQ)-induced pulmonary fibrosis in this study by using western blot, quantitative reverse-transcription polymerase chain reaction (RT-qPCR), immunofluorescence, H&E and Masson staining, immunohistochemistry, and serum biochemical assays. The results showed that DR3penA alleviated the extent of fibrosis by inhibiting the expression of fibronectin and collagen I and suppressed oxidative stress and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Further study revealed that DR3penA may mitigate pulmonary fibrosis by negatively regulating the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway and mitogen-activated protein kinase (MAPK) pathway. Unexpectedly, through the conversion of drug bioavailability under different routes of administration, DR3penA exerted antifibrotic effects equivalent to those of the positive control drug pirfenidone (PFD) at lower doses. In summary, DR3penA may be a promising lead compound for various fibrotic ILDs. SIGNIFICANCE STATEMENT: Our study verified that DHα-(4-pentenyl)-ANPQIR-NH2 (DR3penA) exhibited positive antifibrotic activity in pulmonary fibrosis induced by silicon dioxide (SiO2) particles and soluble chemical paraquat (PQ) and demonstrated a low-dose advantage compared to the small-molecule drug pirfenidone (PFD). The peptide DR3penA can be further developed for the treatment of multiple fibrotic lung diseases.
Collapse
Affiliation(s)
- Jieru Li
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Bochuan Deng
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Jiao Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Xiang Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Lu Cheng
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Guofeng Li
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Ping Su
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Xiaokang Miao
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Wenle Yang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Junqiu Xie
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Rui Wang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| |
Collapse
|
18
|
Wei H, Zhang Y, Li T, Zhang S, Yin J, Liu Y, Xing L, Bao J, Li J. Intermittent mild cold stimulation alleviates cold stress-induced pulmonary fibrosis by inhibiting the TGF-β1/Smad signaling pathway in broilers. Poult Sci 2024; 103:103246. [PMID: 37980728 PMCID: PMC10685030 DOI: 10.1016/j.psj.2023.103246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/21/2023] Open
Abstract
To investigate the potential protective effect of intermittent cold stimulation on lung tissues of broilers exposed to acute cold stress (ACS). A total of 384 one-day-old broilers were assigned to 4 experimental groups with 6 replicates of 16 birds each: control (CON) and ACS groups were reared at normal feeding temperature from d 1 to 42; cold treatment groups (CS3+ACS and CS9+ACS) were reared, respectively, at 3°C or 9°C for 5 h on alternate days below the CON group from d 15 to 35. Animals in CS3+ACS, CS9+ACS, and ACS groups were exposed at 10°C for 24 h on d 43. Subsequently, lung tissues were collected to perform histopathological examination and measurement of relevant indexes. The results showed that lung tissues in CS9+ACS and ACS groups exhibited increased inflammatory cell infiltrates and collagen deposition compared to the CON group, while this pathological phenomenon was less pronounced in the CS3+ACS group. Compared to CON group, H2O2 and MDA contents were increased, and the activities of antioxidant enzymes (CAT, SOD, GPx, T-AOC) were reduced in CS9+ACS and ACS group (P < 0.05); mRNA and protein levels of inhibitor of NF-κB, Smad7, matrix metallopeptidase (MMP)-2, MMP9, and antioxidant-related genes were downregulated, whereas mRNA and protein levels of genes related to NF-κB/NLRP3 pathway-regulated inflammation and TGF-β1/Smad pathway-regulated fibrosis were upregulated in cold-stressed broilers (P < 0.05). mRNA levels of heme oxygenase-1, NAD(P)H quinone oxidoreductase-1, and MMP9 were increased in CS3+ACS group (P < 0.05). Moreover, the expression of most antioxidant-related genes was increased, and that of inflammation- and fibrosis-related genes was reduced in CS3+ACS group (P < 0.05). Therefore, cold stress caused oxidative stress and inflammation, leading to pulmonary fibrosis in broilers, whereas intermittent mild cold stimulation at 3°C below normal rearing temperature alleviated fibrosis by inhibiting the TGF-β1/Smad pathway modulated by the Nrf2/HO-1 and NF-κB/NLRP3 signaling pathway. This study suggests that intermittent mild cold stimulation can be a potential strategy to reduce ACS-induced lung damage in broilers.
Collapse
Affiliation(s)
- Haidong Wei
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Yong Zhang
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Tingting Li
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Shijie Zhang
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Jingwen Yin
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Yuanyuan Liu
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Lu Xing
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, 150030 Harbin, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, 150030 Harbin, China.
| |
Collapse
|
19
|
Salama AM, Elmahy RA, Ibrahim HA, Amer AIM, Eltantawy AF, Elgendy DI. Effects of metformin on parasitological, pathological changes in the brain and liver and immunological aspects during visceral toxocariasis in mice. Parasitol Res 2023; 122:3213-3231. [PMID: 37874393 PMCID: PMC10667394 DOI: 10.1007/s00436-023-08011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
There are currently insufficient anthelmintic medications available for the treatment of toxocariasis. For instance, Albendazole (ABZ) is the preferred medication, but its effectiveness against tissue-dwelling parasites is limited. In addition, Metformin (MTF) is a widely used oral antidiabetic medication that is considered to be safe for treatment. This study aimed to investigate any potential effects of MTF, alone or in combination with ABZ, on mice infections caused by Toxocara canis (T. canis). The efficacy of the treatment was assessed in the acute and chronic phases of the infection by larval recovery and histopathological, immunohistochemical, and biochemical studies. The results showed that combined therapy significantly reduced larval counts in the liver, brain, and muscles and ameliorated hepatic and brain pathology. It reduced oxidative stress and TGF-β mRNA expression and increased FGF21 levels in the liver. It decreased TNF-α levels and MMP-9 expression in the brain. In addition, it increased serum levels of IL-12 and IFN-γ and decreased serum levels of IL-4 and IL-10. In the acute and chronic phases of the infection, the combined treatment was more effective than ABZ alone. In conclusion, this study highlights the potential role of MTF as an adjuvant in the treatment of experimental T. canis infection when administered with ABZ.
Collapse
Affiliation(s)
- Amina M Salama
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rasha A Elmahy
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Hoda A Ibrahim
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Asmaa Fawzy Eltantawy
- Medical Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina I Elgendy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| |
Collapse
|
20
|
Xu Y, Huang Y, Cheng X, Hu B, Jiang D, Wu L, Peng S, Hu J. Mechanotransductive receptor Piezo1 as a promising target in the treatment of fibrosis diseases. Front Mol Biosci 2023; 10:1270979. [PMID: 37900917 PMCID: PMC10602816 DOI: 10.3389/fmolb.2023.1270979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Fibrosis could happen in every organ, leading to organic malfunction and even organ failure, which poses a serious threat to global health. Early treatment of fibrosis has been reported to be the turning point, therefore, exploring potential correlates in the pathogenesis of fibrosis and how to reverse fibrosis has become a pressing issue. As a mechanism-sensitive cationic calcium channel, Piezo1 turns on in response to changes in the lipid bilayer of the plasma membrane. Piezo1 exerts multiple biological roles, including inhibition of inflammation, cytoskeletal stabilization, epithelial-mesenchymal transition, stromal stiffness, and immune cell mechanotransduction, interestingly enough. These processes are closely associated with the development of fibrotic diseases. Recent studies have shown that deletion or knockdown of Piezo1 attenuates the onset of fibrosis. Therefore, in this paper we comprehensively describe the biology of this gene, focusing on its potential relevance in pulmonary fibrosis, renal fibrosis, pancreatic fibrosis, and cardiac fibrosis diseases, except for the role of drugs (agonists), increased intracellular calcium and mechanical stress using this gene in alleviating fibrosis.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yiqian Huang
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xiaoqing Cheng
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
21
|
Lai X, Lin Y, Huang S, Pu L, Zeng Q, Wang Z, Huang W. Dexmedetomidine alleviates pulmonary fibrosis through the ADORA2B-Mediated MAPK signaling pathway. Respir Res 2023; 24:214. [PMID: 37644529 PMCID: PMC10464018 DOI: 10.1186/s12931-023-02513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronically progressive fibrotic pulmonary disease characterized by an uncertain etiology, a poor prognosis, and a paucity of efficacious treatment options. Dexmedetomidine (Dex), an anesthetic-sparing alpha-2 adrenoceptor (α2AR) agonist, plays a crucial role in organ injury and fibrosis. However, the underlying mechanisms of IPF remain unknown. METHODS In our study, the role of Dex in murine pulmonary fibrosis models was determined by Dex injection intraperitoneally in vivo. Fibroblast activation and myofibroblast differentiation were assessed after Dex treatment in vitro. The activation of MAPK pathway and the expression of Adenosine A2B receptor (ADORA2B) were examined in lung myofibroblasts. Moreover, the role of ADORA2B in Dex suppressing myofibroblast differentiation and pulmonary fibrosis was determined using the ADORA2B agonist BAY60-6583. RESULTS The results revealed that Dex could inhibit Bleo-induced pulmonary fibrosis in mice. In vitro studies revealed that Dex suppressed TGF-β-mediated MAPK pathway activation and myofibroblast differentiation. Furthermore, Dex inhibits myofibroblast differentiation and pulmonary fibrosis via downregulating ADORA2B expression. CONCLUSIONS Our findings suggest Dex as a potential therapeutic agent for pulmonary fibrosis. Dex may alleviate lung fibrosis and myofibroblast differentiation through the ADORA2B-mediated MAPK signaling pathway.
Collapse
Affiliation(s)
- Xiaofan Lai
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingying Lin
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaojie Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lvya Pu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qihao Zeng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhongxing Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
22
|
Guan D, Zhao L, Shi X, Ma X, Chen Z. Copper in cancer: From pathogenesis to therapy. Biomed Pharmacother 2023; 163:114791. [PMID: 37105071 DOI: 10.1016/j.biopha.2023.114791] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
One of the basic trace elements for the structure and metabolism of human tissue is copper. However, as a heavy metal, excessive intake or abnormal accumulation of copper in the body can cause inevitable damage to the organism because copper can result in direct injury to various cell components or disruption of the redox balance, eventually leading to cell death. Interestingly, a growing body of research reports that diverse cancers have raised serum and tumor copper levels. Tumor cells depend on more copper for their metabolism than normal cells, and a decrease in copper or copper overload can have a detrimental effect on tumor cells. New modalities for identifying and characterizing copper-dependent signals offer translational opportunities for tumor therapy, but their mechanisms remain unclear. Therefore, this article summarizes what we currently know about the correlation between copper and cancer and describes the characteristics of copper metabolism in tumor cells and the prospective application of copper-derived therapeutics.
Collapse
Affiliation(s)
- Defeng Guan
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Lihui Zhao
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Xin Shi
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Xiaoling Ma
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China.
| | - Zhou Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
23
|
Copper Exposure Induces Epithelial-Mesenchymal Transition-Related Fibrotic Change via Autophagy and Increase Risk of Lung Fibrosis in Human. Antioxidants (Basel) 2023; 12:antiox12020532. [PMID: 36830091 PMCID: PMC9952124 DOI: 10.3390/antiox12020532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 02/22/2023] Open
Abstract
Copper is an essential trace element involved in several vital biological processes of the human body. However, excess exposure to copper caused by occupational hazards and environmental contamination, such as food, water, and air, damages human health. In this study, in vitro cell culture model and epidemiologic studies were conducted to evaluate the effect of copper on lung fibrosis. In vitro, treatment of CuSO4 in lung epithelial cells at 100 μM consistently decreases cell viability in alveolar type (A549) and human bronchial epithelial (HBE) cells. CuSO4 promotes epithelial-mesenchymal transition (EMT) as shown by increased cell migration and increased EMT marker and fibrotic gene expressions. Besides, CuSO4 induced cell autophagy, with an increased LC3, PINK, and decreased p62 expression. Inhibition of ROS by N-acetylcysteine reversed the CuSO4-induced PINK1, LC3, and Snail expressions. Inhibition of autophagy by chloroquine reverses the CuSO4-induced EMT changes. Nature flavonoids, especially kaempferol, and fustin, were shown to inhibit Copper-induced EMT. In humans, a unit increase in urinary copper concentration was significantly associated with an increased risk of lung fibrotic changes (odds ratio [OR] = 1.17, 95% confidence interval [CI] = 1.01-1.36, p = 0.038). These results indicated that Copper is a risk factor for lung fibrosis through activation of the ROS-autophagy-EMT pathway, which can be reversed by flavonoids.
Collapse
|
24
|
Coal dust nanoparticles induced pulmonary fibrosis by promoting inflammation and epithelial-mesenchymal transition via the NF-κB/NLRP3 pathway driven by IGF1/ROS-mediated AKT/GSK3β signals. Cell Death Dis 2022; 8:500. [PMID: 36581638 PMCID: PMC9800584 DOI: 10.1038/s41420-022-01291-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Pneumoconiosis is the most common and serious disease among coal miners. In earlier work on this subject, we documented that coal dust (CD) nanoparticles (CD-NPs) induced pulmonary fibrosis (PF) more profoundly than did CD micron particles (CD-MPs), but the mechanism has not been thoroughly studied. Based on the GEO database, jveen, STRING, and Cytoscape tools were used to screen hub genes regulating PF. Particle size distribution of CD were analyzed with Malvern nanoparticle size potentiometer. Combining 8 computational methods, we found that IGF1, POSTN, MMP7, ASPN, and CXCL14 may act as hub genes regulating PF. Based on the high score of IGF1 and its important regulatory role in various tissue fibrosis, we selected it as the target gene in this study. Activation of the IGF1/IGF1R axis promoted CD-NPs-induced PF, and inhibition of the axis activation had the opposite effect in vitro and in vivo. Furthermore, activation of the IGF1/IGF1R axis induced generation of reactive oxygen species (ROS) to promote epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AECs) to accelerate PF. High-throughput gene sequencing based on lung tissue suggested that cytokine-cytokine receptor interaction and the NF-kB signaling pathway play a key role in PF. Also, ROS induced inflammation and EMT by the activation of the NF-kB/NLRP3 axis to accelerate PF. ROS can induce the activation of AKT/GSK3β signaling, and inhibition of it can inhibit ROS-induced inflammation and EMT by the NF-kB/NLRP3 axis, thereby inhibiting PF. CD-NPs induced PF by promoting inflammation and EMT via the NF-κB/NLRP3 pathway driven by IGF1/ROS-mediated AKT/GSK3β signals. This study provides a valuable experimental basis for the prevention and treatment of coal workers' pneumoconiosis. Illustration of the overall research idea of this study: IGF1 stimulates coal dust nanoparticles induced pulmonary fibrosis by promoting inflammation and EMT via the NF-κB/NLRP3 pathway driven by ROS-mediated AKT/GSK3β signals.
Collapse
|
25
|
Zhou X, Yang M, Jin J, Chen J, Li Z. Periplaneta americana (Insecta: Blattodea) and organ fibrosis: A mini review. Medicine (Baltimore) 2022; 101:e32039. [PMID: 36595847 PMCID: PMC9794353 DOI: 10.1097/md.0000000000032039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fibrosis is the end stage of many chronic inflammatory diseases and eventually leads to organ failure. Periplaneta americana (P. americana) is referred to as "the product of flesh and blood" in traditional Chinese medicine and has a wide range of therapeutic effects. Owing to the growing interest in this insect for its application in the treatment of tissue injury-healing disorders that induce organ fibrosis, it has attracted the interest of researchers. A literature search was performed using core collections of electronic databases, such as PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang, using the keywords given below and terms such as pharmacological and biochemical details of this insect. P. americana extracts presented a wide range of therapeutic and biological activities, including antifibrotic, antiinflammatory, antioxidative, and tissue repair activities. Emerging evidence suggests that P. americana extracts may improve scarring, pulmonary fibrosis, liver fibrosis, and kidney fibrosis through the regulation of fibroblast activation, cytokine secretion, and deposition of fibrin, indicating the potential role of P. americana as a therapeutic option for organ fibrosis. P. americana is a potential therapeutic agent for treating fibrosis. Further studies are required for a more in-depth characterization of the antifibrogenic mechanism of P. americana prior to its clinical application in the treatment of organ fibrosis. (Fig. 1).
Collapse
Affiliation(s)
- Xin Zhou
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Lu zhou, Sichuan, China
- College of Integration of Traditional Chinese and Western Medicine to Southwest Medical University, Lu zhou, Sichuan, China
| | - Meng Yang
- Department of Pediatrics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Lu Zhou, Sichuan, China
| | - Jing Jin
- Department of Gastroenterology, The First Affiliated Hospital of Naval Military Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Jie Chen
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Lu zhou, Sichuan, China
- Department of Gastroenterology, The First Affiliated Hospital of Naval Military Medical University (Shanghai Changhai Hospital), Shanghai, China
- * Correspondence: Jie Chen, Department of Gastroenterology, The First Affiliated Hospital of Naval Military Medical University (Shanghai Changhai Hospital), Shanghai 200082, China (e-mail: )
| | - Zhi Li
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Lu zhou, Sichuan, China
| |
Collapse
|
26
|
Kim H, Jo S, Kim IG, Kim RK, Kahm YJ, Jung SH, Lee JH. Effect of Copper Chelators via the TGF-β Signaling Pathway on Glioblastoma Cell Invasion. Molecules 2022; 27:8851. [PMID: 36557987 PMCID: PMC9784955 DOI: 10.3390/molecules27248851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a fast-growing and aggressive type of brain cancer. Unlike normal brain cells, GBM cells exhibit epithelial-mesenchymal transition (EMT), which is a crucial biological process in embryonic development and cell metastasis, and are highly invasive. Copper reportedly plays a critical role in the progression of a variety of cancers, including brain, breast, and lung cancers. However, excessive copper is toxic to cells. D-penicillamine (DPA) and triethylenetetramine (TETA) are well-known copper chelators and are the mainstay of treatment for copper-associated diseases. Following treatment with copper sulfate and DPA, GBM cells showed inhibition of proliferation and suppression of EMT properties, including reduced expression levels of N-cadherin, E-cadherin, and Zeb, which are cell markers associated with EMT. In contrast, treatment with copper sulfate and TETA yielded the opposite effects in GBM. Genes, including TGF-β, are associated with an increase in copper levels, implying their role in EMT. To analyze the invasion and spread of GBM, we used zebrafish embryos xenografted with the GBM cell line U87. The invasion of GBM cells into zebrafish embryos was markedly inhibited by copper treatment with DPA. Our findings suggest that treatment with copper and DPA inhibits proliferation and EMT through a mechanism involving TGF-β/Smad signaling in GBM. Therefore, DPA, but not TETA, could be used as adjuvant therapy for GBM with high copper concentrations.
Collapse
Affiliation(s)
- Heabin Kim
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Seonmi Jo
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - In-Gyu Kim
- Department of Radiation Biology, Environmental Safety Assessment Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
- Department of Radiation Science and Technology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Rae-Kwon Kim
- Department of Radiation Biology, Environmental Safety Assessment Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
- Department of Radiation Science and Technology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Yeon-Jee Kahm
- Department of Radiation Biology, Environmental Safety Assessment Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
- Department of Radiation Science and Technology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Seung-Hyun Jung
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Jei Ha Lee
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| |
Collapse
|
27
|
Yue YL, Zhang MY, Liu JY, Fang LJ, Qu YQ. The role of autophagy in idiopathic pulmonary fibrosis: from mechanisms to therapies. Ther Adv Respir Dis 2022; 16:17534666221140972. [PMID: 36468453 PMCID: PMC9726854 DOI: 10.1177/17534666221140972] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial pulmonary disease with an extremely poor prognosis. Autophagy is a fundamental intracellular process involved in maintaining cellular homeostasis and regulating cell survival. Autophagy deficiency has been shown to play an important role in the progression of pulmonary fibrosis. This review focused on the six steps of autophagy, as well as the interplay between autophagy and other seven pulmonary fibrosis related mechanisms, which include extracellular matrix deposition, myofibroblast differentiation, epithelial-mesenchymal transition, pulmonary epithelial cell dysfunction, apoptosis, TGF-β1 pathway, and the renin-angiotensin system. In addition, this review also summarized autophagy-related signaling pathways such as mTOR, MAPK, JAK2/STAT3 signaling, p65, and Keap1/Nrf2 signaling during the development of IPF. Furthermore, this review also illustrated the commonly used autophagy detection methods, the currently approved antifibrotic drugs pirfenidone and nintedanib, and several prospective compounds targeting autophagy for the treatment of IPF.
Collapse
Affiliation(s)
- Yue-Liang Yue
- Shandong Key Laboratory of Infectious Respiratory Diseases, Laboratory of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Meng-Yu Zhang
- Shandong Key Laboratory of Infectious Respiratory Diseases, Laboratory of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jian-Yu Liu
- Shandong Key Laboratory of Infectious Respiratory Diseases, Laboratory of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Li-Jun Fang
- Shandong Key Laboratory of Infectious Respiratory Diseases, Laboratory of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | | |
Collapse
|
28
|
Ren N, Shi S, Zhao N, Zhang L. Dual specificity phosphatase 22 suppresses mesangial cell hyperproliferation, fibrosis, inflammation and the MAPK signaling pathway in diabetic nephropathy. Exp Ther Med 2022; 24:744. [PMID: 36561966 PMCID: PMC9748649 DOI: 10.3892/etm.2022.11680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
Dual specificity phosphatase 22 (DUSP22) regulates fibrosis and inflammation, which may be implicated in the development of diabetic nephropathy (DN). Hence, the current study aimed to assess the effect of DUSP22 on cell proliferation, apoptosis, fibrosis and inflammation in mouse mesangial cell line (SV40-MES13) under both high glucose (HG) and low glucose (LG) conditions. SV40-MES13 cells were treated with HG and LG, then HG-group cells were transfected with DUSP22 overexpression and control plasmids, meanwhile LG-group cells were transfected with DUSP22 and control siRNAs. Then, cell proliferation using Cell Counting Kit-8, cell apoptosis by TUNEL assay, protein expression using western blotting, inflammatory cytokines using ELISA and RNA using reverse transcription-quantitative PCR were determined. DUSP22 mRNA and protein were decreased in SV40-MES13 cells under the HG condition compared with those under the LG condition. Under the HG condition, DUSP22 overexpression suppressed SV40-MES13 cell proliferation at 48 and 72 h as well as Bcl2, but it facilitated TUNEL-reflected apoptotic rate and cleaved-caspase-3; besides, DUSP22 overexpression restrained proteins of fibronectin 1, collagen I, transforming growth factor beta 1, and their corresponding mRNAs. As to the inflammation, DUSP22 overexpression downregulated TNF-α, IL-1β, IL-6 and IL-12 under the HG condition. By contrast, DUSP22 siRNA promoted SV40-MES13 cell proliferation, fibrosis and inflammation, but attenuated apoptosis in SV40-MES13 cells under the LG condition. Additionally, DUSP22 overexpression inactivated phosphorylated (p)-ERK, p-JNK, and p-P38 in HG-treated SV40-MES13 cells; differently, DUSP22 small interfering RNA facilitated them under the LG condition. In conclusion, DUSP22 suppresses HG-induced mesangial cell hyperproliferation, fibrosis, inflammation and the MAPK pathway, implying its potency in DN treatment.
Collapse
Affiliation(s)
- Na Ren
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150000, P.R. China
| | - Shanshan Shi
- General Medical Ward, Harbin Institute of Technology Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Na Zhao
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150000, P.R. China
| | - Lingyan Zhang
- General Medical Ward, Harbin Institute of Technology Hospital, Harbin, Heilongjiang 150000, P.R. China,Correspondence to: Professor Lingyan Zhang, General Medical Ward, Harbin Institute of Technology Hospital, 2 Xiaowai Street, Nangang, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
29
|
Vitaliti A, De Luca A, Rossi L. Copper-Dependent Kinases and Their Role in Cancer Inception, Progression and Metastasis. Biomolecules 2022; 12:1520. [PMID: 36291728 PMCID: PMC9599708 DOI: 10.3390/biom12101520] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 12/01/2022] Open
Abstract
In recent years, copper function has been expanded beyond its consolidated role as a cofactor of enzyme catalysis. Recent papers have demonstrated a new dynamic role for copper in the regulation of cell signaling pathways through direct interaction with protein kinases, modulating their activity. The activation of these pathways is exacerbated in cancer cells to sustain the different steps of tumor growth and dissemination. This review will focus on a novel proposed role for the transition metal copper as a regulator of cell signaling pathways through direct interaction with known protein kinases, which exhibit binding domains for this metal. Activation of these pathways in cancer cells supports both tumor growth and dissemination. In addition to the description of the results recently reported in the literature on the subject, relevance will be given to the possibility of controlling the cellular levels of copper and its homeostatic regulators. Overall, these findings may be of central relevance in order to propose copper and its homeostatic regulators as possible targets for novel therapies, which may act synergistically to those already existing to control cancer growth and dissemination.
Collapse
Affiliation(s)
- Alessandra Vitaliti
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Anastasia De Luca
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Luisa Rossi
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
30
|
Lei ZN, Teng QX, Tian Q, Chen W, Xie Y, Wu K, Zeng Q, Zeng L, Pan Y, Chen ZS, He Y. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther 2022; 7:358. [PMID: 36209270 PMCID: PMC9547882 DOI: 10.1038/s41392-022-01190-w] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qin Tian
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA
| | - Kaiming Wu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Qianlin Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| |
Collapse
|
31
|
Suzuki T, Kropski JA, Chen J, Carrier EJ, Chen X, Sherrill TP, Winters NI, Camarata JE, Polosukhin VV, Han W, Rathinasabapathy A, Gutor S, Gulleman P, Sabusap C, Banovich NE, Tanjore H, Freeman ML, Tada Y, Young LR, Gokey JJ, Blackwell TS, West JD. Thromboxane-Prostanoid Receptor Signaling Drives Persistent Fibroblast Activation in Pulmonary Fibrosis. Am J Respir Crit Care Med 2022; 206:596-607. [PMID: 35728047 PMCID: PMC9716913 DOI: 10.1164/rccm.202106-1503oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: Although persistent fibroblast activation is a hallmark of idiopathic pulmonary fibrosis (IPF), mechanisms regulating persistent fibroblast activation in the lungs have not been fully elucidated. Objectives: On the basis of our observation that lung fibroblasts express TBXA2R (thromboxane-prostanoid receptor) during fibrosis, we investigated the role of TBXA2R signaling in fibrotic remodeling. Methods: We identified TBXA2R expression in lungs of patients with IPF and mice and studied primary mouse and human lung fibroblasts to determine the impact of TBXA2R signaling on fibroblast activation. We used TBXA2R-deficient mice and small-molecule inhibitors to investigate TBXA2R signaling in preclinical lung fibrosis models. Measurements and Main Results: TBXA2R expression was upregulated in fibroblasts in the lungs of patients with IPF and in mouse lungs during experimental lung fibrosis. Genetic deletion of TBXA2R, but not inhibition of thromboxane synthase, protected mice from bleomycin-induced lung fibrosis, thereby suggesting that an alternative ligand activates profibrotic TBXA2R signaling. In contrast to thromboxane, F2-isoprostanes, which are nonenzymatic products of arachidonic acid induced by reactive oxygen species, were persistently elevated during fibrosis. F2-isoprostanes induced TBXA2R signaling in fibroblasts and mediated a myofibroblast activation profile due, at least in part, to potentiation of TGF-β (transforming growth factor-β) signaling. In vivo treatment with the TBXA2R antagonist ifetroban reduced profibrotic signaling in the lungs, protected mice from lung fibrosis in three preclinical models (bleomycin, Hermansky-Pudlak mice, and radiation-induced fibrosis), and markedly enhanced fibrotic resolution after bleomycin treatment. Conclusions: TBXA2R links oxidative stress to fibroblast activation during lung fibrosis. TBXA2R antagonists could have utility in treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Toshio Suzuki
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Medicine, Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Jingyuan Chen
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Erica J. Carrier
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Xinping Chen
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Taylor P. Sherrill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Nichelle I. Winters
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Jane E. Camarata
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Vasiliy V. Polosukhin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Wei Han
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | - Sergey Gutor
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Peter Gulleman
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Carleen Sabusap
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | - Harikrishna Tanjore
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Michael L. Freeman
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuji Tada
- Department of Pulmonary Medicine, School of Medicine, International University of Health and Welfare, Chiba, Japan; and
| | - Lisa R. Young
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
- Division of Pulmonary Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jason J. Gokey
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Medicine, Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - James D. West
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| |
Collapse
|
32
|
Chen XL, Xu YM, Lau ATY. Toxic metals in the regulation of epithelial-mesenchymal plasticity: demons or angels? Cancer Cell Int 2022; 22:237. [PMID: 35897065 PMCID: PMC9327425 DOI: 10.1186/s12935-022-02638-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/21/2022] [Indexed: 02/08/2023] Open
Abstract
Epithelial cells can trans-differentiate into motile mesenchymal cells through a dynamic process known as epithelial-mesenchymal transition (EMT). EMT is crucial in embryonic development and wound healing but also contributes to human diseases such as organ fibrosis and cancer progression. Heavy metals are environmental pollutants that can affect human health in various ways, including causing cancers. The cytotoxicity and carcinogenicity of heavy metals are complex, and studies have demonstrated that some of these metals can affect the progress of EMT. Here, we focus on reviewing the roles of six environmentally common toxic metals concerning EMT: arsenic (AS), cadmium (Cd), cobalt (Co), chromium (Cr), nickel (Ni), and copper (Cu). Noteworthily, the effects of these elements on EMT may vary according to the form, dose, and exposure time; the dual role of heavy metals (e.g., AS, Cd, and Cu) on EMT is also observed, in which, sometimes they can promote while sometimes inhibit the EMT process. Given the vast number of toxicologically relevant metals that exist in nature, we believe a comprehensive understanding of their effects on EMT is required to dictate in what circumstances these metals act more likely as demons or angels.
Collapse
Affiliation(s)
- Xu-Li Chen
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 People’s Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 People’s Republic of China
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 People’s Republic of China
| |
Collapse
|
33
|
Huang J, Wang Y, Zha Y, Zeng X, Li W, Zhou M. Transcriptome Analysis Reveals Hub Genes Regulating Autophagy in Patients With Severe COVID-19. Front Genet 2022; 13:908826. [PMID: 35923698 PMCID: PMC9340158 DOI: 10.3389/fgene.2022.908826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
Background: The COVID-19 pandemic has currently developed into a worldwide threat to humankind. Importantly, patients with severe COVID-19 are believed to have a higher mortality risk than those with mild conditions. However, despite the urgent need to develop novel therapeutic strategies, the biological features and pathogenic mechanisms of severe COVID-19 are poorly understood. Methods: Here, peripheral blood mononuclear cells (PBMCs) from four patients with severe COVID-19, four patients with mild COVID-19, and four healthy controls were examined by RNA sequencing (RNA-Seq). We conducted gene expression analysis and Venn diagrams to detect specific differentially expressed genes (DEGs) in patients with severe disease compared with those with mild conditions. Gene Ontology (GO) enrichment analysis was performed to identify the significant biological processes, and protein–protein interaction networks were constructed to extract hub genes. These hub genes were then subjected to regulatory signatures and protein–chemical interaction analysis for certain regulatory checkpoints and identification of potent chemical agents. Finally, to demonstrate the cell type-specific expression of these genes, we performed single-cell RNA-Seq analyses using an online platform. Results: A total of 144 DEGs were specifically expressed in severe COVID-19, and GO enrichment analysis revealed a significant association of these specific DEGs with autophagy. Hub genes such as MVB12A, CHMP6, STAM, and VPS37B were then found to be most significantly involved in the biological processes of autophagy at the transcriptome level. In addition, six transcription factors, including SRF, YY1, CREB1, PPARG, NFIC, and GATA2, as well as miRNAs, namely, hsa-mir-1-3p, and potent chemical agents such as copper sulfate and cobalt chloride, may cooperate in regulating the autophagy hub genes. Furthermore, classical monocytes may play a central role in severe COVID-19. Conclusion: We suggest that autophagy plays a crucial role in severe COVID-19. This study might facilitate a more profound knowledge of the biological characteristics and progression of COVID-19 and the development of novel therapeutic approaches to achieve a breakthrough in the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Jinfeng Huang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Yimeng Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yawen Zha
- Department of Radiation Oncology Ⅱ, Zhongshan People’s Hospital, Zhongshan, China
| | - Xin Zeng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wenxing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Southern Medical University, Guangzhou, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
- *Correspondence: Meijuan Zhou,
| |
Collapse
|
34
|
Peng W, Zhang S, Zhou W, Zhao X, Wang K, Yue C, Wei X, Pang S, Dong W, Chen S, Chen C, Yang Q, Wang W. Layered Double Hydroxides-Loaded Sorafenib Inhibit Hepatic Stellate Cells Proliferation and Activation In Vitro and Reduce Fibrosis In Vivo. Front Bioeng Biotechnol 2022; 10:873971. [PMID: 35711641 PMCID: PMC9196193 DOI: 10.3389/fbioe.2022.873971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
A core feature of liver fibrosis is the activation of hepatic stellate cells (HSCs), which are transformed into myofibroblasts and lead to the accumulation of extracellular matrix (ECM) proteins. In this study, we combined in vitro cellular efficacy with in vivo antifibrosis performance to evaluate the outcome of sorafenib (SRF) loaded layered double hydroxide (LDH) nanocomposite (LDH-SRF) on HSCs. The cellular uptake test has revealed that sorafenib encapsulated LDH nanoparticles were efficiently internalized by the HSC-T6 cells, synergistically inducing apoptosis of hepatic stellate cells. Moreover, the apoptosis rate and the migration inhibition rate induced by LDHs-SRF were 2.5 and 1.7 times that of SRF. Western Blot showed that the TGF-β1/Smad/EMT and AKT signaling pathway was significantly inhibited in HSC-T6 cells treated with LDHs-SRF. For the in vivo experiment, LDHs-SRF were administered to rat models of CCl4-induced liver fibrosis. H&E, masson and sirius red staining showed that LDHs-SRF could significantly reduce inflammatory infiltrate and collagen fiber deposition and immunohistochemical results found that LDHs-SRF treatment significantly inhibited the protein expressions of α-SMA in the liver, these results suggesting that LDHs-SRF exhibited better anti-fibrotic effect than SRF alone and significantly inhibited the proliferation and activation of rat hepatic stellate cells and collagen fiber synthesis.
Collapse
Affiliation(s)
- Wei Peng
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Shiwen Zhang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Wei Zhou
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Xinchen Zhao
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Kexue Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Chengxu Yue
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Xinyu Wei
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Siyan Pang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Wei Dong
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Sulian Chen
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Changjie Chen
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Qingling Yang
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Wenrui Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| |
Collapse
|
35
|
Wu Z, Jia M, Zhao W, Huang X, Yang X, Chen D, Qiaolongbatu X, Li X, Wu J, Qian F, Lou Y, Fan G. Schisandrol A, the main active ingredient of Schisandrae Chinensis Fructus, inhibits pulmonary fibrosis through suppression of the TGF-β signaling pathway as revealed by UPLC-Q-TOF/MS, network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115031. [PMID: 35091014 DOI: 10.1016/j.jep.2022.115031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis decoction derived from the book of Waitai Miyao (Tao Wang, Tang dynasty) is often used in the treatment of idiopathic pulmonary fibrosis (IPF), which is included in the Grand Ceremony of Chinese formulae (Huairen Peng, 1994). Schisandrae Chinensis Fructus (Sch) is one of the most important herbs in this formula. According to the "Shennong's Herbal Classicherbal" of the Han Dynasty, Sch has sour taste, warm nature, which has the effect of tonifying qi and curing cough. In addition, according to the "Compendium of Materia Medica" of the Ming Dynasty, Sch is used to treat cough and asthma, which has the effect of moistening the lung and tonifying the kidney. However, the active ingredients of Sch absorption into the plasma and its pharmacological mechanism of treatment for IPF still remained unclear. AIM OF THE STUDY Our research aimed at identifying the absorbed active ingredients and metabolized of Sch in rat plasma and the mechanism of anti-IPF based on serum pharmacochemistry. MATERIALS AND METHODS First, the rats were divided into control group and Sch group. Sch sample was orally administrated to the rats for seven days. The blood samples were drawn into an Eppendorf tube after the last dosing. The ultrahigh performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry (UPLC-Q-TOF/MS) was applied to identify the absorption components and metabolites of Sch in rat plasma. Second, the network pharmacology combined with molecular docking analysis was further investigated to illuminate its potential mechanism of treatment for IPF by the biological targets regulating related pathways. Finally, the mechanism of action was verified by experimental in vitro and in vivo. RESULTS A total of 78 compounds, consist of 13 prototype lignans and 65 metabolites (including isomers) were identified. Network pharmacology study and molecular docking analysis indicated that schisandrol A (L1) play an anti-fibrosis role by regulating the TGF-β signaling pathway. Experimental in vitro and in vivo verified that the schisandrol A could inhibiting pulmonary fibrosis through TGF-β signaling pathway. The effect and mechanism of schisandrol A inhibiting pulmonary fibrosis were reported for the first time. CONCLUSIONS In this study, the absorption active ingredients of Sch in rat plasma were combined with the network pharmacology investigation and experimental in vitro and in vivo to elucidate its biological mechanism of treatment for IPF. The results provided a theoretical support for understanding the bioactive compounds and the pharmacological mechanism of Sch.
Collapse
Affiliation(s)
- Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, PR China.
| | - Mengqi Jia
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, PR China.
| | - Wenjuan Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Xucong Huang
- School of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Xinyi Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Dongxin Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Xijier Qiaolongbatu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Xiaojing Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, PR China.
| | - Jiaqi Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, PR China.
| | - Feng Qian
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Yuefen Lou
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, PR China.
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, PR China.
| |
Collapse
|
36
|
Liu J, Fu M, Miao J, Sun Y, Zhu R, Liu C, Bi R, Wang S, Cao X. The toxicity of cooking oil fumes on human bronchial epithelial cells through ROS-mediated MAPK, NF-κB signaling pathways and NLRP3 inflammasome. ENVIRONMENTAL TOXICOLOGY 2022; 37:1071-1080. [PMID: 35060675 DOI: 10.1002/tox.23465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Cooking oil fumes (COFs) are the main pollutants in kitchen and indoor air, which threaten human health. Exposure to COFs may lead to respiratory diseases and impair pulmonary function. To investigate the toxicity of COFs on human bronchial epithelial cells (Beas-2B) and explore the underlying mechanisms, MTT assay was conducted to detect the viability of Beas-2B. Intracellular reactive oxygen species (ROS) levels and nitric oxide (NO) levels were determined with DCFH-DA assay and DAF-FM assay. The expression of genes involved in inflammation were measured with quantitative real-time PCR (qRT-PCR). The phosphorylation and the expression of proteins related to Mitogen-activated protein kinase (MAPK), NF-κB signaling pathways were measured with western blot. Our results revealed that COFs decreased cell viability, increased the ROS levels and NO levels and induced apoptosis in Beas-2B cells. The results of qRT-PCR and western blot showed that the expression of NLRP3, p65, iNOS, IL-1β, and the factors related to oxidative stress and inflammation increased, NF-κB signaling pathway and MAPK signaling pathway were activated. This study provided some useful information to evaluate the toxicity of COFs and revealed the possible mechanism for the damage on respiratory system induced by COFs.
Collapse
Affiliation(s)
- Jianli Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Mingyang Fu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Jingyi Miao
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Yueling Sun
- School Hospital, Liaoning University, Shenyang, China
| | - Rugang Zhu
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang, China
| | - Chengying Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Ruochen Bi
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Shuai Wang
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Xiangyu Cao
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| |
Collapse
|
37
|
Ding L, Li Y, Yang Y, Song S, Qi H, Wang J, Wang Z, Zhao J, Zhang W, Zhao L, Zhao D, Li X, Wang Z. Wenfei Buqi Tongluo Formula Against Bleomycin-Induced Pulmonary Fibrosis by Inhibiting TGF-β/Smad3 Pathway. Front Pharmacol 2022; 12:762998. [PMID: 35126110 PMCID: PMC8814462 DOI: 10.3389/fphar.2021.762998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/14/2021] [Indexed: 01/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is the end stage of various chronic and progressive interstitial lung diseases. TGF-β, a profibrotic cytokine, can promote epithelial–mesenchymal transition (EMT), extracellular matrix (ECM) accumulation, and fibroblast proliferation, which contribute to progressive lung remodeling in PF. The Wenfei Buqi Tongluo (WBT) formula has been certified to be effective in the prevention and treatment of PF in clinical practice and has inhibitory effects on EMT, inflammation, and profibrotic factors. However, the pharmacological mechanisms of WBT against PF need to be further explored. In this study, we first analyzed the chemical components of the WBT formula using the UHPLC/Q-TOF-MS analysis. The potential targets of the identified compounds from WBT were predicted by the network pharmacology, which was confirmed by in vivo and in vitro study. After screening by the PubChem database, we first identified the 36 compounds of WBT and predicted the TGF-β signaling pathway, with ECM degradation as potential mechanism of WBT against PF by the network pharmacology. Furthermore, WBT treatment inhibited the levels of TGF-β and Smad3 phosphorylation and subsequently alleviated EMT and ECM accumulation in the bleomycin-induced mouse model and TGF-β1–induced cell model. These findings indicate that WBT can block the progressive process of PF by inhibiting EMT and promoting ECM degradation via the TGF-β/Smad3 pathway. This study may provide new insights into the molecular mechanism of WBT for the prevention and treatment of PF in the clinical application.
Collapse
Affiliation(s)
- Lu Ding
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yaxin Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yingying Yang
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Song
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Wang
- Department of Respiratory, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Ziyuan Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jiachao Zhao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wei Zhang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun, China
| | - Linhua Zhao
- Molecular Biology Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
38
|
Zhu Q, Li K, Li H, Han F, Tang Z, Wang Z. Ketamine Induced Bladder Fibrosis Through MTDH/P38 MAPK/EMT Pathway. Front Pharmacol 2022; 12:743682. [PMID: 35153736 PMCID: PMC8837385 DOI: 10.3389/fphar.2021.743682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/29/2021] [Indexed: 01/14/2023] Open
Abstract
Purpose: Ketamine is an anesthetic in clinical, but it has also been used as an abusing drug due to its low price and hallucinogenic effects. It is proved that ketamine abusing would cause multiple system damage including the urinary system, which is called ketamine-induced cystitis (KIC). Bladder fibrosis is late stage in KIC and threaten abusers’ life. This study aimed to investigate the molecular mechanism of ketamine-induced bladder fibrosis.Methods: Female Sprague Dawley (SD) rats were randomly divided into 3 groups. 2 groups were treated with tail vein injection of ketamine (25 mg/kg/day, 50 mg/kg/day ketamine hydrochloride solution, respectively) for 12 weeks, whereas the control group was treated with normal saline solution. In each group, rat bladders were extracted and samples were examined for pathological and morphological alterations via hematoxylin and eosin (HE) staining, Masson’s trichrome staining and immunohistochemistry (IHC). SV-HUC-1 cells were treated with different concentrations of ketamine solution (0, 0.1, 0.5, 1 mmol/L). Rat bladder and SV-HUC-1 cells were extracted protein and RNA for Western blot and RT-PCR detection. Metadherin (MTDH) siRNAs and overexpression plasmids were used to knock down and overexpress the relative genes. P38 mitogen-activated protein kinase (MAPK) inhibitor was utilized to inhibit the MAPK pathway.Results: Rats in the ketamine group exhibited fibrosis compared to rats of the control group and fibrosis were also markedly upregulated in SV-HUC-1 cells after treated with ketamine, which were ketamine concentration-dependent. After treating with ketamine in SV-HUC-1 cells, there was an increase expression of MTDH, epithelial-mesenchymal transition (EMT) markers, P38 MAPK. MTDH knockdown would suppresses P38 MAPK/EMT pathway to inhibit fibrosis, however, MTDH overexpression could promote the pathway in SV-HUC-1 cells.Conclusion: In rats and SV-HUC-1 cells ketamine-treated models, MTDH can regulate EMT through the P38 MAPK pathway to regulate the process of bladder fibrosis.
Collapse
Affiliation(s)
- Quan Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kaixuan Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haozhen Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Feng Han
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengyan Tang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Changsha, China
| | - Zhao Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhao Wang,
| |
Collapse
|
39
|
Guo H, Ouyang Y, Yin H, Cui H, Deng H, Liu H, Jian Z, Fang J, Zuo Z, Wang X, Zhao L, Zhu Y, Geng Y, Ouyang P. Induction of autophagy via the ROS-dependent AMPK-mTOR pathway protects copper-induced spermatogenesis disorder. Redox Biol 2022; 49:102227. [PMID: 34979450 PMCID: PMC8728583 DOI: 10.1016/j.redox.2021.102227] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 12/26/2022] Open
Abstract
Copper (Cu) is a necessary micronutrient at lower concentration, while excessive Cu exposure or Cu homeostasis disorders can lead to toxicity. The mechanism of male reproductive toxicity induced by Cu is still unknown. This study aims to investigate whether autophagy plays an important role in copper-induced spermatogenesis disorder in vivo and vitro. The present study showed that copper sulfate (CuSO4) might significantly promote autophagy level in the testis and mouse-derived spermatogonia cell line GC-1 spg cells. Concurrently, CuSO4 could induce autophagy via AMPK-mTOR pathway that downregulated p-mTOR/mTOR and subsequently upregulated p-AMPKα/AMPKα as well as p-ULK1/ULK1. In the meanwhile, CuSO4 treatment could also increase expression levels of the autophagy-related proteins. Then, the role of oxidative stress in CuSO4-induced autophagy was investigated. The findings demonstrated that oxidative stress inhibitor (NAC) attenuated CuSO4-induced autophagy in vivo and vitro, reversing the activation for AMPK-mTOR pathway. Additionally, the study also investigated how autophagy worked under the spermatogenesis disorder induced by CuSO4. Inhibition of autophagy could decrease cell viability, and enhance the ROS accumulation and apoptosis in the GC-1 cells, meanwhile, the spermatogenesis disorder, oxidative stress and histopathological changes were increased in the testis. Furthermore, co-treatment with the apoptosis inhibitor (Z-VAD-FMK) could decrease the spermatogenesis disorder but not influence autophagy. Besides, the crosslink between autophagy and ferroptosis were also measured, the data showed that inhibition of autophagy could suppress CuSO4-induced ferroptosis in in vivo and vitro. Altogether, abovementioned results indicated that CuSO4 induced autophagy via oxidative stress-dependent AMPK-mTOR pathway in the GC-1 cells and testis, and autophagy activation possibly led to the generation of protection mechanism through oxidative damage and apoptosis inhibition, however, autophagy also aggravate CuSO4 toxicology through promoting ferroptosis. Overall, autophagy plays a positive role for attenuating CuSO4-induced testicular damage and spermatogenesis disorder. Our study provides a possible targeted therapy for Cu overload-induced reproduction toxicology.
Collapse
Affiliation(s)
- Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Yujuan Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Heng Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Agricultural Information Engineering of Sichuan Province, Sichuan Agriculture University, Yaan, Sichuan, 625014, China.
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
| | - Huan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| |
Collapse
|
40
|
Huang JQ, Zhang H, Guo XW, Lu Y, Wang SN, Cheng B, Dong SH, Lyu XL, Li FS, Li YW. Mechanically Activated Calcium Channel PIEZO1 Modulates Radiation-Induced Epithelial-Mesenchymal Transition by Forming a Positive Feedback With TGF-β1. Front Mol Biosci 2021; 8:725275. [PMID: 34722630 PMCID: PMC8548710 DOI: 10.3389/fmolb.2021.725275] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
TGF-β-centered epithelial-mesenchymal transition (EMT) is a key process involved in radiation-induced pulmonary injury (RIPI) and pulmonary fibrosis. PIEZO1, a mechanosensitive calcium channel, is expressed in myeloid cell and has been found to play an important role in bleomycin-induced pulmonary fibrosis. Whether PIEZO1 is related with radiation-induced EMT remains elusive. Herein, we found that PIEZO1 is functional in rat primary type II epithelial cells and RLE-6TN cells. After irradiation, PIEZO1 expression was increased in rat lung alveolar type II epithelial cells and RLE-6TN cell line, which was accompanied with EMT changes evidenced by increased TGF-β1, N-cadherin, Vimentin, Fibronectin, and α-SMA expression and decreased E-cadherin expression. Addition of exogenous TGF-β1 further enhanced these phenomena in vitro. Knockdown of PIEZO1 partly reverses radiation-induced EMT in vitro. Mechanistically, we found that activation of PIEZO1 could upregulate TGF-β1 expression and promote EMT through Ca2+/HIF-1α signaling. Knockdown of HIF-1α partly reverses enhanced TGF-β1 expression caused by radiation. Meanwhile, the expression of PIEZO1 was up-regulated after TGF-β1 co-culture, and the mechanism could be traced to the inhibition of transcription factor C/EBPβ expression by TGF-β1. Irradiation also caused a decrease in C/EBPβ expression in RLE-6TN cells. Dual luciferase reporter assay and chromatin immunoprecipitation assay (ChIP) confirmed that C/EBPβ represses PIEZO1 expression by binding to the PIEZO1 promoter. Furthermore, overexpression of C/EBPβ by using the synonymous mutation to C/EBPβ siRNA could reverse siRNA-induced upregulation of PIEZO1. In summary, our research suggests a critical role of PIEZO1 signaling in radiation-induced EMT by forming positive feedback with TGF-β1.
Collapse
Affiliation(s)
- Jia-Qi Huang
- The Postgraduate Training Base of Jinzhou Medical University (The PLA Rocket Force Characteristic Medical Center), Beijing, China.,Department of Anesthesiology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Hao Zhang
- Department of Anesthesiology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xue-Wei Guo
- The Postgraduate Training Base of Jinzhou Medical University (The PLA Rocket Force Characteristic Medical Center), Beijing, China.,Department of Anesthesiology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yan Lu
- Department of Neurology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Si-Nian Wang
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Bo Cheng
- Pathology Department, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Su-He Dong
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xiao-Li Lyu
- Medical College of Soochow University, Suzhou, China
| | - Feng-Sheng Li
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yong-Wang Li
- Department of Anesthesiology, The PLA Rocket Force Characteristic Medical Center, Beijing, China.,The Third people's Hospital of Longgang District Shenzhen, Shenzhen, China
| |
Collapse
|
41
|
miR-138 inhibits epithelial-mesenchymal transition in silica-induced pulmonary fibrosis by regulating ZEB2. Toxicology 2021; 461:152925. [PMID: 34481903 DOI: 10.1016/j.tox.2021.152925] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022]
Abstract
Silica dust is a common pollutant in the occupational environment, such as coal mines. Inhalation of silica dust can cause progressive pulmonary fibrosis and then silicosis. Silicosis is still one of the most harmful occupational diseases in the world, so the study of its pathogenesis is necessary for the treatment of silicosis. In this study, we constructed a mouse model of pulmonary fibrosis via intratracheal instillation of silica particles and identified the decreased expression of miR-138 in fibrotic lung tissues of mice. Moreover, the overexpression of miR-138 retarded the process of epithelial-mesenchymal transition (EMT) in a mouse model of silica particles exposure and epithelial cells stimulated by silica particles. Further studies showed that ZEB2 was one of the potential targets of miR-138, and the up-regulation of miR-138 reduced ZEB2 levels in mouse lung tissues and in epithelial cells. We next found that the expression levels of ɑ-SMA and Vimentin were significantly increased and E-cadherin levels were decreased after transfection with miR-138 inhibitor in epithelial cells. However, these effects were abated by the knockdown of ZEB2. Consistently, the increased migration ability of epithelial cells by miR-138 inhibitor transfection was also reversed by the knockdown of ZEB2. Collectively, we revealed that miR-138 significantly targeted ZEB2, thus inhibited the EMT process and mitigated the development of pulmonary fibrosis. miR-138 may be a potential target for the treatment of pulmonary fibrosis.
Collapse
|
42
|
Zeng XP, Zeng JH, Lin X, Ni YH, Jiang CS, Li DZ, He XJ, Wang R, Wang W. Puerarin Ameliorates Caerulein-Induced Chronic Pancreatitis via Inhibition of MAPK Signaling Pathway. Front Pharmacol 2021; 12:686992. [PMID: 34149430 PMCID: PMC8207514 DOI: 10.3389/fphar.2021.686992] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023] Open
Abstract
Pancreatic fibrosis is one of the most important pathological features of chronic pancreatitis (CP), and pancreatic stellate cells (PSCs) are considered to be the key cells. Puerarin is the most important flavonoid active component in Chinese herb Radix Puerariae, and it exhibited anti-fibrotic effect in various fibrous diseases recently. However, the impact and molecular mechanism of puerarin on CP and pancreatic fibrosis remain unknown. This study systematically investigated the effect of puerarin on CP and pancreatic fibrosis in vivo and in vitro. H&E staining, Sirius Red staining, qRT-PCR and Western blotting analysis of fibrosis and inflammation related genes of pancreatic tissues showed that puerarin notably ameliorated pancreatic atrophy, inflammation and fibrosis in a model of caerulein-induced murine CP. Western blotting analysis of pancreatic tissues showed the phosphorylation level of MAPK family proteins (JNK1/2, ERK1/2 and p38 MAPK) significantly increased after modeling of cerulein, while puerarin could inhibit their phosphorylation levels to a certain extent. We found that puerarin exerted a marked inhibition on the proliferation, migration and activation of PSCs, determined by CCK-8 assay, transwell migration assay, scratch wound-healing assay and expression levels of α-SMA, Fibronectin, Col1α1 and GFAP. Western blotting result demonstrated that puerarin markedly inhibited the phosphorylation of MAPK family proteins (JNK1/2, ERK1/2 and p38 MAPK) of PSCs in a dose-dependent manner whether or not stimulated by platelet-activating factor. In conclusion, the present study showed that puerarin could be a potential therapeutic candidate in the treatment of CP, and the MAPK pathway might be its important target.
Collapse
Affiliation(s)
- Xiang-Peng Zeng
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Jing-Hui Zeng
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Xia Lin
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Yan-Hong Ni
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Chuan-Shen Jiang
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Da-Zhou Li
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Xiao-Jian He
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Rong Wang
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Wen Wang
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Oriental Hospital Affiliated to Xiamen University, Fuzhou, China
| |
Collapse
|