1
|
Othman A, Gowda A, Andreescu D, Hassan MH, Babu SV, Seo J, Andreescu S. Two decades of ceria nanoparticle research: structure, properties and emerging applications. MATERIALS HORIZONS 2024; 11:3213-3266. [PMID: 38717455 DOI: 10.1039/d4mh00055b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cerium oxide nanoparticles (CeNPs) are versatile materials with unique and unusual properties that vary depending on their surface chemistry, size, shape, coating, oxidation states, crystallinity, dopant, and structural and surface defects. This review encompasses advances made over the past twenty years in the development of CeNPs and ceria-based nanostructures, the structural determinants affecting their activity, and translation of these distinct features into applications. The two oxidation states of nanosized CeNPs (Ce3+/Ce4+) coexisting at the nanoscale level facilitate the formation of oxygen vacancies and defect states, which confer extremely high reactivity and oxygen buffering capacity and the ability to act as catalysts for oxidation and reduction reactions. However, the method of synthesis, surface functionalization, surface coating and defects are important factors in determining their properties. This review highlights key properties of CeNPs, their synthesis, interactions, and reaction pathways and provides examples of emerging applications. Due to their unique properties, CeNPs have become quintessential candidates for catalysis, chemical mechanical planarization (CMP), sensing, biomedical applications, and environmental remediation, with tremendous potential to create novel products and translational innovations in a wide range of industries. This review highlights the timely relevance and the transformative potential of these materials in addressing societal challenges and driving technological advancements across these fields.
Collapse
Affiliation(s)
- Ali Othman
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Akshay Gowda
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Daniel Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| | - Mohamed H Hassan
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| | - S V Babu
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Jihoon Seo
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| |
Collapse
|
2
|
Xi H, Shi Z, Wu P, Pan N, You T, Gao Y, Yin P. A novel SERS sensor array based on AuNRs and AuNSs inverse-etching for the discrimination of five antioxidants. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123082. [PMID: 37413919 DOI: 10.1016/j.saa.2023.123082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Antioxidants play an important role in life health and food safety. Herein, an inverse-etching platform based on gold nanorods (AuNRs) and gold nanostars (AuNSs) for high-throughput discrimination of antioxidants was constructed. Under the action of hydrogen peroxide (H2O2) and horseradish peroxidase (HRP), 3,3',5,5'-tetramethylbenzidine (TMB) would be oxidized to TMB+ or TMB2+. HRP reacts with H2O2 to release oxygen free radicals, which then react with TMB. Au nanomaterials can react with TMB2+, at the same time, Au was oxidized into Au (I), leading to the etching of the shape. Antioxidants, with good reduction ability, would prevent the further oxidation of TMB+ to TMB2+. So the presence of antioxidants will prevent further oxidation while avoiding the etching of Au in the catalytic oxidation process, thereby achieved inverse etching. Distinctive surface enhanced Raman scattering (SERS) fingerprint of five antioxidants were obtained based on the differential ability to scavenge free radicals. Five antioxidants, including ascorbic acid (AA), melatonin (Mel), glutathione (GSH), tea polyphenols (TPP), and uric acid (UA) were successfully distinguished by using linear discriminant analysis (LDA), heat map analysis and hierarchical cluster analysis (HCA). The study exhibits an effective inverse-etching based SERS sensor array for the response of antioxidants, which has great reference value in the field of human disease and food detection.
Collapse
Affiliation(s)
- Hongyan Xi
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, China
| | - Ziqian Shi
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, China
| | - Pengfei Wu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, China
| | - Niu Pan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, China
| | - Tingting You
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, China
| | - Yukun Gao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, China.
| | - Penggang Yin
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, China.
| |
Collapse
|
3
|
Goldoni R, Thomaz DV, Strambini L, Tumedei M, Dongiovanni P, Isola G, Tartaglia G. Quality-by-Design R&D of a Novel Nanozyme-Based Sensor for Saliva Antioxidant Capacity Evaluation. Antioxidants (Basel) 2023; 12:1120. [PMID: 37237985 PMCID: PMC10215665 DOI: 10.3390/antiox12051120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative stress is one of the main causes of cell damage, leading to the onset of several diseases, and antioxidants represent a barrier against the production of reactive species. Saliva is receiving increasing interest as a promising biofluid to study the onset of diseases and assess the overall health status of an individual. The antioxidant capacity of saliva can be a useful indicator of the health status of the oral cavity, and it is nowadays evaluated mainly through spectroscopic methods that rely on benchtop machines and liquid reagents. We developed a low-cost screen-printed sensor based on cerium oxide nanoparticles that can be used to assess the antioxidant capacity of biofluids as an alternative to traditional methods. The sensor development process was investigated via a quality-by-design approach to identify the most critical parameters of the process for further optimization. The sensor was tested in the detection of ascorbic acid, which is used as an equivalent in the assessment of overall antioxidant capacity. The LoDs ranged from 0.1147 to 0.3528 mM, while the recoveries varied from 80% to 121.1%, being therefore comparable with those of the golden standard SAT test, whose recovery value was 96.3%. Therefore, the sensor achieved a satisfactory sensitivity and linearity in the range of clinical interest for saliva and was validated against the state-of-the-art equipment for antioxidant capacity evaluation.
Collapse
Affiliation(s)
- Riccardo Goldoni
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico Di Milano, 20133 Milan, Italy
- CNR-Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, 56122 Pisa, Italy;
| | - Douglas Vieira Thomaz
- National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy;
| | - Lucanos Strambini
- CNR-Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, 56122 Pisa, Italy;
| | - Margherita Tumedei
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20100 Milan, Italy;
- UOC Maxillo-Facial Surgery and Dentistry Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy;
| | - Gianluca Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20100 Milan, Italy;
- UOC Maxillo-Facial Surgery and Dentistry Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
4
|
Nanomaterials-based electrochemical sensors for the detection of natural antioxidants in food and biological samples: research progress. Mikrochim Acta 2022; 189:318. [PMID: 35931898 DOI: 10.1007/s00604-022-05403-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/02/2022] [Indexed: 10/16/2022]
Abstract
Antioxidants are healthy substances that are beneficial to the human body and exist mainly in natural and synthetic forms. Among many kinds of antioxidants, the natural antioxidants have great applications in many fields such as food chemistry, medical care, and clinical application. In recent years, many efforts have been made for the determination of natural antioxidants. Nano-electrochemical sensors combining electrochemistry and nanotechnology have been widely used in the determination of natural antioxidants due to their unique advantages. Therefore, a large number of nanomaterials such as metal oxide, carbon materials, and conducting polymer have attracted much attention in the field of electrochemical sensors due to their good catalytic effect and stable performance. This review mainly introduces the construction of electrochemical sensors based on different nanomaterials, such as metallic nanomaterials, metal oxide nanomaterials, carbon nanomaterials, metal-organic frameworks, polymer nanomaterials, and other nanocomposites, and their application to the detection of natural antioxidants, including ascorbic acid, phenolic acids, flavonoid, tryptophan, citric acid, and other natural antioxidants. In the end, the limitations of the existing nano-sensing technology, the latest development trend, and the application prospect for various natural antioxidant substances are summarized and analyzed. We expect that this review will be helpful to researchers engaged in electrochemical sensors.
Collapse
|
5
|
Saifi MA, Seal S, Godugu C. Nanoceria, the versatile nanoparticles: Promising biomedical applications. J Control Release 2021; 338:164-189. [PMID: 34425166 DOI: 10.1016/j.jconrel.2021.08.033] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022]
Abstract
Nanotechnology has been a boon for the biomedical field due to the freedom it provides for tailoring of pharmacokinetic properties of different drug molecules. Nanomedicine is the medical application of nanotechnology for the diagnosis, treatment and/or management of the diseases. Cerium oxide nanoparticles (CNPs) are metal oxide-based nanoparticles (NPs) which possess outstanding reactive oxygen species (ROS) scavenging activities primarily due to the availability of "oxidation switch" on their surface. These NP have been found to protect from a number of disorders with a background of oxidative stress such as cancer, diabetes etc. In fact, the CNPs have been found to possess the environment-dependent ROS modulating properties. In addition, the inherent catalase, SOD, oxidase, peroxidase and phosphatase mimetic properties of CNPs provide them superiority over a number of NPs. Further, chemical reactivity of CNPs seems to be a function of their surface chemistry which can be precisely tuned by defect engineering. However, the contradictory reports make it necessary to critically evaluate the potential of CNPs, in the light of available literature. The review is aimed at probing the feasibility of CNPs to push towards the clinical studies. Further, we have also covered and censoriously discussed the suspected negative impacts of CNPs before making our way to a consensus. This review aims to be a comprehensive, authoritative, critical, and accessible review of general interest to the scientific community.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Sudipta Seal
- University of Central Florida, 12760 Pegasus Drive ENG I, Suite 207, Orlando, FL 32816, USA
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
6
|
Abstract
Nanoscale cerium oxide has excellent catalytic performance due to its unique surface properties and has very important applications in various fields. In this paper, the synthesis methods, catalytic mechanism and activity regulation of nanoscale cerium oxide in recent years are reviewed. Secondly, the application of cerium oxide in the detection of organic and inorganic molecules is summarized, and its latest progress and applications in antibacterial, antioxidant and anticancer are discussed. Finally, the future development prospect of nanoscale cerium oxide is summarized and prospected.
Collapse
|
7
|
|
8
|
Enzymatic Electroanalytical Biosensor Based on Maramiellus colocasiae Fungus for Detection of Phytomarkers in Infusions and Green Tea Kombucha. BIOSENSORS-BASEL 2021; 11:bios11030091. [PMID: 33810105 PMCID: PMC8004623 DOI: 10.3390/bios11030091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022]
Abstract
In this work, we developed an enzymatic voltammetric biosensor for the determination of catechin and gallic acid in green tea and kombucha samples. The differential pulse voltammetry (DPV) methodology was optimized regarding the amount of crude enzyme extract, incubation time in the presence of the substrates, optimal pH, reuse of the biosensor, and storage time. Samples of green tea and kombucha were purchased in local markets in the city of Goiânia-GO, Brazil. High performance liquid chromatography (HPLC) and Folin-Ciocalteu spectrophotometric techniques were performed for the comparison of the analytical methods employed. In addition, two calibration curves were made, one for catechin with a linear range from 1 to 60 µM (I = −0.152 * (catechin) − 1.846), with a detection limit of 0.12 µM and a quantification limit of 0.38 µM and one for gallic acid with a linear range from 3 to 60 µM (I = −0.0415 * (gallic acid) − 0.0572), with a detection limit of 0.14 µM and a quantification limit of 0.42 µM. The proposed biosensor was efficient in the determination of phenolic compounds in green tea.
Collapse
|
9
|
The Importance of Developing Electrochemical Sensors Based on Molecularly Imprinted Polymers for a Rapid Detection of Antioxidants. Antioxidants (Basel) 2021; 10:antiox10030382. [PMID: 33806514 PMCID: PMC8001462 DOI: 10.3390/antiox10030382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 12/30/2022] Open
Abstract
This review aims to pin out the importance of developing a technique for rapid detection of antioxidants, based on molecular imprinting techniques. It covers three major areas that have made great progress over the years in the field of research, namely: antioxidants characterization, molecular imprinting and electrochemistry, alone or combined. It also reveals the importance of bringing these three areas together for a good evaluation of antioxidants in a simple or complex medium, based on selectivity and specificity. Although numerous studies have associated antioxidants with molecular imprinting, or antioxidants with electrochemistry, but even electrochemistry with molecular imprinting to valorize different compounds, the growing prominence of antioxidants in the food, medical, and paramedical sectors deserves to combine the three areas, which may lead to innovative industrial applications with satisfactory results for both manufacturers and consumers.
Collapse
|
10
|
Nejadmansouri M, Majdinasab M, Nunes GS, Marty JL. An Overview of Optical and Electrochemical Sensors and Biosensors for Analysis of Antioxidants in Food during the Last 5 Years. SENSORS (BASEL, SWITZERLAND) 2021; 21:1176. [PMID: 33562374 PMCID: PMC7915219 DOI: 10.3390/s21041176] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Antioxidants are a group of healthy substances which are useful to human health because of their antihistaminic, anticancer, anti-inflammatory activity and inhibitory effect on the formation and the actions of reactive oxygen species. Generally, they are phenolic complexes present in plant-derived foods. Due to the valuable nutritional role of these mixtures, analysis and determining their amount in food is of particular importance. In recent years, many attempts have been made to supply uncomplicated, rapid, economical and user-friendly analytical approaches for the on-site detection and antioxidant capacity (AOC) determination of food antioxidants. In this regards, sensors and biosensors are regarded as favorable tools for antioxidant analysis because of their special features like high sensitivity, rapid detection time, ease of use, and ease of miniaturization. In this review, current five-year progresses in different types of optical and electrochemical sensors/biosensors for the analysis of antioxidants in foods are discussed and evaluated well. Moreover, advantages, limitations, and the potential for practical applications of each type of sensors/biosensors have been discussed. This review aims to prove how sensors/biosensors represent reliable alternatives to conventional methods for antioxidant analysis.
Collapse
Affiliation(s)
- Maryam Nejadmansouri
- Department of Food Science & Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Marjan Majdinasab
- Department of Food Science & Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Gilvanda S Nunes
- Pesticide Residue Analysis Center, Federal University of Maranhao, 65080-040 Sao Luis, Brazil
| | - Jean Louis Marty
- Faculty of Sciences, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX 9, France
| |
Collapse
|
11
|
Chikere C, Hobben E, Faisal NH, Kong-Thoo-Lin P, Fernandez C. Electroanalytical determination of gallic acid in red and white wine samples using cobalt oxide nanoparticles-modified carbon-paste electrodes. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105668] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Comparative study of different methodologies for the determination the antioxidant activity of Venezuelan propolis. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Pop OL, Mesaros A, Vodnar DC, Suharoschi R, Tăbăran F, Magerușan L, Tódor IS, Diaconeasa Z, Balint A, Ciontea L, Socaciu C. Cerium Oxide Nanoparticles and Their Efficient Antibacterial Application In Vitro against Gram-Positive and Gram-Negative Pathogens. NANOMATERIALS 2020; 10:nano10081614. [PMID: 32824660 PMCID: PMC7466638 DOI: 10.3390/nano10081614] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023]
Abstract
In this study, the antibacterial activity of cerium oxide nanoparticles on two Gram-negative and three Gram-positive foodborne pathogens was investigated. CeO2 nanoparticles (CeO2 nps) were synthesized by a Wet Chemical Synthesis route, using the precipitation method and the Simultaneous Addition of reactants (WCS–SimAdd). The as-obtained precursor powders were investigated by thermal analysis (TG–DTA), to study their decomposition process and to understand the CeO2 nps formation. The composition, structure, and morphology of the thermally treated sample were investigated by FTIR, Raman spectroscopy, X-ray diffraction, TEM, and DLS. The cubic structure and average particle size ranging between 5 and 15 nm were evidenced. Optical absorption measurements (UV–Vis) reveal that the band gap of CeO2 is 2.61 eV, which is smaller than the band gap of bulk ceria. The antioxidant effect of CeO2 nps was determined, and the antibacterial test was carried out both in liquid and on solid growth media against five pathogenic microorganisms, namely Escherichia coli, Salmonella typhimurium, Listeria monocytogenes, Staphylococcus aureus, and Bacillus cereus. Cerium oxide nanoparticles showed growth inhibition toward all five pathogens tested with notable results. This paper highlights the perspectives for the synthesis of CeO2 nps with controlled structural and morphological characteristics and enhanced antibacterial properties, using a versatile and low-cost chemical solution method.
Collapse
Affiliation(s)
- Oana L. Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (O.L.P.); (D.C.V.); (R.S.); (Z.D.); (C.S.)
| | - Amalia Mesaros
- Physics and Chemistry Department, C4S Centre, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; (A.B.); (L.C.)
- Correspondence:
| | - Dan C. Vodnar
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (O.L.P.); (D.C.V.); (R.S.); (Z.D.); (C.S.)
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (O.L.P.); (D.C.V.); (R.S.); (Z.D.); (C.S.)
| | - Flaviu Tăbăran
- Department of Pathology, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Lidia Magerușan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293 Cluj-Napoca, Romania;
| | - István Sz. Tódor
- Faculty of Physics, Babeş-Bolyai University, 1st Kogălniceanu Street, 400084 Cluj-Napoca, Romania;
| | - Zoriţa Diaconeasa
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (O.L.P.); (D.C.V.); (R.S.); (Z.D.); (C.S.)
| | - Adriana Balint
- Physics and Chemistry Department, C4S Centre, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; (A.B.); (L.C.)
| | - Lelia Ciontea
- Physics and Chemistry Department, C4S Centre, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; (A.B.); (L.C.)
| | - Carmen Socaciu
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (O.L.P.); (D.C.V.); (R.S.); (Z.D.); (C.S.)
| |
Collapse
|
14
|
Stasyuk N, Smutok O, Demkiv O, Prokopiv T, Gayda G, Nisnevitch M, Gonchar M. Synthesis, Catalytic Properties and Application in Biosensorics of Nanozymes and Electronanocatalysts: A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4509. [PMID: 32806607 PMCID: PMC7472306 DOI: 10.3390/s20164509] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
The current review is devoted to nanozymes, i.e., nanostructured artificial enzymes which mimic the catalytic properties of natural enzymes. Use of the term "nanozyme" in the literature as indicating an enzyme is not always justified. For example, it is used inappropriately for nanomaterials bound with electrodes that possess catalytic activity only when applying an electric potential. If the enzyme-like activity of such a material is not proven in solution (without applying the potential), such a catalyst should be named an "electronanocatalyst", not a nanozyme. This paper presents a review of the classification of the nanozymes, their advantages vs. natural enzymes, and potential practical applications. Special attention is paid to nanozyme synthesis methods (hydrothermal and solvothermal, chemical reduction, sol-gel method, co-precipitation, polymerization/polycondensation, electrochemical deposition). The catalytic performance of nanozymes is characterized, a critical point of view on catalytic parameters of nanozymes described in scientific papers is presented and typical mistakes are analyzed. The central part of the review relates to characterization of nanozymes which mimic natural enzymes with analytical importance ("nanoperoxidase", "nanooxidases", "nanolaccase") and their use in the construction of electro-chemical (bio)sensors ("nanosensors").
Collapse
Affiliation(s)
- Nataliya Stasyuk
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
| | - Oleh Smutok
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
| | - Olha Demkiv
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
- Faculty of Veterinary Hygiene, Ecology and Law, Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, 79000 Lviv, Ukraine
| | - Tetiana Prokopiv
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
| | - Galina Gayda
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
| | - Marina Nisnevitch
- Department of Chemical Engineering, Ariel University, Kyriat-ha-Mada, Ariel 4070000, Israel;
| | - Mykhailo Gonchar
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
| |
Collapse
|
15
|
Raymundo‐Pereira PA, Gomes NO, Carvalho JHS, Machado SAS, Oliveira ON, Janegitz BC. Simultaneous Detection of Quercetin and Carbendazim in Wine Samples Using Disposable Electrochemical Sensors. ChemElectroChem 2020. [DOI: 10.1002/celc.202000788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Nathalia O. Gomes
- São Carlos Institute of ChemistryUniversity of Sao Paulo CEP 13566–590 Sao Carlos, SP Brazil
| | - Jefferson H. S. Carvalho
- Department of Nature Sciences Mathematics and EducationFederal University of São Carlos CEP 13600–970 Araras, SP Brazil
| | - Sergio A. S. Machado
- São Carlos Institute of ChemistryUniversity of Sao Paulo CEP 13566–590 Sao Carlos, SP Brazil
| | - Osvaldo N. Oliveira
- São Carlos Institute of PhysicsUniversity of Sao Paulo CEP 13560–970 Sao Carlos, SP Brazil
| | - Bruno C. Janegitz
- Department of Nature Sciences Mathematics and EducationFederal University of São Carlos CEP 13600–970 Araras, SP Brazil
| |
Collapse
|
16
|
Mustafa F, Andreescu S. Nanotechnology-based approaches for food sensing and packaging applications. RSC Adv 2020; 10:19309-19336. [PMID: 35515480 PMCID: PMC9054203 DOI: 10.1039/d0ra01084g] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
The rapid advancement of nanotechnology has provided opportunities for the development of new sensing and food packaging solutions, addressing long-standing challenges in the food sector to extend shelf-life, reduce waste, assess safety and improve the quality of food. Nanomaterials can be used to reinforce mechanical strength, enhance gas barrier properties, increase water repellence, and provide antimicrobial and scavenging activity to food packaging. They can be incorporated in chemical and biological sensors enabling the design of rapid and sensitive devices to assess freshness, and detect allergens, toxins or pathogenic contaminants. This review summarizes recent studies on the use of nanomaterials in the development of: (1) (bio)sensing technologies for detection of nutritional and non-nutritional components, antioxidants, adulterants and toxicants, (2) methods to improve the barrier and mechanical properties of food packaging, and (3) active functional packaging. The environmental, health and safety implications of nanomaterials in the food sector, along with an overview of regulation and consumer perception is also provided.
Collapse
Affiliation(s)
- Fatima Mustafa
- Department of Chemistry and Biomolecular Science, Clarkson University Potsdam New York 13699-5810 USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University Potsdam New York 13699-5810 USA
| |
Collapse
|
17
|
Ghorbanpour M, Bhargava P, Varma A, Choudhary DK, Ameta SC. Use of Nanomaterials in Food Science. BIOGENIC NANO-PARTICLES AND THEIR USE IN AGRO-ECOSYSTEMS 2020. [PMCID: PMC7120067 DOI: 10.1007/978-981-15-2985-6_24] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The current global population is nearly 6 billion; due to this rapid population growth, there is a need to produce food in a more efficient, safe, and sustainable way, and it should be safe from the adverse effects of pathogenic organisms. A large proportion of population living in developing countries face daily food shortages as a result of environmental impacts or some other reasons like political instability, etc., while in the developed countries, food is surplus. For developing countries, the objective is to develop drought- and pest-resistant crops, with maximized yield. In developed countries, the food industry depends on consumer’s demand for fresher and healthier foodstuffs. The present chapter describes the use of nanoparticles in food science.
Collapse
Affiliation(s)
- Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - Prachi Bhargava
- Department of Bioscience & Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh India
| | - Devendra K. Choudhary
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh India
| | | |
Collapse
|
18
|
Abstract
Electrochemical sensors and biosensors have been proposed as fast and cost effective analytical tools, meeting the robustness and performance requirements for industrial process monitoring. In wine production, electrochemical biosensors have proven useful for monitoring critical parameters related to alcoholic fermentation (AF), malolactic fermentation (MLF), determining the impact of the various technological steps and treatments on wine quality, or assessing the differences due to wine age, grape variety, vineyard or geographical region. This review summarizes the current information on the voltamperometric biosensors developed for monitoring wine production with a focus on sensing concepts tested in industry-like settings and on the main quality parameters such as glucose, alcohol, malic and lactic acids, phenolic compounds and allergens. Recent progress featuring nanomaterial-enabled enhancement of sensor performance and applications based on screen-printed electrodes is emphasized. A case study presents the monitoring of alcoholic fermentation based on commercial biosensors adapted with minimal method development for the detection of glucose and phenolic compounds in wine and included in an automated monitoring system. The current challenges and perspectives for the wider application of electrochemical sensors in monitoring industrial processes such as wine production are discussed.
Collapse
|
19
|
Rocha P, Vilas‐Boas Â, Fontes N, Geraldo D, Bento F. Evaluation of Polyphenols in Wine by Voltammetric Techniques with Screen Printed Carbon Electrodes. ELECTROANAL 2019. [DOI: 10.1002/elan.201900392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Pedro Rocha
- Centre of ChemistryUniversidade do Minho Braga Portugal
| | | | | | - Dulce Geraldo
- Centre of ChemistryUniversidade do Minho Braga Portugal
| | - Fátima Bento
- Centre of ChemistryUniversidade do Minho Braga Portugal
- Departamento de QuímicaUniversidade do Minho Campus de Gualtar 4710-057 Braga Portugal
| |
Collapse
|
20
|
Tortolini C, Bollella P, Zumpano R, Favero G, Mazzei F, Antiochia R. Metal Oxide Nanoparticle Based Electrochemical Sensor for Total Antioxidant Capacity (TAC) Detection in Wine Samples. BIOSENSORS-BASEL 2018; 8:bios8040108. [PMID: 30441783 PMCID: PMC6316432 DOI: 10.3390/bios8040108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022]
Abstract
A single-use electrochemical screen-printed electrode is reported based on biomimetic properties of nanoceria particles (CeNPs). The developed tool showed an easy approach compared to the classical spectrophotometric methods reported in literature in terms of ease of use, cost, portability, and unnecessary secondary reagents. The sensor allowed the detection of the total antioxidant capacity (TAC) in wine samples. The sensor has been optimized and characterized electrochemically and then tested with antioxidant compounds occurred in wine samples. The electrochemical CeNPs modified sensor has been used for detection of TAC in white and red commercial wines and the data compared to the 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS)-based spectrophotometric method. Finally, the obtained results have demonstrated that the proposed sensor was suitable for the simple and quick evaluation of TAC in beverage samples.
Collapse
Affiliation(s)
- Cristina Tortolini
- Department of Chemistry and Drug Technologies, Sapienza University of Rome-P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Paolo Bollella
- Department of Chemistry and Drug Technologies, Sapienza University of Rome-P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Rosaceleste Zumpano
- Department of Chemistry and Drug Technologies, Sapienza University of Rome-P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Gabriele Favero
- Department of Chemistry and Drug Technologies, Sapienza University of Rome-P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Franco Mazzei
- Department of Chemistry and Drug Technologies, Sapienza University of Rome-P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome-P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
21
|
Della Pelle F, Compagnone D. Nanomaterial-Based Sensing and Biosensing of Phenolic Compounds and Related Antioxidant Capacity in Food. SENSORS 2018; 18:s18020462. [PMID: 29401719 PMCID: PMC5854963 DOI: 10.3390/s18020462] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 12/12/2022]
Abstract
Polyphenolic compounds (PCs) have received exceptional attention at the end of the past millennium and as much at the beginning of the new one. Undoubtedly, these compounds in foodstuffs provide added value for their well-known health benefits, for their technological role and also marketing. Many efforts have been made to provide simple, effective and user friendly analytical methods for the determination and antioxidant capacity (AOC) evaluation of food polyphenols. In a parallel track, over the last twenty years, nanomaterials (NMs) have made their entry in the analytical chemistry domain; NMs have, in fact, opened new paths for the development of analytical methods with the common aim to improve analytical performance and sustainability, becoming new tools in quality assurance of food and beverages. The aim of this review is to provide information on the most recent developments of new NMs-based tools and strategies for total polyphenols (TP) determination and AOC evaluation in food. In this review optical, electrochemical and bioelectrochemical approaches have been reviewed. The use of nanoparticles, quantum dots, carbon nanomaterials and hybrid materials for the detection of polyphenols is the main subject of the works reported. However, particular attention has been paid to the success of the application in real samples, in addition to the NMs. In particular, the discussion has been focused on methods/devices presenting, in the opinion of the authors, clear advancement in the fields, in terms of simplicity, rapidity and usability. This review aims to demonstrate how the NM-based approaches represent valid alternatives to classical methods for polyphenols analysis, and are mature to be integrated for the rapid quality assessment of food quality in lab or directly in the field.
Collapse
Affiliation(s)
- Flavio Della Pelle
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64023 Teramo, Italy.
| | - Dario Compagnone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64023 Teramo, Italy.
| |
Collapse
|
22
|
Affiliation(s)
- Guohua Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Junzhe Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Xiao He
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
- School of Physical Sciences; University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yuliang Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China; University of Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
23
|
Lubeckyj RA, Winkler-Moser JK, Fhaner MJ. Application of Differential Pulse Voltammetry to Determine the Efficiency of Stripping Tocopherols from Commercial Fish Oil. J AM OIL CHEM SOC 2017. [DOI: 10.1007/s11746-017-2968-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|