1
|
Naresh P, Roy SD, Pawaskar PV, Lokhande PS, Gajbhiye RL, Peraman R. Analytical quality by design guided white analytical chemistry driven green in the development of LC-ICP-MS method for arsenic speciation analysis in HEK-293 cells. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1252:124474. [PMID: 39842273 DOI: 10.1016/j.jchromb.2025.124474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/26/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
An analytical quality by design-guided LC-ICP-MS method for simultaneous arsenic speciation analysis in HEK-293 cells was optimized and validated. Initially, critical method variables (CMVs) were identified to achieve the targeted critical quality attribute (CQA) of the analytical target profile (ATP). Based on knowledge and risk assessments, formic acid (X1), citric acid (X2), and pH (X3) were studied for their effect on method responses such as resolutions (Y1, Y2) and retention time of As(V), As(III) and DMA (Y3, Y4, and Y5) using central composite design (CCD). ANOVA analysis indicated that variable interaction was significant in method responses with curvature effect on resolution (Y1 and Y2). The method operable design region (MODR) afforded a 0.1% formic acid, citric acid strength of 20-30 mM, and pH 5.6-6.8 as a robust region for the appropriate method performance. Hence, the final method was optimized on the ZORBAX RRHD SB-Aq column using a mobile phase consisting of 0.1% Formic acid: Citric acid (22.5 mM) (50:50 % v/v; pH 5.6). The optimized method eluted As(V), As(III), and DMA at 2.5 ± 0.1, 2.7 ± 0.1, and 3.1 ± 0.1 min, respectively, with an acceptable resolution. The LOD of the method was 4.78, 3.39, 5.35 ppb respectively for As(V), As(III), and DMA whilst the linearity was established at 30-1000 ppb for all species with respective r2-value of 0.9967, 0.9996, and 0.9972, respectively. The % recovery (77.11-99.64 %) and precision (0.25-1.95 %) were acceptable. The method has proven robust for method variables. Notably, we conducted the Green-white analytical chemistry assessment for the developed method by three different assessment tools viz., AGREES, GAPI, and RGB of 12 algorithms. The developed method demonstrated robustness, environmental friendliness, and user-friendliness.
Collapse
Affiliation(s)
- Pothuraju Naresh
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Bihar 844102 India
| | - Salona Devnath Roy
- Dept. of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar 844102, India; Biological and Agricultural Engineering Department, Louisiana State University, USA
| | - Prashant Vilas Pawaskar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Bihar 844102 India
| | - Puja Shamrao Lokhande
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Bihar 844102 India
| | - Rahul Laxman Gajbhiye
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Bihar 844102 India
| | - Ramalingam Peraman
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Bihar 844102 India.
| |
Collapse
|
2
|
Cai Z, Zhang Y, Zhang W, Ye J, Ling Q, Xing Z, Zhang S, Hoffmann PR, Liu Y, Yang W, Huang Z. Arsenic retention in erythrocytes and excessive erythrophagocytosis is related to low selenium status by impaired redox homeostasis. Redox Biol 2022; 52:102321. [PMID: 35500533 PMCID: PMC9065714 DOI: 10.1016/j.redox.2022.102321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 11/09/2022] Open
Abstract
Arsenic (As) contamination in drinking water is a global public health problem. Epidemiological studies have shown that selenium (Se) deficiency is associated with an increasing risk of arsenism. However, the association between Se status and As retention in erythrocytes and mechanisms underlying this association have not been fully investigated. In the present study, a total of 165 eligible subjects were recruited and As was found to accumulate in blood mainly by retention in erythrocytes. Retention of As in erythrocytes was negatively correlated with Se status, antioxidant parameters related to Se and As methylation capacity, but positively correlated with the protein-binding capacity of As. Additionally, erythrocytes isolated from subjects with low Se status exhibited cellular damage along with lower protein levels of CD47, which could be aggravated by hydrogen peroxide treatment. Consistent with the human study, the erythrocytes from mice with sub-chronic As exposure exhibited similar cellular damage and shown to be phagocytosed by splenic macrophages, and these effects were mitigated by dietary Se supplementation. Furthermore, hydrogen peroxide treatment induced excessive phagocytosis of erythrocytes with As exposure by splenic macrophages, while co-treating erythrocytes with the reducing agent, N-Acetyl-l-cysteine, mitigated this excessive erythrophagocytosis. Hyperactivation of the NFκB pathway was also detected in splenic macrophages after excessive erythrophagocytosis. In conclusion, this study found that low Se status involving impaired redox homeostasis increased As retention in erythrocytes, which were subsequently phagocytosed by splenic macrophages and led to an increased inflammatory status of splenic macrophages. These findings provide insight into physiological features of arsenism related to Se status and redox homeostasis.
Collapse
Affiliation(s)
- Zhihui Cai
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China
| | - Yutian Zhang
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China
| | - Weijie Zhang
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China
| | - Jinmin Ye
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China
| | - Qinjie Ling
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China
| | - Zhi Xing
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Sichun Zhang
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Youbin Liu
- Department of Cardiology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Weidong Yang
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China.
| | - Zhi Huang
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
3
|
Xu Q, Chen B, He M, Hu B. Ti (IV) modified vinyl phosphate magnetic nanoparticles for simultaneous preconcentration of multiple arsenic species from chicken samples followed by HPLC-ICP-MS analysis. Electrophoresis 2021; 42:465-472. [PMID: 33049065 DOI: 10.1002/elps.202000158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 11/06/2022]
Abstract
Ti (IV)-modified vinyl phosphate magnetic nanoparticles (Fe3 O4 @SiO2 @KH570-PO4 -Ti (IV)) was prepared for simultaneous extraction of multiple arsenic species, followed by high performance liquid chromatography (HPLC)- inductively coupled plasma mass spectrometry (ICP-MS) analysis. Inorganic arsenic (iAs), dimethyl arsenic acid (DMA), monomethyl arsenic acid (MMA), p-amino phenyl arsenic acid (p-ASA), 4-hdroxyphenylarsenic acid (4-OH), phenyl arsenic acid (PAA), and 3-nitro-4-hydroxyphenylarsenic acid (ROX) were investigated as interest analytes. It was found that they were quantitatively adsorbed on Fe3 O4 @SiO2 @KH570-PO4 -Ti (IV) at pH 5, and desorbed completely with 0.1 mol/L sodium hydroxide solution. Enrichment factor of 100-fold was obtained by consuming 100 mL sample solution. Under the optimal conditions, the method combining MSPE with HPLC-ICP-MS presented a linear range of 1-5000 ng/L for seven arsenic species. The limits of detection were 0.39, 0.60, 0.23, 1.85, 0.54, 0.48, and 0.84 ng/L for DMA, MMA, p-ASA, iAs, 4-OH, PAA, ROX, with the relative standard deviations (c = 10 ng/L, n = 7) of 3.6, 3.9, 5.5, 12.4, 6.1, 5.8, 5.0, respectively. The accuracy of the method was validated by analyzing BCR 627 Tuna fish. The application potential of the method was further evaluated by chicken muscle and liver samples. No target arsenic species were detected in these samples, and good recoveries (80.6-123%) were obtained for the spiked samples at low, medium, and high concentration levels.
Collapse
Affiliation(s)
- Qiuyue Xu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei Province, 430072, P. R. China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei Province, 430072, P. R. China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei Province, 430072, P. R. China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei Province, 430072, P. R. China
| |
Collapse
|
4
|
Jing C, Yu F, Zhang N, Liu Y, Wang H. Quantitative assessments of adenosine triphosphatase hydrolytic activity by ultrafiltration-coupled ion-pair reversed-phase high-performance liquid chromatography. J Sep Sci 2020; 43:3840-3846. [PMID: 32776712 DOI: 10.1002/jssc.202000561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/05/2020] [Accepted: 08/04/2020] [Indexed: 01/01/2023]
Abstract
Adenosine triphosphate is a universal energy currency that can directly provide energy required for a multitude of biochemical reactions and biophysical actions through adenosine triphosphatase catalyzed hydrolysis. Adenosine triphosphatase activity is thus one important feature for the characterization of protein function and cell activity. Herein, we optimized ion-pair reversed-phase high-performance liquid chromatography technique for highly efficient separation of adenosine triphosphate, adenosine diphosphate, and adenosine monophosphate, and the method demonstrated good linearity. Moreover, by coupling a protein-removable ultrafiltration, we developed a sensitive and robust approach for quantification of adenosine triphosphatase hydrolytic activity. By this assay, we demonstrated that RecA filaments-catalyzed adenosine triphosphate hydrolysis approached a second-order reaction, and its rate constant was estimated as 0.057 mM-1 min-1 . In addition, we explored the effects of DNA length on this reaction and revealed that the increase of the length of single-stranded DNA can promote the adenosine triphosphatase hydrolytic activity of RecA filaments. All these results confirm the feasibility of this new method in quantification of adenosine triphosphatase hydrolytic activity assays. Compared with previous complicated enzyme-coupled or homogeneous colorimetric measurements, the developed approach with high resolution separation allows a simple reaction system for adenosine triphosphatase assay and a sensitive detection free of interference from background noise.
Collapse
Affiliation(s)
- Changheng Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Fangzhi Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Ning Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P. R. China
| | - Yan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
5
|
Cheng L, Yang XA, Shi MT, Zhang WB. Rapid extraction of arsenic species from traditional Chinese herbal by dual-frequency ultrasound-assisted enzymatic digestion prior to spectral analysis. J Chromatogr A 2020; 1619:460915. [PMID: 32008824 DOI: 10.1016/j.chroma.2020.460915] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/18/2020] [Accepted: 01/22/2020] [Indexed: 01/06/2023]
Abstract
Considering the huge difference of biological toxicity, it is extremely significant to recognize the exact content of arsenic species in actual samples. In this paper, a novel pretreatment technique for the efficient extraction of arsenic species from herbal samples is developed by dual-frequency ultrasound-assisted enzymatic digestion (DUED). The preservation of arsenic original form, reduction of the actual analysis time, environmental friendliness and free-interference in subsequent detection make this method over the traditional method such as wet digestion, ashing and some solvent extraction technologies. The combination of DUED and atomic fluorescence spectrometry realize the speciation analysis of arsenic in traditional Chinese medicine. The optimizations of experimental parameters have been achieved, and the potential mechanism is discussed. The experimental data showed that cellulase is suitable for the digestion of herbal matrix than α-amylase and papain. Ultrasound can significantly increase the rate of enzymatic hydrolysis of biological molecules, especially under dual-frequency ultrasound irradiation. The highest relative extraction efficiency can be obtained by combining 40 kHz ultrasonic bath (UB) with 20 kHz ultrasonic probe (UP). Two certified reference materials [CRMs, GBW(E)090066 and GBW(E)090067] and four practical herbs were used to evaluate the accuracy and practicability of the method. Inorganic arsenic, including trivalent arsenic and pentavalent arsenic, was the main species in the four herbal samples.
Collapse
Affiliation(s)
- Lei Cheng
- Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Xin-An Yang
- Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China.
| | - Meng-Ting Shi
- Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Wang-Bing Zhang
- Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China.
| |
Collapse
|
6
|
Magnetic metal-organic framework composites for dual-column solid-phase microextraction combined with ICP-MS for speciation of trace levels of arsenic. Mikrochim Acta 2019; 187:48. [DOI: 10.1007/s00604-019-4055-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/28/2019] [Indexed: 12/26/2022]
|
7
|
Cai Z, Zhang Y, Zhang Y, Miao X, Li S, Yang H, Ling Q, Hoffmann PR, Huang Z. Use of a Mouse Model and Human Umbilical Vein Endothelial Cells to Investigate the Effect of Arsenic Exposure on Vascular Endothelial Function and the Associated Role of Calpains. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:77003. [PMID: 31274337 PMCID: PMC6792366 DOI: 10.1289/ehp4538] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Arsenic (As) is a well-known environmental contaminant. Chronic exposure to As is known to increase the risk of cardiovascular diseases, including atherosclerosis, hypertension, diabetes, and stroke. However, the detailed mechanisms by which As causes vascular dysfunction involving endothelial integrity and permeability is unclear. OBJECTIVES Our goal was to investigate how exposure to As leads to endothelial dysfunction. METHODS Arsenic trioxide (ATO) was used to investigate the effects and mechanisms by which exposure to As leads to endothelial dysfunction using a mouse model and cultured endothelial cell monolayers. RESULTS Compared with the controls, mice exposed chronically to As (10 ppb in drinking water supplied by ATO) exhibited greater vascular permeability to Evans blue dye and fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA). In addition, endothelial monolayers treated with ATO ([Formula: see text] As) exhibited greater intracellular gaps and permeability to low-density lipoprotein or transmigrating THP-1 cells. Furthermore, activity and protein levels of calpain-1 (CAPN-1) were significantly higher in aortas and human umbilical vein endothelial cells (HUVECs) treated with ATO. These results were consistent with effects of ATO treatment and included a rapid increase of intracellular calcium ([Formula: see text]) and higher levels of CAPN-1 in the plasma membrane. Endothelial cell dysfunction and the proteolytic disorganization of vascular endothelial cadherin (VE-cadherin) in HUVECs in response to ATO were partially mitigated by treatment with a CAPN-1 inhibitor (ALLM) but not a CAPN-2 inhibitor (Z-LLY-FMK). CONCLUSIONS This study found that in mice and HUVEC models, exposure to ATO led to CAPN-1 activation by increasing [Formula: see text] and CAPN-1 translocation to the plasma membrane. The study also suggested that inhibitor treatment may have a role in preventing the vascular endothelial dysfunction associated with As exposure. The findings presented herein suggest that As-induced endothelial dysfunction involves the hyperactivation of the CAPN proteolytic system. https://doi.org/10.1289/EHP4538.
Collapse
Affiliation(s)
- Zhihui Cai
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China
| | - Yanqing Zhang
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China
| | - Yutian Zhang
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China
| | - Xiaofeng Miao
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China
| | - Shu Li
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China
| | - Hui Yang
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China
| | - Qinjie Ling
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China
| | - Peter R. Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Zhi Huang
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
8
|
Yin X, Chen B, He M, Hu B. Simultaneous determination of two phosphorylated p53 proteins in SCC-7 cells by an ICP-MS immunoassay using apoferritin-templated europium(III) and lutetium(III) phosphate nanoparticles as labels. Mikrochim Acta 2019; 186:424. [PMID: 31187253 DOI: 10.1007/s00604-019-3540-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022]
Abstract
Phosphorylated p53 proteins are biomarkers with clinical utility for early diagnosis of cancer, but difficult to quantify. An inductively coupled plasma mass spectrometry (ICP-MS) based immunoassay is described here that uses uniform lanthanide nanoparticles (NPs) as elemental tags for the simultaneous determination of two phosphorylated p53 proteins. Apoferritin templated europium (Eu) phosphate (AFEP) NPs and apoferritin templated lutetium (Lu) phosphate (AFLP) NPs with 8 nm in diameter were used to label two phosphorylated p53 proteins at serine 15 and serine 392 sites (p-p5315 and p-p53392), respectively. The assay has a sandwich format, and p-p5315 and p-p53392 were first captured and then recognized by AFEP and AFLP NPs labelled antibodies, respectively. The Eu and Lu were then released from the immune complexes under acidic condition for ICP-MS measurement. The limits of detection for p-p5315 and p-p53392 are 200 and 20 pg·mL-1, with linear ranges of 0.5-20 and 0.05-20 ng·mL-1, respectively. The method was further applied to study the response of p-p5315 and p-p53392 in SCC-7 cells exposed to the natural carcinogen arsenite. A significant up-regulation of p-p5315 and p-p53392 can be observed when cells were exposed to arsenite at 5 μmol·L-1 level for 24 h. Graphical abstract Schematic presentation of the ICP-MS immunoassay using apoferritin templated europium (III) and lutetium (III) phosphate nanoparticles as labels for the simultaneous determination of two phosphorylated p53 proteins. Europium (Eu) phosphate nanoparticles (blue) and lutetium (Lu) phosphate nanoparticles (pink) were synthesized in the size-restricted cavity of apoferritin. They were further coupled with antibodies to prepare Eu and Lu labelled probes for p-p5315 (blue) and p-p53392 (pink), respectively. After formation of a a sandwich, the labelled Eu and Lu were dissociated in acid and then introduced to ICP-MS for the simultaneous determination of two phosphorylated p53 proteins p-p5315 (blue) and p-p53392 (pink).
Collapse
Affiliation(s)
- Xiao Yin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
9
|
Li Y, He M, Chen B, Hu B. Inhibition of arsenite methylation induces synergistic genotoxicity of arsenite and benzo(a)pyrene diol epoxide in SCC-7 cells. Metallomics 2019; 11:176-182. [DOI: 10.1039/c8mt00217g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comprehensive analytical method was developed to investigate the synergistic genotoxicity of BPDE and As(iii) in SCC-7 cells.
Collapse
Affiliation(s)
- Youxian Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
10
|
Zhou Q, Tang D. Graphene oxide-gated mesoporous silica nanocontainers using aptamers for arsenite detection with glucometer readout. J Mater Chem B 2018; 6:6585-6591. [DOI: 10.1039/c8tb01807c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A newly portable detection sensing platform based on a graphene oxide (GO)-gated mesoporous silica nanocontainer (MSN) was designed for arsenite detection through the target-responsive release of glucose from the MSN with a glucometer readout.
Collapse
Affiliation(s)
- Qian Zhou
- Institute of Environmental and Analytical Science
- School of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province)
- Department of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| |
Collapse
|