1
|
Anuthum S, Papan P, Pasena A, Yimklan S, Aramrat C, Sangthong P, Jakmunee J, Ounnunkad K. Sensitive electrochemical detection of glycated hemoglobin (HbA1c) using cobalt metal-organic framework/two-dimensional molybdenum diselenide nanocomposite-based immunosensors amplified by polyoxometalate/DNA aptamer. Colloids Surf B Biointerfaces 2025; 248:114461. [PMID: 39705874 DOI: 10.1016/j.colsurfb.2024.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/05/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Clinical diagnosis and long-term diabetes management are advanced by monitoring glycated hemoglobin A1c (HbA1c) levels. New sensitive sandwich-like immunosensors for the diagnosis of early diabetes toward detecting HbA1c and hemoglobin (Hb) are demonstrated for the first time. DNA aptamers are used for signal amplification in the sensors for the detection of HbA1c and Hb. The immunosensors are constructed by coating with a cobalt-based metal-organic framework (Co-MOF)/two-dimensional molybdenum diselenide (2D MoSe2) composite onto a working electrode of an ItalSens screen-printed electrode (SPE) inserted into a Sensit/Smart Potentiostat affixed to a smartphone. After the immobilization of the antibodies, the detection is obtained by incubating the resultant SPEs in target solutions and then detecting the response of Keggin-type polyoxometalate (POM) bound on the DNA aptamer chains. In the selected potential window, the POM (silicotungstic acid, H4[α-SiW12O40]) used in this study exhibits the electron-transfer processes I and II ([α-SiW12O40]4-/5- and [α-SiW12O40]5-/6-, respectively) in the acidic buffer electrolyte. Our proposed device demonstrates exceptional performance in the recovery test of %HbA1c in healthy human plasma samples. The sensitivity, selectivity, and stability of this immunosensor are exceedingly outstanding, which makes it one of the potential analytical devices for diagnosing early diabetes by a %HbA1c assay.
Collapse
Affiliation(s)
- Siriporn Anuthum
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; The Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phakorn Papan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Arnat Pasena
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Saranphong Yimklan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chanchanok Aramrat
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Padchanee Sangthong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
2
|
Motshakeri M, Angoro B, Phillips ARJ, Svirskis D, Kilmartin PA, Sharma M. Advancements in Mercury-Free Electrochemical Sensors for Iron Detection: A Decade of Progress in Electrode Materials and Modifications. SENSORS (BASEL, SWITZERLAND) 2025; 25:1474. [PMID: 40096308 PMCID: PMC11902859 DOI: 10.3390/s25051474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Efforts to quantify iron ion concentrations across fields such as environmental, chemical, health, and food sciences have intensified over the past decade, which drives advancements in analytical methods, particularly electrochemical sensors known for their simplicity, portability, and reliability. The development of electrochemical methods using non-mercury electrodes is increasing as alternatives to environmentally unsafe mercury-based electrodes. However, detecting iron species such as Fe(II) and Fe(III) remains challenging due to their distinct chemical properties, continuous oxidation-state interconversion, presence of interfering species, and complex behavior in diverse environments and matrixes. Selective trace detection demands careful optimization of electrochemical methods, including proper electrode materials selection, electrode surface modifications, operating conditions, and sample pretreatments. This review critically evaluates advancements over the past decade in mercury-free electrode materials and surface modification strategies for iron detection. Strategies include incorporating a variety of nanomaterials, composites, conducting polymers, membranes, and iron-selective ligands to improve sensitivity, selectivity, and performance. Despite advancements, achieving ultra-low detection limits in real-world samples with minimal interference remains challenging and emphasizes the need for enhanced sample pretreatment. This review identifies challenges, knowledge gaps, and future directions and paves the way for advanced iron electrochemical sensors for environmental monitoring, health diagnostics, and analytical precision.
Collapse
Affiliation(s)
- Mahsa Motshakeri
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (B.A.); (D.S.)
- School of Biological Sciences, Faculty of Science, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Barbara Angoro
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (B.A.); (D.S.)
| | - Anthony R. J. Phillips
- School of Biological Sciences, Faculty of Science, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
- Surgical and Translational Research Center, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (B.A.); (D.S.)
| | - Paul A. Kilmartin
- School of Chemical Sciences, Faculty of Science, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Manisha Sharma
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (B.A.); (D.S.)
| |
Collapse
|
3
|
Su Y, Xia C, Zhang H, Gan W, Zhang GQ, Yang Z, Li D. Emerging biosensor probes for glycated hemoglobin (HbA1c) detection. Mikrochim Acta 2024; 191:300. [PMID: 38709399 DOI: 10.1007/s00604-024-06380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Glycated hemoglobin (HbA1c), originating from the non-enzymatic glycosylation of βVal1 residues in hemoglobin (Hb), is an essential biomarker indicating average blood glucose levels over a period of 2 to 3 months without external environmental disturbances, thereby serving as the gold standard in the management of diabetes instead of blood glucose testing. The emergence of HbA1c biosensors presents affordable, readily available options for glycemic monitoring, offering significant benefits to small-scale laboratories and clinics. Utilizing nanomaterials coupled with high-specificity probes as integral components for recognition, labeling, and signal transduction, these sensors demonstrate exceptional sensitivity and selectivity in HbA1c detection. This review mainly focuses on the emerging probes and strategies integral to HbA1c sensor development. We discussed the advantages and limitations of various probes in sensor construction as well as recent advances in diverse sensing strategies for HbA1c measurement and their potential clinical applications, highlighting the critical gaps in current technologies and future needs in this evolving field.
Collapse
Affiliation(s)
- Yang Su
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chengen Xia
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Gan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guo-Qi Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, People's Republic of China
| | - Zi Yang
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Dapeng Li
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Zheng Y, Cen Y, Du T, Zhu D, Su S, Wang L. A three-in-one point-of-care electrochemical sensing platform for accurate monitoring of diabetes. Chem Commun (Camb) 2024; 60:3942-3945. [PMID: 38497772 DOI: 10.1039/d4cc00503a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
A three-in-one electrochemical sensing platform was designed for the simultaneous detection of total hemoglobin (tHb), glycated hemoglobin (HbA1c) and HbA1c% by using a dual-aptamer sensing strategy. The developed sensing platform exhibits excellent sensitivity, selectivity, repeatability and long-term stability, and holds promising prospects in the early diagnosis and long-term monitoring of diabetes.
Collapse
Affiliation(s)
- Youwei Zheng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yingying Cen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Tianchen Du
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Dan Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Shao Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
5
|
Zhou X, Lai W, Zhong J, Yang Y, Chen Z, Zhang C. Point-of-care detection of glycated hemoglobin using a novel dry chemistry-based electrochemiluminescence device. Anal Chim Acta 2023; 1279:341829. [PMID: 37827624 DOI: 10.1016/j.aca.2023.341829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023]
Abstract
As a good biomarker to reflect the average level of blood glucose, glycated hemoglobin (HbA1c) is mainly used for long-term glycemic monitoring and risk assessment of complications in diabetic patients. Previous analysis methods for HbA1c usually require complex pretreatment processes and large-scale biochemical analyzers, which makes it difficult to realize the point-of-care testing (POCT) of HbA1c. In this work, we have proposed a three-electrode dry chemistry-based electrochemiluminescence (ECL) biosensor and its self-contained automatic ECL analyzer. In this enzymatic biosensor, fructosyl amino-caid oxidase (FAOD) reacts with the hydrolysis product of HbA1c, and the produced hydrogen peroxide further reacts with luminol under the appropriate driving voltage, generating photons to realize the quantitative detection of HbA1c. Under optimized conditions, the biosensors have a good linear response to different concentrations of fructosyl valine (FV) ranging from 0.05 to 2 mM, with a limit of detection of 2 μM. The within-batch variation is less than 15%, and the biosensors still have 78% of the initial response after the accelerated aging test of 36 h at 37 °C. Furthermore, the recoveries for different concentrations of samples in whole blood were within 92.3-99.7%. These results illustrate that the proposed method has the potential for use in POCT of HbA1c.
Collapse
Affiliation(s)
- Xinya Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Wei Lai
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Jinbiao Zhong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yang Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zhenyu Chen
- Guangzhou First People's Hospital Nansha Hospital, Guangzhou, 511457, China.
| | - Chunsun Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
6
|
Saeidi M, Chenani H, Orouji M, Adel Rastkhiz M, Bolghanabadi N, Vakili S, Mohamadnia Z, Hatamie A, Simchi A(A. Electrochemical Wearable Biosensors and Bioelectronic Devices Based on Hydrogels: Mechanical Properties and Electrochemical Behavior. BIOSENSORS 2023; 13:823. [PMID: 37622909 PMCID: PMC10452289 DOI: 10.3390/bios13080823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Hydrogel-based wearable electrochemical biosensors (HWEBs) are emerging biomedical devices that have recently received immense interest. The exceptional properties of HWEBs include excellent biocompatibility with hydrophilic nature, high porosity, tailorable permeability, the capability of reliable and accurate detection of disease biomarkers, suitable device-human interface, facile adjustability, and stimuli responsive to the nanofiller materials. Although the biomimetic three-dimensional hydrogels can immobilize bioreceptors, such as enzymes and aptamers, without any loss in their activities. However, most HWEBs suffer from low mechanical strength and electrical conductivity. Many studies have been performed on emerging electroactive nanofillers, including biomacromolecules, carbon-based materials, and inorganic and organic nanomaterials, to tackle these issues. Non-conductive hydrogels and even conductive hydrogels may be modified by nanofillers, as well as redox species. All these modifications have led to the design and development of efficient nanocomposites as electrochemical biosensors. In this review, both conductive-based and non-conductive-based hydrogels derived from natural and synthetic polymers are systematically reviewed. The main synthesis methods and characterization techniques are addressed. The mechanical properties and electrochemical behavior of HWEBs are discussed in detail. Finally, the prospects and potential applications of HWEBs in biosensing, healthcare monitoring, and clinical diagnostics are highlighted.
Collapse
Affiliation(s)
- Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Shaghayegh Vakili
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
| | - Amir Hatamie
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Abdolreza (Arash) Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
7
|
Boonprasert K, Tharavanij T, Pechyen C, Ponsanti K, Tangnorawich B, Viyanant V, Na-Bangchang K. Validation of an electrochemical sensor based on gold nanoparticles as a point-of-care test for quantitative determination of glycated hemoglobin. PLoS One 2023; 18:e0276949. [PMID: 37384652 PMCID: PMC10309628 DOI: 10.1371/journal.pone.0276949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Monitoring the level of glycated hemoglobin (HbA1c) has become the gold standard measure for diabetes mellitus (DM) diagnosis and control, used in conjunction with fasting blood glucose (FBG) and oral glucose tolerance test. This study aimed to investigate the applicability of a newly developed nanoparticle-based electrochemical sensor-multiwalled nanotubes incorporated with gold nanoparticles (POCT-HbA1cMWCNTs/AuNPs)-used as a routine point-of-care test (POCT) for detection of HbA1c for the diagnosis of DM. Finger-prick and venous blood samples were collected from 108 DM and 98 non-DM subjects to determine HbA1c and total hemoglobin by POCT-HbA1cMWCNTs/AuNPs compared with the standard HPLC method. The performance of the POCT-HbA1cMWCNTs/AuNPs was evaluated using the standard cut-off HbA1c level of >6.5%. The test's sensitivity, specificity, positive predictive value, and negative predictive value were 100.00%, 90.32%, 87.23%, and 100.00%, respectively. The probability of DM diagnosis in a subject with HbA1c >6.5% (positive predictive value) was 87.23% (82/94). The accuracy of the POCT-HbA1cMWCNTs/AuNPs was 94.18%, with a %DMV (deviation from the mean value) of 0.25%. The results indicate satisfactory assay performance and applicability of the POCT-HbA1cMWCNTs/AuNPs for diagnosis of DM using the cut-off criteria of HbA1c >6.5.
Collapse
Affiliation(s)
- Kanyarat Boonprasert
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Thipaporn Tharavanij
- Department of Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Chiravoot Pechyen
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand
| | - Khanittha Ponsanti
- Department of Physics, Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand
| | - Benchamaporn Tangnorawich
- Department of Physics, Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand
| | - Vithoon Viyanant
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
8
|
Dong H, Liu X, Gan L, Fan D, Sun X, Zhang Z, Wu P. Nucleic acid aptamer-based biosensors and their application in thrombin analysis. Bioanalysis 2023. [PMID: 37326345 DOI: 10.4155/bio-2023-0058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Thrombin is a multifunctional serine protease that plays an important role in coagulation and anticoagulation processes. Aptamers have been widely applied in biosensors due to their high specificity, low cost and good biocompatibility. This review summarizes recent advances in thrombin quantification using aptamer-based biosensors. The primary focus is optical sensors and electrochemical sensors, along with their applications in thrombin analysis and disease diagnosis.
Collapse
Affiliation(s)
- Hang Dong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lu Gan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xinjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
9
|
Pathak K, Saikia R, Sarma H, Pathak MP, Das RJ, Gogoi U, Ahmad MZ, Das A, Wahab BAA. Nanotheranostics: application of nanosensors in diabetes management. J Diabetes Metab Disord 2023; 22:119-133. [PMID: 37255773 PMCID: PMC10225368 DOI: 10.1007/s40200-023-01206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
Objectives The objective of the present study is to discuss the use of nanomaterials like nanosensors for diagnosing Diabetes and highlight their applications in the treatment of Diabetes. Methods Diabetes mellitus (D.M.) is a group of metabolic diseases characterized by hyperglycemia. Orally administered antidiabetic drugs like glibenclamide, glipalamide, and metformin can partially lower blood sugar levels, but long-term use causes kidney and liver damage. Recent breakthroughs in nanotheranostics have emerged as a powerful tool for diabetes treatment and diagnosis. Results Nanotheranostics is a rapidly developing area that can revolutionize diabetes diagnosis and treatment by combining therapy and imaging in a single probe, allowing for pancreas-specific drug and insulin delivery. Nanotheranostic in Diabetes research has facilitated the development of improved glucose monitoring and insulin administration modalities, which promise to improve the quality of life for people with Diabetes drastically. Further, nanomaterials like nanocarriers and unique functional nanomaterials used as nano theranostics tools for treating Diabetes will also be highlighted. Conclusion The nanosensors discussed in this review article will encourage researchers to develop innovative nanomaterials with novel functionalities and properties for diabetes detection and treatment.
Collapse
Affiliation(s)
- Kalyani Pathak
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
| | - Himangshu Sarma
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
- Sophisticated Analytical Instrument Facility (SAIF), Girijananda Chowdhury Institute of Pharmaceutical Science (GIPS), Girijananda ChowdhuryUniversity, Guwahati, Assam India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Sciences, Assam Down Town University, Panikhaiti, Guwahati, Assam India
| | - Ratna Jyoti Das
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, 784006 Dibrugarh, Assam India
| | - Basel A. Abdel Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
- Department of Pharmacology, College of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
10
|
Mandali PK, Prabakaran A, Annadurai K, Krishnan UM. Trends in Quantification of HbA1c Using Electrochemical and Point-of-Care Analyzers. SENSORS (BASEL, SWITZERLAND) 2023; 23:1901. [PMID: 36850502 PMCID: PMC9965793 DOI: 10.3390/s23041901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Glycated hemoglobin (HbA1c), one of the many variants of hemoglobin (Hb), serves as a standard biomarker of diabetes, as it assesses the long-term glycemic status of the individual for the previous 90-120 days. HbA1c levels in blood are stable and do not fluctuate when compared to the random blood glucose levels. The normal level of HbA1c is 4-6.0%, while concentrations > 6.5% denote diabetes. Conventionally, HbA1c is measured using techniques such as chromatography, spectroscopy, immunoassays, capillary electrophoresis, fluorometry, etc., that are time-consuming, expensive, and involve complex procedures and skilled personnel. These limitations have spurred development of sensors incorporating nanostructured materials that can aid in specific and accurate quantification of HbA1c. Various chemical and biological sensing elements with and without nanoparticle interfaces have been explored for HbA1c detection. Attempts are underway to improve the detection speed, increase accuracy, and reduce sample volumes and detection costs through different combinations of nanomaterials, interfaces, capture elements, and measurement techniques. This review elaborates on the recent advances in the realm of electrochemical detection for HbA1c detection. It also discusses the emerging trends and challenges in the fabrication of effective, accurate, and cost-effective point-of-care (PoC) devices for HbA1c and the potential way forward.
Collapse
Affiliation(s)
- Pavan Kumar Mandali
- Centre for Nanotechnology& Advanced Biomaterials, SASTRA Deemed University, Thanjavur 613 401, India
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Amrish Prabakaran
- Centre for Nanotechnology& Advanced Biomaterials, SASTRA Deemed University, Thanjavur 613 401, India
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Kasthuri Annadurai
- Centre for Nanotechnology& Advanced Biomaterials, SASTRA Deemed University, Thanjavur 613 401, India
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
- School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur 613 401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology& Advanced Biomaterials, SASTRA Deemed University, Thanjavur 613 401, India
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
- School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur 613 401, India
| |
Collapse
|
11
|
Li D, Fang C, Li H, Tu Y. Fluorescence/electrochemiluminescence approach for instant detection of glycated hemoglobin index. Anal Biochem 2022; 659:114958. [PMID: 36273622 DOI: 10.1016/j.ab.2022.114958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/02/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022]
Abstract
The percentage of glycated hemoglobin (HbA1c) in total hemoglobin (Hb) is an important index for the diagnosis of Type II diabetes (T2D) because it reflects the long-term glucose level in blood. Herein, employing a one-pot co-reduction approach using glutathione (GSH) as structure-directing agent, a cluster-like AuAg nanoparticle (AuAg NPs) material was synthesized, therefore an electrochemiluminescence (ECL) aptamer-sensor for HbA1c detection was developed based on functionalized electrode with this material. Meanwhile, the quantitative determination of total Hb was realized based on the quenching effect of Hb on the fluorescence (FL) of luminol. Under compatible conditions, the results of both indexes can be satisfactorily acquired. This multimodal detection system has a good linear response toward Hb from 0.1 to 2.5 μM and HbA1c from 0.005 to 0.5 μM. The blood test proves this strategy is capable of accurate Hb and HbA1c detection, thus to obtain the percentage of HbA1c in total Hb (HbA1c%), which has the potential application for clinical diagnosis of diabetes mellitus.
Collapse
Affiliation(s)
- Dongning Li
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, PR China
| | - Chen Fang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, PR China
| | - Huiling Li
- The First Affiliated Hospital, Nursing College, Soochow University, Suzhou, 215006, PR China.
| | - Yifeng Tu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
12
|
Koo KM, Kim CD, Ju FN, Kim H, Kim CH, Kim TH. Recent Advances in Electrochemical Biosensors for Monitoring Animal Cell Function and Viability. BIOSENSORS 2022; 12:bios12121162. [PMID: 36551129 PMCID: PMC9775431 DOI: 10.3390/bios12121162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 05/28/2023]
Abstract
Redox reactions in live cells are generated by involving various redox biomolecules for maintaining cell viability and functions. These qualities have been exploited in the development of clinical monitoring, diagnostic approaches, and numerous types of biosensors. Particularly, electrochemical biosensor-based live-cell detection technologies, such as electric cell-substrate impedance (ECIS), field-effect transistors (FETs), and potentiometric-based biosensors, are used for the electrochemical-based sensing of extracellular changes, genetic alterations, and redox reactions. In addition to the electrochemical biosensors for live-cell detection, cancer and stem cells may be immobilized on an electrode surface and evaluated electrochemically. Various nanomaterials and cell-friendly ligands are used to enhance the sensitivity of electrochemical biosensors. Here, we discuss recent advances in the use of electrochemical sensors for determining cell viability and function, which are essential for the practical application of these sensors as tools for pharmaceutical analysis and toxicity testing. We believe that this review will motivate researchers to enhance their efforts devoted to accelerating the development of electrochemical biosensors for future applications in the pharmaceutical industry and stem cell therapeutics.
Collapse
|
13
|
Label-free electrochemical detection of glucose and glycated hemoglobin (HbA1c). Biosens Bioelectron 2022; 221:114907. [DOI: 10.1016/j.bios.2022.114907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
|
14
|
Zhao Y, Zhang H, Li Y, Wang X, Zhao L, Xu J, Zhan Z, Zhang G, Li WJ. Glycated Hemoglobin Electrochemical Immunosensor Based on Screen-Printed Electrode. BIOSENSORS 2022; 12:902. [PMID: 36291040 PMCID: PMC9599171 DOI: 10.3390/bios12100902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
An electrochemical HbA1c sensor with high sensitivity and good specificity is proposed based on the electrochemical immune principle. The reproducibility and conductivity of the electrode are improved by depositing gold nanoparticles (AuNPs) on the surface of the screen-printed electrode (SPE). The HbA1c antibodies are immobilized on the surface of the modified electrode by adsorption to capture the HbA1c in the sample. The hindering effect of HbA1c on the electrode transfer reaction was exploited as the HbA1c detection mechanism. The electrode's properties were characterized by electrochemical impedance spectroscopy (EIS), and the measurement properties of the electrode were analyzed using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). The experimental results show that the peak current signal of the electrochemical immunosensor produced a linear response to HbA1c in the concentration range of 20-200 μg/mL, a linear relationship coefficient of 0.9812, a detection limit of 15.5 µg/mL, and a sensitivity of 0.0938 µA/µg·mL-1. The sensor delivered satisfactory repeatability, stability, and anti-interference performance. Due to its small size, high sensitivity, and wide linear detection range, it is expected to play a significant role in managing diabetes at home.
Collapse
Affiliation(s)
- Yuliang Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Hongyu Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yang Li
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xiaoai Wang
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Liang Zhao
- Dalian Institute of Measurement and Testing, Dalian 116033, China
| | - Jianghong Xu
- Qinhuangdao Hospital of Traditional Chinese Medicine, Qinhuangdao 066004, China
| | - Zhikun Zhan
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
- School of Computer and Communication Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Guanglie Zhang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen Jung Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
15
|
Zhan Z, Li Y, Zhao Y, Zhang H, Wang Z, Fu B, Li WJ. A Review of Electrochemical Sensors for the Detection of Glycated Hemoglobin. BIOSENSORS 2022; 12:bios12040221. [PMID: 35448281 PMCID: PMC9024622 DOI: 10.3390/bios12040221] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 05/17/2023]
Abstract
Glycated hemoglobin (HbA1c) is the gold standard for measuring glucose levels in the diagnosis of diabetes due to the excellent stability and reliability of this biomarker. HbA1c is a stable glycated protein formed by the reaction of glucose with hemoglobin (Hb) in red blood cells, which reflects average glucose levels over a period of two to three months without suffering from the disturbance of the outside environment. A number of simple, high-efficiency, and sensitive electrochemical sensors have been developed for the detection of HbA1c. This review aims to highlight current methods and trends in electrochemistry for HbA1c monitoring. The target analytes of electrochemical HbA1c sensors are usually HbA1c or fructosyl valine/fructosyl valine histidine (FV/FVH, the hydrolyzed product of HbA1c). When HbA1c is the target analyte, a sensor works to selectively bind to specific HbA1c regions and then determines the concentration of HbA1c through the quantitative transformation of weak electrical signals such as current, potential, and impedance. When FV/FVH is the target analyte, a sensor is used to indirectly determine HbA1c by detecting FV/FVH when it is hydrolyzed by fructosyl amino acid oxidase (FAO), fructosyl peptide oxidase (FPOX), or a molecularly imprinted catalyst (MIC). Then, a current proportional to the concentration of HbA1c can be produced. In this paper, we review a variety of representative electrochemical HbA1c sensors developed in recent years and elaborate on their operational principles, performance, and promising future clinical applications.
Collapse
Affiliation(s)
- Zhikun Zhan
- School of Computer and Communication Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China;
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Yang Li
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Yuliang Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
- Correspondence: (Y.Z.); (W.J.L.)
| | - Hongyu Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China;
| | - Zhen Wang
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Boya Fu
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Wen Jung Li
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China;
- Correspondence: (Y.Z.); (W.J.L.)
| |
Collapse
|
16
|
Park K. Impedance Technique-Based Label-Free Electrochemical Aptasensor for Thrombin Using Single-Walled Carbon Nanotubes-Casted Screen-Printed Carbon Electrode. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22072699. [PMID: 35408313 PMCID: PMC9002654 DOI: 10.3390/s22072699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 05/28/2023]
Abstract
An impedance technique-based aptasensor for the detection of thrombin was developed using a single-walled carbon nanotube (SWCNT)-modified screen-printed carbon electrode (SPCE). In this work, a thrombin-binding aptamer (TBA) as probe was used for the determination of thrombin, and that was immobilized on SWCNT through π-π interaction. In the presence of thrombin, the TBA on SWCNT binds with target thrombin, and the amount of TBA on the SWCNT surface decreases. The detachment of TBA from SWCNT will be affected by the concentration of thrombin and the remaining TBA on the SWCNT surface can be monitored by electrochemical methods. The TBA-modified SWCNT/SPCE sensing layer was characterized by cyclic voltammetry (CV). For the measurement of thrombin, the change in charge-transfer resistance (Rct) of the sensing interface was investigated using electrochemical impedance spectroscopy (EIS) with a target thrombin and [Fe(CN)6]3- as redox maker. Upon incubation with thrombin, a decrease of Rct change was observed due to the decrease in the repulsive interaction between the redox marker and the electrode surface without any label. A plot of Rct changes vs. the logarithm of thrombin concentration provides the linear detection ranges from 0.1 nM to 1 µM, with a ~0.02 nM detection limit.
Collapse
Affiliation(s)
- Kyungsoon Park
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
17
|
Noviana E, Siswanto S, Budi Hastuti AAM. Advances in Nanomaterial-based Biosensors for Determination of Glycated Hemoglobin. Curr Top Med Chem 2022; 22:2261-2281. [PMID: 36111762 DOI: 10.2174/1568026622666220915114646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022]
Abstract
Diabetes is a major public health burden whose prevalence has been steadily increasing over the past decades. Glycated hemoglobin (HbA1c) is currently the gold standard for diagnostics and monitoring of glycemic control in diabetes patients. HbA1c biosensors are often considered to be cost-effective alternatives for smaller testing laboratories or clinics unable to access other reference methods. Many of these sensors deploy nanomaterials as recognition elements, detection labels, and/or transducers for achieving sensitive and selective detection of HbA1c. Nanomaterials have emerged as important sensor components due to their excellent optical and electrical properties, tunable morphologies, and easy integration into multiple sensing platforms. In this review, we discuss the advantages of using nanomaterials to construct HbA1c sensors and various sensing strategies for HbA1c measurements. Key gaps between the current technologies with what is needed moving forward are also summarized.
Collapse
Affiliation(s)
- Eka Noviana
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Research Center for Drug Targeting and Personalized Medicine, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Soni Siswanto
- Research Center for Drug Targeting and Personalized Medicine, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Agustina Ari Murti Budi Hastuti
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Center of Excellence Institute for Halal Industry and Systems (PUI-PT IHIS), Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
18
|
Liu Y, Zeng S, Ji W, Yao H, Lin L, Cui H, Santos HA, Pan G. Emerging Theranostic Nanomaterials in Diabetes and Its Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102466. [PMID: 34825525 PMCID: PMC8787437 DOI: 10.1002/advs.202102466] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/03/2021] [Indexed: 05/14/2023]
Abstract
Diabetes mellitus (DM) refers to a group of metabolic disorders that are characterized by hyperglycemia. Oral subcutaneously administered antidiabetic drugs such as insulin, glipalamide, and metformin can temporarily balance blood sugar levels, however, long-term administration of these therapies is associated with undesirable side effects on the kidney and liver. In addition, due to overproduction of reactive oxygen species and hyperglycemia-induced macrovascular system damage, diabetics have an increased risk of complications. Fortunately, recent advances in nanomaterials have provided new opportunities for diabetes therapy and diagnosis. This review provides a panoramic overview of the current nanomaterials for the detection of diabetic biomarkers and diabetes treatment. Apart from diabetic sensing mechanisms and antidiabetic activities, the applications of these bioengineered nanoparticles for preventing several diabetic complications are elucidated. This review provides an overall perspective in this field, including current challenges and future trends, which may be helpful in informing the development of novel nanomaterials with new functions and properties for diabetes diagnosis and therapy.
Collapse
Affiliation(s)
- Yuntao Liu
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Siqi Zeng
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Wei Ji
- Department of PharmaceuticsSchool of PharmacyJiangsu UniversityZhenjiangJiangsu212013China
| | - Huan Yao
- Sichuan Institute of Food InspectionChengdu610097China
| | - Lin Lin
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Haiying Cui
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Department of Biomedical Engineering and W.J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of Groningen/University Medical Center GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangJiangsu212013China
| |
Collapse
|
19
|
Zhang Y, You Z, Liu L, Duan S, Xiao A. Electrochemical determination of synephrine by using nafion/UiO-66/graphene-modified screen-printed carbon electrode. Curr Res Food Sci 2022; 5:1158-1166. [PMID: 35899039 PMCID: PMC9310077 DOI: 10.1016/j.crfs.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/28/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
|
20
|
Su J, Ke Y, Maboyi N, Zhi X, Yan S, Li F, Zhao B, Jia X, Song S, Ding X. CRISPR/Cas12a Powered DNA Framework-Supported Electrochemical Biosensing Platform for Ultrasensitive Nucleic Acid Analysis. SMALL METHODS 2021; 5:e2100935. [PMID: 34928030 DOI: 10.1002/smtd.202100935] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 06/14/2023]
Abstract
Nucleic acid analysis using ultrasensitive and simple methods is critically important for the early-stage diagnosis and treatment of diseases. The CRISPR/Cas proteins, guided by a single-stranded RNA have shown incredible capability for sequence-specific targeting and detection. Herein, in order to improve and expand the application of CRISPR/Cas technology to the electrochemical interface-based nucleic acids analysis, the authors develop a CRISPR/Cas12a powered DNA framework-supported electrochemical biosensing platform via the cis and trans cleavage of Cas12a on the heterogeneous carbon interface (the existing publications which commonly adopted trans-cleavage). Their solid-liquid interface is first immobilized by 3D tetrahedral framework nucleic acids (FNAs) with specific DNA recognition probe. Based on the recognition of the complementary target through protospacer adjacent motif (PAM) confirmation and CRISPR-derived RNA (crRNA) matching, the easily formed Cas12a/crRNA duplex can get access to the interface, and the cis and trans cleavage of Cas12a can be easily activated. In combination with the enzyme catalyzed reaction, they achieved an ultralow limit of detection (LOD) of 100 fm in HPV-16 detection without pre-amplification. Furthermore, the platform is compatible with a spike-in human serum sample and has superior stability. Thus, their reported platform offers a practical, versatile, and amplification-free toolbox for ultrasensitive nucleic acid analysis.
Collapse
Affiliation(s)
- Jing Su
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yuqing Ke
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Nokuzola Maboyi
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiao Zhi
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Sijia Yan
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Fuwu Li
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Bo Zhao
- Stony Brook University, Stony Brook, NY, 11794, USA
| | - Xiaolong Jia
- Department of Urology, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, 17 Ningbo, Zhejiang Province, China
| | - Shiping Song
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
21
|
Kim JH, Suh YJ, Park D, Yim H, Kim H, Kim HJ, Yoon DS, Hwang KS. Technological advances in electrochemical biosensors for the detection of disease biomarkers. Biomed Eng Lett 2021; 11:309-334. [PMID: 34466275 PMCID: PMC8396145 DOI: 10.1007/s13534-021-00204-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022] Open
Abstract
With an increasing focus on health in contemporary society, interest in the diagnosis, treatment, and prevention of diseases has grown rapidly. Accordingly, the demand for biosensors for the early diagnosis of disease is increasing. However, the measurement range of existing electrochemical sensors is relatively high, which is not suitable for early disease diagnosis, requiring the detection of small amounts of biocomponents. Various attempts have been made to overcome this and amplify the signal, including binding with various labeling molecules, such as DNA, enzymes, nanoparticles, and carbon materials. Efforts are also being made to increase the sensitivity of electrochemical sensors, and the combination of nanomaterials, materials, and biotechnology offers the potential to increase sensitivity in a variety of ways. Recent studies suggest that electrochemical sensors can be a powerful tool in providing comprehensive insights into the targeting and detection of disease-associated biomarkers. Significant advances in nanomaterial and biomolecule approaches for improved sensitivity have resulted in the development of electrochemical biosensors capable of detecting multiple biomarkers in real time in clinically relevant samples. In this review, we have discussed the recent studies on electrochemical sensors for detection of diseases such as diabetes, degenerative diseases, and cancer. Further, we have highlighted new technologies to improve sensitivity using various materials, including DNA, enzymes, nanoparticles, and carbon materials.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Young Joon Suh
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Dongsung Park
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul, 02841 Republic of Korea
| | - Hyoju Yim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Hongrae Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul, 02841 Republic of Korea
| | - Hye Jin Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul, 02841 Republic of Korea
| | - Kyo Seon Hwang
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| |
Collapse
|
22
|
Wang C, Xu Y, Zhao X, Li S, Qian Q, Wang W, Mi X. A double-tetrahedral DNA framework based electrochemical biosensor for ultrasensitive detection and release of circulating tumor cells. Analyst 2021; 146:6474-6481. [PMID: 34585683 DOI: 10.1039/d1an01470f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Detecting circulating tumor cells (CTCs) in patients' blood is essential for early diagnosis, precise treatment and prognosis of cancer. Yet due to CTCs being extremely rare in the peripheral blood of patients, it is still a challenge to detect CTCs with high sensitivity and high selectivity. Here, we developed a double-tetrahedral DNA framework (DTDF) based electrochemical biosensor system (E-CTC sensor system) for ultrasensitive detection and release of CTCs. In this work, an upright tetrahedral DNA framework (UTDF) was used as a rigid scaffold to modify a screen-printed gold electrode (SPGE), and an inverted tetrahedral DNA framework (ITDF) provided three vertex chains to multivalently bind with aptamers. Meanwhile, a streptavidin tagged horseradish peroxidase homopolymer (SA-polyHRP) was linked to biotin-modified aptamers to significantly amplify the signal. Moreover, the captured CTCs could be effectively released via benzonase nuclease with little cell damage. Our E-CTC sensor system achieved a linear range from 1 to 105 MCF-7 cells with an ultralow detection limit of 1 cell. The release efficiency reached 88.1%-97.6% and the viability of the released cells reached up to 98%. We also detected the MCF-7 cells in mimic whole blood samples, suggesting that the E-CTC sensor system shows promise for use in clinical research.
Collapse
Affiliation(s)
- Chenguang Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Xu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xiaoshuang Zhao
- Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Shuainai Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuling Qian
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- Shanghai Pudong New District Zhoupu Hospital (Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital), Shanghai 201318, China.
| | - Xianqiang Mi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China. .,CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China.,Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 310024 Hangzhou, China
| |
Collapse
|
23
|
Ahmadi A, Khoshfetrat SM, Kabiri S, Dorraji PS, Larijani B, Omidfar K. Electrochemiluminescence paper-based screen-printed electrode for HbA1c detection using two-dimensional zirconium metal-organic framework/Fe 3O 4 nanosheet composites decorated with Au nanoclusters. Mikrochim Acta 2021; 188:296. [PMID: 34401972 DOI: 10.1007/s00604-021-04959-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
Glycated hemoglobin (HbA1c) is one of the most popular biomarkers which can be utilized for the diagnosis and control of diabetes in clinical practice. In this study, a sandwich paper-based electrochemiluminescence (ECL) biosensor has been developed using the zirconium metal-organic framework/Fe3O4(trimethyl chitosan)/gold nanocluster (Zr-MOF/Fe3O4(TMC)/AuNCs) nanocomposite as tracing tag to label anti-HbA1c monoclonal antibody and reduced graphene oxide (rGO) as immobilization platform of sensing element. The screen-printed electrodes (SPEs) were constructed and modified by sputtering a thick layer of gold on the paper substrate, followed by electrochemical reduction of aminophenylboronic acid (APBA)-functionalized GO to rGO/APBA, respectively. Different types of surface analysis methods were applied to characterize the Zr-MOF/Fe3O4(TMC)/AuNCs nanomaterials fabricated. Finally, antibody-labeled Zr-MOF/Fe3O4(TMC)/AuNCs nanocomposites were subjected to HbA1c in the sample and on the paper-based SPE. Quantitative measurement of HbA1c was performed using ECL and cyclic voltammetry (CV) over a potential range of - 0.2 to 1.7 V vs gold reference electrode with a sweep rate of 0.2 V.s-1 in the presence of triethylamine as a co-reactant after sandwiching the HbA1c target between antibody and APBA on the sensing area. This immunosensor demonstrated the desirable assay performance for HbA1c with a wide response range from 2 to 18% and a low detection limit (0.072%). This new strategy provides an effective method for high-performance bioanalysis and opens avenues for the development of high-sensitive and user-friendly device. Graphical abstract.
Collapse
Affiliation(s)
- Anita Ahmadi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shima Kabiri
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Seyed Dorraji
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Mandani S, Rezaei B, Ensafi AA, Rezaei P. Ultrasensitive electrochemical molecularly imprinted sensor based on AuE/Ag-MOF@MC for determination of hemoglobin using response surface methodology. Anal Bioanal Chem 2021; 413:4895-4906. [PMID: 34236471 DOI: 10.1007/s00216-021-03453-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/30/2021] [Accepted: 06/02/2021] [Indexed: 10/20/2022]
Abstract
Considering the importance of determining the levels of hemoglobin (Hb) as a vital protein in red blood cells, in this work a highly sensitive electrochemical sensor was developed based on a gold electrode (AuE) modified with Ag metal-organic framework mesoporous carbon (Ag-MOF@MC) and molecularly imprinted polymers (MIPs). To that end, the MIP layer was formed on the Ag-MOF@MC by implanting Hb as the pattern molecule during the polymerization. The modified electrode was designed using electrochemical approaches including differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Using a response level experimental design method, the most important parameters affecting the reaction of the sensing system including pH, incubation time, and scanning rate were optimized. Following the same route, the Hb concentration, pH, temperature, and elution times were optimized to prepare the imprinted polymer layer on the Ag-MOF@MC surface. By exploiting DPV techniques based on the optimal parameters, the electrochemical response of the AuE/Ag-MOF@MC-MIPs for Hb determination was recorded in a wide linear dynamic range (LDR) of 0.2 pM to 1000 nM, with a limit of detection (LOD) of 0.09 pM. Moreover, the Ag-MOF@MC-MIP sensing system showed good stability, high selectivity, and acceptable reproducibility for Hb determination. The sensing system was successfully applied for Hb determination in real blood samples, and the results were compared with those of the standard methods for Hb determination. Acceptable recovery (99.0%) and RDS% (4.6%) confirmed the applicability and reliability of the designed Hb sensing system.
Collapse
Affiliation(s)
- Sudabe Mandani
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Ali Asghar Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Parisa Rezaei
- Department of Medical Laboratory Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81745-33871, Iran
| |
Collapse
|
25
|
Torres-Rivero K, Florido A, Bastos-Arrieta J. Recent Trends in the Improvement of the Electrochemical Response of Screen-Printed Electrodes by Their Modification with Shaped Metal Nanoparticles. SENSORS 2021; 21:s21082596. [PMID: 33917220 PMCID: PMC8067965 DOI: 10.3390/s21082596] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/04/2022]
Abstract
Novel sensing technologies proposed must fulfill the demands of wastewater treatment plants, the food industry, and environmental control agencies: simple, fast, inexpensive, and reliable methodologies for onsite screening, monitoring, and analysis. These represent alternatives to conventional analytical methods (ICP-MS and LC-MS) that require expensive and non-portable instrumentation. This needs to be controlled by qualified technicians, resulting moreover in a long delay between sampling and high-cost analysis. Electrochemical analysis based on screen-printed electrodes (SPEs) represents an excellent miniaturized and portable alternative due to their disposable character, good reproducibility, and low-cost commercial availability. SPEs application is widely extended, which makes it important to design functionalization strategies to improve their analytical response. In this sense, different types of nanoparticles (NPs) have been used to enhance the electrochemical features of SPEs. NPs size (1–100 nm) provides them with unique optical, mechanical, electrical, and chemical properties that give the modified SPEs increased electrode surface area, increased mass-transport rate, and faster electron transfer. Recent progress in nanoscale material science has led to the creation of reproducible, customizable, and simple synthetic procedures to obtain a wide variety of shaped NPs. This mini-review attempts to present an overview of the enhancement of the electrochemical response of SPEs when NPs with different morphologies are used for their surface modification
Collapse
Affiliation(s)
- Karina Torres-Rivero
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, BarcelonaTEch (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; (K.T.-R.); (A.F.)
- Barcelona Research Center for Multiscale Science and Engineering, Av. Eduard Maristany 16, 08019 Barcelona, Spain
| | - Antonio Florido
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, BarcelonaTEch (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; (K.T.-R.); (A.F.)
- Barcelona Research Center for Multiscale Science and Engineering, Av. Eduard Maristany 16, 08019 Barcelona, Spain
| | - Julio Bastos-Arrieta
- Grup de Biotecnologia Molecular i Industrial, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Edifici Gaia TR14, 08222 Terrassa, Spain
- Correspondence:
| |
Collapse
|
26
|
Pohanka M. Glycated Hemoglobin and Methods for Its Point of Care Testing. BIOSENSORS 2021; 11:70. [PMID: 33806493 PMCID: PMC8000313 DOI: 10.3390/bios11030070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022]
Abstract
Glycated hemoglobin (HbA1c) is a product of the spontaneous reaction between hemoglobin and elevated glucose levels in the blood. It is included among the so-called advanced glycation end products, of which is the most important for the clinical diagnosis of diabetes mellitus, and it can serve as an alternative to glycemia measurement. Compared to the diagnosis of diabetes mellitus by glycemia, the HbA1c level is less influenced by a short-term problem with diabetes compensation. Mass spectroscopy and chromatographic techniques are among the standard methods of HbA1c level measurement. Compared to glycemia measurement, there is lack of simple methods for diabetes mellitus diagnosis by means of the HbA1c assay using a point-of-care test. This review article is focused on the surveying of facts about HbA1c and its importance in diabetes mellitus diagnosis, and surveying standard methods and new methods suitable for the HbA1c assay under point-of-care conditions. Various bioassays and biosensors are mentioned and their specifications are discussed.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, CZ-50001 Hradec Kralove, Czech Republic
| |
Collapse
|
27
|
Feng D, Su J, Xu Y, He G, Wang C, Wang X, Pan T, Ding X, Mi X. DNA tetrahedron-mediated immune-sandwich assay for rapid and sensitive detection of PSA through a microfluidic electrochemical detection system. MICROSYSTEMS & NANOENGINEERING 2021; 7:33. [PMID: 34567747 PMCID: PMC8433179 DOI: 10.1038/s41378-021-00258-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 05/12/2023]
Abstract
Prostate-specific antigen (PSA) is the most widely used biomarker for the early diagnosis of prostate cancer. Existing methods for PSA detection are burdened with some limitations and require improvement. Herein, we developed a novel microfluidic-electrochemical (μFEC) detection system for PSA detection. First, we constructed an electrochemical biosensor based on screen-printed electrodes (SPEs) with modification of gold nanoflowers (Au NFs) and DNA tetrahedron structural probes (TSPs), which showed great detection performance. Second, we fabricated microfluidic chips by DNA TSP-Au NF-modified SPEs and a PDMS layer with designed dense meandering microchannels. Finally, the μFEC detection system was achieved based on microfluidic chips integrated with the liquid automatic conveying unit and electrochemical detection platform. The μFEC system we developed acquired great detection performance for PSA detection in PBS solution. For PSA assays in spiked serum samples of the μFEC system, we obtained a linear dynamic range of 1-100 ng/mL with a limit of detection of 0.2 ng/mL and a total reaction time <25 min. Real serum samples of prostate cancer patients presented a strong correlation between the "gold-standard" chemiluminescence assays and the μFEC system. In terms of operation procedure, cost, and reaction time, our method was superior to the current methods for PSA detection and shows great potential for practical clinical application in the future.
Collapse
Affiliation(s)
- Dezhi Feng
- Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jing Su
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Yi Xu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
| | - Guifang He
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
- School of Life Sciences, Shanghai University, 200444 Shanghai, China
| | - Chenguang Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiao Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
- School of Life Sciences, Shanghai University, 200444 Shanghai, China
| | - Tingrui Pan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, 518055 Shenzhen, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Xianqiang Mi
- Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- CAS Center for Excellence in Superconducting Electronics, (CENSE), 200050 Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 310024 Hangzhou, China
| |
Collapse
|
28
|
Sharma P, Panchal A, Yadav N, Narang J. Analytical techniques for the detection of glycated haemoglobin underlining the sensors. Int J Biol Macromol 2020; 155:685-696. [PMID: 32229211 DOI: 10.1016/j.ijbiomac.2020.03.205] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022]
Abstract
The increase in concentrations of blood glucose results arise in the proportion of glycated haemoglobin. Therefore, the percentage of glycated haemoglobin in the blood could function as a biomarker for the average glucose level over the past three months and can be used to detect diabetes. The study of glycated haemoglobin tends to be complex as there are about three hundred distinct assay techniques available for evaluating glycated haemoglobin which contributes to some differences in the recorded values from the similar samples. This review outlines distinct analytical methods that have evolved in the recent past for precise recognition of the glycated - proteins.
Collapse
Affiliation(s)
- Pradakshina Sharma
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Anupriya Panchal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Neelam Yadav
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat 131039, India; Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124001, India
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India.
| |
Collapse
|
29
|
Antuña-Jiménez D, González-García MB, Hernández-Santos D, Fanjul-Bolado P. Screen-Printed Electrodes Modified with Metal Nanoparticles for Small Molecule Sensing. BIOSENSORS 2020; 10:E9. [PMID: 32024126 PMCID: PMC7167755 DOI: 10.3390/bios10020009] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 01/24/2023]
Abstract
Recent progress in the field of electroanalysis with metal nanoparticle (NP)-based screen-printed electrodes (SPEs) is discussed, focusing on the methods employed to perform the electrode surface functionalization, and the final application achieved with different types of metallic NPs. The ink mixing approach, electrochemical deposition, and drop casting are the usual methodologies used for SPEs' modification purposes to obtain nanoparticulated sensing phases with suitable tailor-made functionalities. Among these, applications on inorganic and organic molecule sensing with several NPs of transition metals, bimetallic alloys, and metal oxides should be highlighted.
Collapse
Affiliation(s)
| | | | | | - Pablo Fanjul-Bolado
- Metrohm DropSens S.L., Edificio CEEI-Parque Tecnológico de Asturias, 33428 Llanera, Spain; (D.A.-J.); (M.B.G.-G.); (D.H.-S.)
| |
Collapse
|
30
|
An electrochemical aptasensor for analysis of MUC1 using gold platinum bimetallic nanoparticles deposited carboxylated graphene oxide. Anal Chim Acta 2019; 1097:186-195. [PMID: 31910959 DOI: 10.1016/j.aca.2019.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 12/18/2022]
Abstract
A simple electrochemical strategy has been designed for the analysis of MUC1 using electrodeposited gold platinum bimetallic nanoparticles (Au-PtBNPs) on the surface of carboxylated graphene oxide (CGO)/FTO electrode as a signal amplification platform. The carboxylic groups of CGO were activated with EDS-NHS linker and subsequently immobilized with streptavidin for further deposition of biotin labelled aptamer. All the modification steps were characterized by FE-SEM, EDS mapping, FT-IR, contact angle measurements and electrochemical methods. After incubating with target protein MUC1, the aptaelectrode produced some concentration dependent responses which were measured electrochemically by DPV assay. The prepared aptasensor exhibits wide linear range from 1 fM-100 nM with detection limit of 0.79 fM under optimal experimental conditions. The performance of this aptaelectrode was also evaluated showing good selectivity, storage stability (15 days), reproducibility and reusability (up to 3 times). Furthermore, the applicability of the aptasensor for spiked serum samples showed recovery range from 92% to 97%.
Collapse
|
31
|
Xu S, Dai B, Xu J, Jiang L, Huang H. An Electrochemical Sensor for the Detection of Cu
2+
Based on Gold Nanoflowers‐modifed Electrode and DNAzyme Functionalized Au@MIL‐101 (Fe). ELECTROANAL 2019. [DOI: 10.1002/elan.201900343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shengpan Xu
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech University, Nanjing Jiangsu 211800 PR China
- School of Chemistry and Chemical EngineeringHuaiyin Normal University, Huaian Jiangsu 223300 PR China
| | - Benlin Dai
- School of Chemistry and Chemical EngineeringHuaiyin Normal University, Huaian Jiangsu 223300 PR China
| | - Jiming Xu
- School of Chemistry and Chemical EngineeringHuaiyin Normal University, Huaian Jiangsu 223300 PR China
| | - Ling Jiang
- College of Food Science and Light IndustryNanjing Tech University, Nanjing Jiangsu 211800 PR China
| | - He Huang
- College of Pharmaceutical SciencesNanjing Tech University, Nanjing Jiangsu 211800 PR China
| |
Collapse
|