1
|
He Q, Yang M, Wang X, Yang B, Zhang F. A covalent organic framework-coated steel substrate as a mass spectrometric ionization source for the effective enrichment and rapid detection of phthalates in beverages. Mikrochim Acta 2025; 192:183. [PMID: 39992473 DOI: 10.1007/s00604-025-06994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025]
Abstract
A novel, rapid, and simple detection method is proposed to realize the simultaneous detection of seven phthalate esters (PAEs) within 1.5 min. A suitable covalent organic framework (COF) was coated on a stainless steel substrate (COFCS) to serve as both an enrichment element and a solid substrate for electrospray ionization mass spectrometry (ESI-MS). Twenty microliters of elution solvent was added dropwise to the COFCS enriched with analytes, and then high voltage electricity was applied and combined with ambient mass spectrometry (AMS) to realize the detection of PAEs. In order to investigate the reliability of the COFCS-ESI-MS method, dimethyl phthalate (DMP), diethyl phthalate (DEP), ethyl phthalate (2-methoxy) (DMEP), phthalate(2-ethoxy) ethyl ester (DEEP), dipentyl phthalate (DPP), dihexyl phthalate (DHXP), and butyl benzyl phthalate (BBP) were detected simultaneously. The proposed method showed good linearity in the range 0.1-80 μg/L with the determination coefficient (R2) > 0.9916. The limits of detection (LODs) and limits of quantification (LOQs) of the determination technology were in the ranges 0.03-0.40 μg/L and 0.1-2.0 μg/L, respectively. The results demonstrated that the simultaneous detection of the seven PAEs in beverages can be realized using the method, and the spiked recoveries were in the range 85.17-104.09% with the relative standard deviations (RSDs) < 8.32%. In addition, the COFCS has good reusability and batch-to-batch repeatability and can be re-used at least 5 times and still maintain good enrichment performance.
Collapse
Affiliation(s)
- Qin He
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory of Food Quality and Safety, State Administration for Market Regulation, Beijing, 100176, China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
- Key Laboratory of Food Quality and Safety, State Administration for Market Regulation, Beijing, 100176, China
| | - Xiujuan Wang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
- Key Laboratory of Food Quality and Safety, State Administration for Market Regulation, Beijing, 100176, China
| | - Bingcheng Yang
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
- Key Laboratory of Food Quality and Safety, State Administration for Market Regulation, Beijing, 100176, China.
| |
Collapse
|
2
|
Wang W, Liu T, Wang X, Chen F, Feng X, Zhang F. Fully Integrated Recognition and Enrichment Electrospray Ionization Source for High-Sensitivity Mass Spectrometry Determination of Bioamine. Anal Chem 2024; 96:14332-14338. [PMID: 39178331 DOI: 10.1021/acs.analchem.4c02607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
The development of a highly specific recognition electrospray ionization source presents a major challenge for achieving rapid ambient mass spectrometry (AMS) detection of trace harmful substances in complex samples. In this study, we constructed a molecular imprinting nanofiber electrospinning membrane-coated steel substrate (MINMCS) based on the electrospinning strategy. This was designed as a highly specific recognition and enrichment electrospray ionization source module for AMS, where the molecular imprinting nanofiber membrane served as an excellent extraction and enrichment layer. The prepared ionization source demonstrated a sufficient loading capacity for three bioamines (BAs): histamine (HIS), tyramine (TYR), and tryptamine (TRY). With simplified sample pretreatment, this ionization source exhibited sensitivity comparable to that of high performance liquid chromatography-mass spectrometry (HPLC-MS/MS). Moreover, the entire analysis process could be completed within 1 min with acceptable recoveries (83.21-101.80%). In brief, this study introduces a new integrated recognition and enrichment electrospray ionization source for the detection of harmful substances such as bioamines, showcasing significant commercial potential for the rapid detection of foodborne harmful compounds.
Collapse
Affiliation(s)
- Weilai Wang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Tong Liu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Xiujuan Wang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Fengming Chen
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Xuesong Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| |
Collapse
|
3
|
Zhong C, Deng J, Yang Y, Zeng H, Feng L, Luan T. Rapid and sensitive determination of legacy and emerging per- and poly-fluoroalkyl substances with solid-phase microextraction probe coupled with mass spectrometry. Talanta 2024; 276:126233. [PMID: 38739954 DOI: 10.1016/j.talanta.2024.126233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
This study was designed to develop a rapid and sensitive method for quantifying legacy and emerging per- and polyfluoroalkyl substances (PFASs) in environmental samples with solid-phase microextraction (SPME) coupled with mass spectrometry (MS). An innovative SPME probe was fabricated via in situ polymerization, and the probe coating was optimized with response surface methodology to maximize the fluorine-fluorine interactions and electrostatic properties and ensure high selectivity for the target PFASs with enrichment factors of 48-491. The coupled SPME and MS provided a rapid and sensitive method for analyses of PFASs, with excellent linearity (r ≥ 0.9962) over the concentration range 0.001-1 μg/L and remarkably low detection limits of 0.1-13.0 ng/L. This method was used to analyze trace PFASs in tap water, river water, and wastewater samples and proved to be a simple and efficient analytical method for selective enrichment and detection of contaminants in the environment.
Collapse
Affiliation(s)
- Chunfei Zhong
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiewei Deng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yunyun Yang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China
| | - Haishen Zeng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Longkuan Feng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
4
|
Nazim T, Lusina A, Cegłowski M. Recent Developments in the Detection of Organic Contaminants Using Molecularly Imprinted Polymers Combined with Various Analytical Techniques. Polymers (Basel) 2023; 15:3868. [PMID: 37835917 PMCID: PMC10574876 DOI: 10.3390/polym15193868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Molecularly imprinted polymers (MIPs) encompass a diverse array of polymeric matrices that exhibit the unique capacity to selectively identify a designated template molecule through specific chemical moieties. Thanks to their pivotal attributes, including exceptional selectivity, extended shelf stability, and other distinct characteristics, this class of compounds has garnered interest in the development of highly responsive sensor systems. As a result, the incorporation of MIPs in crafting distinctive sensors and analytical procedures tailored for specific analytes across various domains has increasingly become a common practice within contemporary analytical chemistry. Furthermore, the range of polymers amenable to MIP formulation significantly influences the potential utilization of both conventional and innovative analytical methodologies. This versatility expands the array of possibilities in which MIP-based sensing can be employed in recognition systems. The following review summarizes the notable progress achieved within the preceding seven-year period in employing MIP-based sensing techniques for analyte determination.
Collapse
Affiliation(s)
| | | | - Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (T.N.); (A.L.)
| |
Collapse
|
5
|
Althomali RH, Hamoud Alshahrani S, Qasim Almajidi Y, Kamal Hasan W, Gulnoza D, Romero-Parra RM, Abid MK, Radie Alawadi AH, Alsalamyh A, Juyal A. Current Trends in Nanomaterials-Based Electrochemiluminescence Aptasensors for the Determination of Antibiotic Residues in Foodstuffs: A Comprehensive Review. Crit Rev Anal Chem 2023; 54:3252-3268. [PMID: 37480552 DOI: 10.1080/10408347.2023.2238059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Veterinary pharmaceuticals have been recently recognized as newly emerging environmental contaminants. Indeed, because of their uncontrolled or overused disposal, we are now facing undesirable amounts of these constituents in foodstuff and its related human health concerns. In this context, developing a well-organized environmental and foodstuff screening toward antibiotic levels is of paramount importance to ensure the safety of food products as well as human health. In this case, with the development and progress of electric/photo detecting, nanomaterials, and nucleic acid aptamer technology, their incorporation-driven evolving electrochemiluminescence aptasensing strategy has presented the hopeful potentials in identifying the residual amounts of different antibiotics toward sensitivity, economy, and practicality. In this context, we reviewed the up-to-date development of ECL aptasensors with aptamers as recognition elements and nanomaterials as the active elements for quantitative sensing the residual antibiotics in foodstuff and agriculture-related matrices, dissected the unavoidable challenges, and debated the upcoming prospects.
Collapse
Affiliation(s)
- Raed H Althomali
- Department of Chemistry, College of Arts and Science, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | | | - Wajeeh Kamal Hasan
- Department of Radiology and Sonar Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Djakhangirova Gulnoza
- Department of Food Products Technology, Tashkent Institute of Chemical Technology, Tashkent, Uzbekistan
| | | | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | | | - Ali Alsalamyh
- College of Technical Engineering, Imam Jafar Al-Sadiq University, Al-Muthanna, Iraq
| | - Ashima Juyal
- Division of Research & Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
6
|
Hao YX, Yang ML, Chen XF, Zhang F, Li N, He MY, Xu MX. Development of Magnetic Molecularly Imprinted Polymer Coupled Nanospray Ion Source for Analysis of Cephalosporin Antibiotics in Food Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37246392 DOI: 10.1021/acs.jafc.3c01527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A magnetic molecularly imprinted polymer (MMIP) coupled nanospray ion source was developed for analysis of cephalosporin antibiotics in food samples. MIP coated Fe3O4 nanospheres were prepared for magnetic solid-phase extraction (MSPE) of the antibiotics in the extract of samples and then integrated into the nanospray capillary for further desorption and mass spectrometry analysis. The developed device combines the advantages of high extraction efficiency of MSPE, unique selectivity of MIPs, and fast analysis speed of ambient ionization mass spectrometry (AIMS). Five cephalosporin antibiotics in milk, egg, and beef samples were analyzed using the developed methods. High sensitivities with limits of detection (LODs) from 0.3 to 0.5 μg kg-1 were achieved for cephalosporin antibiotics in milk, egg, and beef samples, respectively. Good linearity, determination coefficient values (R2 > 0.992), and precision (RSD < 15%) with recoveries ranging from 72.6% to 115.5% were obtained using the spiked milk, egg, and beef sample matrices.
Collapse
Affiliation(s)
- Ya-Xin Hao
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Centre, Jinan, Shandong 250014, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Min-Li Yang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Xiang-Feng Chen
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Centre, Jinan, Shandong 250014, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Na Li
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Centre, Jinan, Shandong 250014, China
| | - Mu-Yi He
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Mei-Xia Xu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| |
Collapse
|
7
|
Wang W, Liu T, Wang Y, Mu G, Zhang F, Yang Q, Hou X. Hydrophilic Covalent Organic Frameworks Coated Steel Sheet As a Mass Spectrometric Ionization Source for the Direct Determination of Zearalenone and Its Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12211-12219. [PMID: 36100997 DOI: 10.1021/acs.jafc.2c02868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Zearalenone has attracted worldwide attention due to its toxic properties and threat to public health. A rapid determination method for zearalenone and its derivatives by hydrophilic covalent organic frameworks coated steel sheet (HCOFCS) combined with ambient mass spectrometry (AMS) was developed. The HCOFCS behaved as both a tip for solid-phase microextraction and a solid substrate for electrospray ionization mass spectrometry (ESI-MS). To evaluate the HCOFCS-ESI-MS method, five zearalenone and its derivatives in milk samples were determined, including zearalenone (ZEA), α-zearalenol (α-ZEL), β-zearalenol (β-ZEL), α-zearalanol (α-ZAL), and β-zearalanol (β-ZAL). After the extraction procedure, the HCOFCS was directly added with a high voltage for ESI-MS, and the analysis could be completed within 1 min. The developed method showed good linearity in the range 0.1-100 μg/L with a coefficient of determination (R2) > 0.9991. The limits of detection (LODs) and limits of quantitation (LOQs) ranged from 0.05 to 0.1 and 0.2 to 0.3 μg/L, respectively. The results demonstrated that the HCOFCS combined with ESI-MS can be used for the rapid and sensitive determination of trace ZEA and its derivatives in milk samples with satisfactory recoveries from 80.58% to 109.98% and reproducibility with relative standard deviations (RSDs) no more than 11.18%. Furthermore, HCOFCS showed good reusability, which could reuse at least 10 extraction cycles with satisfactory adsorption performance.
Collapse
Affiliation(s)
- Wenhua Wang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Tong Liu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Youfa Wang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Guodong Mu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Qingli Yang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xiudan Hou
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| |
Collapse
|
8
|
Basak S, Venkatram R, Singhal RS. Recent advances in the application of molecularly imprinted polymers (MIPs) in food analysis. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Shi Q, Fu J, Chen J, Wang J, Luo Y, Xie W. Rapid On-Site Detection of Various Amphetamine-Type Drugs in Human Urine and Hair by Portable Pulsed Direct Current Electrospray Ionization Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822060132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Li F, Luo J, Zhu B, Liu Z. Pretreatment Methods for the Determination of Antibiotics Residues in Food Samples and Detected by Liquid Chromatography Coupled with Mass Spectrometry Detectors: A Review. J Chromatogr Sci 2022; 60:991-1003. [PMID: 35675650 DOI: 10.1093/chromsci/bmac021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 11/14/2022]
Abstract
With the increasing use of antibiotics worldwide, antibiotic monitoring has become a topic of concern. After metabolizing of antibiotics in animals, the metabolites enter the environment through excreta or ingested by the human body via food chain that may exacerbate the emergence of antibiotic resistance and then threaten human's life. This article summarized several analytical methods used for the determination of antibiotics in recent 10 years. Due to the complex matrices and low concentration level of antibiotics in the food samples, a reliable analysis method is required to maximize the recovery rate. Several techniques like solid phase extraction (SPE), dispersive liquid-liquid microextraction (DLLME) and QuEChERS have been frequently used in the pretreatment process for analytes extraction and concentration. After the pretreatment, ultra-high performance liquid chromatography combined with mass spectrometry has been a reliable method for quantitative analysis and is able to determine multiple antibiotics simultaneously. This review also gives an overview about analytical conditions for antibiotics residues in different food samples and their method validation parameters.
Collapse
Affiliation(s)
- Fan Li
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jinwen Luo
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.,Sinopep-Allsino Biopharmaceutical Co., Ltd., Hangzhou, Zhejiang 311121, China
| | - Bingqi Zhu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Zhu Liu
- Zhejiang Institute of Food and Drug Control, Hangzhou, Zhejiang 310052, China
| |
Collapse
|
11
|
Hu B, Yao ZP. Electrospray ionization mass spectrometry with wooden tips: A review. Anal Chim Acta 2022; 1209:339136. [PMID: 35569859 DOI: 10.1016/j.aca.2021.339136] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022]
Abstract
Electrospray ionization (ESI) is a powerful ionization technique in mass spectrometry (MS). There has been an increasing interest for the new development of ESI technique to extend its applications. ESI-MS with wooden tips (wooden-tip ESI-MS), an ESI technique invented in 2011, enabled not only new applications but also new insights into the ESI mechanism. In this review, the technical aspects of wooden-tip ESI-MS are described, the new features of wooden-tip ESI-MS for sampling and ionization of analytes are highlighted, and the important applications of wooden-tip ESI-MS in various fields in the past 10 years, including food safety, forensic investigation, environmental analysis, biomedical analysis and protein study, are summarized. The perspectives on the further development and applications of wooden-tip ESI-MS are also discussed.
Collapse
Affiliation(s)
- Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China.
| | - Zhong-Ping Yao
- State Key Laboratory for Chemical Biology and Drug Discovery, Research Institute for Future Food and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, 518057, China.
| |
Collapse
|
12
|
Dueñas-Mas MJ, Ballesteros-Gómez A, Rubio S. Supramolecular solvent-based microextraction probe for fast detection of bisphenols by ambient mass spectrometry. CHEMOSPHERE 2022; 294:133719. [PMID: 35077738 DOI: 10.1016/j.chemosphere.2022.133719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
In this study, we investigated for the first time the suitability of supramolecular solvent (SUPRAS)-based microextraction probe for the development of generic and fast sample treatment prior to qualitative analysis by ambient mass spectrometry (AMS) based on ASAP (atmospheric solids analysis probe). SUPRAS are nanostructured liquids formed by the self-assembly of amphiphilic aggregates with multiple binding sites and microenvironments of different polarity for the efficient extraction of multiple compounds. Different types of SUPRAS were evaluated as a simple and single step sample treatment for ASAP. The method was applied to the screening of bisphenol A and structural analogues in thermal paper. Optimal results were achieved with SUPRAS synthesized with 1-decanol in mixtures of ethanol:water. SUPRAS (1.1-2 μL) were loaded onto glass probes and placed in contact with samples for 10 s before ASAP analysis. AMS signal peaks (width: 0.2-0.5 min) were easily integrated and normalized with internal standards (RSD: 2-25%). The method was applied to 62 samples of thermal paper. BPA and BPS were the most widely used, this highlighting the progressive industrial replacement of BPA by BPS.
Collapse
Affiliation(s)
- María Jesús Dueñas-Mas
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building Annex, Campus of Rabanales, University of Córdoba, 14071, Córdoba, Spain
| | - Ana Ballesteros-Gómez
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building Annex, Campus of Rabanales, University of Córdoba, 14071, Córdoba, Spain.
| | - Soledad Rubio
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building Annex, Campus of Rabanales, University of Córdoba, 14071, Córdoba, Spain
| |
Collapse
|
13
|
Pre-cleaned bare wooden toothpicks for the determination of drugs in oral fluid by mass spectrometry. Anal Bioanal Chem 2022; 414:5287-5296. [PMID: 35274154 PMCID: PMC9242915 DOI: 10.1007/s00216-022-03977-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/18/2022] [Accepted: 02/11/2022] [Indexed: 12/18/2022]
Abstract
This article deepens the potential of pre-cleaned bare wooden toothpicks (pb-WTs) for extracting drugs (antidepressants and acetaminophen) from oral fluid samples. The leaching of the intrinsic compounds from the wood matrix is identified as the main challenge for the final determination of the targets, even when a very selective instrumental technique, such as mass spectrometry, is employed. The pre-cleaning of the WTs is proposed for improving the analytical performance. The number of cleaning cycles depends on the injection mode (direct infusion or chromatography) into the mass spectrometer. The different variables affecting the extraction of selected antidepressant drugs were studied in detail, and the optimum procedure was validated using the two mentioned injection modes. The limits of detection were in the ranges 0.1–0.5 ng/mL and 0.1–0.3 ng/mL for direct infusion and liquid chromatography, respectively. The intra-day precision (expressed as relative standard deviation) was better than 12.1% and 8.6%, for direct infusion and liquid chromatography, respectively. Single-blind samples were used to study the applicability of the method. Finally, as a proof-of-concept, the potential of pb-WTs for in vivo sampling was outlined.
Collapse
|
14
|
Determination of Nitrofuran Metabolites in Complex Food Matrices Using a Rough, Cheap, Easy-Made Wooden-Tip-Based Solid-Phase Microextraction Probe and LC-MS/MS. J CHEM-NY 2022. [DOI: 10.1155/2022/1315276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, a rough, cheap, easy-made wooden-tip-based solid-phase microextraction (SPME) probe was first developed for simultaneous determination of 4 nitrofuran metabolite derivatives in complex food matrices via LC-MS/MS. A simple dip-coating method was used to coat wooden tips with biocompatible polyacrylonitrile (PAN) and N-vinylpyrrolidone-co-divinylbenzene, also known as HLB particles, which served as the extractive substrate in the proposed device. Compared with the traditional solid-phase extraction (SPE) method, the proposed device shortens sample clean-up time, reduces solvent consumption, and decreases testing costs. In addition, the main parameters affecting the SPME procedure efficiency were investigated in detail and the optimal conditions were found. The method was validated using three different food matrixes (pork, croaker, and honey) by spiking with the four metabolites at 0.5, 1.0, and 5.0 μg/kg, as well as their internal standards. The average recovery of all nitrofuran metabolite derivatives ranges from 97.4–109.5% (pork), 87.5–112.7% (croaker), and 98.6–109.0% (honey). Relative standard deviations were all <10% for intraday and interday precision. The values of limit of detection and limit of quantification were, respectively, ranging from 0.011 to 0.123 and 0.033 to 0.369 μg/kg (pork), 0.009 to 0.112 and 0.027 to 0.339 μg/kg (croaker), and 0.010 to 0.131 and 0.030 to 0.293 μg/kg (honey). The presented method was applied to the analysis of real positive samples.
Collapse
|
15
|
Ling C, Shi Q, Wei Z, Zhang J, Hu J, Pei J. Rapid analysis of quinones in complex matrices by derivatization-based wooden-tip electrospray ionization mass spectrometry. Talanta 2022; 237:122912. [PMID: 34736649 DOI: 10.1016/j.talanta.2021.122912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
Quinones are important components participating in various biological processes as well as hazardous substances to human health. Rapid determination of quinones in environmental samples and biofluids is the basis for assessing their health effect. Here, we presented a rapid, straightforward, highly sensitive and environmental-friendly wooden-tip electrospray ionization mass spectrometry (ESI-MS) method for the determination of quinones in PM2.5, urine and serum. An amine group "tag" was introduced to the quinone structure through in situ derivatization with cysteamine to improve ionization efficiency of quinones in wooden-tip ESI-MS. The toothpicks were treated by sharpening and acidification with HNO3. Experimental parameters, including sample volume, spray voltage, and spray solvent composition were optimized to be 1 μL, 3.5 kV, and ACN/CH3COOC2H5 (v/v, 9:1), respectively. The limits of detection for the determination of 1,4-benzoquinone, methyl-p-benzoquinone, 1,4-naphthoquinone and 1,4-anthraquinone in ACN under the optimal conditions were 1.00, 0.96, 0.13, 0.16 ng (1.00, 0.96, 0.13, 0.16 μg/mL, sample volume, 1 μL), respectively. This approach was successfully applied to the determination of 1,4-naphthoquinone and 1,4-anthraquinone in complex matrices, including PM2.5, urine and serum without or with minimal sample preparation (LOD range: 0.22-1.48 ng).
Collapse
Affiliation(s)
- Chen Ling
- School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530000, PR China
| | - Qiaofang Shi
- School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530000, PR China
| | - Zhanpeng Wei
- School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530000, PR China
| | - Jingjing Zhang
- School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530000, PR China
| | - Junjie Hu
- School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530000, PR China
| | - Jiying Pei
- School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530000, PR China; Coral Reef Research Center of China, Nanning, Guangxi, 530000, PR China.
| |
Collapse
|
16
|
Ma H, Yang M, Wang X, Yang B, Zhang F, Zhang F, Li Y, Liu T, He M, Wang Q. Sulfonamide-Selective Ambient Mass Spectrometry Ion Source Obtained by Modification of an Iron Sheet with a Hydrophilic Molecularly Imprinted Polymer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15425-15433. [PMID: 34898196 DOI: 10.1021/acs.jafc.1c06623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We have described a sulfonamide-selective ambient ion source coupled with electrospray ionization mass spectrometry (ESI-MS) for selective extraction and determination of trace sulfonamide antibiotics. It is obtained by modifying an iron sheet with a sulfadiazine-templated hydrophilic molecularly imprinted polymer (SF-HMIP). It behaves as both an online extractor and a MS ion source. Five sulfonamide antibiotics, including sulfamethoxazole (SMZ), sulfamerazine (SMR), sulfisoxazole (SIZ), sulfathiazole (ST), and sulfameter (SMD), were chosen to evaluate SF-HMIP coupled with ESI-MS, which showed good linearity in the range of 0.2-1000 ng/mL with correlation coefficient values (R2) over 0.9946. The limits of detection (LODs) for analysis of pure water and honey were in the range of 0.1-0.2 and 0.2-1.5 ng/mL, respectively. Limits of quantitation (LOQs) for analysis of pure water and honey were in the range of 0.3-0.5 and 1.0-5.0 ng/mL, respectively. The results demonstrated that SF-HMIP combined with ESI-MS could be applied for the direct analysis of five trace sulfonamide compounds in honey and pure water with recoveries ranging from 76 to 129%.
Collapse
Affiliation(s)
- Hongyue Ma
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Xiujuan Wang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Bingcheng Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feifang Zhang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Yinlong Li
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Tong Liu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Muyi He
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Qian Wang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
17
|
Huang C, Wang H, Ma S, Bo C, Ou J, Gong B. Recent application of molecular imprinting technique in food safety. J Chromatogr A 2021; 1657:462579. [PMID: 34607292 DOI: 10.1016/j.chroma.2021.462579] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022]
Abstract
Due to the extensive use of chemical substances such as pesticides, antibiotics and food additives, food safety issues have gradually attracted people's attention. The extensive use of these chemicals seriously damages human health. In order to detect trace chemical residues in food, researchers have to find several simple, economical and effective tools for qualitative and quantitative analysis. As a kind of material that specifically and selectively recognize template molecules from real samples, molecular imprinting technique (MIT) has widely applied in food samples analysis. This article mainly reviews the application of molecularly imprinted polymer (MIP) in the detection of chemical residues from food in the past five years. Some recent and novel methods for fabrication of MIP are reviewed. Their application of sample pretreatment, sensors, etc. in food analysis is reviewed. The application of molecular imprinting in chromatographic stationary phase is referred. Additionally, the challenges faced by MIP are discussed.
Collapse
Affiliation(s)
- Chao Huang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Hongwei Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Junjie Ou
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
18
|
Szalwinski LJ, Hu Y, Morato NM, Cooks RG, Salentijn GI. Novel Ion Trap Scan Modes to Develop Criteria for On-Site Detection of Sulfonamide Antibiotics. Anal Chem 2021; 93:13904-13911. [PMID: 34617742 PMCID: PMC8529578 DOI: 10.1021/acs.analchem.1c02790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Advances in ambient
ionization techniques have facilitated the
direct analysis of complex mixtures without sample preparation. Significant
attention has been given to innovating ionization methods so that
multiple options are now available, allowing for ready selection of
the best methods for particular analyte classes. These ambient techniques
are commonly implemented on benchtop systems, but their potential
application with miniature mass spectrometers for in situ measurements is even more powerful. These applications require that
attention be paid to tailoring the mass spectrometric methodology
for the on-site operation. In this study, combinations of scan modes
are employed to efficiently determine what tandem mass spectrometry
(MS/MS) operations are most useful for detecting sulfonamides using
a miniature ion trap after ionization. First, mixtures of representative
sulfonamide antibiotics were interrogated using a 2D MS/MS scan on
a benchtop ion trap in order to determine which class-specific fragments
(ionic or neutral) are shared between the sulfonamides and thus have
diagnostic value. Then, three less-used combination scans were recorded:
(i) a simultaneous precursor ion scan was used to detect both analytes
and an internal standard in a single ion injection event to optimize
quantitative performance; (ii) a simultaneous precursor/neutral loss
scan was used to improve detection limits; and finally, (iii) the
simultaneous precursor/neutral loss scan was implemented in a miniature
mass spectrometer and representative sulfonamides were detected at
concentrations as low as 100 ng/mL by nano-electrospray and 0.5 ng
absolute by paper spray ionization, although improvements in the stability
of the home-built instrumentation are needed to further optimize performance.
Collapse
Affiliation(s)
- Lucas J Szalwinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yanyang Hu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicolás M Morato
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Gert Ij Salentijn
- Laboratory of Organic Chemistry, Wageningen University, Wageningen 6708 WE, The Netherlands.,Wageningen Food Safety Research (WFSR), Wageningen University & Research, Wageningen 6700 AE, The Netherlands
| |
Collapse
|
19
|
Millán-Santiago J, Lucena R, Cárdenas S. Wooden-based materials: Eco-friendly materials for direct mass spectrometric analysis and microextraction. J Sep Sci 2021; 45:223-232. [PMID: 34558202 DOI: 10.1002/jssc.202100660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
Lignocellulosic materials have arisen as a sustainable alternative in microextraction techniques during the last 10 years. As they are natural materials, their use fits into some of the principles of Green Analytical Chemistry. Their inherent porosity, narrow shape, and rigidity permit their use in ambient ionization mass spectrometry techniques. In particular, the combination of wooden-based materials and direct analysis gives birth to the so-called wooden-tip electrospray ionization mass spectrometry technique. This approach has been used for the direct analysis of complex samples, and as a streamlined tool for fingerprint quality analysis. Also, wooden-based materials can be superficially modified to boost the interaction with target compounds, allowing their isolation from complex samples. This review describes the potential and applicability of direct analysis using lignocellulosic materials, as well as other alternatives related to their use in microextraction.
Collapse
Affiliation(s)
- Jaime Millán-Santiago
- Departamento de Química Analítica, Affordable and Sustainable Sample Preparation (AS2P) Research Group, Instituto Universitario de Investigación en Química Fina y Nanoquímica (IUNAN), Universidad de Córdoba, Córdoba, Spain
| | - Rafael Lucena
- Departamento de Química Analítica, Affordable and Sustainable Sample Preparation (AS2P) Research Group, Instituto Universitario de Investigación en Química Fina y Nanoquímica (IUNAN), Universidad de Córdoba, Córdoba, Spain
| | - Soledad Cárdenas
- Departamento de Química Analítica, Affordable and Sustainable Sample Preparation (AS2P) Research Group, Instituto Universitario de Investigación en Química Fina y Nanoquímica (IUNAN), Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
20
|
Factors Affecting Preparation of Molecularly Imprinted Polymer and Methods on Finding Template-Monomer Interaction as the Key of Selective Properties of the Materials. Molecules 2021; 26:molecules26185612. [PMID: 34577083 PMCID: PMC8470890 DOI: 10.3390/molecules26185612] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
Molecular imprinting is a technique for creating artificial recognition sites on polymer matrices that complement the template in terms of size, shape, and spatial arrangement of functional groups. The main advantage of Molecularly Imprinted Polymers (MIP) as the polymer for use with a molecular imprinting technique is that they have high selectivity and affinity for the target molecules used in the molding process. The components of a Molecularly Imprinted Polymer are template, functional monomer, cross-linker, solvent, and initiator. Many things determine the success of a Molecularly Imprinted Polymer, but the Molecularly Imprinted Polymer component and the interaction between template-monomers are the most critical factors. This review will discuss how to find the interaction between template and monomer in Molecularly Imprinted Polymer before polymerization and after polymerization and choose the suitable component for MIP development. Computer simulation, UV-Vis spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Proton-Nuclear Magnetic Resonance (1H-NMR) are generally used to determine the type and strength of intermolecular interaction on pre-polymerization stage. In turn, Suspended State Saturation Transfer Difference High Resolution/Magic Angle Spinning (STD HR/MAS) NMR, Raman Spectroscopy, and Surface-Enhanced Raman Scattering (SERS) and Fluorescence Spectroscopy are used to detect chemical interaction after polymerization. Hydrogen bonding is the type of interaction that is becoming a focus to find on all methods as this interaction strongly contributes to the affinity of molecularly imprinted polymers (MIPs).
Collapse
|
21
|
Köse K, Kehribar DY, Uzun L. Molecularly imprinted polymers in toxicology: a literature survey for the last 5 years. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35437-35471. [PMID: 34024002 DOI: 10.1007/s11356-021-14510-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/17/2021] [Indexed: 05/23/2023]
Abstract
The science of toxicology dates back almost to the beginning of human history. Toxic chemicals, which are encountered in different forms, are always among the chemicals that should be investigated in criminal field, environmental application, pharmaceutic, and even industry, where many researches have been carried out studies for years. Almost all of not only drugs but also industrial dyes have toxic side and direct effects. Environmental micropollutants accumulate in the tissues of all living things, especially plants, and show short- or long-term toxic symptoms. Chemicals in forensic science can be known by detecting the effect they cause to the body with the similar mechanism. It is clear that the best tracking tool among analysis methods is molecularly printed polymer-based analytical setups. Different polymeric combinations of molecularly imprinted polymers allow further study on detection or extraction using chromatographic and spectroscopic instruments. In particular, methods used in forensic medicine can detect trace amounts of poison or biological residues on the scene. Molecularly imprinted polymers are still in their infancy and have many variables that need to be developed. In this review, we summarized how molecular imprinted polymers and toxicology intersect and what has been done about molecular imprinted polymers in toxicology by looking at the studies conducted in the last 5 years.
Collapse
Affiliation(s)
- Kazım Köse
- Department of Joint Courses, Hitit University, Çorum, Turkey.
| | - Demet Yalçın Kehribar
- Department of Internal Medicine, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Lokman Uzun
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
22
|
Du J, Li X, Tian L, Li J, Wang C, Ye D, Zhao L, Liu S, Xu J, Xia X. Determination of macrolides in animal tissues and egg by multi-walled carbon nanotube-based dispersive solid-phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem 2021; 365:130502. [PMID: 34252621 DOI: 10.1016/j.foodchem.2021.130502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023]
Abstract
A simple and reliable analytical method was developed for the simultaneous determination of 11 macrolides in swine, chicken, bovine, and sheep tissues (muscle, liver, kidney, and fat), as well as eggs. Samples were extracted using a mixture of acetonitrile, ethyl acetate, and methanol; dispersive solid-phase extraction purification was then performed using multi-walled carbon nanotubes as the sorbent. The analytes were separated through ultra-high performance liquid chromatography and detected by electrospray ionization on a triple quadrupole mass spectrometer. The average recoveries ranged from 83.5% to 111.4%; the corresponding intra-day and inter-day relative standard deviations were less than 13.6% and 16.4%, respectively. The limit of detection and quantification of the eggs were 0.1-0.6 and 2.0 μg/kg, respectively. For other tissues, the limits of detection and quantification were 0.1-2.0 μg/kg and 5.0 μg/kg, respectively. The proposed method was successfully employed for the analysis of real samples to demonstrate its applicability.
Collapse
Affiliation(s)
- Jingjing Du
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaowei Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lu Tian
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chengfei Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Dongyang Ye
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Liang Zhao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Saiwa Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jian Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xi Xia
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Villa CC, Sánchez LT, Valencia GA, Ahmed S, Gutiérrez TJ. Molecularly imprinted polymers for food applications: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Xie R, Yang P, Liu J, Zou X, Tan Y, Wang X, Tao J, Zhao P. Lanthanide-functionalized metal-organic frameworks based ratiometric fluorescent sensor array for identification and determination of antibiotics. Talanta 2021; 231:122366. [PMID: 33965031 DOI: 10.1016/j.talanta.2021.122366] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 01/16/2023]
Abstract
Antibiotics have made great contributions to the improvement of human health and life quality. However, the current abuse of antibiotics not only has a serious impact on the environment, but also endangers people's health. For this reason, the simultaneous identification and accurate determination of as many antibiotics in the environment, food and organisms as possible is critical. Herein, a ratiometric fluorescent sensor array based on Eu3+ and Tb3+ co-doped metal-organic frameworks (MOFs) was fabricated. Benefiting from the sensitization of the organic ligands to Eu3+ and Tb3+, the reaction of MOFs with various antibiotics resulted in different responses to the ratio of fluorescent intensity at 545 nm and 616 nm (F545/F616). After these responses were differentiated by principal component analysis (PCA), totally eight kinds of 25 antibiotics were well distinguished with the existence of interfering substances. The proposed sensor array exhibited high accuracy (98%) for the identification of 48 unknown samples in water and outstanding quantitative ability for the mixture of antibiotics. Finally, the practicability of the sensor array for the analysis of real samples was proved. In this strategy, we have not only provided an efficient way for the comprehensive identification and determination of antibiotics, but also promised new opportunities for the development of ratiometric signal based sensor array.
Collapse
Affiliation(s)
- Ruirui Xie
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Peipei Yang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Jiamin Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xun Zou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yilin Tan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xuefeng Wang
- The Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China.
| | - Peng Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
25
|
Pereira HV, Pinto FG, Dos Reis MR, Garret TJ, Augusti R, Sena MM, Piccin E. A fast and effective approach for the discrimination of garlic origin using wooden-tip electrospray ionization mass spectrometry and multivariate classification. Talanta 2021; 230:122304. [PMID: 33934771 DOI: 10.1016/j.talanta.2021.122304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
This paper presents the combination of wooden-tip electrospray ionization mass spectrometry (WTESI-MS) and multivariate pattern recognition methods (principal component analysis, PCA and partial least squares discriminant analysis, PLS-DA) for the rapid and reliable discrimination, via chemical fingerprints, of garlic origin. A total of 312 garlic samples grown in different countries (Brazil, China, Argentina, Spain, and Chile) were studied. The methodology was based on a direct sampling approach, which relies on loading the sample by penetrating the garlic cloves with a pre-wetted wooden tip, followed by direct prompt analysis by WTESI-MS. Thus, no sample preparation is needed, which prevents the degradation of important metabolites and increases the analytical throughput. Parameters that affects the WTESI were optimized and the best performance in terms of signal stability and intensity was achieved using the positive ion mode. Most of the ions in WTESI mass spectra were assigned to amino acids, sugars, organosulfur compounds, and lipids. The discriminative model showed good performance (accuracy rates between 81.9% and 98.6%) and enabled identifying diagnostic ions for garlic samples from different origins. The differentiation and classification of garlic origin is of major importance as this food flavoring product is widely consumed, with worldwide trade representing billions of dollars every year, and is very often the subject of fraud.
Collapse
Affiliation(s)
- Hebert V Pereira
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Frederico G Pinto
- Department of Chemistry, Institute of Exact Sciences, Federal University of Viçosa, 38810-000, Rio Paranaíba, MG, Brazil
| | - Marcelo R Dos Reis
- Department of Crop Production, Institute of Agricultural Sciences, Federal University of Viçosa, Rio Paranaíba, MG, Brazil
| | - Timothy J Garret
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, 32608, Gainesville, FL, USA
| | - Rodinei Augusti
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Marcelo M Sena
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil; National Institute of Science and Technology in Bioanalytics, 13083-970, Campinas, SP, Brazil
| | - Evandro Piccin
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
26
|
Fan W, Yang D, Ding N, Chen P, Wang L, Tao G, Zheng F, Ji S. Application of core-satellite polydopamine-coated Fe 3O 4 nanoparticles-hollow porous molecularly imprinted polymer combined with HPLC-MS/MS for the quantification of macrolide antibiotics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1412-1421. [PMID: 33683249 DOI: 10.1039/d0ay02025g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Core-satellite-structured magnetic nanosorbents (MNs) used for the selective extraction of macrolide antibiotics (MACs) were prepared in this study. The MNs (core-satellite polydopamine-coated Fe3O4 nanoparticles-hollow porous molecularly imprinted polymer) consisted of polydopamine-coated Fe3O4 nanoparticles (Fe3O4@PDA) "core" linked to numerous hollow porous molecularly imprinted polymer (HPMIP) "satellites" with bridging amine functional groups. It is worth mentioning that HPMIPs act as "anchors" for selectively capturing target molecules. Polymers were characterized using TEM, SEM, FT-IR, VSM, and TGA and applied as magnetic dispersive solid-phase extraction (MDSPE) sorbents for the enrichment of trace MACs from a complex food matrix prior to quantification by HPLC-MS/MS. Nanocomposites revealed outstanding magnetic properties (36.1 emu g-1), a high adsorption capacity (103.6 μmol g-1), selectivity (IF = 3.2), and fast kinetic binding (20 min) for MACs. The multiple advantages of the novel core-satellite-structured magnetic molecularly imprinted nanosorbents were confirmed, which makes us believe that the preparation method of the core-satellite MNs can be applied to other fields involving molecular imprinting technology.
Collapse
Affiliation(s)
- Wenjia Fan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing 210009, China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Polyamide-coated wooden tips coupled to direct infusion mass spectrometry, a high throughput alternative for the determination of methadone, cocaine and methamphetamine in oral fluid. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105843] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
28
|
Martins RO, de Araújo GL, de Freitas CS, Silva AR, Simas RC, Vaz BG, Chaves AR. Miniaturized sample preparation techniques and ambient mass spectrometry as approaches for food residue analysis. J Chromatogr A 2021; 1640:461949. [PMID: 33556677 DOI: 10.1016/j.chroma.2021.461949] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/21/2023]
Abstract
Analytical methods such as liquid chromatography (LC) and mass spectrometry (MS) are widely used techniques for the analyses of different classes of compounds. This is due to their highlighted capacity for separating and identifying components in complex matrices such food samples. However, in most cases, effective analysis of the target analyte becomes challenging due to the complexity of the sample, especially for quantification of trace concentrations. In this case, miniaturized sample preparation methods have been used as a strategy for analysis of complex matrices. This involves removing the interferents and concentrating the analytes in a sample. These methods combine simplicity and effectiveness and given their miniaturized scale, they are in accordance with green chemistry precepts. Besides, ambient mass spectrometry represents a new trend in fast and rapid analyses, especially for qualitative and screening analysis. However, for complex matrix analyses, sample preparation is still a difficult step and the miniaturized sample preparation techniques show great potential for an improved and widespread use of ambient mass spectrometry techniques. . This review aims to contribute as an overview of current miniaturized sample preparation techniques and ambient mass spectrometry methods as different approaches for selective and sensitive analysis of residues in food samples.
Collapse
Affiliation(s)
| | | | | | | | | | - Boniek Gontijo Vaz
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | | |
Collapse
|
29
|
Gionfriddo E, Gómez-Ríos GA. Analysis of food samples made easy by microextraction technologies directly coupled to mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4665. [PMID: 33098354 DOI: 10.1002/jms.4665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Because of the complexity and diversity of food matrices, their chemical analysis often entails several analytical challenges to attain accurate and reliable results, especially for multiresidue analysis and ultratrace quantification. Nonetheless, microextraction technology, such as solid-phase microextraction (SPME), has revolutionized the concept of sample preparation for complex matrices because of its nonexhaustive, yet quantitative extraction approach and its amenability to coupling to multiple analytical platforms. In recent years, microextraction devices directly interfaced with mass spectrometry (MS) have redefined the analytical workflow by providing faster screening and quantitative methods for complex matrices. This review will discuss the latest developments in the field of food analysis by means of microextraction approaches directly coupled to MS. One key feature that differentiates SPME-MS approaches from other ambient MS techniques is the use of matrix compatible extraction phases that prevent biofouling, which could drastically affect the ionization process and are still capable of selective extraction of the targeted analytes from the food matrix. Furthermore, the review examines the most significant applications of SPME-MS for various ionization techniques such as direct analysis in real time, dielectric barrier desorption ionization, and some unique SPME geometries, for example, transmission mode SPME and coated blade spray, that facilitate the interface to MS instrumentation.
Collapse
Affiliation(s)
- Emanuela Gionfriddo
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, 43606, USA
- School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio, 43606, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, 43606, USA
| | | |
Collapse
|
30
|
Rapid and sensitive determination of trace fluoroquinolone antibiotics in milk by molecularly imprinted polymer-coated stainless steel sheet electrospray ionization mass spectrometry. Talanta 2020; 219:121282. [DOI: 10.1016/j.talanta.2020.121282] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 11/20/2022]
|
31
|
A review of pretreatment and analysis of macrolides in food (Update Since 2010). J Chromatogr A 2020; 1634:461662. [PMID: 33160200 DOI: 10.1016/j.chroma.2020.461662] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/10/2020] [Accepted: 10/22/2020] [Indexed: 01/29/2023]
Abstract
Macrolides are versatile broad-spectrum antibiotics whose activity stems from the presence of a macrolide ring. They are widely used in veterinary medicine to prevent and treat disease. However, because of their improper use and the absence of effective regulation, these compounds pose a threat to human health and the environment. Consequently, simple, quick, economical, and effective techniques are required to analyze macrolides in animal-derived foods, biological samples, and environmental samples. This paper presents a comprehensive overview of the pretreatment and analytical methods used for macrolides in various sample matrices, focusing on the developments since 2010. Pretreatment methods mainly include liquid-liquid extraction, solid-phase extraction, matrix solid-phase dispersion, and microextraction methods. Detection and quantification methods mainly include liquid chromatography (coupled to mass spectrometry or other detectors), electrochemical methods, capillary electrophoresis, and immunoassays. Furthermore, a comparison between the pros and cons of these methods and prospects for future developments are also discussed.
Collapse
|
32
|
Khatibi SA, Hamidi S, Siahi-Shadbad MR. Current trends in sample preparation by solid-phase extraction techniques for the determination of antibiotic residues in foodstuffs: a review. Crit Rev Food Sci Nutr 2020; 61:3361-3382. [DOI: 10.1080/10408398.2020.1798349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Seyed Amin Khatibi
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Samin Hamidi
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Reza Siahi-Shadbad
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Faculty of Pharmacy, Department of Pharmaceutical and Food Control, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
33
|
García-Valverde M, Soriano M, Lucena R, Cárdenas S. Cotton fibers functionalized with β-cyclodextrins as selectivity enhancer for the direct infusion mass spectrometric determination of cocaine and methamphetamine in saliva samples. Anal Chim Acta 2020; 1126:133-143. [DOI: 10.1016/j.aca.2020.05.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022]
|
34
|
Hou YJ, Deng J, He K, Chen C, Yang Y. Covalent Organic Frameworks-Based Solid-Phase Microextraction Probe for Rapid and Ultrasensitive Analysis of Trace Per- and Polyfluoroalkyl Substances Using Mass Spectrometry. Anal Chem 2020; 92:10213-10217. [DOI: 10.1021/acs.analchem.0c01829] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ya-Jun Hou
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou 510006, China
| | - Kaili He
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Chao Chen
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Yunyun Yang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| |
Collapse
|
35
|
de Araújo GL, de Aguiar DVA, Pereira I, da Silva LC, Chaves AAR, Vaz BG. Polypyrrole-coated needle as an electrospray emitter for ambient mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3235-3241. [PMID: 32930186 DOI: 10.1039/d0ay00652a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polypyrrole (PPy) is a polymer widely used as an extraction phase due to its ability to perform intermolecular interactions with the analyte, such as acid-base, π-π, dipole-dipole, hydrophobic, and hydrogen bonding. In this manuscript, we report the coating of a stainless steel needle with a PPy film for analyte extraction and subsequent analysis by electrospray ionization mass spectrometry (ESI-MS) under ambient and open-air conditions. The method, named PPy-ESI-MS, was optimized for analysis of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA) in synthetic urine. Seven cycles of electrodeposition of the PPy film onto the needle surface, sample at pH 8, and 40 min of extraction of analytes were determined as the best analysis conditions. The analytical performance of PPy-ESI-MS was evaluated for MDA and MDMA compounds. Analytical curves were obtained with R2 > 0.98. Limits of detection (LODs) and limits of quantification (LOQs) were determined as 20 μg L-1 and 70 μg L-1 for MDA and as 25 μg L-1 and 80 μg L-1 for MDMA, respectively. Values of precision were below 17%, and values of accuracy below 5%. The apparent recoveries ranged between 84.5% and 111.3%. In addition, the PPy-ESI-MS method was applied for the analysis of sarcosine in synthetic urine in order to evaluate the performance of the method for another class of compounds. The calibration curve was obtained with R2 > 0.98, along with LOD and LOQ of 30 μg L-1 and 100 μg L-1, respectively. The precision and accuracy values were below 5% and 8%, respectively, and the apparent recoveries close to 100%. This work demonstrates the usefulness of combining an extraction phase with ESI-MS analysis under ambient conditions to determine different classes of small molecules in a complex sample.
Collapse
Affiliation(s)
- Giovanna L de Araújo
- Chemistry Institute, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil.
| | | | - Igor Pereira
- Chemistry Institute, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil.
| | - Lidya C da Silva
- Chemistry Institute, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil.
| | - Andrà A R Chaves
- Chemistry Institute, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil.
| | - Boniek G Vaz
- Chemistry Institute, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil.
| |
Collapse
|
36
|
Dragostin I, Dragostin OM, Lisă EL, Stefan SC, Zamfir AS, Diaconu C, Zamfir CL. Drugs frequently involved in inducing hypersensitivity reactions. Drug Chem Toxicol 2020; 45:617-624. [PMID: 32249608 DOI: 10.1080/01480545.2020.1746331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Adverse drug reactions represent a major public health problem, both from an economic point of view and, mainly, from the point of view of the induced pathology (iatrogenic diseases), being difficult to differentiate from other pathological conditions or even from the treated disease. Thus, these aspects prevent the use of the first-choice drugs needed for a particular treatment, in different therapeutic classes: beta-lactam antibiotics; sulfonamides; macrolide antibiotics; quinolones; non-steroidal anti-inflammatories; corticosteroids; Angiotensin converting enzyme (ACE) inhibitors; general anesthetics; biological drugs; antiepileptic drugs etc. On the other hand, adverse drug reactions represent a major problem for both clinical practice and preclinical research, in order to develop new drugs. Hypersensitivity reactions mainly refer to the adverse effects that can be harmful, disturbing, and sometimes fatal, that appear under the conditions of a normal immune system, including allergies and autoimmune reactions, both triggered by an immunological-allergic mechanism. The main purpose of this paper is to review the main classes of drugs involved in inducing hypersensitivity reactions.
Collapse
Affiliation(s)
- Ionut Dragostin
- Department of Morpho-Functional Sciences I, Faculty of Medicine, University of Medicine and Pharmacy "Gr.T.Popa", Iasi 700115, Romania
| | - Oana-Maria Dragostin
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, University "Dunarea de Jos", Galati 800010, Romania
| | - Elena Lăcrămioara Lisă
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, University "Dunarea de Jos", Galati 800010, Romania
| | - Simona Claudia Stefan
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, University "Dunarea de Jos", Galati 800010, Romania
| | - Alexandra Simona Zamfir
- Department of Morpho-Functional Sciences I, Faculty of Medicine, University of Medicine and Pharmacy "Gr.T.Popa", Iasi 700115, Romania
| | - Camelia Diaconu
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, University "Dunarea de Jos", Galati 800010, Romania
| | - Carmen Lăcămioara Zamfir
- Department of Morpho-Functional Sciences I, Faculty of Medicine, University of Medicine and Pharmacy "Gr.T.Popa", Iasi 700115, Romania
| |
Collapse
|
37
|
Abstract
Green analytical chemistry principles aim to minimize the negative impact of analytical procedures in the environment, which can be considered both at close (to ensure the safety of the analysts) and global (to conserve our natural resources) levels. These principles suggest, among other guidelines, the reduction/minimization of the sample treatment and the use of renewable sources when possible. The first aspect is largely fulfilled by microextraction, which is considered to be among the greenest sample treatment techniques. The second consideration is attainable if natural products are used as raw materials for the preparation of new extraction phases. This strategy is in line with the change in our production system, which is being gradually moved from a linear model (take–make–dispose) to a circular one (including reusing and recycling as key terms). This article reviews the potential of natural products as sorbents in extraction and microextraction techniques from the synergic perspectives of two research groups working on the topic. The article covers the use of unmodified natural materials and the modified ones (although the latter has a less green character) to draw a general picture of the usefulness of the materials.
Collapse
|
38
|
Affiliation(s)
- Frederik A. Hansen
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
39
|
So PK, Yang BC, Li W, Wu L, Hu B. Simple Fabrication of Solid-Phase Microextraction with Surface-Coated Aluminum Foil for Enhanced Detection of Analytes in Biological and Clinical Samples by Mass Spectrometry. Anal Chem 2019; 91:9430-9434. [DOI: 10.1021/acs.analchem.9b02428] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Pui-Kin So
- University Research Facility in Life Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Bi-Cheng Yang
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang 330006, China
| | - Wen Li
- Institute of Laboratory Animal Science, Jinan University, Guangzhou 510632, China
| | - Lin Wu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China
| |
Collapse
|