1
|
Liu Q, Wang Q, Meng X, Wang X, Zhang Q, Hu HY. Combating Pathogenic Immune Evasion: Sialidase-Activated Thermally Delayed Fluorescence for Probing and Modulating Host-Pathogen Interactions. ACS Sens 2025; 10:1072-1082. [PMID: 39950598 DOI: 10.1021/acssensors.4c02917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Innate immunity represents the primary defense against invasive pathogens with phagocytosis playing a central role in host defense and mediating immune and inflammatory responses. However, pathogens such as Clostridium perfringens have developed strategies to overcome phagocytic clearance. Developing molecular tools to identify and target key factors in pathogenic immune evasion can deepen our understanding of host-pathogen interactions and aid in exploring novel therapeutic strategies. As a key enzyme in the sialylation process of C. perfringens, the virulence factor sialidase is a potential target for investigating pathogenic immune evasion. Herein, a "turn-on" thermally activated delayed fluorescent probe SA-HBT-PXZ is developed as a highly selective and sensitive sialidase sensor, enabling time-resolved fluorescence imaging of C. perfringens in live bacterial cells, tissue sections, and even infected mice. Furthermore, SA-HBT-PXZ is successfully employed to screen sialidase inhibitors based on prompt and delayed fluorescence emissions. The identified lead compounds effectively inhibit the activity of sialidases from C. perfringens, leading to an increased level of differentiation of macrophages into the M1 subtype. This, in turn, enhances the phagocytosis of C. perfringens and ultimately suppresses the immune escape of the bacteria. Our study provides a potential target and lead compounds for novel therapeutic strategies against C. perfringens infections.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiangchuan Meng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiang Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
2
|
Zhang L, Zhang K, Wu M, Ding J, Feng M, Li X, Yang S, Ma H. Ultrasensitive Recognition of Trace Nerve Agents Enabled via a Thermally Activated Delayed Fluorescence-Based Fluorescent Probe. Anal Chem 2025; 97:3344-3351. [PMID: 39898537 DOI: 10.1021/acs.analchem.4c05309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The development of fluorescent probes for the detection of nerve agents has been a significant focus of research due to their lethal toxicity to humans. Inspired by the excited state properties of thermally activated delayed fluorescence (TADF), we designed two visualized fluorescence probes, PT and PPT, that exhibit characteristics of delayed fluorescence and aggregation-induced emission. These probes are intended for the rapid and highly sensitive detection of diethyl chlorophosphate (DCP). Upon exposure to DCP vapors, the PT and PPT probes demonstrated rapid fluorescence quenching in less than 5 s, which was accompanied by a color change from yellow to red. The limits of detection for the probes were determined to be 3.0 and 2.9 ppb. Furthermore, we demonstrate that the reduction of acid interference through the use of dispersed SiO2 is an important step in the fabrication of N-heterocyclic nerve agent probes. Importantly, we also constructed a portable fluorescence detector that incorporates these films as key components, validating its applicability through the successful detection of nerve agents.
Collapse
Affiliation(s)
- Lijia Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Kongqing Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Mingyang Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jiantong Ding
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Miao Feng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Xiaobai Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Shilong Yang
- Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Northeast Forestry University, Harbin 150040, China
| | - Hongwei Ma
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
3
|
Zhang JY, Wang D, Li J, Tian Y, Yang SH. Rhodamine-functionalized carbon dots with pH-regulated FRET efficiency for ratiometric fluorescence sensing and imaging of extremely alkaline pH. Mikrochim Acta 2025; 192:109. [PMID: 39875630 DOI: 10.1007/s00604-024-06941-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025]
Abstract
A ratiometric fluorescent nanoprobe (CDs-Rho), synthesized through the simple covalent amide linkage between carbon dots (CDs) and pH-sensitive rhodamine dye (Rho), was designed for the precise sensing and imaging of extremely alkaline environments. The sensing mechanism involves the opposite pH-dependent fluorescence changes in CDs and Rho, respectively, coupled with pH-regulated FRET efficiency from CDs to Rho. The nanoprobe features a wide pH response window from pH 7.0 to 12.0 with a pKa value of 11.3 and shows high sensitivity, robust anti-interference capability, and high reversibility. Moreover, the significant shifts in emission wavelength following the pH fluctuations result in two well-separated emission signals, thus ensuring the visualization of reversible and distinct color changes (from green to red) during in vivo fluorescence imaging. This work furnished a facile protocol that contributes to the advancement of a novel method for the accurate sensing and imaging of extreme alkaline environments.
Collapse
Affiliation(s)
- Jing-Yuan Zhang
- The Seventh Affiliated Hospital, Hengyang Medical School, University of South China (Hunan Provincial Veterans Administration Hospital), Changsha, Hunan, 410000, China
| | - Dan Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jia Li
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ying Tian
- The Seventh Affiliated Hospital, Hengyang Medical School, University of South China (Hunan Provincial Veterans Administration Hospital), Changsha, Hunan, 410000, China.
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Si Hui Yang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
4
|
Wu XT, Zheng YY, Ma SS, Ai SH, Zhou QW, Yang D, Ma C. Synthesis, optical properties, and application of novel chalcone skeleton as pH fluorescent probe: Based AIE + ESIPT strategy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124199. [PMID: 38555822 DOI: 10.1016/j.saa.2024.124199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/22/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
A series of "turn off" pH fluorescence probes with chalcone skeleton for basic system have been developed. The molecules emitted bright yellow fluorescence under acidic condition, resulting AIE coupled ESIPT characteristic and ICT process. What's more, the compounds exhibited excellent sensitivity and selectivity for detecting pH as a facile "On-Off" fluorescence probe, and the fluorescence of them were quenched with the ESIPT process interrupted under alkaline condition. Theoretical calculation for the related compounds also performed to verify the electron effect on photophysical properties and confirm the rational speculation on the mechanism.
Collapse
Affiliation(s)
- Xiao-Tian Wu
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Ying-Ying Zheng
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Shan-Shan Ma
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Shu-Heng Ai
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, PR China
| | - Qi-Wang Zhou
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, PR China
| | - Di Yang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, PR China.
| | - Chen Ma
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
5
|
Wang X, Shi G, Xu S, Sun Y, Qiu H, Wang Q, Han X, Zhang Q, Zhang T, Hu HY. Unravelling Immune-Inflammatory Responses and Lysosomal Adaptation: Insights from Two-Photon Excited Delayed Fluorescence Imaging. Adv Healthc Mater 2024; 13:e2304223. [PMID: 38407490 DOI: 10.1002/adhm.202304223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Two-photon excitation (TPE) microscopy with near-infrared (NIR) emission has emerged as a promising technique for deep-tissue optical imaging. Recent developments in fluorescence lifetime imaging with long-lived emission probes have further enhanced the spatial resolution and precision of fluorescence imaging, especially in complex systems with short-lived background signals. In this study, two innovative lysosome-targeting probes, Cz-NA and tCz-NA, are introduced. These probes offer a combination of advantages, including TPE (λex = 880 nm), NIR emission (λem = 650 nm), and thermally activated delayed fluorescence (TADF) with long-lived lifetimes (1.05 and 1.71 µs, respectively). These characteristics significantly improve the resolution and signal-to-noise ratio in deep-tissue imaging. By integrating an acousto-optic modulator (AOM) device with TPE microscopy, the authors successfully applied Cz-NA in two-photon excited delayed fluorescence (TPEDF) imaging to track lysosomal adaptation and immune responses to inflammation in mice. This study sheds light on the relationship between lysosome tubulation, innate immune responses, and inflammation in vivo, providing valuable insights for the development of autofluorescence-free molecular probes in the future.
Collapse
Affiliation(s)
- Xiang Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Gaona Shi
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Shengnan Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuansheng Sun
- Flourescence Products, ISS, Inc., 1602 Newton Drive, Champaign, IL 61822, USA
| | - Hailin Qiu
- Department of Fluorescence Test Technology, Orient KOJI Ltd., Tianjin, 300122, China
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaowan Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
6
|
Huang H, Wang X, Zhou G, Qian C, Zhou Z, Wang Z, Yang Y. A novel ratiometric fluorescent sensor from modified coumarin-grafted cellulose for precise pH detection in strongly alkaline conditions. Int J Biol Macromol 2024; 262:130066. [PMID: 38340911 DOI: 10.1016/j.ijbiomac.2024.130066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Accurate and convenient monitoring of pH under extreme alkaline conditions is still a challenge. In this work, 4-(3-(7-hydroxy-2-oxo-2H-chromen-3-yl)-3-oxoprop-1-en-1-yl)benzamide (HCB), a coumarin derivative, was grafted onto dialdehyde cellulose (DAC) to obtain a sensor DAC-HCB, which exhibited a ratiometric fluorescent response to the pH of alkaline solutions, resulting in a significant fluorescent color change from yellow to blue (FI459 nm/FI577 nm) at pH 7.5-14. The structure of DAC-HCB was characterized through FT-IR, XRD, XPS, SEM. The pKa of sensor DAC-HCB was 13.16, and the fluorescent intensity ratio FI459 nm/FI577 nm possessed an excellent linear characteristic with pH in the scope of 9.0-13.0. Meanwhile, sensor DAC-HCB showed good selectivity, anti-interference, and fast response time to basic pH, which is an effective fluorescent sensor for examination of pH in alkali circumstance. The recognition mechanism of DAC-HCB to OH- was elucidated with HRMS and density-functional theory (DFT) computational analyses. Sensor DAC-HCB was successfully used for precise detection of environmental water samples pH. This work furnished a new protocol for test strips as a convenient and highly efficient pH detection tool for the high pH environment, and it has great potential for application in environmental monitoring.
Collapse
Affiliation(s)
- Huan Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyuan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guocheng Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Cheng Qian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zihang Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yiqin Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
7
|
Ma J, Lu X, Hao M, Wang Y, Guo Y, Wang Z. Real-time visualization the pH fluctuations of living cells with a ratiometric near-infrared fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123572. [PMID: 37922853 DOI: 10.1016/j.saa.2023.123572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
In situ real-time quantitative monitoring pH fluctuation in complex living systems is vitally significant. In the current work, a ratiometric near-infrared (NIR) probe (MCyOH) was developed to confront this challenge. MCyOH exhibited good sensitivity, photostability, reversibility, and an ideal pKa (pKa = 6.65). Ratiometric character of MCyOH is beneficial to accuracy detect the pH fluctuations in living cells under different stimulation. The observations showed that intracellular pH was decreased when HepG2 cells under oxidative stress or starvation conditions. In particular, HepG2 cells was acidulated after addition of ethanol, however, the acidification phenomenon was attenuated or disappeared when HepG2 cells preincubated with disulfiram or fomepizole. Finally, MCyOH was successfully applied to observe the increasement of intracellular pH when HepG2 cells treated with fomepizole individually. Overall, MCyOH would be a practical candidate to explore pH-associated physiological and pathological varieties.
Collapse
Affiliation(s)
- Jianlong Ma
- Department of Chemistry, Changzhi University, Changzhi 046011, PR China; Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China
| | - Xiaofeng Lu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China
| | - Mingyao Hao
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Yumeng Wang
- Department of Chemistry, Changzhi University, Changzhi 046011, PR China
| | - Yong Guo
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China.
| | - Zhijun Wang
- Department of Chemistry, Changzhi University, Changzhi 046011, PR China.
| |
Collapse
|
8
|
Yu GH, Hu HR, Liu RB, Sheng GZ, Niu JJ, Fang Y, Wang KP, Hu ZQ. A triphenylamine-based fluorescence probe for detection of hypochlorite in mitochondria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122830. [PMID: 37178586 DOI: 10.1016/j.saa.2023.122830] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/31/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
The level of HClO/ClO- in mitochondria is essential to keep the normal function of mitochondria. Therefore, it is meaningful to accurately and quickly monitor ClO- in mitochondria. In this work, a new triphenylamine-based fluorescence probe PDTPA was designed and synthesized, in which pyridinium salt and dicyano-vinyl group were introduced as mitochondria targeting site and reaction site for ClO-. The probe showed high sensitivity and fast fluorescence response (<10 s) in the detection of ClO-. Moreover, the probe PDTPA had good linearity in a wide concentration range of ClO- and its detection limit was calculated as 10.5 μM. Confocal fluorescence images demonstrated that the probe could target mitochondria and track the fluctuations of endogenous/exogenous ClO- levels in the mitochondria of living cells.
Collapse
Affiliation(s)
- Guan-Hua Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hao-Ran Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rui-Bin Liu
- Shandong Kangqiao Biotechnology Co. Ltd, Binzhou 256500, China
| | - Guo-Zhu Sheng
- Shandong Kangqiao Biotechnology Co. Ltd, Binzhou 256500, China
| | - Jia-Jie Niu
- Shandong Kangqiao Biotechnology Co. Ltd, Binzhou 256500, China
| | - Ying Fang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Kun-Peng Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Zhi-Qiang Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
9
|
Han X, Meng X, Wang X, Leng S, Liu Q, Zhang L, Li P, Zhang Q, Hu HY. Analyte-Triggered Excited-State Intramolecular Proton Transfer- Delayed Fluorescence: A General Approach for Time-Resolved Turn-On Fluorescence Imaging. Anal Chem 2023; 95:7715-7722. [PMID: 37125992 DOI: 10.1021/acs.analchem.3c00827] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The research of delayed fluorescence (DF) has been a hot topic in biological imaging. However, the development of analyte-triggered small molecule DF probes remains a considerable challenge. Herein a novel excited-state intramolecular proton transfer-delayed fluorescence (ESIPT-DF) approach to construct analyte-stimulated DF probes was reported. These new classes of ESIPT-DF luminophores were strategically designed and synthesized by incorporating 2-(2'-hydroxyphenyl)benzothiazole (HBT), a known ESIPT-based fluorophore, as acceptor with a series of classic donor moieties, which formed a correspondingly twisted donor-acceptor pair within each molecule. Thereinto, HBT-PXZ and HBT-PTZ exhibited significant ESIPT and DF characters with lifetimes of 5.37 and 3.65 μs in the solid state, respectively. Furthermore, a caged probe HBT-PXZ-Ga was developed by introducing a hydrophilic d-galactose group as the recognition unit specific for β-galactosidase (β-gal) and ESIPT-DF blocking agent and applied to investigate the influence of metal ions on β-gal activity on the surface of Streptococcus pneumoniae as a convenient tool. This ESIPT-DF "turn-on" approach is easily adaptable for the measurement of many different analytes using only a predictable modification on the caged group without modification of the core structure.
Collapse
Affiliation(s)
- Xiaowan Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiangchuan Meng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiang Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shan Leng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qian Liu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Leilei Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|