1
|
Laporte D, Sagot I. Microtubule Reorganization and Quiescence: an Intertwined Relationship. Physiology (Bethesda) 2025; 40:0. [PMID: 39378102 DOI: 10.1152/physiol.00036.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024] Open
Abstract
Quiescence is operationally defined as a reversible proliferation arrest. This cellular state is central to both organism development and homeostasis, and its dysregulation causes many pathologies. The quiescent state encompasses very diverse cellular situations depending on the cell type and its environment. Further, quiescent cell properties evolve with time, a process that is thought to be the origin of aging in multicellular organisms. Microtubules are found in all eukaryotes and are essential for cell proliferation as they support chromosome segregation and intracellular trafficking. Upon proliferation cessation and quiescence establishment, the microtubule cytoskeleton was shown to undergo significant remodeling. The purpose of this review is to examine the literature in search of evidence to determine whether the observed microtubule reorganizations are merely a consequence of quiescence establishment or if they somehow participate in this cell fate decision.
Collapse
Affiliation(s)
- Damien Laporte
- Centre National de la Recherche ScientifiqueUniversité de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095, Bordeaux, France
| | - Isabelle Sagot
- Centre National de la Recherche ScientifiqueUniversité de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095, Bordeaux, France
| |
Collapse
|
2
|
Zhou Y, Li Y, You H, Chen J, Wang B, Wen M, Zhang Y, Tang D, Shen Y, Yu H, Cheng Z. Kinesin-1-like protein PSS1 is essential for full-length homologous pairing and synapsis in rice meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:928-940. [PMID: 39283979 DOI: 10.1111/tpj.17025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/23/2024] [Accepted: 08/28/2024] [Indexed: 11/01/2024]
Abstract
The pairing and synapsis of homologous chromosomes are crucial for their correct segregation during meiosis. The LINC (Linker of Nucleoskeleton and Cytoskeleton) complex can recruit kinesin protein at the nuclear envelope, affecting telomere bouquet formation and homologous pairing. Kinesin-1-like protein Pollen Semi-Sterility1 (PSS1) plays a pivotal role in male meiotic chromosomal behavior and is essential for fertility in rice. However, its exact role in meiosis, especially as kinesin involved in homologous pairing and synapsis, has not been fully elucidated. Here, we generated three pss1 mutants by genome editing technology to dissect PSS1 biological functions in meiosis. The pss1 mutants exhibit alterations in the radial microtubule organization at pachytene and manifest a deficiency in telomere clustering, which is critical for full-length homologous pairing. We reveal that PSS1 serves as a key mediator between chromosomes and cytoskeleton, thereby regulating microtubule organization and transmitting the force to nuclei to facilitate homologous chromosome pairing and synapsis in meiosis.
Collapse
Affiliation(s)
- Yue Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yafei Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hanli You
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Jiawei Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingxin Wang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minsi Wen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yansong Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ding Tang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hengxiu Yu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhukuan Cheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
3
|
Xu C, Zhu X, Xu A, Song J, Liang S. Construction and validation of co-expression vector for rice alpha tubulin and microtubule associated protein respectively fused with fluorescent proteins. PeerJ 2024; 12:e18118. [PMID: 39346063 PMCID: PMC11439384 DOI: 10.7717/peerj.18118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Microtubule (MT) consists of α-tubulin and β-tubulin. The dynamic instability regulated by various microtubule associated proteins (MAPs) is essential for MT functions. To analyze the interaction between tubulin/MT and MAP in vivo, we usually need tubulin and MAP co-expressed. Here, we constructed a dual-transgene vector expressing rice (Oryza sativa) α-tubulin and MAP simultaneously. To construct this vector, plant expression vector pCambia1301 was used as the plasmid backbone and Gibson assembly cloning technology was used. We first fused and cloned the GFP fragment, α-tubulin open reading frame (ORF), and NOS terminator into the vector pCambia1301 to construct the p35S::GFP-α-tubulin vector that expressed GFP-α-tubulin fusion protein. Subsequently, we fused and cloned the CaMV 35S promoter, mCherry fragment, and NOS terminator into the p35S::GFP-α-tubulin vector to generate the universal dual-transgene expression vector (p35S::GFP-α-tubulin-p35S::mCherry vector). With the p35S::GFP-α-tubulin-p35S::mCherry vector, MAP ORF can be cloned into the site of 5' or 3' terminus of mCherry to co-express GFP-α-tubulin and MAP-mCherry/mCherry-MAP. To validate the availability and universality of the dual-transgene expression vector, a series of putative rice MAP genes including GL7, OsKCBP, OsCLASP, and OsMOR1 were cloned into the vector respectively, transformed into Agrobacterium tumefaciens strain, and expressed in Nicotiana benthamiana leaves. The results indicated that all of the MAPs were co-expressed with α-tubulin and localized to MTs, validating the availability and universality of the vector and that GL7, OsKCBP, OsCLASP, and OsMOR1 might be MAPs. The application of the co-expression vector constructed by us would facilitate studies on the interaction between tubulin/MT and MAP in tobacco transient expression systems or transgenic rice.
Collapse
Affiliation(s)
- Chenshan Xu
- College of Life Science, Dezhou University, Dezhou, Shandong, China
| | - Xiaoli Zhu
- College of Life Science, Dezhou University, Dezhou, Shandong, China
| | - Aihong Xu
- College of Ecology, Resources and Environment, Dezhou University, Dezhou, Shandong, China
| | - Jian Song
- College of Life Science, Dezhou University, Dezhou, Shandong, China
| | - Shuxia Liang
- College of Life Science, Dezhou University, Dezhou, Shandong, China
| |
Collapse
|
4
|
Wang J, Wang G, Liu W, Yang H, Wang C, Chen W, Zhang X, Tian J, Yu Y, Li J, Xue Y, Kong Z. Brassinosteroid signals cooperate with katanin-mediated microtubule severing to control stamen filament elongation. EMBO J 2023; 42:e111883. [PMID: 36546550 PMCID: PMC9929639 DOI: 10.15252/embj.2022111883] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Proper stamen filament elongation is essential for pollination and plant reproduction. Plant hormones are extensively involved in every stage of stamen development; however, the cellular mechanisms by which phytohormone signals couple with microtubule dynamics to control filament elongation remain unclear. Here, we screened a series of Arabidopsis thaliana mutants showing different microtubule defects and revealed that only those unable to sever microtubules, lue1 and ktn80.1234, displayed differential floral organ elongation with less elongated stamen filaments. Prompted by short stamen filaments and severe decrease in KTN1 and KTN80s expression in qui-2 lacking five BZR1-family transcription factors (BFTFs), we investigated the crosstalk between microtubule severing and brassinosteroid (BR) signaling. The BFTFs transcriptionally activate katanin-encoding genes, and the microtubule-severing frequency was severely reduced in qui-2. Taken together, our findings reveal how BRs can regulate cytoskeletal dynamics to coordinate the proper development of reproductive organs.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Houji Laboratory of Shanxi Province, Academy of AgronomyShanxi Agricultural UniversityTaiyuanChina
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weiwei Liu
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- Institute of Feed ResearchChinese Academy of Agricultural SciencesBeijingChina
| | - Huanhuan Yang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chaofeng Wang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Weiyue Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Jia Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Houji Laboratory of Shanxi Province, Academy of AgronomyShanxi Agricultural UniversityTaiyuanChina
| |
Collapse
|
5
|
Shankar S, Hsu ZT, Ezquerra A, Li CC, Huang TL, Coyaud E, Viais R, Grauffel C, Raught B, Lim C, Lüders J, Tsai SY, Hsia KC. Α γ-tubulin complex-dependent pathway suppresses ciliogenesis by promoting cilia disassembly. Cell Rep 2022; 41:111642. [DOI: 10.1016/j.celrep.2022.111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/30/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
|
6
|
Kwon A, Lee GB, Park T, Lee JH, Ko P, You E, Ahn JH, Eom SH, Rhee S, Song WK. Potent Small-Molecule Inhibitors Targeting Acetylated Microtubules as Anticancer Agents Against Triple-Negative Breast Cancer. Biomedicines 2020; 8:E338. [PMID: 32917017 PMCID: PMC7555225 DOI: 10.3390/biomedicines8090338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
Microtubules are one of the major targets for anticancer drugs because of their role in cell proliferation and migration. However, as anticancer drugs targeting microtubules have side effects, including the death of normal cells, it is necessary to develop anticancer agents that can target microtubules by specifically acting on cancer cells only. In this study, we identified chemicals that can act as anticancer agents by specifically binding to acetylated microtubules, which are predominant in triple-negative breast cancer (TNBC). The chemical compounds disrupted acetylated microtubule lattices by interfering with microtubule access to alpha-tubulin acetyltransferase 1 (αTAT1), a major acetyltransferase of microtubules, resulting in the increased apoptotic cell death of MDA-MB-231 cells (a TNBC cell line) compared with other cells, such as MCF-10A and MCF-7, which lack microtubule acetylation. Moreover, mouse xenograft experiments showed that treatment with the chemical compounds markedly reduced tumor growth progression. Taken together, the newly identified chemical compounds can be selective for acetylated microtubules and act as potential therapeutic agents against microtubule acetylation enrichment in TNBC.
Collapse
Affiliation(s)
- Ahreum Kwon
- Cell Logistics and Silver Health Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Gwi Bin Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (G.B.L.); (T.P.); (J.H.A.); (S.H.E.)
| | - Taein Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (G.B.L.); (T.P.); (J.H.A.); (S.H.E.)
| | - Jung Hoon Lee
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA;
| | - Panseon Ko
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (P.K.); (E.Y.)
| | - Eunae You
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (P.K.); (E.Y.)
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (G.B.L.); (T.P.); (J.H.A.); (S.H.E.)
| | - Soo Hyun Eom
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (G.B.L.); (T.P.); (J.H.A.); (S.H.E.)
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (P.K.); (E.Y.)
| | - Woo Keun Song
- Cell Logistics and Silver Health Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| |
Collapse
|
7
|
Lamson AR, Edelmaier CJ, Glaser MA, Betterton MD. Theory of Cytoskeletal Reorganization during Cross-Linker-Mediated Mitotic Spindle Assembly. Biophys J 2019; 116:1719-1731. [PMID: 31010665 PMCID: PMC6507341 DOI: 10.1016/j.bpj.2019.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 11/29/2022] Open
Abstract
Cells grow, move, and respond to outside stimuli by large-scale cytoskeletal reorganization. A prototypical example of cytoskeletal remodeling is mitotic spindle assembly, during which microtubules nucleate, undergo dynamic instability, bundle, and organize into a bipolar spindle. Key mechanisms of this process include regulated filament polymerization, cross-linking, and motor-protein activity. Remarkably, using passive cross-linkers, fission yeast can assemble a bipolar spindle in the absence of motor proteins. We develop a torque-balance model that describes this reorganization because of dynamic microtubule bundles, spindle-pole bodies, the nuclear envelope, and passive cross-linkers to predict spindle-assembly dynamics. We compare these results to those obtained with kinetic Monte Carlo-Brownian dynamics simulations, which include cross-linker-binding kinetics and other stochastic effects. Our results show that rapid cross-linker reorganization to microtubule overlaps facilitates cross-linker-driven spindle assembly, a testable prediction for future experiments. Combining these two modeling techniques, we illustrate a general method for studying cytoskeletal network reorganization.
Collapse
Affiliation(s)
- Adam R Lamson
- Department of Physics, University of Colorado, Boulder, Colorado
| | | | - Matthew A Glaser
- Department of Physics, University of Colorado, Boulder, Colorado
| | | |
Collapse
|
8
|
Shen J, Li T, Niu X, Liu W, Zheng S, Wang J, Wang F, Cao X, Yao X, Zheng F, Fu C. The J-domain cochaperone Rsp1 interacts with Mto1 to organize noncentrosomal microtubule assembly. Mol Biol Cell 2019; 30:256-267. [PMID: 30427751 PMCID: PMC6589567 DOI: 10.1091/mbc.e18-05-0279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microtubule biogenesis initiates at various intracellular sites, including the centrosome, the Golgi apparatus, the nuclear envelope, and preexisting microtubules. Similarly, in the fission yeast Schizosaccharomyces pombe, interphase microtubules are nucleated at the spindle pole body (SPB), the nuclear envelope, and preexisting microtubules, depending on Mto1 activity. Despite the essential role of Mto1 in promoting microtubule nucleation, how distribution of Mto1 in different sites is regulated has remained elusive. Here, we show that the J-domain cochaperone Rsp1 interacts with Mto1 and specifies the localization of Mto1 to non-SPB nucleation sites. The absence of Rsp1 abolishes the localization of Mto1 to non-SPB nucleation sites, with concomitant enrichment of Mto1 to the SPB and the nuclear envelope. In contrast, Rsp1 overexpression impairs the localization of Mto1 to all microtubule organization sites. These findings delineate a previously uncharacterized mechanism in which Rsp1-Mto1 interaction orchestrates non-SPB microtubule formation.
Collapse
Affiliation(s)
- Juan Shen
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Tianpeng Li
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Xiaojia Niu
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Wenyue Liu
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Shengnan Zheng
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Jing Wang
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Fengsong Wang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230027, China
| | - Xinwang Cao
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230027, China
| | - Xuebiao Yao
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Fan Zheng
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Chuanhai Fu
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
9
|
Wijeratne S, Subramanian R. Geometry of antiparallel microtubule bundles regulates relative sliding and stalling by PRC1 and Kif4A. eLife 2018; 7:32595. [PMID: 30353849 PMCID: PMC6200392 DOI: 10.7554/elife.32595] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Motor and non-motor crosslinking proteins play critical roles in determining the size and stability of microtubule-based architectures. Currently, we have a limited understanding of how geometrical properties of microtubule arrays, in turn, regulate the output of crosslinking proteins. Here we investigate this problem in the context of microtubule sliding by two interacting proteins: the non-motor crosslinker PRC1 and the kinesin Kif4A. The collective activity of PRC1 and Kif4A also results in their accumulation at microtubule plus-ends (‘end-tag’). Sliding stalls when the end-tags on antiparallel microtubules collide, forming a stable overlap. Interestingly, we find that structural properties of the initial array regulate microtubule organization by PRC1-Kif4A. First, sliding velocity scales with initial microtubule-overlap length. Second, the width of the final overlap scales with microtubule lengths. Our analyses reveal how micron-scale geometrical features of antiparallel microtubules can regulate the activity of nanometer-sized proteins to define the structure and mechanics of microtubule-based architectures.
Collapse
Affiliation(s)
- Sithara Wijeratne
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| |
Collapse
|
10
|
Zhou S, Chen Q, Li X, Li Y. MAP65-1 is required for the depolymerization and reorganization of cortical microtubules in the response to salt stress in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:112-121. [PMID: 28969791 DOI: 10.1016/j.plantsci.2017.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 05/07/2023]
Abstract
Microtubules (MTs) are highly dynamical structures that play crucial roles in plant development and in response to environmental signals and stress conditions. MT-associated proteins (MAPs) play important roles in regulating the organization of MT arrays. MAP65 is a family of plant MT-bundling proteins. Here, we determined the role of MAP65-1 in the response to salt stress. MAP65-1 is involved not only in regulating the depolymerization, but also in the following reorganization of cortical MTs in salt stress responses. In addition, the depolymerization of the cortical MTs affected the survival of seedlings during salt stress, and map65-1 mutants had enhanced salt hypersensitivity levels. MAP65-1 interacted with mitogen-activated protein kinase (MPK) 3 and 6; however, only the mpk6 mutant exhibited hypersensitivity to salt stress, and MPK6 was involved in regulating the salt stress-induced depolymerization of cortical MTs. Thus, MAP65-1 plays a critical role in the response to salt stress and is required for regulating the rapid depolymerization and reorganization of cortical MTs. MAP65-1 interacts with MPK6, not MPK3, affecting the MT's dynamic instability which is critical for plant salt-stress tolerance.
Collapse
Affiliation(s)
- Sa Zhou
- State Key Laboratory of Plant Physiology Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiuhong Chen
- State Key Laboratory of Plant Physiology Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyue Li
- State Key Laboratory of Plant Physiology Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yingzhang Li
- State Key Laboratory of Plant Physiology Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
A Conserved Leucine Zipper Motif in Gammaherpesvirus ORF52 Is Critical for Distinct Microtubule Rearrangements. J Virol 2017; 91:JVI.00304-17. [PMID: 28615210 PMCID: PMC5553167 DOI: 10.1128/jvi.00304-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/12/2017] [Indexed: 11/20/2022] Open
Abstract
Productive viral infection often depends on the manipulation of the cytoskeleton. Herpesviruses, including rhesus monkey rhadinovirus (RRV) and its close homolog, the oncogenic human gammaherpesvirus Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV8), exploit microtubule (MT)-based retrograde transport to deliver their genomes to the nucleus. Subsequently, during the lytic phase of the life cycle, the maturing viral particles undergo orchestrated translocation to specialized regions within the cytoplasm, leading to tegumentation, secondary envelopment, and then egress. As a result, we hypothesized that RRV might induce changes in the cytoskeleton at both early and late stages of infection. Using confocal imaging, we found that RRV infection led to the thickening and acetylation of MTs emanating from the MT-organizing center (MTOC) shortly after viral entry and more pronounced and diffuse MT reorganization during peak stages of lytic gene expression and virion production. We subsequently identified open reading frame 52 (ORF52), a multifunctional and abundant tegument protein, as being the only virally encoded component responsible for these cytoskeletal changes. Mutational and modeling analyses indicated that an evolutionarily conserved, truncated leucine zipper motif near the N terminus as well as a strictly conserved arginine residue toward the C terminus of ORF52 play critical roles in its ability to rearrange the architecture of the MT cytoskeleton. Taken together, our findings combined with data from previous studies describing diverse roles for ORF52 suggest that it likely binds to different cellular components, thereby allowing context-dependent modulation of function. IMPORTANCE A thorough understanding of the processes governing viral infection includes knowledge of how viruses manipulate their intracellular milieu, including the cytoskeleton. Altering the dynamics of actin or MT polymerization, for example, is a common strategy employed by viruses to ensure efficient entry, maturation, and egress as well as the avoidance of antiviral defenses through the sequestration of key cellular factors. We found that infection with RRV, a homolog of the human pathogen KSHV, led to perinuclear wrapping by acetylated MT bundles and identified ORF52 as the viral protein underlying these changes. Remarkably, incoming virions were able to supply sufficient ORF52 to induce MT thickening and acetylation near the MTOC, potentially aiding in the delivery viral genomes to the nucleus. Although the function of MT alterations during late stages of infection requires further study, ORF52 shares functional and structural similarities with alphaherpesvirus VP22, underscoring the evolutionary importance of MT cytoskeletal manipulations for this virus family.
Collapse
|
12
|
Gu B, Lambert JP, Cockburn K, Gingras AC, Rossant J. AIRE is a critical spindle-associated protein in embryonic stem cells. eLife 2017; 6:e28131. [PMID: 28742026 PMCID: PMC5560860 DOI: 10.7554/elife.28131] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/17/2017] [Indexed: 12/21/2022] Open
Abstract
Embryonic stem (ES) cells go though embryo-like cell cycles regulated by specialized molecular mechanisms. However, it is not known whether there are ES cell-specific mechanisms regulating mitotic fidelity. Here we showed that Autoimmune Regulator (Aire), a transcription coordinator involved in immune tolerance processes, is a critical spindle-associated protein in mouse ES(mES) cells. BioID analysis showed that AIRE associates with spindle-associated proteins in mES cells. Loss of function analysis revealed that Aire was important for centrosome number regulation and spindle pole integrity specifically in mES cells. We also identified the c-terminal LESLL motif as a critical motif for AIRE's mitotic function. Combined maternal and zygotic knockout further revealed Aire's critical functions for spindle assembly in preimplantation embryos. These results uncovered a previously unappreciated function for Aire and provide new insights into the biology of stem cell proliferation and potential new angles to understand fertility defects in humans carrying Aire mutations.
Collapse
Affiliation(s)
- Bin Gu
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | | | - Katie Cockburn
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
Blackwell R, Sweezy-Schindler O, Edelmaier C, Gergely ZR, Flynn PJ, Montes S, Crapo A, Doostan A, McIntosh JR, Glaser MA, Betterton MD. Contributions of Microtubule Dynamic Instability and Rotational Diffusion to Kinetochore Capture. Biophys J 2016; 112:552-563. [PMID: 27692365 DOI: 10.1016/j.bpj.2016.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/08/2016] [Accepted: 09/06/2016] [Indexed: 11/27/2022] Open
Abstract
Microtubule dynamic instability allows search and capture of kinetochores during spindle formation, an important process for accurate chromosome segregation during cell division. Recent work has found that microtubule rotational diffusion about minus-end attachment points contributes to kinetochore capture in fission yeast, but the relative contributions of dynamic instability and rotational diffusion are not well understood. We have developed a biophysical model of kinetochore capture in small fission-yeast nuclei using hybrid Brownian dynamics/kinetic Monte Carlo simulation techniques. With this model, we have studied the importance of dynamic instability and microtubule rotational diffusion for kinetochore capture, both to the lateral surface of a microtubule and at or near its end. Over a range of biologically relevant parameters, microtubule rotational diffusion decreased capture time, but made a relatively small contribution compared to dynamic instability. At most, rotational diffusion reduced capture time by 25%. Our results suggest that while microtubule rotational diffusion can speed up kinetochore capture, it is unlikely to be the dominant physical mechanism for typical conditions in fission yeast. In addition, we found that when microtubules undergo dynamic instability, lateral captures predominate even in the absence of rotational diffusion. Counterintuitively, adding rotational diffusion to a dynamic microtubule increases the probability of end-on capture.
Collapse
Affiliation(s)
- Robert Blackwell
- Department of Physics, University of Colorado, Boulder, Colorado
| | | | | | - Zachary R Gergely
- Department of Physics, University of Colorado, Boulder, Colorado; Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Patrick J Flynn
- Department of Physics, University of Colorado, Boulder, Colorado
| | - Salvador Montes
- Department of Physics, University of Colorado, Boulder, Colorado
| | - Ammon Crapo
- Department of Physics, University of Colorado, Boulder, Colorado
| | - Alireza Doostan
- Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado
| | - J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Matthew A Glaser
- Department of Physics, University of Colorado, Boulder, Colorado
| | - Meredith D Betterton
- Department of Physics, University of Colorado, Boulder, Colorado; Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado.
| |
Collapse
|
14
|
Ma Q, Sun J, Mao T. Microtubule bundling plays a role in ethylene-mediated cortical microtubule reorientation in etiolated hypocotyls. J Cell Sci 2016; 129:2043-51. [DOI: 10.1242/jcs.184408] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/30/2016] [Indexed: 01/06/2023] Open
Abstract
The gaseous hormone ethylene is known to regulate plant growth under etiolated conditions (the "triple response"). Although organization of cortical microtubules is essential for cell elongation, the underlying mechanisms that regulate microtubule organization by hormone signaling, including ethylene, are ambiguous. In the present study, we demonstrate that ethylene signaling participates in regulation of cortical microtubule reorientation. In particular, regulation of microtubule bundling is important for this process in etiolated hypocotyls. Time-lapse analysis indicated that selective stabilization of microtubule bundling structures formed in various arrays is related to ethylene-mediated microtubule orientation. Bundling events and bundle growth lifetimes were significantly increased in oblique and longitudinal arrays, but decreased in transverse arrays in wild-type cells in response to ethylene. However, the effects of ethylene on microtubule bundling were partially suppressed in a microtubule-bundling protein WDL5 knockout mutant (wdl5-1). This study suggests that modulation of microtubule bundles formed in certain orientations plays a role in reorienting microtubule arrays in response to ethylene-mediated etiolated hypocotyl cell elongation.
Collapse
Affiliation(s)
- Qianqian Ma
- State Key Laboratory of Plant Physiology and Biochemistry; Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingbo Sun
- State Key Laboratory of Plant Physiology and Biochemistry; Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry; Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Abstract
The post-genomic era has produced a variety of new investigation technologies, techniques and approaches that may offer exciting insights into many long-standing questions of scientific research. The microtubule cytoskeleton is a highly conserved system that shows a high degree of internal complexity, is known to be integral to many cell systems and functions on a fundamental level. After decades of study, much is still unknown about microtubules in vivo from the control of dynamics in living cells to their responses to environmental changes and responses to other cellular processes. In the present article, we examine some outstanding questions in the microtubule field and propose a combination of emerging interdisciplinary approaches, i.e. high-throughput functional genomics techniques, quantitative and super-resolution microscopy, and in silico modelling, that could shed light on the systemic regulation of microtubules in cells by networks of regulatory factors. We propose that such an integrative approach is key to elucidate the function of the microtubule cytoskeleton as a complete responsive integral biological system.
Collapse
|
16
|
Portran D, Zoccoler M, Gaillard J, Stoppin-Mellet V, Neumann E, Arnal I, Martiel JL, Vantard M. MAP65/Ase1 promote microtubule flexibility. Mol Biol Cell 2013; 24:1964-73. [PMID: 23615441 PMCID: PMC3681700 DOI: 10.1091/mbc.e13-03-0141] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microtubules (MTs) are dynamic cytoskeletal elements involved in numerous cellular processes. Although they are highly rigid polymers with a persistence length of 1-8 mm, they may exhibit a curved shape at a scale of few micrometers within cells, depending on their biological functions. However, how MT flexural rigidity in cells is regulated remains poorly understood. Here we ask whether MT-associated proteins (MAPs) could locally control the mechanical properties of MTs. We show that two major cross-linkers of the conserved MAP65/PRC1/Ase1 family drastically decrease MT rigidity. Their MT-binding domain mediates this effect. Remarkably, the softening effect of MAP65 observed on single MTs is maintained when MTs are cross-linked. By reconstituting physical collisions between growing MTs/MT bundles, we further show that the decrease in MT stiffness induced by MAP65 proteins is responsible for the sharp bending deformations observed in cells when they coalign at a steep angle to create bundles. Taken together, these data provide new insights into how MAP65, by modifying MT mechanical properties, may regulate the formation of complex MT arrays.
Collapse
Affiliation(s)
- D Portran
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR CNRS, CEA, INRA, Université Joseph Fourier, 38054 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Stoppin-Mellet V, Fache V, Portran D, Martiel JL, Vantard M. MAP65 coordinate microtubule growth during bundle formation. PLoS One 2013; 8:e56808. [PMID: 23437247 PMCID: PMC3578873 DOI: 10.1371/journal.pone.0056808] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/15/2013] [Indexed: 12/27/2022] Open
Abstract
Microtubules (MTs) are highly dynamical structures that play a crucial role in cell physiology. In cooperation with microtubule-associated proteins (MAPs), MTs form bundles endowing cells with specific mechanisms to control their shape or generate forces. Whether the dynamics of MTs is affected by the lateral connections that MAPs make between MTs during bundle formation is still under debate. Using in vitro reconstitution of MT bundling, we analyzed the dynamics of MT bundles generated by two plant MAP65 (MAP65-1/4), MAP65-1 being the plant ortholog of vertebrate PRC1 and yeast Ase1. MAP65-1/4 limit the amplitude of MT bundle depolymerization and increase the elongation phases. The subsequent sustained elongation of bundles is governed by the coordination of MT growth, so that MT ends come in close vicinity. We develop a model based on the assumption that both MAP65-1/4 block MT depolymerization. Model simulations reveal that rescue frequencies are higher between parallel than between anti-parallel MTs. In consequence the polarity of bundled MTs by MAP65 controls the amplitude of bundle's growth. Our results illustrate how MAP-induced MT-bundling, which is finely tuned by MT polarity, robustly coordinates MT elongation within bundles.
Collapse
Affiliation(s)
- Virginie Stoppin-Mellet
- Laboratoaire de Physiologie Cellulaire & Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), Centre National de la Recherche Scientifique/Commissariat à l’énergie atomique et aux énergies alternatives/Institut National de la Recherche Agronomique/Université Joseph Fourier (CNRS/CEA/INRA/UJF), Grenoble, France
- * E-mail: (VSM) (VS); (MV) (MV)
| | - Vincent Fache
- Laboratoaire de Physiologie Cellulaire & Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), Centre National de la Recherche Scientifique/Commissariat à l’énergie atomique et aux énergies alternatives/Institut National de la Recherche Agronomique/Université Joseph Fourier (CNRS/CEA/INRA/UJF), Grenoble, France
| | - Didier Portran
- Laboratoaire de Physiologie Cellulaire & Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), Centre National de la Recherche Scientifique/Commissariat à l’énergie atomique et aux énergies alternatives/Institut National de la Recherche Agronomique/Université Joseph Fourier (CNRS/CEA/INRA/UJF), Grenoble, France
| | - Jean-Louis Martiel
- Laboratoaire de Physiologie Cellulaire & Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), Centre National de la Recherche Scientifique/Commissariat à l’énergie atomique et aux énergies alternatives/Institut National de la Recherche Agronomique/Université Joseph Fourier (CNRS/CEA/INRA/UJF), Grenoble, France
| | - Marylin Vantard
- Laboratoaire de Physiologie Cellulaire & Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), Centre National de la Recherche Scientifique/Commissariat à l’énergie atomique et aux énergies alternatives/Institut National de la Recherche Agronomique/Université Joseph Fourier (CNRS/CEA/INRA/UJF), Grenoble, France
- * E-mail: (VSM) (VS); (MV) (MV)
| |
Collapse
|
18
|
Duellberg C, Fourniol FJ, Maurer SP, Roostalu J, Surrey T. End-binding proteins and Ase1/PRC1 define local functionality of structurally distinct parts of the microtubule cytoskeleton. Trends Cell Biol 2013; 23:54-63. [PMID: 23103209 DOI: 10.1016/j.tcb.2012.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/25/2012] [Accepted: 10/02/2012] [Indexed: 12/27/2022]
Abstract
The microtubule cytoskeleton is crucial for the intracellular organization of eukaryotic cells. It is a dynamic scaffold that has to perform a variety of very different functions. This multitasking is achieved through the activity of numerous microtubule-associated proteins. Two prominent classes of proteins are central to the selective recognition of distinct transiently existing structural features of the microtubule cytoskeleton. They define local functionality through tightly regulated protein recruitment. Here we summarize the recent developments in elucidating the molecular mechanism underlying the action of microtubule end-binding proteins (EBs) and antiparallel microtubule crosslinkers of the Ase1/PRC1 family that represent the core of these two recruitment modules. Despite their fundamentally different activities, these conserved families share several common features.
Collapse
Affiliation(s)
- Christian Duellberg
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | | | | |
Collapse
|
19
|
Abstract
Successful completion of diverse cellular functions, such as mitosis, positioning organelles, and assembling cilia, depends on the proper assembly of microtubule-based structures. While essentially all of the proteins needed to assemble these structures are now known, we cannot explain how even simple features such as size and shape are determined. As steps toward filling this knowledge gap, there have been several recent efforts toward reconstituting, with purified proteins, the basic structural motifs that recur in diverse cytoskeletal arrays. We discuss these studies and highlight how they shed light on the self-organized assembly of complex and dynamic cytoskeleton-based cellular structures.
Collapse
|
20
|
Microtubule plus-end tracking protein CLASP2 regulates neuronal polarity and synaptic function. J Neurosci 2013; 32:13906-16. [PMID: 23035100 DOI: 10.1523/jneurosci.2108-12.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Microtubule organization and dynamics are essential during axon and dendrite formation and maintenance in neurons. However, little is known about the regulation of microtubule dynamics during synaptic development and function in mammalian neurons. Here, we present evidence that the microtubule plus-end tracking protein CLASP2 (cytoplasmic linker associated protein 2) is a key regulator of axon and dendrite outgrowth that leads to functional alterations in synaptic activity and formation. We found that CLASP2 protein levels steadily increase throughout neuronal development in the mouse brain and are specifically enriched at the growth cones of extending neurites. The short-hairpin RNA-mediated knockdown of CLASP2 in primary mouse neurons decreased axon and dendritic length, whereas overexpression of human CLASP2 caused the formation of multiple axons, enhanced dendritic branching, and Golgi condensation, implicating CLASP2 in neuronal morphogenesis. In addition, the CLASP2-induced morphological changes led to significant functional alterations in synaptic transmission. CLASP2 overexpression produced a large increase in spontaneous miniature event frequency that was specific to excitatory neurotransmitter release. The changes in presynaptic activity produced by CLASP2 overexpression were accompanied by increases in presynaptic terminal circumference, total synapse number, and a selective increase in presynaptic proteins that are involved in neurotransmitter release. Also, we found a smaller increase in miniature event amplitude that was accompanied by an increase in postsynaptic surface expression of GluA1 receptor localization. Together, these results provide evidence for involvement of the microtubule plus-end tracking protein CLASP2 in cytoskeleton-related mechanisms underlying neuronal polarity and interplay between microtubule stabilization and synapse formation and activity.
Collapse
|
21
|
Meunier S, Vernos I. Microtubule assembly during mitosis - from distinct origins to distinct functions? J Cell Sci 2012; 125:2805-14. [PMID: 22736044 DOI: 10.1242/jcs.092429] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mitotic spindle is structurally and functionally defined by its main component, the microtubules (MTs). The MTs making up the spindle have various functions, organization and dynamics: astral MTs emanate from the centrosome and reach the cell cortex, and thus have a major role in spindle positioning; interpolar MTs are the main constituent of the spindle and are key for the establishment of spindle bipolarity, chromosome congression and central spindle assembly; and kinetochore-fibers are MT bundles that connect the kinetochores with the spindle poles and segregate the sister chromatids during anaphase. The duplicated centrosomes were long thought to be the origin of all of these MTs. However, in the last decade, a number of studies have contributed to the identification of non-centrosomal pathways that drive MT assembly in dividing cells. These pathways are now known to be essential for successful spindle assembly and to participate in various processes such as K-fiber formation and central spindle assembly. In this Commentary, we review the recent advances in the field and discuss how different MT assembly pathways might cooperate to successfully form the mitotic spindle.
Collapse
Affiliation(s)
- Sylvain Meunier
- Microtubule Function and Cell Division group, Cell and Developmental Biology Program, Centre for Genomic Regulation (CRG) and UPF, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | |
Collapse
|
22
|
Al-Bassam J, Kim H, Flor-Parra I, Lal N, Velji H, Chang F. Fission yeast Alp14 is a dose-dependent plus end-tracking microtubule polymerase. Mol Biol Cell 2012; 23:2878-90. [PMID: 22696680 PMCID: PMC3408415 DOI: 10.1091/mbc.e12-03-0205] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Alp14, a XMAP215 orthologue in fission yeast, is a microtubule (MT) polymerase. It tracks growing MT plus ends and regulates the polymerization state of tubulin by cycling between a tubulin dimer–bound cytoplasmic state and a MT polymerase state that promotes rapid MT assembly. XMAP215/Dis1 proteins are conserved tubulin-binding TOG-domain proteins that regulate microtubule (MT) plus-end dynamics. Here we show that Alp14, a XMAP215 orthologue in fission yeast, Schizosaccharomyces pombe, has properties of a MT polymerase. In vivo, Alp14 localizes to growing MT plus ends in a manner independent of Mal3 (EB1). alp14-null mutants display short interphase MTs with twofold slower assembly rate and frequent pauses. Alp14 is a homodimer that binds a single tubulin dimer. In vitro, purified Alp14 molecules track growing MT plus ends and accelerate MT assembly threefold. TOG-domain mutants demonstrate that tubulin binding is critical for function and plus end localization. Overexpression of Alp14 or only its TOG domains causes complete MT loss in vivo, and high Alp14 concentration inhibits MT assembly in vitro. These inhibitory effects may arise from Alp14 sequestration of tubulin and effects on the MT. Our studies suggest that Alp14 regulates the polymerization state of tubulin by cycling between a tubulin dimer–bound cytoplasmic state and a MT polymerase state that promotes rapid MT assembly.
Collapse
Affiliation(s)
- Jawdat Al-Bassam
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Centrosomes, microtubules and neuronal development. Mol Cell Neurosci 2011; 48:349-58. [DOI: 10.1016/j.mcn.2011.05.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/12/2011] [Accepted: 05/15/2011] [Indexed: 11/24/2022] Open
|
24
|
Hur EM, Saijilafu, Lee BD, Kim SJ, Xu WL, Zhou FQ. GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules. Genes Dev 2011; 25:1968-81. [PMID: 21937714 DOI: 10.1101/gad.17015911] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Suppression of glycogen synthase kinase 3 (GSK3) activity in neurons yields pleiotropic outcomes, causing both axon growth promotion and inhibition. Previous studies have suggested that specific GSK3 substrates, such as adenomatous polyposis coli (APC) and collapsin response mediator protein 2 (CRMP2), support axon growth by regulating the stability of axonal microtubules (MTs), but the substrate(s) and mechanisms conveying axon growth inhibition remain elusive. Here we show that CLIP (cytoplasmic linker protein)-associated protein (CLASP), originally identified as a MT plus end-binding protein, displays both plus end-binding and lattice-binding activities in nerve growth cones, and reveal that the two MT-binding activities regulate axon growth in an opposing manner: The lattice-binding activity mediates axon growth inhibition induced by suppression of GSK3 activity via preventing MT protrusion into the growth cone periphery, whereas the plus end-binding property supports axon extension via stabilizing the growing ends of axonal MTs. We propose a model in which CLASP transduces GSK3 activity levels to differentially control axon growth by coordinating the stability and configuration of growth cone MTs.
Collapse
Affiliation(s)
- Eun-Mi Hur
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
25
|
Bowen JR, Hwang D, Bai X, Roy D, Spiliotis ET. Septin GTPases spatially guide microtubule organization and plus end dynamics in polarizing epithelia. ACTA ACUST UNITED AC 2011; 194:187-97. [PMID: 21788367 PMCID: PMC3144415 DOI: 10.1083/jcb.201102076] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Filamentous and microtubule-associated septin GTPases guide the reorganization of the microtubule network during epithelial cell polarization. Establishment of epithelial polarity requires the reorganization of the microtubule (MT) cytoskeleton from a radial array into a network positioned along the apicobasal axis of the cell. Little is known about the mechanisms that spatially guide the remodeling of MTs during epithelial polarization. Septins are filamentous guanine triphosphatases (GTPases) that associate with MTs, but the function of septins in MT organization and dynamics is poorly understood. In this paper, we show that in polarizing epithelia, septins guide the directionality of MT plus end movement by suppressing MT catastrophe. By enabling persistent MT growth, two spatially distinct populations of septins, perinuclear and peripheral filaments, steer the growth and capture of MT plus ends. This navigation mechanism is essential for the maintenance of perinuclear MT bundles and for the orientation of peripheral MTs as well as for the apicobasal positioning of MTs. Our results suggest that septins provide the directional guidance cues necessary for polarizing the epithelial MT network.
Collapse
Affiliation(s)
- Jonathan R Bowen
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
26
|
Al-Bassam J, Chang F. Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP. Trends Cell Biol 2011; 21:604-14. [PMID: 21782439 DOI: 10.1016/j.tcb.2011.06.007] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 12/17/2022]
Abstract
The molecular mechanisms by which microtubule-associated proteins (MAPs) regulate the dynamic properties of microtubules (MTs) are still poorly understood. We review recent advances in our understanding of two conserved families of MAPs, the XMAP215/Dis1 and CLASP family of proteins. In vivo and in vitro studies show that XMAP215 proteins act as microtubule polymerases at MT plus ends to accelerate MT assembly, and CLASP proteins promote MT rescue and suppress MT catastrophe events. These are structurally related proteins that use conserved TOG domains to recruit tubulin dimers to MTs. We discuss models for how these proteins might use these individual tubulin dimers to regulate dynamic behavior of MT plus ends.
Collapse
Affiliation(s)
- Jawdat Al-Bassam
- Department of Molecular Cellular Biology, University of California, Davis, CA, USA.
| | | |
Collapse
|
27
|
Shaw SL, Lucas J. Intrabundle microtubule dynamics in the Arabidopsis cortical array. Cytoskeleton (Hoboken) 2010; 68:56-67. [PMID: 20960529 DOI: 10.1002/cm.20495] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 09/09/2010] [Accepted: 10/07/2010] [Indexed: 11/06/2022]
Abstract
We tested the general hypothesis that bundling stabilizes the dynamic properties of the constituent microtubules (MTs) in vivo. We quantified the assembly dynamics of bundled and unbundled MTs in the interphase cortical array of Arabidopsis hypocotyl cells using high dynamic range spinning disk confocal microscopy. We find no evidence that bundled MTs are stabilized against depolymerization through changes to their dynamic properties. Our observations of MT plus and minus ends indicate that both bundled and unbundled polymers undergo persistent treadmilling in this system. We conclude that the temporal persistence of MT subassemblies in the Arabidopsis cortical array is largely dependent upon recruitment or nucleation of new treadmilling MTs and not on polymer stabilization. Monte Carlo simulations suggest that small differences discovered in the dynamic properties between bundled and unbundled polymers would produce relatively small macroscopic effects on the larger MT array.
Collapse
Affiliation(s)
- Sidney L Shaw
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
28
|
Abstract
For cell morphogenesis, the cell must establish distinct spatial domains at specified locations at the cell surface. Here, we review the molecular mechanisms of cell polarity in the fission yeast Schizosaccharomyces pombe. These are simple rod-shaped cells that form cortical domains at cell tips for cell growth and at the cell middle for cytokinesis. In both cases, microtubule-based systems help to shape the cell by breaking symmetry, providing endogenous spatial cues to position these sites. The plus ends of dynamic microtubules deliver polarity factors to the cell tips, leading to local activation of the GTPase cdc42p and the actin assembly machinery. Microtubule bundles contribute to positioning the division plane through the nucleus and the cytokinesis factor mid1p. Recent advances illustrate how the spatial and temporal regulation of cell polarization integrates many elements, including historical landmarks, positive and negative controls, and competition between pathways.
Collapse
Affiliation(s)
- Fred Chang
- Columbia University, College of Physicians and Surgeons, Department of Microbiology, 701 W 168th Street, New York 10032, USA.
| | | |
Collapse
|
29
|
Al-Bassam J, Kim H, Brouhard G, van Oijen A, Harrison SC, Chang F. CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule. Dev Cell 2010; 19:245-58. [PMID: 20708587 PMCID: PMC3156696 DOI: 10.1016/j.devcel.2010.07.016] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 04/12/2010] [Accepted: 06/30/2010] [Indexed: 10/19/2022]
Abstract
Spatial regulation of microtubule (MT) dynamics contributes to cell polarity and cell division. MT rescue, in which a MT stops shrinking and reinitiates growth, is the least understood aspect of MT dynamics. Cytoplasmic Linker Associated Proteins (CLASPs) are a conserved class of MT-associated proteins that contribute to MT stabilization and rescue in vivo. We show here that the Schizosaccharomyces pombe CLASP, Cls1p, is a homodimer that binds an alphabeta-tubulin heterodimer through conserved TOG-like domains. In vitro, CLASP increases MT rescue frequency, decreases MT catastrophe frequency, and moderately decreases MT disassembly rate. CLASP binds stably to the MT lattice, recruits tubulin, and locally promotes rescues. Mutations in the CLASP TOG domains demonstrate that tubulin binding is critical for its rescue activity. We propose a mechanism for rescue in which CLASP-tubulin dimer complexes bind along the MT lattice and reverse MT depolymerization with their bound tubulin dimer.
Collapse
Affiliation(s)
- Jawdat Al-Bassam
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Hwajin Kim
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons Medical School, New York, NY
| | - Gary Brouhard
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Antoine van Oijen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Stephen C. Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA
| | - Fred Chang
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons Medical School, New York, NY
| |
Collapse
|
30
|
Bereiter-Hahn J, Jendrach M. Mitochondrial dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 284:1-65. [PMID: 20875628 DOI: 10.1016/s1937-6448(10)84001-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dynamics is a key feature for the interaction of mitochondria with other organelles within a cell and also for the maintenance of their own integrity. Four types of mitochondrial dynamics are discussed: Movement within a cell and interactions with the cytoskeleton, fusion and fission events which establish coherence within the chondriome, the dynamic behavior of cristae and their components, and finally, formation and disintegration of mitochondria (mitophagy). Due to these essential functions, disturbed mitochondrial dynamics are inevitably connected to a variety of diseases. Localized ATP gradients, local control of calcium-based messaging, production of reactive oxygen species, and involvement of other metabolic chains, that is, lipid and steroid synthesis, underline that physiology not only results from biochemical reactions but, in addition, resides on the appropriate morphology and topography. These events and their molecular basis have been established recently and are the topic of this review.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Center of Excellence Macromolecular Complexes, Institute for Cell Biology and Neurosciences, Goethe University, Frankfurt am Main, Germany
| | | |
Collapse
|
31
|
Martin SG. Microtubule-dependent cell morphogenesis in the fission yeast. Trends Cell Biol 2009; 19:447-54. [PMID: 19713114 DOI: 10.1016/j.tcb.2009.06.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
In many systems, microtubules contribute spatial information to cell morphogenesis, for instance in cell migration and division. In rod-shaped fission yeast cells, microtubules control cell morphogenesis by transporting polarity factors, namely the Tea1-Tea4 complex, to cell tips. This complex then recruits the DYRK kinase Pom1 to cell ends. Interestingly, recent work has shown that these proteins also provide long-range spatial cues to position the division site in the middle of the cell and temporal signals to coordinate cell length with the cell cycle. Here I review how these microtubule-associated proteins form polar morphogenesis centers that control and integrate both spatial and temporal aspects of cell morphogenesis.
Collapse
Affiliation(s)
- Sophie G Martin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, 1015 Lausanne, Switzerland.
| |
Collapse
|