1
|
Donison N, Palik J, Volkening K, Strong MJ. Cellular and molecular mechanisms of pathological tau phosphorylation in traumatic brain injury: implications for chronic traumatic encephalopathy. Mol Neurodegener 2025; 20:56. [PMID: 40349043 PMCID: PMC12065185 DOI: 10.1186/s13024-025-00842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
Tau protein plays a critical role in the physiological functioning of the central nervous system by providing structural integrity to the cytoskeletal architecture of neurons and glia through microtubule assembly and stabilization. Under certain pathological conditions, tau is aberrantly phosphorylated and aggregates into neurotoxic fibrillary tangles. The aggregation and cell-to-cell propagation of pathological tau leads to the progressive deterioration of the nervous system. The clinical entity of traumatic brain injury (TBI) ranges from mild to severe and can promote tau aggregation by inducing cellular mechanisms and signalling pathways that increase tau phosphorylation and aggregation. Chronic traumatic encephalopathy (CTE), which is a consequence of repetitive TBI, is a unique tauopathy characterized by pathological tau aggregates located at the depths of the sulci and surrounding blood vessels. The mechanisms leading to increased tau phosphorylation and aggregation in CTE remain to be fully defined but are likely the result of the primary and secondary injury sequelae associated with TBI. The primary injury includes physical and mechanical damage resulting from the head impact and accompanying forces that cause blood-brain barrier disruption and axonal shearing, which primes the central nervous system to be more vulnerable to the subsequent secondary injury mechanisms. A complex interplay of neuroinflammation, oxidative stress, excitotoxicity, and mitochondrial dysfunction activate kinase and cell death pathways, increasing tau phosphorylation, aggregation and neurodegeneration. In this review, we explore the most recent insights into the mechanisms of tau phosphorylation associated with TBI and propose how multiple cellular pathways converge on tau phosphorylation, which may contribute to CTE progression.
Collapse
Affiliation(s)
- Neil Donison
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
- Neuroscience Graduate Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jacqueline Palik
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
| | - Kathryn Volkening
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada.
- Neuroscience Graduate Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
2
|
Wu X, Yang Z, Zou J, Gao H, Shao Z, Li C, Lei P. Protein kinases in neurodegenerative diseases: current understandings and implications for drug discovery. Signal Transduct Target Ther 2025; 10:146. [PMID: 40328798 PMCID: PMC12056177 DOI: 10.1038/s41392-025-02179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 02/12/2025] [Indexed: 05/08/2025] Open
Abstract
Neurodegenerative diseases (e.g., Alzheimer's, Parkinson's, Huntington's disease, and Amyotrophic Lateral Sclerosis) are major health threats for the aging population and their prevalences continue to rise with the increasing of life expectancy. Although progress has been made, there is still a lack of effective cures to date, and an in-depth understanding of the molecular and cellular mechanisms of these neurodegenerative diseases is imperative for drug development. Protein phosphorylation, regulated by protein kinases and protein phosphatases, participates in most cellular events, whereas aberrant phosphorylation manifests as a main cause of diseases. As evidenced by pharmacological and pathological studies, protein kinases are proven to be promising therapeutic targets for various diseases, such as cancers, central nervous system disorders, and cardiovascular diseases. The mechanisms of protein phosphatases in pathophysiology have been extensively reviewed, but a systematic summary of the role of protein kinases in the nervous system is lacking. Here, we focus on the involvement of protein kinases in neurodegenerative diseases, by summarizing the current knowledge on the major kinases and related regulatory signal transduction pathways implicated in diseases. We further discuss the role and complexity of kinase-kinase networks in the pathogenesis of neurodegenerative diseases, illustrate the advances of clinical applications of protein kinase inhibitors or novel kinase-targeted therapeutic strategies (such as antisense oligonucleotides and gene therapy) for effective prevention and early intervention.
Collapse
Affiliation(s)
- Xiaolei Wu
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhangzhong Yang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinjun Zou
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Alrouji M, Alshammari MS, Anwar S, Venkatesan K, Shamsi A. Mechanistic Roles of Transcriptional Cyclin-Dependent Kinases in Oncogenesis: Implications for Cancer Therapy. Cancers (Basel) 2025; 17:1554. [PMID: 40361480 PMCID: PMC12071579 DOI: 10.3390/cancers17091554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Cyclin-dependent kinases (CDKs) are pivotal in regulating cell cycle progression and transcription, making them crucial targets in cancer research. The two types of CDKs that regulate different biological activities are transcription-associated CDKs (e.g., CDK7, 8, 9, 12, and 13) and cell cycle-associated CDKs (e.g., CDK1, 2, 4, and 6). One characteristic of cancer is the dysregulation of CDK activity, which results in unchecked cell division and tumor expansion. Targeting transcriptional CDKs, which control RNA polymerase II activity and gene expression essential for cancer cell survival, has shown promise as a therapeutic approach in recent research. While research into selective inhibitors for transcriptional CDKs is ongoing, inhibitors that target CDK4/6, such as palbociclib and ribociclib, have demonstrated encouraging outcomes in treating breast cancer. CDK7, CDK8, and CDK9 are desirable targets for therapy since they have shown oncogenic roles in a variety of cancer types, such as colorectal, ovarian, and breast malignancies. Even with significant advancements, creating selective inhibitors with negligible off-target effects is still difficult. This review highlights the need for more research to optimize therapeutic strategies and improve patient outcomes by giving a thorough overview of the non-transcriptional roles of CDKs in cancer biology, their therapeutic potential, and the difficulties in targeting these kinases for cancer treatment.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Mohammed S. Alshammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Saleha Anwar
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, Saudi Arabia
| |
Collapse
|
4
|
Paul S, Chandran R, Vijayan DK, Bhardwaj J, Singh P, Shetty P, Cheruku S, Meleveetil S, Balachandran Krishnamma B. A Cdk5 inhibitor restores cognitive function and alleviates type 2 diabetes in mice. iScience 2025; 28:112200. [PMID: 40224020 PMCID: PMC11986975 DOI: 10.1016/j.isci.2025.112200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/29/2025] [Accepted: 03/06/2025] [Indexed: 04/15/2025] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disorder commonly linked with cognitive decline, increasing patients' susceptibility to dementia. Alzheimer's disease (AD) has a strong connection with hyperglycemia and insulin dysregulation. Interestingly, certain anti-diabetic drugs have shown potential in reducing T2D-induced cognitive impairment. Previous studies, including ours, have highlighted the dysregulation of cyclin-dependent kinase 5 (Cdk5) activity in both T2D and AD, which may contribute to pathological changes in these conditions. Thus, targeting the Cdk5 kinase could offer a therapeutic approach for T2D and cognitive deterioration. Our research identifies Cdk5 as a key link between T2D and cognitive decline. By screening the KINACore library, we discovered two new brain-penetrant Cdk5 inhibitors, BLINK11 and BLINK15. In a high-fat diet-induced T2D model, these inhibitors improved blood glucose levels, obesity, and cognitive function. BLINK11, in particular, shows promise as a therapeutic candidate for treating cognitive impairment associated with T2D.
Collapse
Affiliation(s)
- Sangita Paul
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Remya Chandran
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Dileep K. Vijayan
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Juhi Bhardwaj
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Praveen Singh
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Poornima Shetty
- Srinivasa Engineering College, Mukka, Mangalore 574146, India
| | - Srinivas Cheruku
- Department of Chemistry, Manasa Gangotri, Mysore University, Mysuru 570005, India
| | - Sajith Meleveetil
- Department of Chemistry, SSIT, Sri Siddhartha Academy of Higher Education, Tumkur 572107, Karnataka, India
| | - Binukumar Balachandran Krishnamma
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Lv F, Ge X, Chang Y, Hao Z. Cyclin-dependent kinases (CDKs) are key genes regulating early development of Neptunea arthritica cumingii: evidence from comparative transcriptome and proteome analyses. BMC Genomics 2024; 25:1221. [PMID: 39701993 DOI: 10.1186/s12864-024-10970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/28/2024] [Indexed: 12/21/2024] Open
Abstract
In this study, we applied comparative transcriptomics and proteomics techniques to systematically investigate the dynamic expression patterns of genes and proteins at various stages of early embryonic development of the gastropod Neptunea arthritica cumingii. Twelve cyclin-dependent kinase (CDKs) genes and five downstream proteins associated with these CDKs were identified. Through techniques such as qRT-PCR, our data elucidate for the first time the regulatory functions of CDK family genes and establish CDKs as a pivotal gene cluster in the early embryonic development of N. cumingii. These findings not only enhance the understanding of molecular developmental biology in N. cumingii and marine gastropods in general but also provide significant insights into the mechanisms involved in early embryonic development in N. cumingii. Furthermore, our results provide theoretical guidance for advancing artificial breeding technology for N. cumingii.
Collapse
Affiliation(s)
- Fengxiao Lv
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Dalian Ocean University), Ministry of Agriculture, Dalian, 116023, China
| | - Xinfan Ge
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Dalian Ocean University), Ministry of Agriculture, Dalian, 116023, China
| | - Yaqing Chang
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Dalian Ocean University), Ministry of Agriculture, Dalian, 116023, China.
- College of Fisheries and Life Science, Dalian Ocean University, 52, Heishijiao Street, Shahekou District, Dalian, Liaoning Province, China.
| | - Zhenlin Hao
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Dalian Ocean University), Ministry of Agriculture, Dalian, 116023, China.
- College of Fisheries and Life Science, Dalian Ocean University, 52, Heishijiao Street, Shahekou District, Dalian, Liaoning Province, China.
| |
Collapse
|
6
|
Sabbir MG. Loss of calcium/calmodulin-dependent protein kinase kinase 2, transferrin, and transferrin receptor proteins in the temporal cortex of Alzheimer's patients postmortem is associated with abnormal iron homeostasis: implications for patient survival. Front Cell Dev Biol 2024; 12:1469751. [PMID: 39669708 PMCID: PMC11634808 DOI: 10.3389/fcell.2024.1469751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024] Open
Abstract
Introduction Iron is crucial for brain function, but excessive iron is neurotoxic. Abnormally high brain iron accumulation is one of the pathogenic factors in Alzheimer's disease (AD). Therefore, understanding the mechanistic basis of iron dyshomeostasis in AD is vital for disease mitigation. Calcium, another essential bioelement involved in cell signaling, also exhibits dysregulated homeostasis in AD. Calcium ion (Ca2+) signaling can influence iron homeostasis through multiple effectors. Our previous studies identified Ca2+/calmodulin (CAM)-dependent protein kinase kinase 2 (CAMKK2) as a regulator of transferrin (TF)-bound iron trafficking through the TF receptor (TFRC). Given CAMKK2's high expression in brain cells, it was hypothesized that abnormal CAMKK2-TF/TFRC signaling may underlie excessive iron deposition in AD brains. This study aims to retrospectively investigate CAMKK2, TF, TFRC proteins, and iron content in temporal cortex tissues from AD patients and cognitively normal (CN) individuals, postmortem. Methods Postmortem temporal cortex tissues from 74 AD patients, 27 Parkinson's disease (PD) patients, and 17 CN individuals were analyzed for CAMKK2, TF, and TFRC protein levels by Western blotting. Additionally, prefrontal/temporal cortex tissues from 30 CN individuals of various ages were examined for age-related effects. Iron content in cortical tissues was measured using a colorimetric assay. Results CAMKK2, TF, and TFRC levels were significantly decreased in AD patients' temporal cortices compared to CN individuals, independent of age or postmortem interval-related changes. PD patients' also exhibited similar reductions in CAMKK2/TF/TFRC levels. The increased iron content in AD brains was significantly correlated with reduced TF/TFRC protein levels. Discussion Building on the previous identification of CAMKK2 as a regulator of TF/TFRC trafficking and iron homeostasis, the findings from this study suggest that downregulation of CAMKK2 in AD cortices may disrupt TF/TFRC signaling and contribute to iron overloading and neurodegeneration through iron-induced toxicity. The decreased levels of TF/TFRC and increased iron in AD brains may result from enhanced clearance or post-trafficking degradation of TF/TFRC due to CAMKK2 downregulation. Restoring CAMKK2 levels in the AD brain could offer a novel therapeutic approach to reestablish iron homeostasis. Further studies are needed to explore the pathways linking CAMKK2 and iron dysregulation in AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Mohammad Golam Sabbir
- Department of Psychology and Neuroscience, College of Psychology, Nova Southeastern University, Fort Lauderdale, FL, United States
- Alzo Biosciences Inc., SanDiego, CA, United States
| |
Collapse
|
7
|
Hernández-Echeagaray E, Miranda-Barrientos JA, Nieto-Mendoza E, Torres-Cruz FM. Exploring the role of Cdk5 on striatal synaptic plasticity in a 3-NP-induced model of early stages of Huntington's disease. Front Mol Neurosci 2024; 17:1362365. [PMID: 39569019 PMCID: PMC11576431 DOI: 10.3389/fnmol.2024.1362365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/09/2024] [Indexed: 11/22/2024] Open
Abstract
Impaired mitochondrial function has been associated with the onset of neurodegenerative diseases. Specifically, certain mitochondrial toxins, such as 3-nitropropionic acid (3-NP), initiate cellular changes within the striatum that closely resemble the pathology observed in Huntington's disease (HD). Among the pivotal signaling molecules contributing to neurodegeneration, cyclin-dependent kinase 5 (Cdk5) stands out. In particular, Cdk5 has been implicated not only in cellular pathology but also in the modulation of synaptic plasticity. Given its widespread presence in the striatum, this study seeks to elucidate the potential role of Cdk5 in the induction of corticostriatal synaptic plasticity in murine striatal cells subjected to subchronic doses of 3-NP in vivo, aiming to mimic the early stages of HD. Immunostaining analyses revealed an increase in Cdk5 in tissues from animals treated with 3-NP, without a significant change in protein levels. Regarding striatal plasticity, long-term depression (LTD) was induced in both control and 3-NP cells when recorded in voltage clamp mode. The Cdk5 inhibitor roscovitine-reduced LTD in most cells. A minority subset of cells exhibited long-term potentiation (LTP) generation in the presence of roscovitine. The inhibitor of D1 receptors SCH23390 prevented LTP in three of nine cells, implying that MSN cells lacking D1/PKA activation were capable of LTP induction when Cdk5 was also blocked. Nevertheless, the co-administration of H89, a PKA inhibitor, along with roscovitine, prevented the generation of any type of plasticity in all recorded cells. These findings show the impact of 3-NP treatment on striatal plasticity and suggest that Cdk5 during early neurodegeneration may attenuate signaling pathways that lead neurons to increase their activity.
Collapse
Affiliation(s)
- Elizabeth Hernández-Echeagaray
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, Unidad de Biomedicina, FES-I, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Elizabeth Nieto-Mendoza
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, Unidad de Biomedicina, FES-I, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Francisco Miguel Torres-Cruz
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, Unidad de Biomedicina, FES-I, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
8
|
Jin M, Ye K, Hu D, Chen J, Wu S, Chi S. Identification of diagnose related therapeutic targets of Danggui buxue decoction in Parkinson's disease. Brain Res 2024; 1842:149097. [PMID: 38950810 DOI: 10.1016/j.brainres.2024.149097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is the fastest growing neurological disease. Currently, there is no disease-modifying therapy to slow the progression of the disease. Danggui buxue decoction (DBD) is widely used in the clinic because of its therapeutic effect. However, little is known about the molecular mechanism of DBD against PD. This study intends to explore the possible molecular mechanisms involved in DBD treatment of PD based on network pharmacology, and provide potential research directions for future research. METHODS Firstly, the active components and target genes of DBD were screened from the traditional Chinese medicine systems pharmacology (TCMSP), DrugBank and UniProt database. Secondly, target genes of PD were identified from the (GEO) dataset, followed by identification of common target genes of DBD and PD. Thirdly, analysis of protein-protein interaction (PPI), functional enrichment and diagnosis was performed on common target genes, followed by correlation analysis between core target genes, immune cell, miRNAs, and transcription factors (TFs). Finally, molecular docking between core target genes and active components, and real-time PCR were performed. RESULTS A total of 72 common target genes were identified between target genes of DBD and target genes of PD. Among which, 11 target genes with potential diagnostic value were further identified, including TP53, AKT1, IL1B, MMP9, NOS3, RELA, MAPK14, HMOX1, TGFB1, NOS2, and ERBB2. The combinations with the best docking binding were identified, including kaempferol-AKT1/HMOX1/NOS2/NOS3, quercetin-AKT1/ERBB2/IL1B/HMOX1/MMP9/TP53/NOS3/TGFB1. Moreover, IL1B and NOS2 respectively positively and negatively correlated with neutrophil and Type 1 T helper cell. Some miRNA-core target gene regulatory pairs were identified, such as hsa-miR-185-5p-TP53/TGFB1/RELA/MAPK14/IL1B/ERBB2/AKT1 and hsa-miR-214-3p-NOS3. These core target genes were significantly enriched in focal adhesion, TNF, HIF-1, and ErbB signaling pathway. CONCLUSION Diagnostic TP53, AKT1, IL1B, MMP9, NOS3, RELA, MAPK14, HMOX1, TGFB1, NOS2, and ERBB2 may be considered as potential therapeutic targets of DBD in the treatment of PD.
Collapse
Affiliation(s)
- Man Jin
- Department of Neurology, Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310063, China
| | - Kaisheng Ye
- Department of Traditional Chinese Medicine, Hangzhou Kanghui Integrated Traditional and Western Medicine Clinic, Hangzhou, Zhejiang Province 310019, China.
| | - Defeng Hu
- Department of Psychiatry, Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310063, China
| | - Jiefang Chen
- Department of Neurology, Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310063, China
| | - Sha Wu
- Intensive Care Units, Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310063, China
| | - Shumei Chi
- Department of Psychiatry, Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310063, China
| |
Collapse
|
9
|
Cuinat S, Bézieau S, Deb W, Mercier S, Vignard V, Isidor B, Küry S, Ebstein F. Understanding neurodevelopmental proteasomopathies as new rare disease entities: A review of current concepts, molecular biomarkers, and perspectives. Genes Dis 2024; 11:101130. [PMID: 39220754 PMCID: PMC11364055 DOI: 10.1016/j.gendis.2023.101130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/30/2023] [Accepted: 08/19/2023] [Indexed: 09/04/2024] Open
Abstract
The recent advances in high throughput sequencing technology have drastically changed the practice of medical diagnosis, allowing for rapid identification of hundreds of genes causing human diseases. This unprecedented progress has made clear that most forms of intellectual disability that affect more than 3% of individuals worldwide are monogenic diseases. Strikingly, a substantial fraction of the mendelian forms of intellectual disability is associated with genes related to the ubiquitin-proteasome system, a highly conserved pathway made up of approximately 1200 genes involved in the regulation of protein homeostasis. Within this group is currently emerging a new class of neurodevelopmental disorders specifically caused by proteasome pathogenic variants which we propose to designate "neurodevelopmental proteasomopathies". Besides cognitive impairment, these diseases are typically associated with a series of syndromic clinical manifestations, among which facial dysmorphism, motor delay, and failure to thrive are the most prominent ones. While recent efforts have been made to uncover the effects exerted by proteasome variants on cell and tissue landscapes, the molecular pathogenesis of neurodevelopmental proteasomopathies remains ill-defined. In this review, we discuss the cellular changes typically induced by genomic alterations in proteasome genes and explore their relevance as biomarkers for the diagnosis, management, and potential treatment of these new rare disease entities.
Collapse
Affiliation(s)
- Silvestre Cuinat
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Wallid Deb
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Sandra Mercier
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Virginie Vignard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Frédéric Ebstein
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| |
Collapse
|
10
|
Song M, Qiang Y, Zhao X, Song F. Cyclin-dependent Kinase 5 and Neurodegenerative Diseases. Mol Neurobiol 2024; 61:7287-7302. [PMID: 38378992 DOI: 10.1007/s12035-024-04047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Neurodegenerative diseases are a group of diseases characterized by the progressive loss of neurons, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. These diseases have a high incidence and mortality rate globally, placing a heavy burden on patients and their families. The pathogenesis of neurodegenerative diseases is complex, and there are no effective treatments at present. Cyclin-dependent kinase 5 is a proline-directed serine/threonine protein kinase that is closely related to the development and function of the nervous system. Under physiological conditions, it is involved in regulating the process of neuronal proliferation, differentiation, migration, and synaptic plasticity. Moreover, there is increasing evidence that cyclin-dependent kinase 5 also plays an important role in the pathogenesis of neurodegenerative diseases. In this review, we address the biological characteristics of cyclin-dependent kinase 5 and its role in neurodegenerative diseases. In particular, this review highlights the underlying mechanistic linkages between cyclin-dependent kinase 5 and mitochondrial dysfunction, oxidative stress and neuroinflammation in the context of neurodegeneration. Finally, we also summarize the currently available cyclin-dependent kinase 5 inhibitors and their prospects for the treatment of neurodegenerative diseases. Taken together, a better understanding of the molecular mechanisms of cyclin-dependent kinase 5 involved in neurodegenerative diseases can lead to the development of new strategies for the prevention and treatment of these devastating diseases.
Collapse
Affiliation(s)
- Mingxue Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yalong Qiang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
11
|
Cheng A, Wang J, Li J, Wang J, Xu M, Chen H, Zhang P. S-Nitrosylation of p39 promotes its degradation and contributes to synaptic dysfunction induced by β-amyloid peptide. Commun Biol 2024; 7:1113. [PMID: 39256547 PMCID: PMC11387606 DOI: 10.1038/s42003-024-06832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Alzheimer's disease (AD), characterized by cognitive decline, is increasingly recognized as a disorder marked by synaptic loss and dysfunction. Despite this understanding, the underlying pathophysiological mechanisms contributing to synaptic impairment remain largely unknown. In this study, we elucidate a previously undiscovered signaling pathway wherein the S-nitrosylation of the Cdk5 activator p39, a post-translational modification involving the addition of nitric oxide to protein cysteine residues, plays a crucial role in synaptic dysfunction associated with AD. Our investigation reveals heightened p39 S-nitrosylation in the brain of an amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mouse model of AD. Additionally, soluble amyloid-β oligomers (Aβ), implicated in synaptic loss in AD, induce p39 S-nitrosylation in cultured neurons. Notably, we uncover that p39 protein level is regulated by S-nitrosylation, with nitric oxide S-nitrosylating p39 at Cys265 and subsequently promoting its degradation. Furthermore, our study demonstrates that S-nitrosylation of p39 at Cys265 significantly contributes to amyloid-β (Aβ) peptide-induced dendrite retraction and spine loss. Collectively, our findings highlight S-nitrosylation of p39 as a novel aberrant redox protein modification involved in the pathogenesis of AD, suggesting its potential as a therapeutic target for the disease.
Collapse
Affiliation(s)
- Aobing Cheng
- Department of Anesthesiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Jingyi Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Li
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mufan Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongzhuan Chen
- Shuguang Lab for Future Health, Academy of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Peng Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Emotions and Affective Disorders(LEAD), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Park J, Won J, Yang E, Seo J, Cho J, Seong JB, Yeo HG, Kim K, Kim YG, Kim M, Jeon CY, Lim KS, Lee DS, Lee Y. Peroxiredoxin 1 inhibits streptozotocin-induced Alzheimer's disease-like pathology in hippocampal neuronal cells via the blocking of Ca 2+/Calpain/Cdk5-mediated mitochondrial fragmentation. Sci Rep 2024; 14:15642. [PMID: 38977865 PMCID: PMC11231305 DOI: 10.1038/s41598-024-66256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Oxidative stress plays an essential role in the progression of Alzheimer's disease (AD), the most common age-related neurodegenerative disorder. Streptozotocin (STZ)-induced abnormal brain insulin signaling and oxidative stress play crucial roles in the progression of Alzheimer's disease (AD)-like pathology. Peroxiredoxins (Prxs) are associated with protection from neuronal death induced by oxidative stress. However, the molecular mechanisms underlying Prxs on STZ-induced progression of AD in the hippocampal neurons are not yet fully understood. Here, we evaluated whether Peroxiredoxin 1 (Prx1) affects STZ-induced AD-like pathology and cellular toxicity. Prx1 expression was increased by STZ treatment in the hippocampus cell line, HT-22 cells. We evaluated whether Prx1 affects STZ-induced HT-22 cells using overexpression. Prx1 successfully protected the forms of STZ-induced AD-like pathology, such as neuronal apoptosis, synaptic loss, and tau phosphorylation. Moreover, Prx1 suppressed the STZ-induced increase of mitochondrial dysfunction and fragmentation by down-regulating Drp1 phosphorylation and mitochondrial location. Prx1 plays a role in an upstream signal pathway of Drp1 phosphorylation, cyclin-dependent kinase 5 (Cdk5) by inhibiting the STZ-induced conversion of p35 to p25. We found that STZ-induced of intracellular Ca2+ accumulation was an important modulator of AD-like pathology progression by regulating Ca2+-mediated Calpain activation, and Prx1 down-regulated STZ-induced intracellular Ca2+ accumulation and Ca2+-mediated Calpain activation. Finally, we identified that Prx1 antioxidant capacity affected Ca2+/Calpain/Cdk5-mediated AD-like pathology progress. Therefore, these findings demonstrated that Prx1 is a key factor in STZ-induced hippocampal neuronal death through inhibition of Ca2+/Calpain/Cdk5-mediated mitochondrial dysfunction by protecting against oxidative stress.
Collapse
Affiliation(s)
- Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Eunyeoung Yang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Jincheol Seo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jiyeon Cho
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jung Bae Seong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Hyeon-Gu Yeo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Keonwoo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Yu Gyeong Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Minji Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea.
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
13
|
Duan X, Hu H, Wang L, Chen L. Aldehyde dehydrogenase 1 family: A potential molecule target for diseases. Cell Biol Int 2024. [PMID: 38800962 DOI: 10.1002/cbin.12188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
Aldehyde dehydrogenase 1 (ALDH1), a crucial aldehyde metabolizing enzyme, has six family members. The ALDH1 family is expressed in various tissues, with a significant presence in the liver. It plays a momentous role in several pathophysiological processes, including aldehyde detoxification, oxidative stress, and lipid peroxidation. Acetaldehyde detoxification is the fundamental function of the ALDH1 family in participating in vital pathological mechanisms. The ALDH1 family can catalyze retinal to retinoic acid (RA) that is a hormone-signaling molecule and plays a vital role in the development and adult tissues. Furthermore, there is a need for further and broader research on the role of the ALDH1 family as a signaling molecule. The ALDH1 family is widely recognized as a cancer stem cell (CSC) marker and plays a significant role in the proliferation, invasion, metastasis, prognosis, and drug resistance of cancer. The ALDH1 family also participates in other human diseases, such as neurodegenerative diseases, osteoarthritis, diabetes, and atherosclerosis. It can inhibit disease progression by inhibiting/promoting the expression/activity of the ALDH1 family. In this review, we comprehensively analyze the tissue distribution, and functions of the ALDH1 family. Additionally, we review the involvement of the ALDH1 family in diseases, focusing on the underlying pathological mechanisms and briefly talk about the current status and development of ALDH1 family inhibitors. The ALDH1 family presents new possibilities for treating diseases, with both its upstream and downstream pathways serving as promising targets for therapeutic intervention. This offers fresh perspectives for drug development in the field of disease research.
Collapse
Affiliation(s)
- Xiangning Duan
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
| | - Haoliang Hu
- Changde Research Centre for Artificial Intelligence and Biomedicine, Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Lingzhi Wang
- Department of Pharmacy, The First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Linxi Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
| |
Collapse
|
14
|
Lokesh M, Bandaru LJM, Rajanna A, Rao JS, Challa S. Unveiling Potential Neurotoxic Mechansisms: Pb-Induced Activation of CDK5-p25 Signaling Axis in Alzheimer's Disease Development, Emphasizing CDK5 Inhibition and Formation of Toxic p25 Species. Mol Neurobiol 2024; 61:3090-3103. [PMID: 37968421 DOI: 10.1007/s12035-023-03783-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder with an etiology influenced by various genetic and environmental factors. Heavy metals, such as lead (Pb), have been implicated in AD pathogenesis, but the underlying mechanisms remain poorly understood. This study investigates the potential neurodegenerative role of Pb and amyloid β peptides (1-40 and 25-35) via their interaction with cyclin-dependent kinase 5 (CDK5) and its activator, p25, in an attempt to unravel the molecular basis of Pb-induced neurotoxicity in neuronal cells. To this end, a CDK5 inhibitor was utilized to selectively inhibit CDK5 activity and investigate its impact on neurodegeneration. The results revealed that Pb exposure led to elevated Pb uptake (56.7% at 15 μM Pb) and disturbances in intracellular calcium (19.6% increase upon Pb treatment). The results revealed a significant decrease in total antioxidant capacity (by 88.6% upon Pb treatment) and also elevation in protein carbonylation (by 26.2% upon Pb and Aβp's combination treatment), indicative of oxidative damage, suggesting an impaired cellular defence against oxidative stress and elevated DNA oxidative damage (178 pg/ml and 182 pg/ml of 8-OH-dG upon Pb and All treatment). Additionally, dysregulations in levels of calpain, p25-35 and CDK5 are observed and markers associated with antioxidant metabolism (phospho-Peroxiredoxin 1), DNA damage responses (phospho-ATM and phospho-p53), and nuclear membrane disruption (phospho-lamin A/C) were observed, supporting the role of Pb-induced CDK5-p25 signaling in AD pathogenesis. These findings shed light on the intricate molecular events underlying Pb-induced neurotoxicity and provide valuable insights into the mechanisms that contribute to AD development.
Collapse
Affiliation(s)
- Murumulla Lokesh
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Lakshmi Jaya Madhuri Bandaru
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Ajumeera Rajanna
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - J Sreenivasa Rao
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India.
| |
Collapse
|
15
|
Yáñez-Gómez F, Gálvez-Melero L, Ledesma-Corvi S, Bis-Humbert C, Hernández-Hernández E, Salort G, García-Cabrerizo R, García-Fuster MJ. Evaluating the daily modulation of FADD and related molecular markers in different brain regions in male rats. J Neurosci Res 2024; 102:e25296. [PMID: 38361411 DOI: 10.1002/jnr.25296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024]
Abstract
Fas-Associated protein with Death Domain (FADD), a key molecule controlling cell fate by balancing apoptotic versus non-apoptotic functions, is dysregulated in post-mortem brains of subjects with psychopathologies, in animal models capturing certain aspects of these disorders, and by several pharmacological agents. Since persistent disruptions in normal functioning of daily rhythms are linked with these conditions, oscillations over time of key biomarkers, such as FADD, could play a crucial role in balancing the clinical outcome. Therefore, we characterized the 24-h regulation of FADD (and linked molecular partners: p-ERK/t-ERK ratio, Cdk-5, p35/p25, cell proliferation) in key brain regions for FADD regulation (prefrontal cortex, striatum, hippocampus). Samples were collected during Zeitgeber time (ZT) 2, ZT5, ZT8, ZT11, ZT14, ZT17, ZT20, and ZT23 (ZT0, lights-on or inactive period; ZT12, lights-off or active period). FADD showed similar daily fluctuations in all regions analyzed, with higher values during lights off, and opposite to p-ERK/t-ERK ratios regulation. Both Cdk-5 and p35 remained stable and did not change across ZT. However, p25 increased during lights off, but exclusively in striatum. Finally, no 24-h modulation was observed for hippocampal cell proliferation, although higher values were present during lights off. These results demonstrated a clear daily modulation of FADD in several key brain regions, with a more prominent regulation during the active time of rats, and suggested a key role for FADD, and molecular partners, in the normal physiological functioning of the brain's daily rhythmicity, which if disrupted might participate in the development of certain pathologies.
Collapse
Affiliation(s)
- Fernando Yáñez-Gómez
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| | - Laura Gálvez-Melero
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Sandra Ledesma-Corvi
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Cristian Bis-Humbert
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Elena Hernández-Hernández
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Glòria Salort
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Rubén García-Cabrerizo
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| |
Collapse
|
16
|
Adem MA, Decourt B, Sabbagh MN. Pharmacological Approaches Using Diabetic Drugs Repurposed for Alzheimer's Disease. Biomedicines 2024; 12:99. [PMID: 38255204 PMCID: PMC10813018 DOI: 10.3390/biomedicines12010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) are chronic, progressive disorders affecting the elderly, which fosters global healthcare concern with the growing aging population. Both T2DM and AD have been linked with increasing age, advanced glycosylation end products, obesity, and insulin resistance. Insulin resistance in the periphery is significant in the development of T2DM and it has been posited that insulin resistance in the brain plays a key role in AD pathogenesis, earning AD the name "type 3 diabetes". These clinical and epidemiological links between AD and T2DM have become increasingly pronounced throughout the years, and serve as a means to investigate the effects of antidiabetic therapies in AD, such as metformin, intranasal insulin, incretins, DPP4 inhibitors, PPAR-γ agonists, SGLT2 inhibitors. The majority of these drugs have shown benefit in preclinical trials, and have shown some promising results in clinical trials, with the improvement of cognitive faculties in participants with mild cognitive impairment and AD. In this review, we have summarize the benefits, risks, and conflicting data that currently exist for diabetic drugs being repurposed for the treatment of AD.
Collapse
Affiliation(s)
- Muna A. Adem
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ 85013, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Marwan N. Sabbagh
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ 85013, USA
| |
Collapse
|
17
|
Ai H, Li M, Fang W, Wang X, Liu X, Wu L, Zhang B, Lu W. Disruption of Cdk5-GluN2B complex by a small interfering peptide attenuates social isolation-induced escalated intermale attack behavior and hippocampal oxidative stress in mice. Free Radic Biol Med 2024; 210:54-64. [PMID: 37979890 DOI: 10.1016/j.freeradbiomed.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/04/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Social isolation has emerged as a significant issue during the COVID-19 pandemic that can adversely impact human mental health and potentially lead to pathological aggression. Given the lack of effective therapeutic interventions for aggressive behavior, alternative approaches are necessary. In this study, we utilized a genetic method combined with a pharmacological approach to identify and demonstrate the crucial role of Cdk5 in escalated intermale attack behavior induced by 2-week social isolation. Moreover, we developed a small peptide that effectively disrupts the interaction between Cdk5 and GluN2B, given the known involvement of this complex in various neuropsychiatric disorders. Administration of the peptide, either systemically or via intrahippocampal injection, significantly reduced oxidative stress in the hippocampus and attenuated intermale attack behavior induced by 2-week social isolation. These findings highlight the previously unknown role of the hippocampal Cdk5-GluN2B complex in social isolation-induced aggressive behavior in mice and propose the peptide as a promising therapeutic strategy for regulating attack behavior and oxidative stress.
Collapse
Affiliation(s)
- Heng Ai
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Minghao Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weiqing Fang
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Xuemeng Wang
- Department of the First Clinical Medicine, Hainan Medical University, Haikou, China; Key Laboratory of Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Xinxin Liu
- Department of the First Clinical Medicine, Hainan Medical University, Haikou, China; Key Laboratory of Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Lihui Wu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bin Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, China.
| | - Wen Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China; Key Laboratory of Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
18
|
Miller N, Xu Z, Quinlan KA, Ji A, McGivern JV, Feng Z, Shi H, Ko CP, Tsai LH, Heckman CJ, Ebert AD, Ma YC. Mitigating aberrant Cdk5 activation alleviates mitochondrial defects and motor neuron disease symptoms in spinal muscular atrophy. Proc Natl Acad Sci U S A 2023; 120:e2300308120. [PMID: 37976261 PMCID: PMC10666147 DOI: 10.1073/pnas.2300308120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/31/2023] [Indexed: 11/19/2023] Open
Abstract
Spinal muscular atrophy (SMA), the top genetic cause of infant mortality, is characterized by motor neuron degeneration. Mechanisms underlying SMA pathogenesis remain largely unknown. Here, we report that the activity of cyclin-dependent kinase 5 (Cdk5) and the conversion of its activating subunit p35 to the more potent activator p25 are significantly up-regulated in mouse models and human induced pluripotent stem cell (iPSC) models of SMA. The increase of Cdk5 activity occurs before the onset of SMA phenotypes, suggesting that it may be an initiator of the disease. Importantly, aberrant Cdk5 activation causes mitochondrial defects and motor neuron degeneration, as the genetic knockout of p35 in an SMA mouse model rescues mitochondrial transport and fragmentation defects, and alleviates SMA phenotypes including motor neuron hyperexcitability, loss of excitatory synapses, neuromuscular junction denervation, and motor neuron degeneration. Inhibition of the Cdk5 signaling pathway reduces the degeneration of motor neurons derived from SMA mice and human SMA iPSCs. Altogether, our studies reveal a critical role for the aberrant activation of Cdk5 in SMA pathogenesis and suggest a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Nimrod Miller
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611
| | - Zhaofa Xu
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611
| | - Katharina A. Quinlan
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI02881
| | - Amy Ji
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Jered V. McGivern
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI53226
| | - Zhihua Feng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Han Shi
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611
| | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Charles J. Heckman
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI53226
| | - Yongchao C. Ma
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
19
|
Li D, Quan Z, Ni J, Li H, Qing H. The many faces of the zinc finger protein 335 in brain development and immune system. Biomed Pharmacother 2023; 165:115257. [PMID: 37541176 DOI: 10.1016/j.biopha.2023.115257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023] Open
Abstract
Zinc finger protein 335 (ZNF335) plays a crucial role in the methylation and, consequently, regulates the expression of a specific set of genes. Variants of the ZNF335 gene have been identified as risk factors for microcephaly in a variety of populations worldwide. Meanwhile, ZNF335 has also been identified as an essential regulator of T-cell development. However, an in-depth understanding of the role of ZNF335 in brain development and T cell maturation is still lacking. In this review, we summarize current knowledge of the molecular mechanisms underlying the involvement of ZNF335 in neuronal and T cell development across a wide range of pre-clinical, post-mortem, ex vivo, in vivo, and clinical studies. We also review the current limitations regarding the study of the pathophysiological functions of ZNF335. Finally, we hypothesize a potential role for ZNF335 in brain disorders and discuss the rationale of targeting ZNF335 as a therapeutic strategy for preventing brain disorders.
Collapse
Affiliation(s)
- Danyang Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
20
|
Sharma A, Sari E, Lee Y, Patel S, Brenner M, Marambaud P, Wang P. Extracellular CIRP Induces Calpain Activation in Neurons via PLC-IP 3-Dependent Calcium Pathway. Mol Neurobiol 2023; 60:3311-3328. [PMID: 36853429 PMCID: PMC10506840 DOI: 10.1007/s12035-023-03273-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Abnormal calcium homeostasis, activation of protease calpain, generation of p25 and hyperactivation of cyclin-dependent kinase 5 (Cdk5) have all been implicated in the pathogenesis of neurogenerative diseases including Alzheimer's disease. We have recently shown that extracellular cold-inducible RNA-binding protein (eCIRP) induces Cdk5 activation via p25. However, the precise molecular mechanism by which eCIRP regulates calcium signaling and calpain remains to be addressed. We hypothesized that eCIRP regulates p25 via Ca2+-dependent calpain activation. eCIRP increased calpain activity and decreased the endogenous calpain inhibitor calpastatin in Neuro 2a (N2a) cells. Calpain inhibition with calpeptin attenuated eCIRP-induced calpain activity and p25. eCIRP specifically upregulated cytosolic calpain 1, and calpain 1 silencing attenuated the eCIRP-induced increase in p25. eCIRP stimulation increased cytosolic free Ca2+, especially in hippocampal neuronal HT22 cells, which was attenuated by the eCIRP inhibitor Compound 23 (C23). Endoplasmic reticulum (ER) inositol 1,4,5-trisphosphate receptor (IP3R) inhibition using 2-aminoethoxy-diphenyl-borate or xestospongin-C (X-C), interleukin-6 receptor alpha (IL-6Rα)-neutralization, and phospholipase C (PLC) inhibition with U73122 attenuated eCIRP-induced Ca2+ increase, while Ca2+ influx across the plasma membrane remained unaffected by eCIRP. Finally, C23, IL-6Rα antibody, U73122 and X-C attenuated eCIRP-induced p25 in HT-22 cells. In conclusion, the current study uncovers eCIRP-triggered Ca2+ release from ER stores in an IL-6Rα/PLC/IP3-dependent manner as a novel molecular mechanism underlying eCIRP's induction of Cdk5 activity and potential involvement in neurodegeneration.
Collapse
Affiliation(s)
- Archna Sharma
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Ezgi Sari
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Yongchan Lee
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Shivani Patel
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Philippe Marambaud
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
- The Litwin-Zucker Center for Alzheimer's Disease Research, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| |
Collapse
|
21
|
Kimbrel NA, Garrett ME, Evans MK, Mellows C, Dennis MF, Hair LP, Hauser MA, Ashley-Koch AE, Beckham JC. Large epigenome-wide association study identifies multiple novel differentially methylated CpG sites associated with suicidal thoughts and behaviors in veterans. Front Psychiatry 2023; 14:1145375. [PMID: 37398583 PMCID: PMC10311443 DOI: 10.3389/fpsyt.2023.1145375] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/28/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction The U.S. suicide mortality rate has steadily increased during the past two decades, particularly among military veterans; however, the epigenetic basis of suicidal thoughts and behaviors (STB) remains largely unknown. Methods To address this issue, we conducted an epigenome-wide association study of DNA methylation (DNAm) of peripheral blood samples obtained from 2,712 U.S. military veterans. Results Three DNAm probes were significantly associated with suicide attempts, surpassing the multiple testing threshold (FDR q-value <0.05), including cg13301722 on chromosome 7, which lies between the genes SLC4A2 and CDK5; cg04724646 in PDE3A; and cg04999352 in RARRES3. cg13301722 was also found to be differentially methylated in the cerebral cortex of suicide decedents in a publicly-available dataset (p = 0.03). Trait enrichment analysis revealed that the CpG sites most strongly associated with STB in the present sample were also associated with smoking, alcohol consumption, maternal smoking, and maternal alcohol consumption, whereas pathway enrichment analysis revealed significant associations with circadian rhythm, adherens junction, insulin secretion, and RAP-1 signaling, each of which was recently associated with suicide attempts in a large, independent genome-wide association study of suicide attempts of veterans. Discussion Taken together, the present findings suggest that SLC4A2, CDK5, PDE3A, and RARRES3 may play a role in STB. CDK5, a member of the cyclin-dependent kinase family that is highly expressed in the brain and essential for learning and memory, appears to be a particularly promising candidate worthy of future study; however, additional work is still needed to replicate these finding in independent samples.
Collapse
Affiliation(s)
- Nathan A. Kimbrel
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, United States
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, United States
- VA Health Services Research and Development Center of Innovation to Accelerate Discovery and Practice Transformation, Durham, NC, United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | | | - Mariah K. Evans
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Clara Mellows
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michelle F. Dennis
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Lauren P. Hair
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | | | | | - Jean C. Beckham
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, United States
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
22
|
Mongkolpobsin K, Sillapachaiyaporn C, Nilkhet S, Tencomnao T, Baek SJ. Stigmasterol isolated from Azadirachta indica flowers attenuated glutamate-induced neurotoxicity via downregulation of the Cdk5/p35/p25 signaling pathway in the HT-22 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154728. [PMID: 36898255 DOI: 10.1016/j.phymed.2023.154728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/04/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Glutamate, an excitatory neurotransmitter, was elevated in the brain of neurodegenerative disease (ND) patients. The excessive glutamate induces Ca2+ influx and reactive oxygen species (ROS) production which exacerbates mitochondrial function, leading to mitophagy aberration, and hyperactivates Cdk5/p35/p25 signaling leading to neurotoxicity in ND. Stigmasterol, a phytosterol, has been reported for its neuroprotective effects; however, the underlying mechanism of stigmasterol on restoring glutamate-induced neurotoxicity is not fully investigated. PURPOSE We investigated the effect of stigmasterol, a compound isolated from Azadirachta indica (AI) flowers, on ameliorating glutamate-induced neuronal apoptosis in the HT-22 cells. STUDY DESIGN To further understand the underlying molecular mechanisms of stigmasterol, we investigated the effect of stigmasterol on Cdk5 expression, which was aberrantly expressed in glutamate-treated cells. Cell viability, Western blot analysis, and immunofluorescence are employed. RESULTS Stigmasterol significantly inhibited glutamate-induced neuronal cell death via attenuating ROS production, recovering mitochondrial membrane depolarization, and ameliorating mitophagy aberration by decreasing mitochondria/lysosome fusion and the ratio of LC3-II/LC3-I. In addition, stigmasterol treatment downregulated glutamate-induced Cdk5, p35, and p25 expression via enhancement of Cdk5 degradation and Akt phosphorylation. Although stigmasterol demonstrated neuroprotective effects on inhibiting glutamate-induced neurotoxicity, the efficiency of stigmasterol is limited due to its poor water solubility. We conjugated stigmasterol to soluble soybean polysaccharides with chitosan nanoparticles to overcome the limitations. We found that the encapsulated stigmasterol increased water solubility and enhanced the protective effect on attenuating the Cdk5/p35/p25 signaling pathway compared with free stigmasterol. CONCLUSION Our findings illustrate the neuroprotective effect and the improved utility of stigmasterol in inhibiting glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- Kuljira Mongkolpobsin
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Program in Clinical Biochemistry and Molecular Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Chanin Sillapachaiyaporn
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Program in Clinical Biochemistry and Molecular Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Sunita Nilkhet
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Program in Clinical Biochemistry and Molecular Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Natural Products for Neuroprotection and Anti-ageing (Neur-Age Natura) Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Seung Joon Baek
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
23
|
Pao PC, Seo J, Lee A, Kritskiy O, Patnaik D, Penney J, Raju RM, Geigenmuller U, Silva MC, Lucente DE, Gusella JF, Dickerson BC, Loon A, Yu MX, Bula M, Yu M, Haggarty SJ, Tsai LH. A Cdk5-derived peptide inhibits Cdk5/p25 activity and improves neurodegenerative phenotypes. Proc Natl Acad Sci U S A 2023; 120:e2217864120. [PMID: 37043533 PMCID: PMC10120002 DOI: 10.1073/pnas.2217864120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/07/2023] [Indexed: 04/13/2023] Open
Abstract
Aberrant activity of cyclin-dependent kinase (Cdk5) has been implicated in various neurodegenerative diseases. This deleterious effect is mediated by pathological cleavage of the Cdk5 activator p35 into the truncated product p25, leading to prolonged Cdk5 activation and altered substrate specificity. Elevated p25 levels have been reported in humans and rodents with neurodegeneration, and the benefit of genetically blocking p25 production has been demonstrated previously in rodent and human neurodegenerative models. Here, we report a 12-amino-acid-long peptide fragment derived from Cdk5 (Cdk5i) that is considerably smaller than existing peptide inhibitors of Cdk5 (P5 and CIP) but shows high binding affinity toward the Cdk5/p25 complex, disrupts the interaction of Cdk5 with p25, and lowers Cdk5/p25 kinase activity. When tagged with a fluorophore (FITC) and the cell-penetrating transactivator of transcription (TAT) sequence, the Cdk5i-FT peptide exhibits cell- and brain-penetrant properties and confers protection against neurodegenerative phenotypes associated with Cdk5 hyperactivity in cell and mouse models of neurodegeneration, highlighting Cdk5i's therapeutic potential.
Collapse
Affiliation(s)
- Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jinsoo Seo
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain Sciences, Daegu Gyeongbuk Institute for Science and Technology, Daegu42988, South Korea
| | - Audrey Lee
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Oleg Kritskiy
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Debasis Patnaik
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Jay Penney
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Ravikiran M. Raju
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
| | - Ute Geigenmuller
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - M. Catarina Silva
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Diane E. Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Massachusetts General Hospital Frontotemporal Disorders Unit, Gerontology Research Unit, and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA02129
| | - James F. Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02114
| | - Bradford C. Dickerson
- Massachusetts General Hospital Frontotemporal Disorders Unit, Gerontology Research Unit, and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA02129
| | - Anjanet Loon
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Margaret X. Yu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Michael Bula
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Melody Yu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
24
|
A review on cyclin-dependent kinase 5: An emerging drug target for neurodegenerative diseases. Int J Biol Macromol 2023; 230:123259. [PMID: 36641018 DOI: 10.1016/j.ijbiomac.2023.123259] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Cyclin-dependent kinase 5 (CDK5) is the serine/threonine-directed kinase mainly found in the brain and plays a significant role in developing the central nervous system. Recent evidence suggests that CDK5 is activated by specific cyclins regulating its expression and activity. P35 and p39 activate CDK5, and their proteolytic degradation produces p25 and p29, which are stable products involved in the hyperphosphorylation of tau protein, a significant hallmark of various neurological diseases. Numerous high-affinity inhibitors of CDK5 have been designed, and some are marketed drugs. Roscovitine, like other drugs, is being used to minimize neurological symptoms. Here, we performed an extensive literature analysis to highlight the role of CDK5 in neurons, synaptic plasticity, DNA damage repair, cell cycle, etc. We have investigated the structural features of CDK5, and their binding mode with the designed inhibitors is discussed in detail to develop attractive strategies in the therapeutic targeting of CDK5 for neurodegenerative diseases. This review provides deeper mechanistic insights into the therapeutic potential of CDK5 inhibitors and their implications in the clinical management of neurodegenerative diseases.
Collapse
|
25
|
Yang S, Nie T, She H, Tao K, Lu F, Hu Y, Huang L, Zhu L, Feng D, He D, Qi J, Kukar T, Ma L, Mao Z, Yang Q. Regulation of TFEB nuclear localization by HSP90AA1 promotes autophagy and longevity. Autophagy 2023; 19:822-838. [PMID: 35941759 PMCID: PMC9980472 DOI: 10.1080/15548627.2022.2105561] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/02/2022] Open
Abstract
TFEB (transcription factor EB) regulates multiple genes involved in the process of macroautophagy/autophagy and plays a critical role in lifespan determination. However, the detailed mechanisms that regulate TFEB activity are not fully clear. In this study, we identified a role for HSP90AA1 in modulating TFEB. HSP90AA1 was phosphorylated by CDK5 at Ser 595 under basal condition. This phosphorylation inhibited HSP90AA1, disrupted its binding to TFEB, and impeded TFEB's nuclear localization and subsequent autophagy induction. Pro-autophagy signaling attenuated CDK5 activity and enhanced TFEB function in an HSP90AA1-dependent manner. Inhibition of HSP90AA1 function or decrease in its expression significantly attenuated TFEB's nuclear localization and transcriptional function following autophagy induction. HSP90AA1-mediated regulation of a TFEB ortholog was involved in the extended lifespan of Caenorhabditis elegans in the absence of its food source bacteria. Collectively, these findings reveal that this regulatory process plays an important role in modulation of TFEB, autophagy, and longevity.Abbreviations : AL: autolysosome; AP: autophagosome; ATG: autophagy related; BafA1: bafilomycin A1; CDK5: cyclin-dependent kinase 5; CDK5R1: cyclin dependent kinase 5 regulatory subunit 1; CR: calorie restriction; FUDR: 5-fluorodeoxyuridine; HSP90AA1: heat shock protein 90 alpha family class A member 1; MAP1LC3: microtubule associated protein 1 light chain 3; NB: novobiocin sodium; SQSTM1: sequestosome 1; TFEB: transcription factor EB; WT: wild type.
Collapse
Affiliation(s)
- Shaosong Yang
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Tiejian Nie
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Hua She
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kai Tao
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Fangfang Lu
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yiman Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lu Huang
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lin Zhu
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Dayun Feng
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Dan He
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jing Qi
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Long Ma
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zixu Mao
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
26
|
Rac is required for the survival of cortical neurons. Exp Neurol 2023; 361:114316. [PMID: 36586552 DOI: 10.1016/j.expneurol.2022.114316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/07/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Rac1, a member of small Rho GTPases, is involved in diverse cellular processes in neuronal cells. Rac1 plays especially important roles during development, and its roles have been extensively studied using Rac1-deficient mice. Rac3, a close homolog of Rac1, is ubiquitously expressed in the nervous system and may therefore compensate for Rac1 in Rac1-deficient cells. Exploration of the roles of Rac in neurons may therefore be difficult. We thus deleted both Rac1 and Rac3 in cortical neurons. Rac-deficient cerebral cortices formed slightly hypoplastic but almost normally layered structures at birth, but cortical neurons underwent apoptosis soon after birth. Rac-deficient cortical neurons had poor survivability and there was reduction in the length and the number of neurites in vitro. Activation of Pak1, a downstream effector of Rac, in Rac-deficient cortical neurons rescued the survivability in vitro. Pak1-activated Rac-deficient neurons had numerous dendrites, but no axons. Restoration of p35, a regulator of Cdk5, partly rescued the survivability of Rac-deficient neurons both in vitro and in vivo. Expression of p35 also partly rescued the length and the number of neurites in Rac-deficient neurons in vitro. Rac was shown to be indispensable for the survival of cortical neurons, and Pak1 and Cdk5/p35 work as downstream effectors of Rac to promote neuronal survival.
Collapse
|
27
|
Frigerio I, Laansma MA, Lin CP, Hermans EJM, Bouwman MMA, Bol JGJM, Galis-de Graaf Y, Hepp DH, Rozemuller AJM, Barkhof F, van de Berg WDJ, Jonkman LE. Neurofilament light chain is increased in the parahippocampal cortex and associates with pathological hallmarks in Parkinson's disease dementia. Transl Neurodegener 2023; 12:3. [PMID: 36658627 PMCID: PMC9854202 DOI: 10.1186/s40035-022-00328-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/17/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Increased neurofilament levels in biofluids are commonly used as a proxy for neurodegeneration in several neurodegenerative disorders. In this study, we aimed to investigate the distribution of neurofilaments in the cerebral cortex of Parkinson's disease (PD), PD with dementia (PDD) and dementia with Lewy bodies (DLB) donors, and its association with pathology load and MRI measures of atrophy and diffusivity. METHODS Using a within-subject post-mortem MRI-pathology approach, we included 9 PD, 12 PDD/DLB and 18 age-matched control donors. Cortical thickness and mean diffusivity (MD) metrics were extracted respectively from 3DT1 and DTI at 3T in-situ MRI. After autopsy, pathological hallmarks (pSer129-αSyn, p-tau and amyloid-β load) together with neurofilament light-chain (NfL) and phosphorylated-neurofilament medium- and heavy-chain (p-NfM/H) immunoreactivity were quantified in seven cortical regions, and studied in detail with confocal-laser scanning microscopy. The correlations between MRI and pathological measures were studied using linear mixed models. RESULTS Compared to controls, p-NfM/H immunoreactivity was increased in all cortical regions in PD and PDD/DLB, whereas NfL immunoreactivity was increased in the parahippocampal and entorhinal cortex in PDD/DLB. NfL-positive neurons showed degenerative morphological features and axonal fragmentation. The increased p-NfM/H correlated with p-tau load, and NfL correlated with pSer129-αSyn but more strongly with p-tau load in PDD/DLB. Lastly, neurofilament immunoreactivity correlated with cortical thinning in PD and with increased cortical MD in PDD/DLB. CONCLUSIONS Taken together, increased neurofilament immunoreactivity suggests underlying axonal injury and neurofilament accumulation in morphologically altered neurons with increased pathological burden. Importantly, we demonstrate that such neurofilament markers at least partly explain MRI measures that are associated with the neurodegenerative process.
Collapse
Affiliation(s)
- Irene Frigerio
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, The Netherlands. .,Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands. .,Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands.
| | - Max A. Laansma
- grid.12380.380000 0004 1754 9227Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, The Netherlands ,grid.484519.5Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Chen-Pei Lin
- grid.12380.380000 0004 1754 9227Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, The Netherlands ,grid.484519.5Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands ,grid.484519.5Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Emma J. M. Hermans
- grid.12380.380000 0004 1754 9227Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, The Netherlands
| | - Maud M. A. Bouwman
- grid.12380.380000 0004 1754 9227Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, The Netherlands ,grid.484519.5Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands ,grid.484519.5Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - John G. J. M. Bol
- grid.12380.380000 0004 1754 9227Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, The Netherlands
| | - Yvon Galis-de Graaf
- grid.12380.380000 0004 1754 9227Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, The Netherlands
| | - Dagmar H. Hepp
- grid.12380.380000 0004 1754 9227Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Department of Neurology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Annemieke J. M. Rozemuller
- grid.12380.380000 0004 1754 9227Department of Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Frederik Barkhof
- grid.484519.5Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands ,grid.83440.3b0000000121901201Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | - Wilma D. J. van de Berg
- grid.12380.380000 0004 1754 9227Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, The Netherlands ,grid.484519.5Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Laura E. Jonkman
- grid.12380.380000 0004 1754 9227Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, The Netherlands ,grid.484519.5Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands ,grid.484519.5Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Wang Y, Zhong Y, Xu X, Li X, Li H, Shen H, Wang W, Fang Q. Axin1 participates in blood-brain barrier protection during experimental ischemic stroke via phosphorylation at Thr485 in rats. J Chem Neuroanat 2023; 127:102204. [PMID: 36464067 DOI: 10.1016/j.jchemneu.2022.102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022]
Abstract
Axin1 takes an important part in a variety of signaling pathway, such as MEKK1, GSK3β, and β-catenin, and plays a variety of physiological functions; but its effects on the brain-blood barrier (BBB) and stroke remain unclear. To explore the effects and underlying mechanisms of Axin1 on the BBB in ischemic stroke, Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO). Human brain microvascular endothelial cells (HBMEC) were subjected to oxygen/glucose deprivation/reoxygenation (OGD/R) to imitate ischemia/reperfusion (I/R) injury. We found that Axin1 was upregulated in HBMEC after OGD without reoxygenation, and downregulated in the injured hemisphere after MCAO without reperfusion. Tight junction (TJ) proteins were upregulated both in HBMEC after OGD without reoxygenation and in ischemic penumbra of the injured hemisphere in rats after MCAO without reperfusion. TJ proteins were downregulated after MCAO/R in rats. Overexpression of Axin1 upregulated the levels of TJ proteins, which alleviated BBB permeability, reduced infarction volume, and ultimately improved neurological behavioral indicators after I/R injury. Furthermore, inhibiting phosphorylation of Axin1 at Thr485 notably increased the expression of Snail and decreased the expression of TJ proteins. Our findings demonstrate that Axin1 participates in BBB protection and improvement of neurological functions during ischemic stroke by regulating TJ proteins. Axin1 may serve as a potential novel candidate to protect BBB and relieve brain injury.
Collapse
Affiliation(s)
- Yugang Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Yi Zhong
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Xiang Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Wenjie Wang
- Department of Neurosurgery, Second Affiliated Hospital of Nantong University, North Haierxiang Road 6, Nantong 226001, Jiangsu Province, China.
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, China.
| |
Collapse
|
29
|
Chen C, Liu JW, Guo LL, Xiong F, Ran XQ, Guo YR, Yao YG, Hao XJ, Luo RC, Zhang Y. Monoterpenoid indole alkaloid dimers from Kopsia arborea inhibit cyclin-dependent kinase 5 and tau phosphorylation. PHYTOCHEMISTRY 2022; 203:113392. [PMID: 36030903 DOI: 10.1016/j.phytochem.2022.113392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Three undescribed monoterpenoid indole alkaloid dimers (kopoffines A-C, which are connected via a methylene unit) and with nine known alkaloids were isolated and identified from the fruits of Kopsia arborea Blume. Their structures, including their absolute configurations, were established by HRESIMS, NMR, single-crystal X-ray diffraction, and ECD analyses. Kopoffines A-C showed significant inhibition against cyclin-dependent kinase 5 (IC50: 0.34-2.18 μM). Western blotting analyses showed that kopoffines A-C significantly decreased the protein levels of CDK5 and phospho-CDK5 (Tyr15) (pCDK5) at concentrations of 2.5 and 10 μM. The levels of phospho-Tau (Thr217) (pTau217, a new biomarker of AD), and phospho-Tau (Ser396) (pTau396), which play major roles in the formation of neurofibrillary tangles , were decreased by the kopoffines A-C treatment. Molecular docking studies indicated that kopoffines A-C could form stable interactions with CDK5.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jian-Wen Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ling-Li Guo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Feng Xiong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiao-Qian Ran
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, And KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ya-Rong Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, And KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, And KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiao-Jiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China; Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Rong-Can Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, And KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Yu Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
30
|
Liu D, Li J, Rong X, Li J, Peng Y, Shen Q. Cdk5 Promotes Mitochondrial Fission via Drp1 Phosphorylation at S616 in Chronic Ethanol Exposure-Induced Cognitive Impairment. Mol Neurobiol 2022; 59:7075-7094. [PMID: 36083519 DOI: 10.1007/s12035-022-03008-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022]
Abstract
Excessive alcohol consumption can lead to alterations in brain structure and function, even causing irreversible learning and memory disorders. The hippocampus is one of the most sensitive areas to alcohol neurotoxicity in the brain. Accumulating evidence indicates that mitochondrial dysfunction contributes to alcohol neurotoxicity. However, little is known about the underlying molecular mechanisms. In this study, we found that chronic exposure to ethanol caused abnormal mitochondrial fission/fusion and morphology by activating the mitochondrial fission protein dynamin-related protein 1 (Drp1) and upregulating Drp1 receptors, such as fission protein 1 (Fis1), mitochondrial dynamics protein of 49 kDa (Mid49), and mitochondrial fission factor (Mff), combined with decreasing optic atrophy 1 (Opa1) and mitochondrial fusion protein mitofusin 1 (Mfn1) levels. In addition, mitochondrial division inhibitor 1 (mdivi-1) abrogated ethanol-induced mitochondrial dysfunction and improved hippocampal synapses and cognitive function in ethanol-exposed mice. Chronic ethanol exposure also resulted in cyclin-dependent kinase 5 (Cdk5) overactivation, as shown by the increase in the levels of Cdk5 and its activator P25 in the hippocampus. Furthermore, a Cdk5/P25 inhibitor (roscovitine) or Cdk5 knockdown using small interfering RNA (LVi-Cdk5) exerted neuroprotection by inhibiting abnormal mitochondrial fission through Drp1 phosphorylation at Ser616 and mitochondrial translocation after chronic ethanol exposure. Taken together, the present study demonstrated that inhibition of aberrant Cdk5 activation attenuates hippocampal neuron injury and cognitive deficits induced by chronic exposure to ethanol through Drp1-mediated mitochondrial fission and mitochondrial dysfunction. Interfering with this pathway might serve as a potential therapeutic approach to prevent ethanol-induced neurotoxicity in the brain.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiande Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie Li
- The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Qingyu Shen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
31
|
Ao C, Li C, Chen J, Tan J, Zeng L. The role of Cdk5 in neurological disorders. Front Cell Neurosci 2022; 16:951202. [PMID: 35966199 PMCID: PMC9368323 DOI: 10.3389/fncel.2022.951202] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Neurological disorders are a group of disorders with motor, sensory or cognitive damage, caused by dysfunction of the central or peripheral nervous system. Cyclin-dependent kinases 5 (Cdk5) is of vital significance for the development of the nervous system, including the migration and differentiation of neurons, the formation of synapses, and axon regeneration. However, when the nervous system is subject to pathological stimulation, aberrant activation of Cdk5 will induce abnormal phosphorylation of a variety of substrates, resulting in a cascade signaling pathway, and thus lead to pathological changes. Cdk5 is intimately related to the pathological mechanism of a variety of neurological disorders, such as A-β protein formation in Alzheimer’s disease, mitochondrial fragmentation in cerebral ischemia, and apoptosis of dopaminergic neurons in Parkinson’s disease. It is worth noting that Cdk5 inhibitors have been reported to have neuroprotective effects by inhibiting related pathological processes. Therefore, in this review, we will briefly introduce the physiological and pathological mechanisms of Cdk5 in the nervous system, focusing on the recent advances of Cdk5 in neurological disorders and the prospect of targeted Cdk5 for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Chuncao Ao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chenchen Li
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinlun Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Model for Human Diseases, Central South University, Changsha, China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Liuwang Zeng
| |
Collapse
|
32
|
Wei Y, Zhou X, Chen P, Jiang X, Jiang Z, Dong Z, Pan M, Lu C. BmCDK5 Affects Cell Proliferation and Cytoskeleton Morphology by Interacting with BmCNN in Bombyx mori. INSECTS 2022; 13:insects13070609. [PMID: 35886785 PMCID: PMC9323621 DOI: 10.3390/insects13070609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023]
Abstract
The ordered cell cycle is important to the proliferation and differentiation of living organisms. Cyclin-dependent kinases (CDKs) perform regulatory functions in different phases of the cell cycle process to ensure order. We identified a homologous gene of the Cyclin-dependent kinase family, BmCDK5, in Bombyx mori. BmCDK5 contains the STKc_CDK5 domain. The BmCDK5 gene was highly expressed in S phase. Overexpression of the BmCDK5 gene accelerates the process of the cell cycle's mitotic period (M) and promotes cell proliferation; knocking out the BmCDK5 gene inhibited cell proliferation. Furthermore, we identified a protein, BmCNN, which can interact with BmCDK5 and represents the same express patterns as the BmCDK5 gene in the cell cycle phase and the spatial-temporal expression of B. mori. This study revealed that BmCDK5 and BmCNN play roles in promoting cell proliferation and regulating cytoskeleton morphology, but do not induce expression changes in microtubule protein. Therefore, our findings provide a new insight; the BmCDK5 gene has a regulatory effect on the cell cycle and proliferation of B. mori, which is presumably due to the interaction between BmCDK5 and BmCNN regulating changes in the cytoskeleton.
Collapse
Affiliation(s)
- Yi Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Y.W.); (X.Z.); (P.C.); (X.J.); (Z.J.); (Z.D.)
| | - Xiaolin Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Y.W.); (X.Z.); (P.C.); (X.J.); (Z.J.); (Z.D.)
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Y.W.); (X.Z.); (P.C.); (X.J.); (Z.J.); (Z.D.)
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Xia Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Y.W.); (X.Z.); (P.C.); (X.J.); (Z.J.); (Z.D.)
| | - Ziyi Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Y.W.); (X.Z.); (P.C.); (X.J.); (Z.J.); (Z.D.)
| | - Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Y.W.); (X.Z.); (P.C.); (X.J.); (Z.J.); (Z.D.)
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Y.W.); (X.Z.); (P.C.); (X.J.); (Z.J.); (Z.D.)
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
- Correspondence: (M.P.); (C.L.); Tel.: +86-23-6825-0076 (M.P.); Fax: 86-23-6825-1128 (M.P.)
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Y.W.); (X.Z.); (P.C.); (X.J.); (Z.J.); (Z.D.)
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
- Correspondence: (M.P.); (C.L.); Tel.: +86-23-6825-0076 (M.P.); Fax: 86-23-6825-1128 (M.P.)
| |
Collapse
|
33
|
Wang X, Sun L, Guan S, Yan H, Huang X, Liang M, Zhang R, Luo T. Cyclin-dependent kinase 5 inhibitor attenuates lipopolysaccharide-induced neuroinflammation through metabolic reprogramming. Eur J Pharmacol 2022; 929:175118. [PMID: 35787890 DOI: 10.1016/j.ejphar.2022.175118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
The atypical cyclin-dependent kinase 5 (CDK5) is considered a neuron-specific kinase that plays important roles in many cellular functions including neuronal migration, neuronal differentiation, synapse development, and synaptic functions. However, the role of CDK5 in microglia under physiological and pathological conditions remains unclear. This study showed that treatment with lipopolysaccharide (LPS) caused the release of pro-inflammatory mediators and increased expression of CDK5 in BV2 microglia in vitro. Moreover, lipopolysaccharide treatment-induced glycolysis by increasing the expression levels of HIF-1α, PFKFB3, and HK2. Application of CDK5 inhibitor roscovitine significantly decreased LPS-induced CDK5 expression and glycolysis, thus suppressing neuroinflammation in the cells. The roscovitine treatment of BV2 cells also significantly blocked the HIF-1 activator, CoCl2-mediated HIF-1α, HK2, and PFKFB3 expression. Finally, we demonstrated that roscovitine inhibited microglial activation, metabolic reprogramming, expression of pro-inflammatory markers, cell apoptosis, and alleviated memory impairment in LPS-injected mice. In summary, our results suggest that inhibition of CDK5 can reduce the neuroinflammation of microglia through modulation of metabolic reprogramming.
Collapse
Affiliation(s)
- Xihua Wang
- School of Anesthesiology, Weifang Medical University, Weifang, China; Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lingbin Sun
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shuyuan Guan
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hong Yan
- School of Anesthesiology, Weifang Medical University, Weifang, China
| | - Xirui Huang
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Mingjin Liang
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Rui Zhang
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Tao Luo
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
34
|
Hou K, Xiao ZC, Dai HL. p38 MAPK Endogenous Inhibition Improves Neurological Deficits in Global Cerebral Ischemia/Reperfusion Mice. Neural Plast 2022; 2022:3300327. [PMID: 35811833 PMCID: PMC9259354 DOI: 10.1155/2022/3300327] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/02/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Cerebral ischemia/reperfusion (I/R) injury is a complex pathophysiological process that can lead to neurological function damage and the formation of cerebral infarction. The p38 MAPK pathway has attracted considerable attention in cerebral I/R injury (IRI), but little research has been carried out on its direct role in vivo. In this study, to observe the effects of p38 MAPK endogenous inhibition on cerebral IRI, p38 heterozygous knockdown (p38KI/+) mice were used. We hypothesized that p38 signaling might be involved in I/R injury and neurological damage reduction and that neurological behavioral deficits improve when p38 MAPK is inhibited. First, we examined the neurological damage and neurological behavioral deficit effects of I/R injury in WT mice. Cerebral I/R injury was induced by the bilateral common carotid artery occlusion (BCCAO) method. The cerebral infarction area and volume were assessed and analyzed by 2,3,5-triphenyltetrazolium chloride (TTC) staining. p38 MAPK and caspase-3 were detected by western blotting. Neuronal apoptosis was measured using TUNEL staining. Neurological deficits were detected by behavioral testing. Furthermore, to assess whether these neuroprotective effects occurred when p38 MAPK was inhibited, p38 heterozygous knockdown (p38KI/+) mice were used. We found that p38 MAPK endogenous inhibition rescued hippocampal cell apoptosis, reduced ischemic penumbra, and improved neurological behavioral deficits. These findings showed that p38 MAPK endogenous inhibition had a neuroprotective effect on IRI and that p38 MAPK may be a potential therapeutic target for cerebral IRI.
Collapse
Affiliation(s)
- Kun Hou
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Clinical Medicine Center for Cardiovascular Disease of Yunnan Province, Department of Cardiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650500, China
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
| | - Zhi-cheng Xiao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
- Department of Anatomy and Developmental Biology, Monash University, Clayton 3800, Australia
| | - Hai-Long Dai
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Clinical Medicine Center for Cardiovascular Disease of Yunnan Province, Department of Cardiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| |
Collapse
|
35
|
Zhou H, Zhang J, Shi H, Li P, Sui X, Wang Y, Wang L. Downregulation of CDK5 signaling in the dorsal striatum alters striatal microcircuits implicating the association of pathologies with circadian behavior in mice. Mol Brain 2022; 15:53. [PMID: 35701839 PMCID: PMC9195255 DOI: 10.1186/s13041-022-00939-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Dysfunction of striatal dopaminergic circuits has been implicated in motor impairment and Parkinson’s disease (PD)-related circadian perturbations that may represent an early prodromal marker of PD. Cyclin-dependent kinase 5 (CDK5) negatively regulates dopamine signaling in the striatum, suggesting a critical role of CDK5 in circadian and sleep disorders. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing to produce mice with a dorsal striatum (DS)-specific knockdown (KD) of the Cdk5 gene (referred to as DS-CDK5-KD mice) and investigate its role in vivo. DS-CDK5-KD mice exhibited deficits in locomotor activity and disturbances in activity/rest behavior. Additionally, Golgi staining of neurons in the DS revealed that CDK5 deletion reduced dendrite length and the number of functional synapses, which was confirmed by significant downregulation of MAP2, PSD-95, and synapsin I. Correlated with this, DS-CDK5-KD mice displayed reduced phosphorylation of Tau at Thr181. Furthermore, whole-cell patch-clamp recordings of green fluorescent protein-tagged neurons in the striatum of DS-CDK5-KD mice revealed a decreased frequency of spontaneous inhibitory postsynaptic currents and altered excitatory/inhibitory synaptic balance. Notably, anterograde labeling showed that CDK5 KD in the DS disrupted long-range projections to the secondary motor cortex, dorsal and ventral thalamic nuclei, and basolateral amygdala, which are involved in the regulation of motor and circadian rhythms in the brain. These findings support a critical role of CDK5 in the DS in maintaining the striatal neural circuitry underlying motor functions and activity/rest associated with circadian rhythms that are perturbed in neurodegenerative disorders.
Collapse
Affiliation(s)
- Hu Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jingxin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Huaxiang Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Pengfei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Liyun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
36
|
Asano T, Nakamura H, Kawamoto Y, Tada M, Kimura Y, Takano H, Yao R, Saito H, Ikeda T, Komiya H, Kubota S, Hashiguchi S, Takahashi K, Kunii M, Tanaka K, Goshima Y, Nakamura F, Takeuchi H, Doi H, Tanaka F. Inhibition of Crmp1 Phosphorylation at Ser522 Ameliorates Motor Function and Neuronal Pathology in Amyotrophic Lateral Sclerosis Model Mice. eNeuro 2022; 9:ENEURO.0133-22.2022. [PMID: 35523582 PMCID: PMC9131721 DOI: 10.1523/eneuro.0133-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder that affects upper and lower motor neurons; however, its pathomechanism has not been fully elucidated. Using a comprehensive phosphoproteomic approach, we have identified elevated phosphorylation of Collapsin response mediator protein 1 (Crmp1) at serine 522 in the lumbar spinal cord of ALS model mice overexpressing a human superoxide dismutase mutant (SOD1G93A). We investigated the effects of Crmp1 phosphorylation and depletion in SOD1G93A mice using Crmp1S522A (Ser522→Ala) knock-in (Crmp1ki/ki ) mice in which the S522 phosphorylation site was abolished and Crmp1 knock-out (Crmp1-/-) mice, respectively. Crmp1ki/ki /SOD1G93A mice showed longer latency to fall in a rotarod test while Crmp1-/-/SOD1G93A mice showed shorter latency compared with SOD1G93A mice. Survival was prolonged in Crmp1ki/ki /SOD1G93A mice but not in Crmp1-/-/SOD1G93A mice. In agreement with these phenotypic findings, residual motor neurons and innervated neuromuscular junctions (NMJs) were comparatively well-preserved in Crmp1ki/ki /SOD1G93A mice without affecting microglial and astroglial pathology. Pathway analysis of proteome alterations showed that the sirtuin signaling pathway had opposite effects in Crmp1ki/ki /SOD1G93A and Crmp1-/-/SOD1G93A mice. Our study indicates that modifying CRMP1 phosphorylation is a potential therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Tetsuya Asano
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Haruko Nakamura
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yuko Kawamoto
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Mikiko Tada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan
| | - Hiroshi Takano
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Ryoji Yao
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Hiroya Saito
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Takuya Ikeda
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Hiroyasu Komiya
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Shun Kubota
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Shunta Hashiguchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Keita Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Misako Kunii
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kenichi Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Fumio Nakamura
- Department of Biochemistry, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
37
|
In vivo analysis of the phosphorylation of tau and the tau protein kinases Cdk5-p35 and GSK3β by using Phos-tag SDS–PAGE. J Proteomics 2022; 262:104591. [DOI: 10.1016/j.jprot.2022.104591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/24/2022]
|
38
|
Desbois M, Opperman KJ, Amezquita J, Gaglio G, Crawley O, Grill B. Ubiquitin ligase activity inhibits Cdk5 to control axon termination. PLoS Genet 2022; 18:e1010152. [PMID: 35421092 PMCID: PMC9041834 DOI: 10.1371/journal.pgen.1010152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/26/2022] [Accepted: 03/17/2022] [Indexed: 01/29/2023] Open
Abstract
The Cdk5 kinase plays prominent roles in nervous system development, plasticity, behavior and disease. It also has important, non-neuronal functions in cancer, the immune system and insulin secretion. At present, we do not fully understand negative regulatory mechanisms that restrict Cdk5. Here, we use Caenorhabditis elegans to show that CDK-5 is inhibited by the RPM-1/FSN-1 ubiquitin ligase complex. This atypical RING ubiquitin ligase is conserved from C. elegans through mammals. Our finding originated from unbiased, in vivo affinity purification proteomics, which identified CDK-5 as a putative RPM-1 substrate. CRISPR-based, native biochemistry showed that CDK-5 interacts with the RPM-1/FSN-1 ubiquitin ligase complex. A CRISPR engineered RPM-1 substrate ‘trap’ enriched CDK-5 binding, which was mediated by the FSN-1 substrate recognition module. To test the functional genetic relationship between the RPM-1/FSN-1 ubiquitin ligase complex and CDK-5, we evaluated axon termination in mechanosensory neurons and motor neurons. Our results indicate that RPM-1/FSN-1 ubiquitin ligase activity restricts CDK-5 to control axon termination. Collectively, these proteomic, biochemical and genetic results increase our understanding of mechanisms that restrain Cdk5 in the nervous system. Cdk5 is an atypical cyclin dependent kinase and an important player in nervous system development, plasticity, and disease. Decades of research has focused on understanding how Cdk5 is activated. In contrast, we know much less about the genetic and molecular mechanisms that restrict Cdk5 activity. Here, we examined how Cdk5 is inhibited in the nervous system using the model organism C. elegans. Our results indicate that the RPM-1/FSN-1 E3 ubiquitin ligase complex inhibits Cdk5 to control termination of axon growth. Our finding that ubiquitin ligase activity restricts Cdk5 in the nervous system in vivo now opens up the interesting possibility that ubiquitin ligase activity might regulate Cdk5 in other cellular contexts and disease settings.
Collapse
Affiliation(s)
- Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Karla J. Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jonathan Amezquita
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Gabriel Gaglio
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Oliver Crawley
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Pharmacology, University of Washington M1-A303/305 Behnke Conference Room, Arnold building, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
39
|
Jiao YN, Zhang JS, Qiao WJ, Tian SY, Wang YB, Wang CY, Zhang YH, Zhang Q, Li W, Min DY, Wang ZY. Kai-Xin-San Inhibits Tau Pathology and Neuronal Apoptosis in Aged SAMP8 Mice. Mol Neurobiol 2022; 59:3294-3309. [PMID: 35303280 PMCID: PMC9016055 DOI: 10.1007/s12035-021-02626-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer’s disease (AD) is an age-related neurological disorder. Currently, there is no effective cure for AD due to its complexity in pathogenesis. In light of the complex pathogenesis of AD, the traditional Chinese medicine (TCM) formula Kai-Xin-San (KXS), which was used for amnesia treatment, has been proved to improve cognitive function in AD animal models. However, the active ingredients and the mechanism of KXS have not yet been clearly elucidated. In this study, network pharmacology analysis predicts that KXS yields 168 candidate compounds acting on 863 potential targets, 30 of which are associated with AD. Enrichment analysis revealed that the therapeutic mechanisms of KXS for AD are associated with the inhibition of Tau protein hyperphosphorylation, inflammation, and apoptosis. Therefore, we chose 7-month-old senescence-accelerated mouse prone 8 (SAMP8) mice as AD mouse model, which harbors the behavioral and pathological hallmarks of AD. Subsequently, the potential underlying action mechanisms of KXS on AD predicted by the network pharmacology analyses were experimentally validated in SAMP8 mice after intragastric administration of KXS for 3 months. We observed that KXS upregulated AKT phosphorylation, suppressed GSK3β and CDK5 activation, and inhibited the TLR4/MyD88/NF-κB signaling pathway to attenuate Tau hyperphosphorylation and neuroinflammation, thus suppressing neuronal apoptosis and improving the cognitive impairment of aged SAMP8 mice. Taken together, our findings reveal a multi-component and multi-target therapeutic mechanism of KXS for attenuating the progression of AD, contributing to the future development of TCM modernization, including KXS, and broader clinical application.
Collapse
Affiliation(s)
- Ya-Nan Jiao
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Jing-Sheng Zhang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Wen-Jun Qiao
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Shu-Yu Tian
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Yi-Bin Wang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Chun-Yan Wang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Yan-Hui Zhang
- School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Qi Zhang
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Wen Li
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Dong-Yu Min
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| | - Zhan-You Wang
- Health Sciences Institute, China Medical University, Shenyang, China.
| |
Collapse
|
40
|
Cao H, Zhou X, Chen Y, Ip FC, Chen Y, Lai NC, Lo RM, Tong EP, Mok VC, Kwok TC, Fu AK, Ip NY. Association of SPI1 Haplotypes with Altered SPI1 Gene Expression and Alzheimer’s Disease Risk. J Alzheimers Dis 2022; 86:1861-1873. [PMID: 35253752 PMCID: PMC9108557 DOI: 10.3233/jad-215311] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: Genetic studies reveal that single-nucleotide polymorphisms (SNPs) of SPI1 are associated with Alzheimer’s disease (AD), while their effects in the Chinese population remain unclear. Objective: We aimed to examine the AD-association of SPI1 SNPs in the Chinese population and investigate the underlying mechanisms of these SNPs in modulating AD risk. Methods: We conducted a genetic analysis of three SPI1 SNPs (i.e., rs1057233, rs3740688, and rs78245530) in a Chinese cohort (n = 333 patients with AD, n = 721 normal controls). We also probed public European-descent AD cohorts and gene expression datasets to investigate the putative functions of those SNPs. Results: We showed that SPI1 SNP rs3740688 is significantly associated with AD in the Chinese population (odds ratio [OR] = 0.72 [0.58–0.89]) and identified AD-protective SPI1 haplotypes β (tagged by rs1057233 and rs3740688) and γ (tagged by rs3740688 and rs78245530). Specifically, haplotypes β and γ are associated with decreased SPI1 gene expression level in the blood and brain tissues, respectively. The regulatory roles of these haplotypes are potentially mediated by changes in miRNA binding and the epigenetic landscape. Our results suggest that the AD-protective SPI1 haplotypes regulate pathways involved in immune and neuronal functions. Conclusion: This study is the first to report a significant association of SPI1 with AD in the Chinese population. It also identifies SPI1 haplotypes that are associated with SPI1 gene expression and decreased AD risk.
Collapse
Affiliation(s)
- Han Cao
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Xiaopu Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen, Guangdong, China
| | - Yu Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen, Guangdong, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen–Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
| | - Fanny C.F. Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen, Guangdong, China
| | - Yuewen Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen, Guangdong, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen–Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
| | - Nicole C.H. Lai
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ronnie M.N. Lo
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Estella P.S. Tong
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Vincent C.T. Mok
- Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Timothy C.Y. Kwok
- Therese Pei Fong Chow Research Centre for Prevention of Dementia, Division of Geriatrics, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Amy K.Y. Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen, Guangdong, China
| | - Nancy Y. Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen, Guangdong, China
| | | |
Collapse
|
41
|
Shen Y, Luchetti A, Fernandes G, Do Heo W, Silva AJ. The emergence of molecular systems neuroscience. Mol Brain 2022; 15:7. [PMID: 34983613 PMCID: PMC8728933 DOI: 10.1186/s13041-021-00885-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
Systems neuroscience is focused on how ensemble properties in the brain, such as the activity of neuronal circuits, gives rise to internal brain states and behavior. Many of the studies in this field have traditionally involved electrophysiological recordings and computational approaches that attempt to decode how the brain transforms inputs into functional outputs. More recently, systems neuroscience has received an infusion of approaches and techniques that allow the manipulation (e.g., optogenetics, chemogenetics) and imaging (e.g., two-photon imaging, head mounted fluorescent microscopes) of neurons, neurocircuits, their inputs and outputs. Here, we will review novel approaches that allow the manipulation and imaging of specific molecular mechanisms in specific cells (not just neurons), cell ensembles and brain regions. These molecular approaches, with the specificity and temporal resolution appropriate for systems studies, promise to infuse the field with novel ideas, emphases and directions, and are motivating the emergence of a molecularly oriented systems neuroscience, a new discipline that studies how the spatial and temporal patterns of molecular systems modulate circuits and brain networks, and consequently shape the properties of brain states and behavior.
Collapse
Affiliation(s)
- Yang Shen
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Alessandro Luchetti
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Giselle Fernandes
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Alcino J Silva
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Inhibition of Cdk5 in PV Neurons Reactivates Experience-Dependent Plasticity in Adult Visual Cortex. Int J Mol Sci 2021; 23:ijms23010186. [PMID: 35008611 PMCID: PMC8745415 DOI: 10.3390/ijms23010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) has been shown to play a critical role in brain development, learning, memory and neural processing in general. Cdk5 is widely distributed in many neuron types in the central nervous system, while its cell-specific role is largely unknown. Our previous study showed that Cdk5 inhibition restored ocular dominance (OD) plasticity in adulthood. In this study, we specifically knocked down Cdk5 in different types of neurons in the visual cortex and examined OD plasticity by optical imaging of intrinsic signals. Downregulation of Cdk5 in parvalbumin-expressing (PV) inhibitory neurons, but not other neurons, reactivated adult mouse visual cortical plasticity. Cdk5 knockdown in PV neurons reduced the evoked firing rate, which was accompanied by an increment in the threshold current for the generation of a single action potential (AP) and hyperpolarization of the resting membrane potential. Moreover, chemogenetic activation of PV neurons in the visual cortex can attenuate the restoration of OD plasticity by Cdk5 inhibition. Taken together, our results suggest that Cdk5 in PV interneurons may play a role in modulating the excitation and inhibition balance to control the plasticity of the visual cortex.
Collapse
|
43
|
Sui R, Shi W, Han S, Fan X, Zhang X, Wang N, Zhang H, Xu A, Liu C. MiR-142-5p directly targets cyclin-dependent kinase 5-mediated upregulation of the inflammatory process in acquired middle ear cholesteatoma. Mol Immunol 2021; 141:236-245. [PMID: 34875451 DOI: 10.1016/j.molimm.2021.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 01/27/2023]
Abstract
MicroRNAs (miRNAs) play important roles in the regulation of cell proliferation, differentiation, apoptosis, and inflammatory responses. MiR-142-5p is an important inflammation-associated miRNA, whose abnormal expression has been associated with a variety of inflammation-related diseases. However, the role and signaling pathways targeted by miR-142-5p in acquired middle ear cholesteatoma (AMEC) have not been fully elucidated. Cyclin-dependent kinase 5 (CDK5), a special member of the CDK family compared with classic cyclins that plays a critical role in the inflammatory response. In this study, we investigated the roles of miR-142-5p and CDK5 in inflammatory responses in AMEC. Our results revealed that the expression of miR-142-5p was significantly reduced in AMEC, and was negatively correlated with the expression of CDK5 (r=-0.5451). We also found that miR-142-5p can inhibit CDK5 expression by directly target 3' untranslated region (UTR) of CDK5. Additionally, our findings indicated that the increased expression of CDK5 induces the secretion of inflammatory cytokines. In order to further confirm the involvement of miR-142-5p in the regulation of the inflammatory response in AMEC through its inhibitory effect on CDK5 expression, we studied the inflammatory response in HaCaT cells transfected with small interfering RNA against CDK5 (si-CDK5) and a miR-142-5p inhibitor. The results confirmed that miR-142-5p regulates the inflammatory response in AMEC by downregulating CDK5. In summary, miR-142-5p directly inhibits the CDK5-mediated upregulation of inflammatory cytokines in AMEC, which makes it a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Rongcui Sui
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China
| | - Wei Shi
- Department of Otolaryngology, Zhoucun District People's Hospital, 72 Mianhua Shi Road, Zibo, Shandong, China
| | - Shuhui Han
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China
| | - Xintai Fan
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China
| | - Xianzhao Zhang
- Department of Otolaryngology, The First People's Hospital of Jining, 6 Health Road, Jining, Shandong, China
| | - Na Wang
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China
| | - Hao Zhang
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China
| | - Anting Xu
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China.
| | - Chengcheng Liu
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Weiqi Road, Jinan, Shandong, China.
| |
Collapse
|
44
|
Abstract
Cdk5 is a proline-directed serine/threonine protein kinase that governs a variety of cellular processes in neurons, the dysregulation of which compromises normal brain function. The mechanisms underlying the modulation of Cdk5, its modes of action, and its effects on the nervous system have been a great focus in the field for nearly three decades. In this review, we provide an overview of the discovery and regulation of Cdk5, highlighting recent findings revealing its role in neuronal/synaptic functions, circadian clocks, DNA damage, cell cycle reentry, mitochondrial dysfunction, as well as its non-neuronal functions under physiological and pathological conditions. Moreover, we discuss evidence underscoring aberrant Cdk5 activity as a common theme observed in many neurodegenerative diseases.
Collapse
Affiliation(s)
- Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
45
|
Gao L, Xia L, Ji W, Zhang Y, Xia W, Lu S. Knockdown of CDK5 down-regulates PD-L1 via the ubiquitination-proteasome pathway and improves antitumor immunity in lung adenocarcinoma. Transl Oncol 2021; 14:101148. [PMID: 34130052 PMCID: PMC8215302 DOI: 10.1016/j.tranon.2021.101148] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/30/2022] Open
Abstract
Knockdown of CDK5 down-regulates PD-L1 in lung adenocarcinoma and improves tumor immunity. Interference of CDK5 leads to ubiquitination and degradation of PD-L1 protein. TRIM21 mediates the ubiquitination and degradation process of PD-L1. Combination of CDK5 disruption and anti-PD-L1 therapy has a stronger effect on inhibiting tumor formation, compared with CDK5 knockdown alone.
Although immunotherapy (anti-PD-1/PD-L1 antibodies) has been approved for clinical treatment of lung cancer, only a small proportion of patients respond to monotherapy. Hence, understanding the regulatory mechanism of PD-L1 is particularly important to identify optimal combinations. In this study, we found that inhibition of CDK5 induced by shRNA or CDK5 inhibitor leads to reduced expression of PD-L1 protein in human lung adenocarcinoma cells, while the mRNA level is not substantially altered. The PD-L1 protein degradation is mediated by E3 ligase TRIM21 via ubiquitination-proteasome pathway. Subsequently, we studied the function of CDK5/PD-L1 axis in LUAD. In vitro, the absence of CDK5 in mouse Lewis lung cancer cell (LLC) has no effect on cell proliferation. However, the attenuation of CDK5 or combined with anti-PD-L1 greatly suppresses tumor growth in LLC implanted mouse models in vivo. Disruption of CDK5 elicits a higher level of CD3+, CD4+ and CD8+ T cells in spleens and lower PD-1 expression in CD4+ and CD8+ T cells. Our findings highlight a role for CDK5 in promoting antitumor immunity, which provide a potential therapeutic target for combined immunotherapy in LUAD.
Collapse
Affiliation(s)
- Lin Gao
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, PR China
| | - Liliang Xia
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, PR China
| | - Wenxiang Ji
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, PR China
| | - Yanshuang Zhang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 HuashanRoad, Shanghai 200030, PR China
| | - Weiliang Xia
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 HuashanRoad, Shanghai 200030, PR China.
| | - Shun Lu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, PR China.
| |
Collapse
|
46
|
Etman AM, Abdel Mageed SS, Ali MA, El Hassab MAEM. Cyclin-Dependent Kinase as a Novel Therapeutic Target: An Endless Story. CURRENT CHEMICAL BIOLOGY 2021; 15:139-162. [DOI: 10.2174/2212796814999201123194016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 09/02/2023]
Abstract
Cyclin-Dependent Kinases (CDKs) are a family of enzymes that, along with their Cyclin
partners, play a crucial role in cell cycle regulation at many biological functions such as proliferation,
differentiation, DNA repair, and apoptosis. Thus, they are tightly regulated by a number of inhibitory
and activating enzymes. Deregulation of these kinases’ activity either by amplification,
overexpression or mutation of CDKs or Cyclins leads to uncontrolled proliferation of cancer cells.
Hyperactivity of these kinases has been reported in a wide variety of human cancers. Hence, CDKs
have been established as one of the most attractive pharmacological targets in the development of
promising anticancer drugs. The elucidated structural features and the well-characterized molecular
mechanisms of CDKs have been the guide in designing inhibitors to these kinases. Yet, they remain
a challenging therapeutic class as they share conserved structure similarity in their active site.
Several inhibitors have been discovered from natural sources or identified through high throughput
screening and rational drug design approaches. Most of these inhibitors target the ATP binding
pocket, therefore, they suffer from a number of limitations. Here, a growing number of ATP noncompetitive
peptides and small molecules has been reported.
Collapse
Affiliation(s)
- Ahmed Mohamed Etman
- Department of Pharmacology, Faculty of Pharmacy, Tanta University, Tanta, 31111,Egypt
| | - Sherif Sabry Abdel Mageed
- Department of Pharmacology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr city, Cairo, 11829,Egypt
| | - Mohamed Ahmed Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr city, Cairo, 11829,Egypt
| | - Mahmoud Abd El Monem El Hassab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr city, Cairo, 11829,Egypt
| |
Collapse
|
47
|
El Manaa W, Duplan E, Goiran T, Lauritzen I, Vaillant Beuchot L, Lacas-Gervais S, Morais VA, You H, Qi L, Salazar M, Ozcan U, Chami M, Checler F, Alves da Costa C. Transcription- and phosphorylation-dependent control of a functional interplay between XBP1s and PINK1 governs mitophagy and potentially impacts Parkinson disease pathophysiology. Autophagy 2021; 17:4363-4385. [PMID: 34030589 PMCID: PMC8726674 DOI: 10.1080/15548627.2021.1917129] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Parkinson disease (PD)-affected brains show consistent endoplasmic reticulum (ER) stress and mitophagic dysfunctions. The mechanisms underlying these perturbations and how they are directly linked remain a matter of questions. XBP1 is a transcription factor activated upon ER stress after unconventional splicing by the nuclease ERN1/IREα thereby yielding XBP1s, whereas PINK1 is a kinase considered as the sensor of mitochondrial physiology and a master gatekeeper of mitophagy process. We showed that XBP1s transactivates PINK1 in human cells, primary cultured neurons and mice brain, and triggered a pro-mitophagic phenotype that was fully dependent of endogenous PINK1. We also unraveled a PINK1-dependent phosphorylation of XBP1s that conditioned its nuclear localization and thereby, governed its transcriptional activity. PINK1-induced XBP1s phosphorylation occurred at residues reminiscent of, and correlated to, those phosphorylated in substantia nigra of sporadic PD-affected brains. Overall, our study delineated a functional loop between XBP1s and PINK1 governing mitophagy that was disrupted in PD condition.Abbreviations: 6OHDA: 6-hydroxydopamine; baf: bafilomycin A1; BECN1: beclin 1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CCCP: carbonyl cyanide chlorophenylhydrazone; COX8A: cytochrome c oxidase subunit 8A; DDIT3/CHOP: DNA damage inducible transcript 3; EGFP: enhanced green fluorescent protein; ER: endoplasmic reticulum; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FACS: fluorescence-activated cell sorting; HSPD1/HSP60: heat shock protein family D (Hsp60) member 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFN2: mitofusin 2; OPTN: optineurin; PD: Parkinson disease; PINK1: PTEN-induced kinase 1; PCR: polymerase chain reaction:; PRKN: parkin RBR E3 ubiquitin protein ligase; XBP1s [p-S61A]: XBP1s phosphorylated at serine 61; XBP1s [p-T48A]: XBP1s phosphorylated at threonine 48; shRNA: short hairpin RNA, SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TM: tunicamycin; TMRM: tetramethyl rhodamine methylester; TOMM20: translocase of outer mitochondrial membrane 20; Toy: toyocamycin; TP: thapsigargin; UB: ubiquitin; UB (S65): ubiquitin phosphorylated at serine 65; UPR: unfolded protein response, XBP1: X-box binding protein 1; XBP1s: spliced X-box binding protein 1.
Collapse
Affiliation(s)
- Wejdane El Manaa
- INSERM, CNRS, IPMC, Team Labeled "Laboratory of Excellence (LABEX) Distalz", Sophia-Antipolis, Université Côte d'Azur, Valbonne, France
| | - Eric Duplan
- INSERM, CNRS, IPMC, Team Labeled "Laboratory of Excellence (LABEX) Distalz", Sophia-Antipolis, Université Côte d'Azur, Valbonne, France
| | - Thomas Goiran
- INSERM, CNRS, IPMC, Team Labeled "Laboratory of Excellence (LABEX) Distalz", Sophia-Antipolis, Université Côte d'Azur, Valbonne, France
| | - Inger Lauritzen
- INSERM, CNRS, IPMC, Team Labeled "Laboratory of Excellence (LABEX) Distalz", Sophia-Antipolis, Université Côte d'Azur, Valbonne, France
| | - Loan Vaillant Beuchot
- INSERM, CNRS, IPMC, Team Labeled "Laboratory of Excellence (LABEX) Distalz", Sophia-Antipolis, Université Côte d'Azur, Valbonne, France
| | | | - Vanessa Alexandra Morais
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Han You
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ling Qi
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, NY, USA
| | - Mario Salazar
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Umut Ozcan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mounia Chami
- INSERM, CNRS, IPMC, Team Labeled "Laboratory of Excellence (LABEX) Distalz", Sophia-Antipolis, Université Côte d'Azur, Valbonne, France
| | - Frédéric Checler
- INSERM, CNRS, IPMC, Team Labeled "Laboratory of Excellence (LABEX) Distalz", Sophia-Antipolis, Université Côte d'Azur, Valbonne, France
| | - Cristine Alves da Costa
- INSERM, CNRS, IPMC, Team Labeled "Laboratory of Excellence (LABEX) Distalz", Sophia-Antipolis, Université Côte d'Azur, Valbonne, France
| |
Collapse
|
48
|
Lulla AR, Akli S, Karakas C, Ha MJ, Fowlkes NW, Mitani Y, Bui T, Wang J, Rao X, Hunt KK, Meijer L, El-Naggar AK, Keyomarsi K. LMW cyclin E and its novel catalytic partner CDK5 are therapeutic targets and prognostic biomarkers in salivary gland cancers. Oncogenesis 2021; 10:40. [PMID: 33990543 PMCID: PMC8121779 DOI: 10.1038/s41389-021-00324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 11/18/2022] Open
Abstract
Salivary gland cancers (SGCs) are rare yet aggressive malignancies with significant histological heterogeneity, which has made prediction of prognosis and development of targeted therapies challenging. In majority of patients, local recurrence and/or distant metastasis are common and systemic treatments have minimal impact on survival. Therefore, identification of novel targets for treatment that can also be used as predictors of recurrence for multiple histological subtypes of SGCs is an area of unmet need. In this study, we developed a novel transgenic mouse model of SGC, efficiently recapitulating the major histological subtype (adenocarcinomas of the parotid gland) of human SGC. CDK2 knock out (KO) mice crossed with MMTV-low molecular weight forms of cyclin E (LMW-E) mice generated the transgenic mouse models of SGC, which arise in the parotid region of the salivary gland, similar to the common site of origin seen in human SGCs. To identify the CDK2 independent catalytic partner(s) of LMW-E, we used LMW-E expressing cell lines in mass spectrometric analysis and subsequent biochemical validation in pull down assays. These studies revealed that in the absence of CDK2, LMW-E preferentially binds to CDK5. Molecular targeting of CDK5, using siRNA, resulted in inhibition of cell proliferation of human SGCs overexpressing LMW-E. We also provide clinical evidence of significant association of LMW-E/CDK5 co-expression and decreased recurrence free survival in human SGC. Immunohistochemical analysis of LMW-E and CDK5 in 424 patients representing each of the four major histological subtypes of human salivary cancers (Aci, AdCC, MEC, and SDC) revealed that LMW-E and CDK5 are concordantly (positive/positive or negative/negative) expressed in 70% of these patients. The co-expression of LMW-E/CDK5 (both positive) robustly predicts the likelihood of recurrence, regardless of the histological classification of these tumors. Collectively, our results suggest that CDK5 is a novel and targetable biomarker for the treatment of patients with SGC presenting with LMW-E overexpressing tumors.
Collapse
Affiliation(s)
- Amriti R Lulla
- Departments of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Said Akli
- Departments of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cansu Karakas
- Departments of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Jin Ha
- Departments of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie W Fowlkes
- Departments of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yoshitsugu Mitani
- Departments of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tuyen Bui
- Departments of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiayu Rao
- Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly K Hunt
- Departments of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laurent Meijer
- ManRos Therapeutics & Perha Pharmaceuticals, Centre de Perharidy Roscoff, Roscoff, France
| | - Adel K El-Naggar
- Departments of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khandan Keyomarsi
- Departments of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
49
|
Costa L, Tempio A, Lacivita E, Leopoldo M, Ciranna L. Serotonin 5-HT7 receptors require cyclin-dependent kinase 5 to rescue hippocampal synaptic plasticity in a mouse model of Fragile X Syndrome. Eur J Neurosci 2021; 54:4124-4132. [PMID: 33949019 PMCID: PMC8360017 DOI: 10.1111/ejn.15246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/14/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022]
Abstract
Fragile X Syndrome is a genetic form of intellectual disability associated with autism, epilepsy and mood disorders. Electrophysiology studies in Fmr1 knockout (KO) mice, a murine model of Fragile X Syndrome, have demonstrated alterations of synaptic plasticity, with exaggerated long-term depression induced by activation of metabotropic glutamate receptors (mGluR-LTD) in Fmr1 KO hippocampus. We have previously demonstrated that activation of serotonin 5-HT7 receptors reverses mGluR-LTD in the hippocampus of wild-type and Fmr1 KO mice, thus correcting a synaptic dysfunction typically observed in this disease model. Here we show that pharmacological inhibition of cyclin-dependent kinase 5 (Cdk5, a signaling molecule recently shown to be a modulator of brain synaptic plasticity) enhanced mGluR-LTD in wild-type hippocampal neurons, which became comparable to exaggerated mGluR-LTD observed in Fmr1 KO neurons. Furthermore, Cdk5 inhibition prevented 5-HT7 receptor-mediated reversal of mGluR-LTD both in wild-type and in Fmr1 KO neurons. Our results show that Cdk5 modulates hippocampal synaptic plasticity. 5-HT7 receptors require Cdk5 to modulate synaptic plasticity in wild-type and rescue abnormal plasticity in Fmr1 KO neurons, pointing out Cdk5 as a possible novel target in Fragile X Syndrome.
Collapse
Affiliation(s)
- Lara Costa
- Department of Clinical and Experimental MedicineUniversity of MessinaMessinaItaly
| | - Alessandra Tempio
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCataniaItaly
| | | | | | - Lucia Ciranna
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCataniaItaly
| |
Collapse
|
50
|
Extracellular CIRP Activates the IL-6Rα/STAT3/Cdk5 Pathway in Neurons. Mol Neurobiol 2021; 58:3628-3640. [PMID: 33783711 PMCID: PMC10404139 DOI: 10.1007/s12035-021-02368-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Extracellular cold-inducible RNA-binding protein (eCIRP) stimulates microglial inflammation causing neuronal damage during ischemic stroke and is a critical mediator of alcohol-induced cognitive impairment. However, the precise role of eCIRP in mediating neuroinflammation remains unknown. In this study, we report that eCIRP activates neurotoxic cyclin-dependent kinase-5 (Cdk5)/p25 through the induction of IL-6Rα/STAT3 pathway in neurons. Amyloid β (Aβ)-mediated neuronal stress, which is associated with Alzheimer's disease, increased the levels of eCIRP released from BV2 microglial cells. The released eCIRP levels from BV2 cells increased 3.2-fold upon stimulation with conditioned medium from Neuro-2a (N2a) cells containing Aβ compared to control N2a supernatant in a time-dependent manner. Stimulation of N2a cells and primary neurons with eCIRP upregulated the neuronal Cdk5 activator p25 expression in a dose- and time-dependent manner. eCIRP directly induced neuronal STAT3 phosphorylation and p25 increase via its novel receptor IL-6Rα. Next, we showed using surface plasmon resonance that eCIRP-derived peptide C23 inhibited the binding of eCIRP to IL-6Rα at 25 μM, with a 40-fold increase in equilibrium dissociation constant (Kd) value (from 8.08 × 10-8 M to 3.43 × 10-6 M), and completely abrogated the binding at 50 μM. Finally, C23 reversed the eCIRP-induced increase in neuronal STAT3 phosphorylation and p25 levels. In conclusion, the current study demonstrates that the upregulation of neuronal IL-6Rα/STAT3/Cdk5 pathway is a key mechanism of eCIRP's role in neuroinflammation and that C23 as a potent inhibitor of this pathway has translational potential in neurodegenerative pathologies controlled by eCIRP.
Collapse
|