1
|
Klemm C, Ólafsson G, Wood HR, Mellor C, Zabet NR, Thorpe PH. Proteome-wide forced interactions reveal a functional map of cell-cycle phospho-regulation in S. cerevisiae. Nucleus 2024; 15:2420129. [PMID: 39618027 PMCID: PMC11622623 DOI: 10.1080/19491034.2024.2420129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 12/08/2024] Open
Abstract
Dynamic protein phosphorylation and dephosphorylation play an essential role in cell cycle progression. Kinases and phosphatases are generally highly conserved across eukaryotes, underlining their importance for post-translational regulation of substrate proteins. In recent years, advances in phospho-proteomics have shed light on protein phosphorylation dynamics throughout the cell cycle, and ongoing progress in bioinformatics has significantly improved annotation of specific phosphorylation events to a given kinase. However, the functional impact of individual phosphorylation events on cell cycle progression is often unclear. To address this question, we used the Synthetic Physical Interactions (SPI) method, which enables the systematic recruitment of phospho-regulators to most yeast proteins. Using this method, we identified several putative novel targets involved in chromosome segregation and cytokinesis. The SPI method monitors cell growth and, therefore, serves as a tool to determine the impact of protein phosphorylation on cell cycle progression.
Collapse
Affiliation(s)
- Cinzia Klemm
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Guðjón Ólafsson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Henry Richard Wood
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Caitlin Mellor
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Nicolae Radu Zabet
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Peter Harold Thorpe
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Phillips JE, Zheng Y, Pan D. Assembling a Hippo: the evolutionary emergence of an animal developmental signaling pathway. Trends Biochem Sci 2024; 49:681-692. [PMID: 38729842 PMCID: PMC11316659 DOI: 10.1016/j.tibs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Decades of work in developmental genetics has given us a deep mechanistic understanding of the fundamental signaling pathways underlying animal development. However, little is known about how these pathways emerged and changed over evolutionary time. Here, we review our current understanding of the evolutionary emergence of the Hippo pathway, a conserved signaling pathway that regulates tissue size in animals. This pathway has deep evolutionary roots, emerging piece by piece in the unicellular ancestors of animals, with a complete core pathway predating the origin of animals. Recent functional studies in close unicellular relatives of animals and early-branching animals suggest an ancestral function of the Hippo pathway in cytoskeletal regulation, which was subsequently co-opted to regulate proliferation and animal tissue size.
Collapse
Affiliation(s)
- Jonathan E Phillips
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Miao P, Mao X, Chen S, Abubakar YS, Li Y, Zheng W, Zhou J, Wang Z, Zheng H. The mitotic exit mediated by small GTPase Tem1 is essential for the pathogenicity of Fusarium graminearum. PLoS Pathog 2023; 19:e1011255. [PMID: 36928713 PMCID: PMC10047555 DOI: 10.1371/journal.ppat.1011255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/28/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The mitotic exit is a key step in cell cycle, but the mechanism of mitotic exit network in the wheat head blight fungus Fusarium graminearum remains unclear. F. graminearum infects wheat spikelets and colonizes the entire head by growing through the rachis node at the bottom of each spikelet. In this study, we found that a small GTPase FgTem1 plays an important role in F. graminearum pathogenicity and functions in regulating the formation of infection structures and invasive hyphal growth on wheat spikelets and wheat coleoptiles, but plays only little roles in vegetative growth and conidiation of the phytopathogen. FgTem1 localizes to both the inner nuclear periphery and the spindle pole bodies, and negatively regulates mitotic exit in F. graminearum. Furthermore, the regulatory mechanisms of FgTem1 have been further investigated by high-throughput co-immunoprecipitation and genetic strategies. The septins FgCdc10 and FgCdc11 were demonstrated to interact with the dominant negative form of FgTem1, and FgCdc11 was found to regulate the localization of FgTem1. The cell cycle arrest protein FgBub2-FgBfa1 complex was shown to act as the GTPase-activating protein (GAP) for FgTem1. We further demonstrated that a direct interaction exists between FgBub2 and FgBfa1 which crucially promotes conidiation, pathogenicity and DON production, and negatively regulates septum formation and nuclear division in F. graminearum. Deletions of FgBUB2 and FgBFA1 genes caused fewer perithecia and immature asci formations, and dramatically down-regulated trichothecene biosynthesis (TRI) gene expressions. Double deletion of FgBUB2/FgBFA1 genes showed that FgBUB2 and FgBFA1 have little functional redundancy in F. graminearum. In summary, we systemically demonstrated that FgTem1 and its GAP FgBub2-FgBfa1 complex are required for fungal development and pathogenicity in F. graminearum.
Collapse
Affiliation(s)
- Pengfei Miao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuzhao Mao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuang Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Yulong Li
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huawei Zheng
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- * E-mail:
| |
Collapse
|
4
|
Jaitly P, Legrand M, Das A, Patel T, Chauvel M, Maufrais C, d’Enfert C, Sanyal K. A phylogenetically-restricted essential cell cycle progression factor in the human pathogen Candida albicans. Nat Commun 2022; 13:4256. [PMID: 35869076 PMCID: PMC9307598 DOI: 10.1038/s41467-022-31980-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Chromosomal instability caused by cell division errors is associated with antifungal drug resistance in fungal pathogens. Here, we identify potential mechanisms underlying such instability by conducting an overexpression screen monitoring chromosomal stability in the human fungal pathogen Candida albicans. Analysis of ~1000 genes uncovers six chromosomal stability (CSA) genes, five of which are related to cell division genes of other organisms. The sixth gene, CSA6, appears to be present only in species belonging to the CUG-Ser clade, which includes C. albicans and other human fungal pathogens. The protein encoded by CSA6 localizes to the spindle pole bodies, is required for exit from mitosis, and induces a checkpoint-dependent metaphase arrest upon overexpression. Thus, Csa6 is an essential cell cycle progression factor that is restricted to the CUG-Ser fungal clade, and could therefore be explored as a potential antifungal target. Chromosomal instability caused by cell division errors is associated with antifungal drug resistance in fungal pathogens. Here, Jaitly et al. identify several genes involved in chromosomal stability in Candida albicans, including a phylogenetically restricted gene encoding an essential cell-cycle progression factor.
Collapse
|
5
|
Simke WC, Johnson CP, Hart AJ, Mayhue S, Craig PL, Sojka S, Kelley JB. Phosphorylation of RGS regulates MAP kinase localization and promotes completion of cytokinesis. Life Sci Alliance 2022; 5:5/10/e202101245. [PMID: 35985794 PMCID: PMC9394524 DOI: 10.26508/lsa.202101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/03/2022] Open
Abstract
Phosphorylation of the RGS Sst2 alters its subcellular distribution, MAPK localization, and interaction with Kel1, which promotes coordination of polarized growth with completion of cytokinesis. Yeast use the G-protein–coupled receptor signaling pathway to detect and track the mating pheromone. The G-protein–coupled receptor pathway is inhibited by the regulator of G-protein signaling (RGS) Sst2 which induces Gα GTPase activity and inactivation of downstream signaling. G-protein signaling activates the MAPK Fus3, which phosphorylates the RGS; however, the role of this modification is unknown. We found that pheromone-induced RGS phosphorylation peaks early; the phospho-state of RGS controls its localization and influences MAPK spatial distribution. Surprisingly, phosphorylation of the RGS promotes completion of cytokinesis before pheromone-induced growth. Completion of cytokinesis in the presence of pheromone is promoted by the kelch-repeat protein, Kel1 and antagonized by the formin Bni1. We found that RGS complexes with Kel1 and prefers the unphosphorylatable RGS mutant. We also found overexpression of unphosphorylatable RGS exacerbates cytokinetic defects, whereas they are rescued by overexpression of Kel1. These data lead us to a model where Kel1 promotes completion of cytokinesis before pheromone-induced polarity but is inhibited by unphosphorylated RGS binding.
Collapse
Affiliation(s)
- William C Simke
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Cory P Johnson
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Andrew J Hart
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Sari Mayhue
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - P Lucas Craig
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Savannah Sojka
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Joshua B Kelley
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA .,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| |
Collapse
|
6
|
Feng W, Wang J, Liu X, Wu H, Liu M, Zhang H, Zheng X, Wang P, Zhang Z. Distinctive phosphorylation pattern during mitotic exit network (MEN) regulation is important for the development and pathogenicity of Magnaporthe oryzae. STRESS BIOLOGY 2022; 2:41. [PMID: 37676543 PMCID: PMC10441846 DOI: 10.1007/s44154-022-00063-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/31/2022] [Indexed: 09/08/2023]
Abstract
The mitotic exit network (MEN) pathway is a vital kinase cascade regulating the timely and correct progress of cell division. In the rice blast fungus Magnaporthe oryzae, the MEN pathway, consisting of conserved protein kinases MoSep1 and MoMob1-MoDbf2, is important in the development and pathogenicity of the fungus. We found that deletion of MoSEP1 affects the phosphorylation of MoMob1, but not MoDbf2, in contrast to what was found in the buddy yeast Saccharomyces cerevisiae, and verified this finding by in vitro phosphorylation assay and mass spectrometry (MS) analysis. We also found that S43 residue is the critical phosphor-site of MoMob1 by MoSep1, and proved that MoSep1-dependent MoMob1 phosphorylation is essential for cell division during the development of M. oryzae. We further provided evidence demonstrating that MoSep1 phosphorylates MoMob1 to maintain the cell cycle during vegetative growth and infection. Taken together, our results revealed that the MEN pathway has both distinct and conservative functions in regulating the cell cycle during the development and pathogenesis of M. oryzae.
Collapse
Affiliation(s)
- Wanzhen Feng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiansheng Wang
- Plant Protection and Quarantine Station of Nanjing, Nanjing, 210095, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haowen Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Wang
- Departments of Microbiology, Immunology, and Parasitology, and Pediatrics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, 70112, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Lee CH, Biggins S. Microtubule integrity regulates budding yeast RAM pathway gene expression. Front Cell Dev Biol 2022; 10:989820. [PMID: 36172269 PMCID: PMC9511886 DOI: 10.3389/fcell.2022.989820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
During mitosis, cells must spatiotemporally regulate gene expression programs to ensure accurate cellular division. Failures to properly regulate mitotic progression result in aneuploidy, a hallmark of cancer. Entry and exit from mitosis is largely controlled by waves of cyclin-dependent kinase (CDK) activity coupled to targeted protein degradation. The correct timing of CDK-based mitotic regulation is coordinated with the structure and function of microtubules. To determine whether mitotic gene expression is also regulated by the integrity of microtubules, we performed ribosome profiling and mRNA-sequencing in the presence and absence of microtubules in the budding yeast Saccharomyces cerevisiae. We discovered a coordinated translational and transcriptional repression of genes involved in cell wall biology processes when microtubules are disrupted. The genes targeted for repression in the absence of microtubules are enriched for downstream targets of a feed-forward pathway that controls cytokinesis and septum degradation and is regulated by the Cbk1 kinase, the Regulation of Ace2 Morphogenesis (RAM) pathway. We demonstrate that microtubule disruption leads to aberrant subcellular localization of Cbk1 in a manner that partially depends on the spindle position checkpoint. Furthermore, constitutive activation of the RAM pathway in the absence of microtubules leads to growth defects. Taken together, these results uncover a previously unknown link between microtubule function and the proper execution of mitotic gene expression programs to ensure that cell division does not occur prematurely.
Collapse
Affiliation(s)
| | - Sue Biggins
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Howard Hughes Medical Institute, Seattle, WA, United States
| |
Collapse
|
8
|
Langlois-Lemay L, D’Amours D. Moonlighting at the Poles: Non-Canonical Functions of Centrosomes. Front Cell Dev Biol 2022; 10:930355. [PMID: 35912107 PMCID: PMC9329689 DOI: 10.3389/fcell.2022.930355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Centrosomes are best known as the microtubule organizing centers (MTOCs) of eukaryotic cells. In addition to their classic role in chromosome segregation, centrosomes play diverse roles unrelated to their MTOC activity during cell proliferation and quiescence. Metazoan centrosomes and their functional doppelgängers from lower eukaryotes, the spindle pole bodies (SPBs), act as important structural platforms that orchestrate signaling events essential for cell cycle progression, cellular responses to DNA damage, sensory reception and cell homeostasis. Here, we provide a critical overview of the unconventional and often overlooked roles of centrosomes/SPBs in the life cycle of eukaryotic cells.
Collapse
Affiliation(s)
- Laurence Langlois-Lemay
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
9
|
SIN-like Pathway Kinases Regulate the End of Mitosis in the Methylotrophic Yeast Ogataea polymorpha. Cells 2022; 11:cells11091519. [PMID: 35563825 PMCID: PMC9105162 DOI: 10.3390/cells11091519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
The mitotic exit network (MEN) is a conserved signalling pathway essential for the termination of mitosis in the budding yeast Saccharomyces cerevisiae. All MEN components are highly conserved in the methylotrophic budding yeast Ogataea polymorpha, except for Cdc15 kinase. Instead, we identified two essential kinases OpHcd1 and OpHcd2 (homologue candidate of ScCdc15) that are homologous to SpSid1 and SpCdc7, respectively, components of the septation initiation network (SIN) of the fission yeast Schizosaccharomyces pombe. Conditional mutants for OpHCD1 and OpHCD2 exhibited significant delay in late anaphase and defective cell separation, suggesting that both genes have roles in mitotic exit and cytokinesis. Unlike Cdc15 in S. cerevisiae, the association of OpHcd1 and OpHcd2 with the yeast centrosomes (named spindle pole bodies, SPBs) is restricted to the SPB in the mother cell body. SPB localisation of OpHcd2 is regulated by the status of OpTem1 GTPase, while OpHcd1 requires the polo-like kinase OpCdc5 as well as active Tem1 to ensure the coordination of mitotic exit (ME) signalling and cell cycle progression. Our study suggests that the divergence of molecular mechanisms to control the ME-signalling pathway as well as the loss of Sid1/Hcd1 kinase in the MEN occurred relatively recently during the evolution of budding yeast.
Collapse
|
10
|
Moyano-Rodríguez Y, Vaquero D, Vilalta-Castany O, Foltman M, Sanchez-Diaz A, Queralt E. PP2A-Cdc55 phosphatase regulates actomyosin ring contraction and septum formation during cytokinesis. Cell Mol Life Sci 2022; 79:165. [PMID: 35230542 PMCID: PMC8888506 DOI: 10.1007/s00018-022-04209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 11/03/2022]
Abstract
Eukaryotic cells divide and separate all their components after chromosome segregation by a process called cytokinesis to complete cell division. Cytokinesis is highly regulated by the recruitment of the components to the division site and through post-translational modifications such as phosphorylations. The budding yeast mitotic kinases Cdc28-Clb2, Cdc5, and Dbf2-Mob1 phosphorylate several cytokinetic proteins contributing to the regulation of cytokinesis. The PP2A-Cdc55 phosphatase regulates mitosis counteracting Cdk1- and Cdc5-dependent phosphorylation. This prompted us to propose that PP2A-Cdc55 could also be counteracting the mitotic kinases during cytokinesis. Here we show that in the absence of Cdc55, AMR contraction and the primary septum formation occur asymmetrically to one side of the bud neck supporting a role for PP2A-Cdc55 in cytokinesis regulation. In addition, by in vivo and in vitro assays, we show that PP2A-Cdc55 dephosphorylates the chitin synthase II (Chs2 in budding yeast) a component of the Ingression Progression Complexes (IPCs) involved in cytokinesis. Interestingly, the non-phosphorylable version of Chs2 rescues the asymmetric AMR contraction and the defective septa formation observed in cdc55∆ mutant cells. Therefore, timely dephosphorylation of the Chs2 by PP2A-Cdc55 is crucial for proper actomyosin ring contraction. These findings reveal a new mechanism of cytokinesis regulation by the PP2A-Cdc55 phosphatase and extend our knowledge of the involvement of multiple phosphatases during cytokinesis.
Collapse
Affiliation(s)
- Yolanda Moyano-Rodríguez
- Cell Cycle Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, L'Hospitalet de Llobregat, Barcelona, Spain
| | - David Vaquero
- Cell Cycle Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, L'Hospitalet de Llobregat, Barcelona, Spain.,Instituto de Biomedicina de Valencia (IBV-CSIC), C/ Jaume Roig 11, Valencia, Spain
| | - Odena Vilalta-Castany
- Cell Cycle Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Magdalena Foltman
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, CSIC, Santander, Spain.,Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Alberto Sanchez-Diaz
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, CSIC, Santander, Spain.,Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Ethel Queralt
- Cell Cycle Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, L'Hospitalet de Llobregat, Barcelona, Spain. .,Instituto de Biomedicina de Valencia (IBV-CSIC), C/ Jaume Roig 11, Valencia, Spain.
| |
Collapse
|
11
|
Delgado ILS, Tavares A, Francisco S, Santos D, Coelho J, Basto AP, Zúquete S, Müller J, Hemphill A, Meissner M, Soares H, Leitão A, Nolasco S. Characterization of a MOB1 Homolog in the Apicomplexan Parasite Toxoplasma gondii. BIOLOGY 2021; 10:biology10121233. [PMID: 34943148 PMCID: PMC8698288 DOI: 10.3390/biology10121233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/11/2023]
Abstract
Simple Summary Monopolar spindle One Binder1 (MOB1) proteins regulate key cellular functions, namely cell multiplication and cell division. The unicellular parasite Toxoplasma gondii transitions between several morphological stages, with the need to control the number of parasites in its cellular environment. We hypothesized that MOB1 proteins could participate in the regulation of the T. gondii life cycle, having identified one MOB1 protein (TgMOB1) coded in its genome. However, this study shows that TgMOB1 presents divergent features. While in organisms studied to date the lack of MOB1 has led to cell division defects, this did not occur in T. gondii in vitro cultures where mob1 was not an essential gene. Additionally, the identification of TgMOB1 proximity interacting partners detected novel MOB1 interactors. Still, TgMOB1 localizes to the region between the new-forming nuclei during cell division, and T. gondii parasites multiply slower with TgMOB1 overexpression and faster when there is a lack of TgMOB1, indicating an intricate role for TgMOB1 in T. gondii. This study uncovers new features of the T. gondii biology, a zoonotic parasite and model organism for the phylum Apicomplexa, and highlights the complex roles MOB1 proteins may assume, with possible implications for disease processes. Abstract Monopolar spindle One Binder1 (MOB1) proteins are conserved components of the tumor-suppressing Hippo pathway, regulating cellular processes such as cytokinesis. Apicomplexan parasites present a life cycle that relies on the parasites’ ability to differentiate between stages and regulate their proliferation; thus, Hippo signaling pathways could play an important role in the regulation of the apicomplexan life cycle. Here, we report the identification of one MOB1 protein in the apicomplexan Toxoplasma gondii. To characterize the function of MOB1, we generated gain-of-function transgenic lines with a ligand-controlled destabilization domain, and loss-of-function clonal lines obtained through CRISPR/Cas9 technology. Contrary to what has been characterized in other eukaryotes, MOB1 is not essential for cytokinesis in T. gondii. However, this picture is complex since we found MOB1 localized between the newly individualized daughter nuclei at the end of mitosis. Moreover, we detected a significant delay in the replication of overexpressing tachyzoites, contrasting with increased replication rates in knockout tachyzoites. Finally, using the proximity-biotinylation method, BioID, we identified novel members of the MOB1 interactome, a probable consequence of the observed lack of conservation of some key amino acid residues. Altogether, the results point to a complex evolutionary history of MOB1 roles in apicomplexans, sharing properties with other eukaryotes but also with divergent features, possibly associated with their complex life cycle.
Collapse
Affiliation(s)
- Inês L. S. Delgado
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
- Faculdade de Medicina Veterinária, Universidade Lusófona, 1749-024 Lisboa, Portugal
| | - Alexandra Tavares
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Samuel Francisco
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Dulce Santos
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - João Coelho
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Afonso P. Basto
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Sara Zúquete
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland; (J.M.); (A.H.)
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland; (J.M.); (A.H.)
| | - Markus Meissner
- Institute for Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität Munich, D-82152 Munich, Germany;
| | - Helena Soares
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Centro de Química Estrutural–Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Alexandre Leitão
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Sofia Nolasco
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Correspondence: or
| |
Collapse
|
12
|
Cell-cycle phospho-regulation of the kinetochore. Curr Genet 2021; 67:177-193. [PMID: 33221975 DOI: 10.1007/s00294-020-01127-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
The kinetochore is a mega-dalton protein assembly that forms within centromeric regions of chromosomes and directs their segregation during cell division. Here we review cell cycle-mediated phosphorylation events at the kinetochore, with a focus on the budding yeast Saccharomyces cerevisiae and the insight gained from forced associations of kinases and phosphatases. The point centromeres found in the budding yeast S. cerevisiae are one of the simplest such structures found in eukaryotes. The S. cerevisiae kinetochore comprises a single nucleosome, containing a centromere-specific H3 variant Cse4CENP-A, bound to a set of kinetochore proteins that connect to a single microtubule. Despite the simplicity of the budding yeast kinetochore, the proteins are mostly homologous with their mammalian counterparts. In some cases, human proteins can complement their yeast orthologs. Like its mammalian equivalent, the regulation of the budding yeast kinetochore is complex: integrating signals from the cell cycle, checkpoints, error correction, and stress pathways. The regulatory signals from these diverse pathways are integrated at the kinetochore by post-translational modifications, notably phosphorylation and dephosphorylation, to control chromosome segregation. Here we highlight the complex interplay between the activity of the different cell-cycle kinases and phosphatases at the kinetochore, emphasizing how much more we have to understand this essential structure.
Collapse
|
13
|
Delgado ILS, Carmona B, Nolasco S, Santos D, Leitão A, Soares H. MOB: Pivotal Conserved Proteins in Cytokinesis, Cell Architecture and Tissue Homeostasis. BIOLOGY 2020; 9:biology9120413. [PMID: 33255245 PMCID: PMC7761452 DOI: 10.3390/biology9120413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 01/08/2023]
Abstract
The MOB family proteins are constituted by highly conserved eukaryote kinase signal adaptors that are often essential both for cell and organism survival. Historically, MOB family proteins have been described as kinase activators participating in Hippo and Mitotic Exit Network/ Septation Initiation Network (MEN/SIN) signaling pathways that have central roles in regulating cytokinesis, cell polarity, cell proliferation and cell fate to control organ growth and regeneration. In metazoans, MOB proteins act as central signal adaptors of the core kinase module MST1/2, LATS1/2, and NDR1/2 kinases that phosphorylate the YAP/TAZ transcriptional co-activators, effectors of the Hippo signaling pathway. More recently, MOBs have been shown to also have non-kinase partners and to be involved in cilia biology, indicating that its activity and regulation is more diverse than expected. In this review, we explore the possible ancestral role of MEN/SIN pathways on the built-in nature of a more complex and functionally expanded Hippo pathway, by focusing on the most conserved components of these pathways, the MOB proteins. We discuss the current knowledge of MOBs-regulated signaling, with emphasis on its evolutionary history and role in morphogenesis, cytokinesis, and cell polarity from unicellular to multicellular organisms.
Collapse
Affiliation(s)
- Inês L. S. Delgado
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal
| | - Bruno Carmona
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Centro de Química Estrutural–Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Sofia Nolasco
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
| | - Dulce Santos
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
| | - Alexandre Leitão
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
| | - Helena Soares
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Centro de Química Estrutural–Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: or
| |
Collapse
|
14
|
Howell RSM, Klemm C, Thorpe PH, Csikász-Nagy A. Unifying the mechanism of mitotic exit control in a spatiotemporal logical model. PLoS Biol 2020; 18:e3000917. [PMID: 33180788 PMCID: PMC7685450 DOI: 10.1371/journal.pbio.3000917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 11/24/2020] [Accepted: 10/09/2020] [Indexed: 11/18/2022] Open
Abstract
The transition from mitosis into the first gap phase of the cell cycle in budding yeast is controlled by the Mitotic Exit Network (MEN). The network interprets spatiotemporal cues about the progression of mitosis and ensures that release of Cdc14 phosphatase occurs only after completion of key mitotic events. The MEN has been studied intensively; however, a unified understanding of how localisation and protein activity function together as a system is lacking. In this paper, we present a compartmental, logical model of the MEN that is capable of representing spatial aspects of regulation in parallel to control of enzymatic activity. We show that our model is capable of correctly predicting the phenotype of the majority of mutants we tested, including mutants that cause proteins to mislocalise. We use a continuous time implementation of the model to demonstrate that Cdc14 Early Anaphase Release (FEAR) ensures robust timing of anaphase, and we verify our findings in living cells. Furthermore, we show that our model can represent measured cell-cell variation in Spindle Position Checkpoint (SPoC) mutants. This work suggests a general approach to incorporate spatial effects into logical models. We anticipate that the model itself will be an important resource to experimental researchers, providing a rigorous platform to test hypotheses about regulation of mitotic exit.
Collapse
Affiliation(s)
- Rowan S M Howell
- The Francis Crick Institute, London, United Kingdom.,Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Cinzia Klemm
- School of Biological and Chemical Sciences, Queen Mary University, London, United Kingdom
| | - Peter H Thorpe
- School of Biological and Chemical Sciences, Queen Mary University, London, United Kingdom
| | - Attila Csikász-Nagy
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
15
|
Jiménez J, Queralt E, Posas F, de Nadal E. The regulation of Net1/Cdc14 by the Hog1 MAPK upon osmostress unravels a new mechanism regulating mitosis. Cell Cycle 2020; 19:2105-2118. [PMID: 32794416 PMCID: PMC7513861 DOI: 10.1080/15384101.2020.1804222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
During evolution, cells have developed a plethora of mechanisms to optimize survival in a changing and unpredictable environment. In this regard, they have evolved networks that include environmental sensors, signaling transduction molecules and response mechanisms. Hog1 (yeast) and p38 (mammals) stress-activated protein kinases (SAPKs) are activated upon stress and they drive a full collection of cell adaptive responses aimed to maximize survival. SAPKs are extensively used to learn about the mechanisms through which cells adapt to changing environments. In addition to regulating gene expression and metabolism, SAPKs control cell cycle progression. In this review, we will discuss the latest findings related to the SAPK-driven regulation of mitosis upon osmostress in yeast.
Collapse
Affiliation(s)
- Javier Jiménez
- Departament De Ciències Experimentals I De La Salut, Universitat Pompeu Fabra (UPF) , Barcelona, Spain.,Department of Ciències Bàsiques, Facultat De Medicina I Ciències De La Salut, Universitat Internacional De Catalunya , Barcelona, Spain
| | - Ethel Queralt
- Cell Cycle Group, Institut d'Investigacions Biomèdica De Bellvitge (IDIBELL), L'Hospitalet De Llobregat , Barcelona, Spain
| | - Francesc Posas
- Departament De Ciències Experimentals I De La Salut, Universitat Pompeu Fabra (UPF) , Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology , 08028 Barcelona, Spain
| | - Eulàlia de Nadal
- Departament De Ciències Experimentals I De La Salut, Universitat Pompeu Fabra (UPF) , Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology , 08028 Barcelona, Spain
| |
Collapse
|
16
|
Huang Y, Ma FT, Ren Q. Function of the MOB kinase activator-like 1 in the innate immune defense of the oriental river prawn (Macrobrachium nipponense). FISH & SHELLFISH IMMUNOLOGY 2020; 102:440-448. [PMID: 32418908 DOI: 10.1016/j.fsi.2020.04.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
The monopolar spindle one binder (MOB) protein, a key signal transducer of the Hippo signaling pathway, is involved in growth control and cancer. In this study, a new MOB kinase activator-like 1 of the oriental river prawns, Macrobrachium nipponense, (MnMOB1) was isolated and characterized. The open reading frame of MnMOB1 consisted of 651 nucleotides that encoded 216 amino acid residues and contained the Mob1_phocein domain. Phylogenetic analysis revealed that MnMOB1 clustered together with the MOB1 from Penaeus vannamei. The distribution of MnMOB1 expression in various tissues of normal prawn revealed that the MnMOB1 expression was highest in the hepatopancreas followed by those in the intestines, gill, heart, stomach, and hemocytes. In prawns challenged with Staphylococcus aureus and Vibrio parahaemolyticus, the expression levels of MnMOB1 in the hepatopancreas, gills, and intestine were upregulated. Furthermore, the expression levels of crustins and anti-lipopolysaccharide factors in prawn injected with S. aureus and V. parahaemolyticus and MnMOB1 knockdown were significantly decreased relative to those in the control group. These findings indicated that MnMOB1 is involved in the regulation of antimicrobial peptide expression and plays a crucial role in the innate immunity of M. nipponense.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China; Postdoctoral Innovation Practice Base, Jiangsu Shuixian Industrial Company Limited, 40 Tonghu Road, Baoying, Yangzhou, Jiangsu, 225800, China
| | - Fu-Tong Ma
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Qian Ren
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China.
| |
Collapse
|
17
|
Parker BW, Gogl G, Bálint M, Hetényi C, Reményi A, Weiss EL. Ndr/Lats Kinases Bind Specific Mob-Family Coactivators through a Conserved and Modular Interface. Biochemistry 2020; 59:1688-1700. [PMID: 32250593 DOI: 10.1021/acs.biochem.9b01096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ndr/Lats kinases bind Mob coactivator proteins to form complexes that are essential and evolutionarily conserved components of "Hippo" signaling pathways, which control cell proliferation and morphogenesis in eukaryotes. All Ndr/Lats kinases have a characteristic N-terminal regulatory (NTR) region that binds a specific Mob cofactor: Lats kinases associate with Mob1 proteins, and Ndr kinases associate with Mob2 proteins. To better understand the significance of the association of Mob protein with Ndr/Lats kinases and selective binding of Ndr and Lats to distinct Mob cofactors, we determined crystal structures of Saccharomyces cerevisiae Cbk1NTR-Mob2 and Dbf2NTR-Mob1 and experimentally assessed determinants of Mob cofactor binding and specificity. This allowed a significant improvement in the previously determined structure of Cbk1 kinase bound to Mob2, presently the only crystallographic model of a full length Ndr/Lats kinase complexed with a Mob cofactor. Our analysis indicates that the Ndr/LatsNTR-Mob interface provides a distinctive kinase regulation mechanism, in which the Mob cofactor organizes the Ndr/Lats NTR to interact with the AGC kinase C-terminal hydrophobic motif (HM), which is involved in allosteric regulation. The Mob-organized NTR appears to mediate association of the HM with an allosteric site on the N-terminal kinase lobe. We also found that Cbk1 and Dbf2 associated specifically with Mob2 and Mob1, respectively. Alteration of residues in the Cbk1 NTR allows association of the noncognate Mob cofactor, indicating that cofactor specificity is restricted by discrete sites rather than being broadly distributed. Overall, our analysis provides a new picture of the functional role of Mob association and indicates that the Ndr/LatsNTR-Mob interface is largely a common structural platform that mediates kinase-cofactor binding.
Collapse
Affiliation(s)
- Benjamin W Parker
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Gergo Gogl
- Institute of Organic Chemistry, Research Center for Natural Sciences, Magyar Tudósok körútja, 1117 Budapest, Hungary.,Equipe Labellisee Ligue 2015, Department of Integrated Structural Biology, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Mónika Bálint
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Attila Reményi
- Institute of Organic Chemistry, Research Center for Natural Sciences, Magyar Tudósok körútja, 1117 Budapest, Hungary
| | - Eric L Weiss
- Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
18
|
Campbell IW, Zhou X, Amon A. Spindle pole bodies function as signal amplifiers in the Mitotic Exit Network. Mol Biol Cell 2020; 31:906-916. [PMID: 32074005 PMCID: PMC7185974 DOI: 10.1091/mbc.e19-10-0584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Mitotic Exit Network (MEN), a budding yeast Ras-like signal transduction cascade, translates nuclear position into a signal to exit from mitosis. Here we describe how scaffolding the MEN onto spindle pole bodies (SPB—centrosome equivalent) allows the MEN to couple the final stages of mitosis to spindle position. Through the quantitative analysis of the localization of MEN components, we determined the relative importance of MEN signaling from the SPB that is delivered into the daughter cell (dSPB) during anaphase and the SPB that remains in the mother cell. Movement of half of the nucleus into the bud during anaphase causes the active form of the MEN GTPase Tem1 to accumulate at the dSPB. In response to Tem1’s activity at the dSPB, the MEN kinase cascade, which functions downstream of Tem1, accumulates at both SPBs. This localization to both SPBs serves an important role in promoting efficient exit from mitosis. Cells that harbor only one SPB delay exit from mitosis. We propose that MEN signaling is initiated by Tem1 at the dSPB and that association of the downstream MEN kinases with both SPBs serves to amplify MEN signaling, enabling the timely exit from mitosis.
Collapse
Affiliation(s)
- Ian W Campbell
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Xiaoxue Zhou
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
19
|
Duhart JC, Raftery LA. Mob Family Proteins: Regulatory Partners in Hippo and Hippo-Like Intracellular Signaling Pathways. Front Cell Dev Biol 2020; 8:161. [PMID: 32266255 DOI: 10.3389/fcell.2020.00161/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/28/2020] [Indexed: 05/26/2023] Open
Abstract
Studies in yeast first delineated the function of Mob proteins in kinase pathways that regulate cell division and shape; in multicellular eukaryotes Mobs regulate tissue growth and morphogenesis. In animals, Mobs are adaptors in Hippo signaling, an intracellular signal-transduction pathway that restricts growth, impacting the development and homeostasis of animal organs. Central to Hippo signaling are the Nuclear Dbf2-Related (NDR) kinases, Warts and LATS1 and LATS2, in flies and mammals, respectively. A second Hippo-like signaling pathway has been uncovered in animals, which regulates cell and tissue morphogenesis. Central to this emergent pathway are the NDR kinases, Tricornered, STK38, and STK38L. In Hippo signaling, NDR kinase activation is controlled by three activating interactions with a conserved set of proteins. This review focuses on one co-activator family, the highly conserved, non-catalytic Mps1-binder-related (Mob) proteins. In this context, Mobs are allosteric activators of NDR kinases and adaptors that contribute to assembly of multiprotein NDR kinase activation complexes. In multicellular eukaryotes, the Mob family has expanded relative to model unicellular yeasts; accumulating evidence points to Mob functional diversification. A striking example comes from the most sequence-divergent class of Mobs, which are components of the highly conserved Striatin Interacting Phosphatase and Kinase (STRIPAK) complex, that antagonizes Hippo signaling. Mobs stand out for their potential to modulate the output from Hippo and Hippo-like kinases, through their roles both in activating NDR kinases and in antagonizing upstream Hippo or Hippo-like kinase activity. These opposing Mob functions suggest that they coordinate the relative activities of the Tricornered/STK38/STK38L and Warts/LATS kinases, and thus have potential to assemble nodes for pathway signaling output. We survey the different facets of Mob-dependent regulation of Hippo and Hippo-like signaling and highlight open questions that hinge on unresolved aspects of Mob functions.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
20
|
Duhart JC, Raftery LA. Mob Family Proteins: Regulatory Partners in Hippo and Hippo-Like Intracellular Signaling Pathways. Front Cell Dev Biol 2020; 8:161. [PMID: 32266255 PMCID: PMC7096357 DOI: 10.3389/fcell.2020.00161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
Studies in yeast first delineated the function of Mob proteins in kinase pathways that regulate cell division and shape; in multicellular eukaryotes Mobs regulate tissue growth and morphogenesis. In animals, Mobs are adaptors in Hippo signaling, an intracellular signal-transduction pathway that restricts growth, impacting the development and homeostasis of animal organs. Central to Hippo signaling are the Nuclear Dbf2-Related (NDR) kinases, Warts and LATS1 and LATS2, in flies and mammals, respectively. A second Hippo-like signaling pathway has been uncovered in animals, which regulates cell and tissue morphogenesis. Central to this emergent pathway are the NDR kinases, Tricornered, STK38, and STK38L. In Hippo signaling, NDR kinase activation is controlled by three activating interactions with a conserved set of proteins. This review focuses on one co-activator family, the highly conserved, non-catalytic Mps1-binder-related (Mob) proteins. In this context, Mobs are allosteric activators of NDR kinases and adaptors that contribute to assembly of multiprotein NDR kinase activation complexes. In multicellular eukaryotes, the Mob family has expanded relative to model unicellular yeasts; accumulating evidence points to Mob functional diversification. A striking example comes from the most sequence-divergent class of Mobs, which are components of the highly conserved Striatin Interacting Phosphatase and Kinase (STRIPAK) complex, that antagonizes Hippo signaling. Mobs stand out for their potential to modulate the output from Hippo and Hippo-like kinases, through their roles both in activating NDR kinases and in antagonizing upstream Hippo or Hippo-like kinase activity. These opposing Mob functions suggest that they coordinate the relative activities of the Tricornered/STK38/STK38L and Warts/LATS kinases, and thus have potential to assemble nodes for pathway signaling output. We survey the different facets of Mob-dependent regulation of Hippo and Hippo-like signaling and highlight open questions that hinge on unresolved aspects of Mob functions.
Collapse
Affiliation(s)
| | - Laurel A. Raftery
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
21
|
Matellán L, Monje-Casas F. Regulation of Mitotic Exit by Cell Cycle Checkpoints: Lessons From Saccharomyces cerevisiae. Genes (Basel) 2020; 11:E195. [PMID: 32059558 PMCID: PMC7074328 DOI: 10.3390/genes11020195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
In order to preserve genome integrity and their ploidy, cells must ensure that the duplicated genome has been faithfully replicated and evenly distributed before they complete their division by mitosis. To this end, cells have developed highly elaborated checkpoints that halt mitotic progression when problems in DNA integrity or chromosome segregation arise, providing them with time to fix these issues before advancing further into the cell cycle. Remarkably, exit from mitosis constitutes a key cell cycle transition that is targeted by the main mitotic checkpoints, despite these surveillance mechanisms being activated by specific intracellular signals and acting at different stages of cell division. Focusing primarily on research carried out using Saccharomyces cerevisiae as a model organism, the aim of this review is to provide a general overview of the molecular mechanisms by which the major cell cycle checkpoints control mitotic exit and to highlight the importance of the proper regulation of this process for the maintenance of genome stability during the distribution of the duplicated chromosomes between the dividing cells.
Collapse
Affiliation(s)
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC)—University of Seville—University Pablo de Olavide, Avda, Américo Vespucio, 24, 41092 Sevilla, Spain;
| |
Collapse
|
22
|
Kume K. Control of cellular organization and its coordination with the cell cycle. Biosci Biotechnol Biochem 2020; 84:869-875. [PMID: 31987003 DOI: 10.1080/09168451.2020.1717926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cells organize themselves to maintain proper shape, structure, and size during growth and division for their cellular functions. However, how these cellular organizations coordinate with the cell cycle is not well understood. This review focuses on cell morphogenesis and size of the membrane-bound nucleus in the fission yeast Schizosaccharomyces pombe. Growth polarity, an important factor for cell morphogenesis, in rod-shaped fission yeast is restricted to the cell tips and dynamically changes depending on the cell cycle stage. Furthermore, nuclear size in fission yeast is proportional to the cell size, resulting in a constant ratio between nuclear volume and cellular volume (N/C ratio). This review summarizes the signaling pathway(s) involved in growth polarity control and key factors involved in N/C ratio control and provides their roles in coordination between cell organization and the cell cycle.
Collapse
Affiliation(s)
- Kazunori Kume
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
23
|
Játiva S, Calabria I, Moyano-Rodriguez Y, Garcia P, Queralt E. Cdc14 activation requires coordinated Cdk1-dependent phosphorylation of Net1 and PP2A-Cdc55 at anaphase onset. Cell Mol Life Sci 2019; 76:3601-3620. [PMID: 30927017 PMCID: PMC11105415 DOI: 10.1007/s00018-019-03086-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 01/21/2023]
Abstract
Exit from mitosis and completion of cytokinesis require the inactivation of mitotic cyclin-dependent kinase (Cdk) activity. In budding yeast, Cdc14 phosphatase is a key mitotic regulator that is activated in anaphase to counteract Cdk activity. In metaphase, Cdc14 is kept inactive in the nucleolus, where it is sequestered by its inhibitor, Net1. At anaphase onset, downregulation of PP2ACdc55 phosphatase by separase and Zds1 protein promotes Net1 phosphorylation and, consequently, Cdc14 release from the nucleolus. The mechanism by which PP2ACdc55 activity is downregulated during anaphase remains to be elucidated. Here, we demonstrate that Cdc55 regulatory subunit is phosphorylated in anaphase in a Cdk1-Clb2-dependent manner. Interestingly, cdc55-ED phosphomimetic mutant inactivates PP2ACdc55 phosphatase activity towards Net1 and promotes Cdc14 activation. Separase and Zds1 facilitate Cdk-dependent Net1 phosphorylation and Cdc14 release from the nucleolus by modulating PP2ACdc55 activity via Cdc55 phosphorylation. In addition, human Cdk1-CyclinB1 phosphorylates human B55, indicating that the mechanism is conserved in higher eukaryotes.
Collapse
Affiliation(s)
- Soraya Játiva
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ines Calabria
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Genomics Unit, Medical Research Institute La Fe, Valencia, Spain
| | - Yolanda Moyano-Rodriguez
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Patricia Garcia
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ethel Queralt
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
24
|
Gundogdu R, Hergovich A. MOB (Mps one Binder) Proteins in the Hippo Pathway and Cancer. Cells 2019; 8:cells8060569. [PMID: 31185650 PMCID: PMC6627106 DOI: 10.3390/cells8060569] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/22/2022] Open
Abstract
The family of MOBs (monopolar spindle-one-binder proteins) is highly conserved in the eukaryotic kingdom. MOBs represent globular scaffold proteins without any known enzymatic activities. They can act as signal transducers in essential intracellular pathways. MOBs have diverse cancer-associated cellular functions through regulatory interactions with members of the NDR/LATS kinase family. By forming additional complexes with serine/threonine protein kinases of the germinal centre kinase families, other enzymes and scaffolding factors, MOBs appear to be linked to an even broader disease spectrum. Here, we review our current understanding of this emerging protein family, with emphases on post-translational modifications, protein-protein interactions, and cellular processes that are possibly linked to cancer and other diseases. In particular, we summarise the roles of MOBs as core components of the Hippo tissue growth and regeneration pathway.
Collapse
Affiliation(s)
- Ramazan Gundogdu
- Vocational School of Health Services, Bingol University, 12000 Bingol, Turkey.
| | - Alexander Hergovich
- UCL Cancer Institute, University College London, WC1E 6BT, London, United Kingdom.
| |
Collapse
|
25
|
Campbell IW, Zhou X, Amon A. The Mitotic Exit Network integrates temporal and spatial signals by distributing regulation across multiple components. eLife 2019; 8:41139. [PMID: 30672733 PMCID: PMC6363386 DOI: 10.7554/elife.41139] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022] Open
Abstract
GTPase signal transduction pathways control cellular decision making by integrating multiple cellular events into a single signal. The Mitotic Exit Network (MEN), a Ras-like GTPase signaling pathway, integrates spatial and temporal cues to ensure that cytokinesis only occurs after the genome has partitioned between mother and daughter cells during anaphase. Here we show that signal integration does not occur at a single step of the pathway. Rather, sequential components of the pathway are controlled in series by different signals. The spatial signal, nuclear position, regulates the MEN GTPase Tem1. The temporal signal, commencement of anaphase, is mediated by mitotic cyclin-dependent kinase (CDK) phosphorylation of the GTPase's downstream kinases. We propose that integrating multiple signals through sequential steps in the GTPase pathway represents a generalizable principle in GTPase signaling and explains why intracellular signal transmission is a multi-step process. Serial signal integration rather than signal amplification makes multi-step signal transduction necessary.
Collapse
Affiliation(s)
- Ian Winsten Campbell
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Xiaoxue Zhou
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | | |
Collapse
|
26
|
Fraschini R. Divide Precisely and Proliferate Safely: Lessons From Budding Yeast. Front Genet 2019; 9:738. [PMID: 30687396 PMCID: PMC6335322 DOI: 10.3389/fgene.2018.00738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/22/2018] [Indexed: 12/16/2022] Open
Abstract
A faithful cell division is essential for proper cellular proliferation of all eukaryotic cells; indeed the correct segregation of the genetic material allows daughter cells to proceed into the cell cycle safely. Conversely, errors during chromosome partition generate aneuploid cells that have been associated to several human pathological conditions, including cancer. Given the importance of this issue, all the steps that lead to cell separation are finely regulated. The budding yeast Saccharomyces cerevisiae is a unicellular eukaryotic organism that divides asymmetrically and it is a suitable model system to study the regulation of cell division. Humans and budding yeast are distant 1 billion years of evolution, nonetheless several essential pathways, proteins, and cellular structures are conserved. Among these, the mitotic spindle is a key player in chromosome segregation and its correct morphogenesis and functioning is essential for genomic stability. In this review we will focus on molecular pathways and proteins involved in the control mitotic spindle morphogenesis and function that are conserved from yeast to humans and whose impairment is connected with the development of human diseases.
Collapse
Affiliation(s)
- Roberta Fraschini
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| |
Collapse
|
27
|
Léger H, Santana E, Leu NA, Smith ET, Beltran WA, Aguirre GD, Luca FC. Ndr kinases regulate retinal interneuron proliferation and homeostasis. Sci Rep 2018; 8:12544. [PMID: 30135513 PMCID: PMC6105603 DOI: 10.1038/s41598-018-30492-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 08/01/2018] [Indexed: 12/31/2022] Open
Abstract
Ndr2/Stk38l encodes a protein kinase associated with the Hippo tumor suppressor pathway and is mutated in a naturally-occurring canine early retinal degeneration (erd). To elucidate the retinal functions of Ndr2 and its paralog Ndr1/Stk38, we generated Ndr1 and Ndr2 single knockout mice. Although retinal lamination appeared normal in these mice, Ndr deletion caused a subset of Pax6-positive amacrine cells to proliferate in differentiated retinas, while concurrently decreasing the number of GABAergic, HuD and Pax6-positive amacrine cells. Retinal transcriptome analyses revealed that Ndr2 deletion increased expression of neuronal stress genes and decreased expression of synaptic organization genes. Consistent with the latter, Ndr deletion dramatically reduced levels of Aak1, an Ndr substrate that regulates vesicle trafficking. Our findings indicate that Ndr kinases are important regulators of amacrine and photoreceptor cells and suggest that Ndr kinases inhibit the proliferation of a subset of terminally differentiated cells and modulate interneuron synapse function via Aak1.
Collapse
Affiliation(s)
- Hélène Léger
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States
| | - Evelyn Santana
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States
| | - N Adrian Leu
- Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States
| | - Eliot T Smith
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States
| | - Francis C Luca
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States.
| |
Collapse
|
28
|
Yan Y, Yuan Q, Tang J, Huang J, Hsiang T, Wei Y, Zheng L. Colletotrichum higginsianum as a Model for Understanding Host⁻Pathogen Interactions: A Review. Int J Mol Sci 2018; 19:E2142. [PMID: 30041456 PMCID: PMC6073530 DOI: 10.3390/ijms19072142] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022] Open
Abstract
Colletotrichum higginsianum is a hemibiotrophic ascomycetous fungus that causes economically important anthracnose diseases on numerous monocot and dicot crops worldwide. As a model pathosystem, the Colletotrichum⁻Arabidopsis interaction has the significant advantage that both organisms can be manipulated genetically. The goal of this review is to provide an overview of the system and to point out recent significant studies that update our understanding of the pathogenesis of C. higginsianum and resistance mechanisms of Arabidopsis against this hemibiotrophic fungus. The genome sequence of C. higginsianum has provided insights into how genome structure and pathogen genetic variability has been shaped by transposable elements, and allows systematic approaches to longstanding areas of investigation, including infection structure differentiation and fungal⁻plant interactions. The Arabidopsis-Colletotrichum pathosystem provides an integrated system, with extensive information on the host plant and availability of genomes for both partners, to illustrate many of the important concepts governing fungal⁻plant interactions, and to serve as an excellent starting point for broad perspectives into issues in plant pathology.
Collapse
Affiliation(s)
- Yaqin Yan
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qinfeng Yuan
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jintian Tang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Junbin Huang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - Lu Zheng
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
29
|
Analysis of the Functionality of the Mitotic Checkpoints. Methods Mol Biol 2018. [PMID: 27826867 DOI: 10.1007/978-1-4939-6502-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
During cell division the main goal of the cell is to produce two daughter cells with the same genome as the mother, i.e., maintain its genetic stability. Since this issue is essential to preserve the cell ability to proliferate properly, all eukaryotic cells have developed several pathways, called mitotic checkpoints, that regulate mitotic entry, progression, and exit in response to different cellular signals. Given the evolutive conservation of mechanisms and proteins involved in the cell cycle control from yeast to humans, the budding yeast S. cerevisiae has been very helpful to gain insight in these complex regulations. Here, we describe how the checkpoint can be activated and which cellular phenotypes can be used as markers of checkpoint activation.
Collapse
|
30
|
Scarfone I, Piatti S. Coupling spindle position with mitotic exit in budding yeast: The multifaceted role of the small GTPase Tem1. Small GTPases 2018; 6:196-201. [PMID: 26507466 PMCID: PMC4905282 DOI: 10.1080/21541248.2015.1109023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The budding yeast S. cerevisiae divides asymmetrically and is an excellent model system for asymmetric cell division. As for other asymmetrically dividing cells, proper spindle positioning along the mother-daughter polarity axis is crucial for balanced chromosome segregation. Thus, a surveillance mechanism named Spindle Position Checkpoint (SPOC) inhibits mitotic exit and cytokinesis until the mitotic spindle is properly oriented, thereby preventing the generation of cells with aberrant ploidies. The small GTPase Tem1 is required to trigger a Hippo-like protein kinase cascade, named Mitotic Exit Network (MEN), that is essential for mitotic exit and cytokinesis but also contributes to correct spindle alignment in metaphase. Importantly, Tem1 is the target of the SPOC, which relies on the activity of the GTPase-activating complex (GAP) Bub2-Bfa1 to keep Tem1 in the GDP-bound inactive form. Tem1 forms a hetero-trimeric complex with Bub2-Bfa1 at spindle poles (SPBs) that accumulates asymmetrically on the bud-directed spindle pole during mitosis when the spindle is properly positioned. In contrast, the complex remains symmetrically localized on both poles of misaligned spindles. We have recently shown that Tem1 residence at SPBs depends on its nucleotide state and, importantly, asymmetry of the Bub2-Bfa1-Tem1 complex does not promote mitotic exit but rather controls spindle positioning.
Collapse
Affiliation(s)
- Ilaria Scarfone
- a Centre de Recherche en Biochimie Macromoleculaire-CNRS ; Montpellier , France.,b Present address: LPCV, iRTSV, CEA Grenoble, 17 Rue des martyrs, 38054 Grenoble, France
| | - Simonetta Piatti
- a Centre de Recherche en Biochimie Macromoleculaire-CNRS ; Montpellier , France
| |
Collapse
|
31
|
Kluge J, Kück U. AcAxl2 and AcMst1 regulate arthrospore development and stress resistance in the cephalosporin C producer Acremonium chrysogenum. Curr Genet 2017; 64:713-727. [PMID: 29209784 DOI: 10.1007/s00294-017-0790-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 11/29/2022]
Abstract
The filamentous fungus Acremonium chrysogenum is the primordial producer of the β-lactam antibiotic cephalosporin C. This antibiotic is of major biotechnological and medical relevance because of its antibacterial activity against Gram-positive and Gram-negative bacteria. Antibiotic production during the lag phase of fermentation is often accompanied by a typical morphological feature of A. chrysogenum, the fragmentation of the mycelium into arthrospores. Here, we sought to identify factors that regulate the hyphal septation process and present the first comparative functional characterization of the type I integral plasma membrane protein Axl2 (axial budding pattern protein 2), a central component of the bud site selection system (BSSS) and Mst1 (mammalian Sterile20-like kinase), a septation initiation network (SIN)-associated germinal center kinase (GCK). Although an Acaxl2 deletion strain showed accelerated arthrospore formation after 96 h in liquid culture, deletion of Acmst1 led to a 24 h delay in arthrospore development. The overexpression of Acaxl2 resulted in an arthrospore formation similar to the A3/2 strain. In contrast to this, A3/2::Acmst1 OE strain displayed an enhanced arthrospore titer. Large-scale stress tests revealed an involvement of AcAxl2 in controlling osmotic, endoplasmic reticulum, and cell wall stress response. In a similar approach, we found that AcMst1 plays an essential role in regulating growth under osmotic, cell wall, and oxidative stress conditions. Microscopic analyses and plating assays on media containing Calcofluor White and NaCl showed that arthrospore development is a stress-dependent process. Our results suggest the potential for identifying candidate genes for strain improvement programs to optimize industrial fermentation processes.
Collapse
Affiliation(s)
- Janina Kluge
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
32
|
Altamirano S, Chandrasekaran S, Kozubowski L. Mechanisms of Cytokinesis in Basidiomycetous Yeasts. FUNGAL BIOL REV 2017; 31:73-87. [PMID: 28943887 DOI: 10.1016/j.fbr.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
While mechanisms of cytokinesis exhibit considerable plasticity, it is difficult to precisely define the level of conservation of this essential part of cell division in fungi, as majority of our knowledge is based on ascomycetous yeasts. However, in the last decade more details have been uncovered regarding cytokinesis in the second largest fungal phylum, basidiomycetes, specifically in two yeasts, Cryptococcus neoformans and Ustilago maydis. Based on these findings, and current sequenced genomes, we summarize cytokinesis in basidiomycetous yeasts, indicating features that may be unique to this phylum, species-specific characteristics, as well as mechanisms that may be common to all eukaryotes.
Collapse
Affiliation(s)
- Sophie Altamirano
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | | | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
33
|
Abstract
The Hippo pathway is an essential tumor suppressor signaling network that coordinates cell proliferation, death, and differentiation in higher eukaryotes. Intriguingly, the core components of the Hippo pathway are conserved from yeast to man, with the yeast analogs of mammalian MST1/2 (fly Hippo), MOB1 (fly Mats), LATS1/2 (fly Warts), and NDR1/2 (fly Tricornered) functioning as essential components of the mitotic exit network (MEN). Here, we update our previous summary of mitotic functions of Hippo core components in Drosophila melanogaster and mammals, with particular emphasis on similarities between the yeast MEN pathway and mitotic Hippo signaling. Mitotic functions of YAP and TAZ, the two main effectors of Hippo signaling, are also discussed.
Collapse
Affiliation(s)
- Alexander Hergovich
- Tumour Suppressor Signalling Networks Laboratory, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
34
|
Abstract
The Mitotic Exit Network (MEN) is an essential signaling pathway, closely related to the Hippo pathway in mammals, which promotes mitotic exit and initiates cytokinesis in the budding yeast Saccharomyces cerevisiae. Here, we summarize the current knowledge about the MEN components and their regulation.
Collapse
Affiliation(s)
- Bàrbara Baro
- Department of Pediatrics, Division of Infectious Diseases,Stanford University School of Medicine, Stanford, CA, USA.
| | - Ethel Queralt
- Cancer Epigenetics & Biology Program, Hospitalet de Llobregat, Barcelona, Spain.
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio, s/n. P.C.T. Cartuja 93., 41092, Sevilla, Spain.
| |
Collapse
|
35
|
Perez AM, Finnigan GC, Roelants FM, Thorner J. Septin-Associated Protein Kinases in the Yeast Saccharomyces cerevisiae. Front Cell Dev Biol 2016; 4:119. [PMID: 27847804 PMCID: PMC5088441 DOI: 10.3389/fcell.2016.00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 10/14/2016] [Indexed: 01/19/2023] Open
Abstract
Septins are a family of eukaryotic GTP-binding proteins that associate into linear rods, which, in turn, polymerize end-on-end into filaments, and further assemble into other, more elaborate super-structures at discrete subcellular locations. Hence, septin-based ensembles are considered elements of the cytoskeleton. One function of these structures that has been well-documented in studies conducted in budding yeast Saccharomyces cerevisiae is to serve as a scaffold that recruits regulatory proteins, which dictate the spatial and temporal control of certain aspects of the cell division cycle. In particular, septin-associated protein kinases couple cell cycle progression with cellular morphogenesis. Thus, septin-containing structures serve as signaling platforms that integrate a multitude of signals and coordinate key downstream networks required for cell cycle passage. This review summarizes what we currently understand about how the action of septin-associated protein kinases and their substrates control information flow to drive the cell cycle into and out of mitosis, to regulate bud growth, and especially to direct timely and efficient execution of cytokinesis and cell abscission. Thus, septin structures represent a regulatory node at the intersection of many signaling pathways. In addition, and importantly, the activities of certain septin-associated protein kinases also regulate the state of organization of the septins themselves, creating a complex feedback loop.
Collapse
Affiliation(s)
- Adam M Perez
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA, USA
| | - Gregory C Finnigan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA, USA
| | - Françoise M Roelants
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA, USA
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA, USA
| |
Collapse
|
36
|
Murata W, Kinpara S, Kitahara N, Yamaguchi Y, Ogita A, Tanaka T, Fujita KI. Cytoskeletal impairment during isoamyl alcohol-induced cell elongation in budding yeast. Sci Rep 2016; 6:31127. [PMID: 27507042 PMCID: PMC4979020 DOI: 10.1038/srep31127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/11/2016] [Indexed: 11/09/2022] Open
Abstract
Isoamyl alcohol (IAA) induces pseudohyphae including cell elongation in the budding yeast Saccharomyces cerevisiae. Detailed regulation of microtubules and actin in developmental transition during cell elongation is poorly understood. Here, we show that although IAA did not affect the intracellular actin level, it reduced the levels of both α- and β-tubulins. In budding yeast, cytoplasmic microtubules are linked to actin via complexes consisting of at least Kar9, Bim1, and Myo2, and reach from the spindle pole body to the cortical attachment site at the bud tip. However, IAA did not affect migration of Myo2 to the bud tip and kept Kar9 in the interior portion of the cell. In addition, bud elongation was observed in Kar9-overexpressing cells in the absence of IAA. These results indicate that impairment of the link between cytoplasmic microtubules and actin is possibly involved in the lowered interaction of Myo2 with Kar9. Our study might explain the reason for delayed cell cycle during IAA-induced cell elongation.
Collapse
Affiliation(s)
- Wakae Murata
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.,Department of Materials Science, National Institute of Technology, Yonago College, Tottori 683-8502, Japan
| | - Satoko Kinpara
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Nozomi Kitahara
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Yoshihiro Yamaguchi
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.,The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka 558-8585, Japan
| | - Akira Ogita
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.,Research Center for Urban Health and Sports, Osaka City University, Osaka 558-8585, Japan
| | - Toshio Tanaka
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Ken-Ichi Fujita
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| |
Collapse
|
37
|
Dewey EB, Sanchez D, Johnston CA. Warts phosphorylates mud to promote pins-mediated mitotic spindle orientation in Drosophila, independent of Yorkie. Curr Biol 2015; 25:2751-2762. [PMID: 26592339 DOI: 10.1016/j.cub.2015.09.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 01/12/2023]
Abstract
Multicellular animals have evolved conserved signaling pathways that translate cell polarity cues into mitotic spindle positioning to control the orientation of cell division within complex tissue structures. These oriented cell divisions are essential for the development of cell diversity and the maintenance of tissue homeostasis. Despite intense efforts, the molecular mechanisms that control spindle orientation remain incompletely defined. Here, we describe a role for the Hippo (Hpo) kinase complex in promoting Partner of Inscuteable (Pins)-mediated spindle orientation. Knockdown of Hpo, Salvador (Sav), or Warts (Wts) each result in a partial loss of spindle orientation, a phenotype previously described following loss of the Pins-binding protein Mushroom body defect (Mud). Similar to orthologs spanning yeast to mammals, Wts kinase localizes to mitotic spindle poles, a prominent site of Mud localization. Wts directly phosphorylates Mud in vitro within its C-terminal coiled-coil domain. This Mud coiled-coil domain directly binds the adjacent Pins-binding domain to dampen the Pins/Mud interaction, and Wts-mediated phosphorylation uncouples this intramolecular Mud interaction. Loss of Wts prevents cortical Pins/Mud association without affecting Mud accumulation at spindle poles, suggesting phosphorylation acts as a molecular switch to specifically activate cortical Mud function. Finally, loss of Wts in Drosophila imaginal disc epithelial cells results in diminished cortical Mud and defective planar spindle orientation. Our results provide new insights into the molecular basis for dynamic regulation of the cortical Pins/Mud spindle positioning complex and highlight a novel link with an essential, evolutionarily conserved cell proliferation pathway.
Collapse
Affiliation(s)
- Evan B Dewey
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Desiree Sanchez
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | |
Collapse
|
38
|
Abstract
Cells sense biochemical, electrical, and mechanical cues in their environment that affect their differentiation and behavior. Unlike biochemical and electrical signals, mechanical signals can propagate without the diffusion of proteins or ions; instead, forces are transmitted through mechanically stiff structures, flowing, for example, through cytoskeletal elements such as microtubules or filamentous actin. The molecular details underlying how cells respond to force are only beginning to be understood. Here we review tools for probing force-sensitive proteins and highlight several examples in which forces are transmitted, routed, and sensed by proteins in cells. We suggest that local unfolding and tension-dependent removal of autoinhibitory domains are common features in force-sensitive proteins and that force-sensitive proteins may be commonplace wherever forces are transmitted between and within cells. Because mechanical forces are inherent in the cellular environment, force is a signal that cells must take advantage of to maintain homeostasis and carry out their functions.
Collapse
Affiliation(s)
- Erik C Yusko
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290
| |
Collapse
|
39
|
Simanis V. Pombe's thirteen - control of fission yeast cell division by the septation initiation network. J Cell Sci 2015; 128:1465-74. [PMID: 25690009 DOI: 10.1242/jcs.094821] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The septation initiation network (SIN) regulates aspects of cell growth and division in Schizosaccharomyces pombe and is essential for cytokinesis. Insufficient signalling results in improper assembly of the contractile ring and failure of cytokinesis, generating multinucleated cells, whereas too much SIN signalling uncouples cytokinesis from the rest of the cell cycle. SIN signalling is therefore tightly controlled to coordinate cytokinesis with chromosome segregation. Signalling originates from the cytoplasmic face of the spindle pole body (SPB), and asymmetric localisation of some SIN proteins to one of the two SPBs during mitosis is important for regulation of the SIN. Recent studies have identified in vivo substrates of the SIN, which include components involved in mitotic control, those of the contractile ring and elements of the signalling pathway regulating polarised growth. The SIN is also required for spore formation following meiosis. This has provided insights into how the SIN performs its diverse functions in the cell cycle and shed new light on its regulation.
Collapse
Affiliation(s)
- Viesturs Simanis
- École Polytechnique Fédérale de Lausanne School of Life Sciences (EPFL-SV), Swiss Institute For Experimental Cancer Research (ISREC), UPSIM, SV2.1830, Station 19, CH-1015 Lausanne, Switzerland
| |
Collapse
|
40
|
Binding of Kif23-iso1/CHO1 to 14-3-3 is regulated by sequential phosphorylations at two LATS kinase consensus sites. PLoS One 2015; 10:e0117857. [PMID: 25658096 PMCID: PMC4320110 DOI: 10.1371/journal.pone.0117857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/04/2015] [Indexed: 12/22/2022] Open
Abstract
Kif23 kinesin is an essential actor of cytokinesis in animals. It exists as two major isoforms, known as MKLP1 and CHO1, the longest of which, CHO1, contains two HXRXXS/T NDR/LATS kinase consensus sites. We demonstrate that these two sites are readily phosphorylated by NDR and LATS kinases in vitro, and this requires the presence of an upstream -5 histidine residue. We further show that these sites are phosphorylated in vivo and provide evidence revealing that LATS1,2 participate in the phosphorylation of the most C-terminal S814 site, present on both isoforms. This S814 phosphosite was previously reported to constitute a 14-3-3 binding site, which plays a role in Kif23 clustering during cytokinesis. Surprisingly, we found that phosphorylation of the upstream S716 NDR/LATS consensus site, present only in the longest Kif23 isoform, is required for efficient phosphorylation at S814, thus revealing sequential phosphorylation at these two sites, and differential regulation of Kif23-14-3-3 interaction for the two Kif23 isoforms. Finally, we provide evidence that Kif23 is largely unphosphorylated on S814 in post-abscission midbodies, making this Kif23 post-translational modification a potential marker to probe these structures.
Collapse
|
41
|
Scarfone I, Venturetti M, Hotz M, Lengefeld J, Barral Y, Piatti S. Asymmetry of the budding yeast Tem1 GTPase at spindle poles is required for spindle positioning but not for mitotic exit. PLoS Genet 2015; 11:e1004938. [PMID: 25658911 PMCID: PMC4450052 DOI: 10.1371/journal.pgen.1004938] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 12/04/2014] [Indexed: 11/19/2022] Open
Abstract
The asymmetrically dividing yeast S. cerevisiae assembles a bipolar spindle well after establishing the future site of cell division (i.e., the bud neck) and the division axis (i.e., the mother-bud axis). A surveillance mechanism called spindle position checkpoint (SPOC) delays mitotic exit and cytokinesis until the spindle is properly positioned relative to the mother-bud axis, thereby ensuring the correct ploidy of the progeny. SPOC relies on the heterodimeric GTPase-activating protein Bub2/Bfa1 that inhibits the small GTPase Tem1, in turn essential for activating the mitotic exit network (MEN) kinase cascade and cytokinesis. The Bub2/Bfa1 GAP and the Tem1 GTPase form a complex at spindle poles that undergoes a remarkable asymmetry during mitosis when the spindle is properly positioned, with the complex accumulating on the bud-directed old spindle pole. In contrast, the complex remains symmetrically localized on both poles of misaligned spindles. The mechanism driving asymmetry of Bub2/Bfa1/Tem1 in mitosis is unclear. Furthermore, whether asymmetry is involved in timely mitotic exit is controversial. We investigated the mechanism by which the GAP Bub2/Bfa1 controls GTP hydrolysis on Tem1 and generated a series of mutants leading to constitutive Tem1 activation. These mutants are SPOC-defective and invariably lead to symmetrical localization of Bub2/Bfa1/Tem1 at spindle poles, indicating that GTP hydrolysis is essential for asymmetry. Constitutive tethering of Bub2 or Bfa1 to both spindle poles impairs SPOC response but does not impair mitotic exit. Rather, it facilitates mitotic exit of MEN mutants, likely by increasing the residence time of Tem1 at spindle poles where it gets active. Surprisingly, all mutant or chimeric proteins leading to symmetrical localization of Bub2/Bfa1/Tem1 lead to increased symmetry at spindle poles of the Kar9 protein that mediates spindle positioning and cause spindle misalignment. Thus, asymmetry of the Bub2/Bfa1/Tem1 complex is crucial to control Kar9 distribution and spindle positioning during mitosis.
Collapse
Affiliation(s)
- Ilaria Scarfone
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
- Dipartimento di Biotecnologie e Bioscienze Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Marianna Venturetti
- Dipartimento di Biotecnologie e Bioscienze Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Manuel Hotz
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | | | - Yves Barral
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Simonetta Piatti
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
- Dipartimento di Biotecnologie e Bioscienze Università degli Studi di Milano-Bicocca, Milano, Italy
- * E-mail:
| |
Collapse
|
42
|
Gomez V, Gundogdu R, Gomez M, Hoa L, Panchal N, O'Driscoll M, Hergovich A. Regulation of DNA damage responses and cell cycle progression by hMOB2. Cell Signal 2015; 27:326-39. [PMID: 25460043 PMCID: PMC4276419 DOI: 10.1016/j.cellsig.2014.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/03/2014] [Accepted: 11/14/2014] [Indexed: 11/20/2022]
Abstract
Mps one binder proteins (MOBs) are conserved regulators of essential signalling pathways. Biochemically, human MOB2 (hMOB2) can inhibit NDR kinases by competing with hMOB1 for binding to NDRs. However, biological roles of hMOB2 have remained enigmatic. Here, we describe novel functions of hMOB2 in the DNA damage response (DDR) and cell cycle regulation. hMOB2 promotes DDR signalling, cell survival and cell cycle arrest after exogenously induced DNA damage. Under normal growth conditions in the absence of exogenously induced DNA damage hMOB2 plays a role in preventing the accumulation of endogenous DNA damage and a subsequent p53/p21-dependent G1/S cell cycle arrest. Unexpectedly, these molecular and cellular phenotypes are not observed upon NDR manipulations, indicating that hMOB2 performs these functions independent of NDR signalling. Thus, to gain mechanistic insight, we screened for novel binding partners of hMOB2, revealing that hMOB2 interacts with RAD50, facilitating the recruitment of the MRE11-RAD50-NBS1 (MRN) DNA damage sensor complex and activated ATM to DNA damaged chromatin. Taken together, we conclude that hMOB2 supports the DDR and cell cycle progression.
Collapse
Affiliation(s)
- Valenti Gomez
- UCL Cancer Institute, University College London, WC1E 6BT, London, United Kingdom
| | - Ramazan Gundogdu
- UCL Cancer Institute, University College London, WC1E 6BT, London, United Kingdom
| | - Marta Gomez
- UCL Cancer Institute, University College London, WC1E 6BT, London, United Kingdom
| | - Lily Hoa
- UCL Cancer Institute, University College London, WC1E 6BT, London, United Kingdom
| | - Neelam Panchal
- UCL Cancer Institute, University College London, WC1E 6BT, London, United Kingdom
| | - Mark O'Driscoll
- Genome Damage and Stability Centre, University of Sussex, BN1 9RH, Brighton, United Kingdom
| | - Alexander Hergovich
- UCL Cancer Institute, University College London, WC1E 6BT, London, United Kingdom.
| |
Collapse
|