1
|
Quiroga D, Roman B, Salih M, Daccarett-Bojanini WN, Garbus H, Ebenebe OV, Dodd-O JM, O'Rourke B, Kohr M, Das S. Sex-dependent phosphorylation of Argonaute 2 reduces the mitochondrial translocation of miR-181c and induces cardioprotection in females. J Mol Cell Cardiol 2024; 194:59-69. [PMID: 38880194 PMCID: PMC11345856 DOI: 10.1016/j.yjmcc.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Obesity-induced cardiac dysfunction is growing at an alarming rate, showing a dramatic increase in global prevalence. Mitochondrial translocation of miR-181c in cardiomyocytes results in excessive reactive oxygen species (ROS) production during obesity. ROS causes Sp1, a transcription factor for MICU1, to be degraded via post-translational modification. The subsequent decrease in MICU1 expression causes mitochondrial Ca2+ accumulation, ultimately leading to a propensity for heart failure. Herein, we hypothesized that phosphorylation of Argonaute 2 (AGO2) at Ser 387 (in human) or Ser 388 (in mouse) inhibits the translocation of miR-181c into the mitochondria by increasing the cytoplasmic stability of the RNA-induced silencing complex (RISC). Initially, estrogen offers cardioprotection in pre-menopausal females against the consequences of mitochondrial miR-181c upregulation by driving the phosphorylation of AGO2. Neonatal mouse ventricular myocytes (NMVM) treated with insulin showed an increase in pAGO2 levels and a decrease in mitochondrial miR-181c expression by increasing the binding affinity of AGO2-GW182 in the RISC. Thus, insulin treatment prevented excessive ROS production and mitochondrial Ca2+ accumulation. In human cardiomyocytes, we overexpressed miR-181c to mimic pathological conditions, such as obesity/diabetes. Treatment with estradiol (E2) for 48 h significantly lowered miR-181c entry into the mitochondria through increased pAGO2 levels. E2 treatment also normalized Sp1 degradation and MICU1 transcription that normally occurs in response to miR-181c overexpression. We then investigated these findings using an in vivo model, with age-matched male, female and ovariectomized (OVX) female mice. Consistent with the E2 treatment, we show that female hearts express higher levels of pAGO2 and thus, exhibit higher association of AGO2-GW182 in cytoplasmic RISC. This results in lower expression of mitochondrial miR-181c in female hearts compared to male or OVX groups. Further, female hearts had fewer consequences of mitochondrial miR-181c expression, such as lower Sp1 degradation and significantly decreased MICU1 transcriptional regulation. Taken together, this study highlights a potential therapeutic target for conditions such as obesity and diabetes, where miR-181c is upregulated. NEW AND NOTEWORTHY: In this study, we show that the phosphorylation of Argonaute 2 (AGO2) stabilizes the RNA-induced silencing complex in the cytoplasm, preventing miR-181c entry into the mitochondria. Furthermore, we demonstrate that treatment with estradiol can inhibit the translocation of miR-181c into the mitochondria by phosphorylating AGO2. This ultimately eliminates the downstream consequences of miR-181c overexpression by mitigating excessive reactive oxygen species production and calcium entry into the mitochondria.
Collapse
Affiliation(s)
- Diego Quiroga
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Barbara Roman
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States of America
| | - Marwan Salih
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States of America
| | - William N Daccarett-Bojanini
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Haley Garbus
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Obialunanma V Ebenebe
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Jeffrey M Dodd-O
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Mark Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Samarjit Das
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America; Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States of America.
| |
Collapse
|
2
|
Perooli FM, Wilkinson KA, Pring K, Hanley JG. An essential role for the RNA helicase DDX6 in NMDA receptor-dependent gene silencing and dendritic spine shrinkage. Sci Rep 2024; 14:3066. [PMID: 38321143 PMCID: PMC10847504 DOI: 10.1038/s41598-024-53484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
MicroRNAs (miRNAs) repress translation of target mRNAs by associating with Argonaute (Ago) proteins in the RNA-induced silencing complex (RISC) to modulate protein expression. Specific miRNAs are required for NMDA receptor (NMDAR)-dependent synaptic plasticity by repressing the translation of proteins involved in dendritic spine morphogenesis. Rapid NMDAR-dependent silencing of Limk1 is essential for spine shrinkage and requires Ago2 phosphorylation at S387. Not all gene silencing events are modulated by S387 phosphorylation, and the mechanisms that govern the selection of specific mRNAs for silencing downstream of S387 phosphorylation are unknown. Here, we show that NMDAR-dependent S387 phosphorylation causes a rapid and transient increase in the association of Ago2 with Limk1, but not Apt1 mRNA. The specific increase in Limk1 mRNA binding to Ago2 requires recruitment of the helicase DDX6 to RISC. Furthermore, we show that DDX6 is required for NMDAR-dependent silencing of Limk1 via miR-134, but not Apt1 via miR-138, and is essential for NMDAR-dependent spine shrinkage. This work defines a novel mechanism for the rapid transduction of NMDAR stimulation into miRNA-mediated translational repression of specific genes to control dendritic spine morphology.
Collapse
Affiliation(s)
- Fathima M Perooli
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Kate Pring
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jonathan G Hanley
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
3
|
Erturk E, Enes Onur O, Akgun O, Tuna G, Yildiz Y, Ari F. Mitochondrial miRNAs (MitomiRs): Their potential roles in breast and other cancers. Mitochondrion 2022; 66:74-81. [PMID: 35963496 DOI: 10.1016/j.mito.2022.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 11/15/2022]
Abstract
Breast cancer is the most common cancer in women worldwide. MicroRNAs (miRNAs) are non-coding RNAs that are involved in the post-transcriptional regulation of gene expression. Although miRNAs mainly act in the cytoplasm, they can be found in the mitochondrial compartment of the cell. These miRNAs called "MitomiR", they can change mitochondrial functions by regulating proteins at the mitochondrial level and cause cancer. In this review, we have aimed to explain miRNA biogenesis, transport pathways to mitochondria, and summarize mitomiRs that have been shown to play an important role in mitochondrial function, especially in the initiation and progression of breast cancer.
Collapse
Affiliation(s)
- Elif Erturk
- Bursa Uludag University, Vocational School of Health Services, 16059, Bursa, Turkey
| | - Omer Enes Onur
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Oguzhan Akgun
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Gonca Tuna
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Yaren Yildiz
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Ferda Ari
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey.
| |
Collapse
|
4
|
Siebenaler RF, Chugh S, Waninger JJ, Dommeti VL, Kenum C, Mody M, Gautam A, Patel N, Chu A, Bawa P, Hon J, Smith RD, Carlson H, Cao X, Tesmer JJG, Shankar S, Chinnaiyan AM. Argonaute 2 modulates EGFR-RAS signaling to promote mutant HRAS and NRAS-driven malignancies. PNAS NEXUS 2022; 1:pgac084. [PMID: 35923912 PMCID: PMC9338400 DOI: 10.1093/pnasnexus/pgac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023]
Abstract
Activating mutations in RAS GTPases drive nearly 30% of all human cancers. Our prior work described an essential role for Argonaute 2 (AGO2), of the RNA-induced silencing complex, in mutant KRAS-driven cancers. Here, we identified a novel endogenous interaction between AGO2 and RAS in both wild-type (WT) and mutant HRAS/NRAS cells. This interaction was regulated through EGFR-mediated phosphorylation of Y393-AGO2, and utilizing molecular dynamic simulation, we identified a conformational change in pY393-AGO2 protein structure leading to disruption of the RAS binding site. Knockdown of AGO2 led to a profound decrease in proliferation of mutant HRAS/NRAS-driven cell lines but not WT RAS cells. These cells demonstrated oncogene-induced senescence (OIS) as evidenced by β-galactosidase staining and induction of multiple downstream senescence effectors. Mechanistically, we discovered that the senescent phenotype was mediated via induction of reactive oxygen species. Intriguingly, we further identified that loss of AGO2 promoted a novel feed forward pathway leading to inhibition of the PTP1B phosphatase and activation of EGFR-MAPK signaling, consequently resulting in OIS. Taken together, our study demonstrates that the EGFR-AGO2-RAS signaling axis is essential for maintaining mutant HRAS and NRAS-driven malignancies.
Collapse
Affiliation(s)
| | | | - Jessica J Waninger
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vijaya L Dommeti
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carson Kenum
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Malay Mody
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anudeeta Gautam
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nidhi Patel
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alec Chu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pushpinder Bawa
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer Hon
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard D Smith
- College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Heather Carlson
- College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - John J G Tesmer
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Sunita Shankar
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
5
|
Bibel B, Elkayam E, Silletti S, Komives EA, Joshua-Tor L. Target binding triggers hierarchical phosphorylation of human Argonaute-2 to promote target release. eLife 2022; 11:76908. [PMID: 35638597 PMCID: PMC9154749 DOI: 10.7554/elife.76908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/26/2022] [Indexed: 12/02/2022] Open
Abstract
Argonaute (Ago) proteins play a central role in post-transcriptional gene regulation through RNA interference (RNAi). Agos bind small RNAs (sRNAs) including small interfering RNAs (siRNAs) and microRNAs (miRNAs) to form the functional core of the RNA-induced silencing complex (RISC). The sRNA is used as a guide to target mRNAs containing either partially or fully complementary sequences, ultimately leading to downregulation of the corresponding proteins. It was previously shown that the kinase CK1α phosphorylates a cluster of residues in the eukaryotic insertion (EI) of Ago, leading to the alleviation of miRNA-mediated repression through an undetermined mechanism. We show that binding of miRNA-loaded human Ago2 to target RNA with complementarity to the seed and 3’ supplementary regions of the miRNA primes the EI for hierarchical phosphorylation by CK1α. The added negative charges electrostatically promote target release, freeing Ago to seek out additional targets once it is dephosphorylated. The high conservation of potential phosphosites in the EI suggests that such a regulatory strategy may be a shared mechanism for regulating miRNA-mediated repression. Proteins are the chemical ‘workhorses’ of the cell: some help maintain a cell’s shape or structure, while others carry out the chemical reactions necessary for life. Organisms therefore need to keep tight control over the production of proteins in their cells, so that the right amount of each protein is made at the right time, in the right place. Instructions for making new proteins are encoded in a type of molecule called messenger RNA. Each messenger RNA contains the instructions for one protein, which are then ‘read’ and carried out by special cellular machinery called ribosomes. The cell can control how much protein it produces by regulating both the levels of different messenger RNA and the amount of protein ribosomes are allowed to make from those instructions. The main way to regulate the levels of messenger RNA is through their transcription from the genome. However, this needs fine tuning. Cells can do this in a highly specific way using molecules called microRNAs. A microRNA works by directing a protein called Argonaute to the messenger RNA that it targets. Once Argonaute arrives, it can call in additional ‘helper proteins’ to shut down, or reduce, protein production from that messenger RNA, or alternatively to break down the messenger RNA altogether. Cells can use an enzyme called CK1α to attach bulky chemical groups onto a specific part of the Argonaute protein, in a reaction termed phosphorylation. The ability to carry out this reaction (and to reverse it) also seems to be important for microRNAs to do their job properly, but why has remained unknown. Bibel et al. wanted to determine what triggers CK1α to phosphorylate Argonaute, and how this affects interactions between microRNAs, Argonaute and their target messenger RNAs. A series of ‘test tube’ experiments looked at the interaction between purified CK1α and Argonaute under different conditions. These demonstrated that CK1α could only carry out its phosphorylation reaction when Argonaute was already interacting with a microRNA and its corresponding messenger RNA. Further measurements revealed that phosphorylation of Argonaute made it detach from the messenger RNA more quickly. This suggests that phosphorylation might be a way to let Argonaute seek out new messenger RNAs after blocking protein production at its first ‘target’. These results shed new light on a fundamental mechanism that cells use to control protein production. Bibel et al. propose that this mechanism may be shared across many different species and could one day help guide the development of new medical therapies based on microRNAs.
Collapse
Affiliation(s)
- Brianna Bibel
- Cold Spring Harbor Laboratory School of Biological Sciences
- Howard Hughes Medical Institute, W. M. Keck Structural Biology Laboratory
| | - Elad Elkayam
- Howard Hughes Medical Institute, W. M. Keck Structural Biology Laboratory
| | - Steve Silletti
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Leemor Joshua-Tor
- Cold Spring Harbor Laboratory School of Biological Sciences
- Howard Hughes Medical Institute, W. M. Keck Structural Biology Laboratory
| |
Collapse
|
6
|
Waninger JJ, Beyett TS, Gadkari VV, Siebenaler RF, Kenum C, Shankar S, Ruotolo BT, Chinnaiyan AM, Tesmer JJ. Biochemical characterization of the interaction between KRAS and Argonaute 2. Biochem Biophys Rep 2022; 29:101191. [PMID: 34988297 PMCID: PMC8695255 DOI: 10.1016/j.bbrep.2021.101191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/01/2022] Open
Abstract
Oncogenic mutations in KRAS result in a constitutively active, GTP-bound form that in turn activates many proliferative pathways. However, because of its compact and simple architecture, directly targeting KRAS with small molecule drugs has been challenging. Another approach is to identify targetable proteins that interact with KRAS. Argonaute 2 (AGO2) was recently identified as a protein that facilitates RAS-driven oncogenesis. Whereas previous studies described the in vivo effect of AGO2 on cancer progression in cells harboring mutated KRAS, here we sought to examine their direct interaction using purified proteins. We show that full length AGO2 co-immunoprecipitates with KRAS using purified components, however, a complex between FL AGO2 and KRAS could not be isolated. We also generated a smaller N-terminal fragment of AGO2 (NtAGO2) which is believed to represent the primary binding site of KRAS. A complex with NtAGO2 could be detected via ion-mobility mass spectrometry and size exclusion chromatography. However, the data suggest that the interaction of KRAS with purified AGO2 (NtAGO2 or FL AGO2) is weak and likely requires additional cellular components or proteo-forms of AGO2 that are not readily available in our purified assay systems. Future studies are needed to determine what conformation or modifications of AGO2 are necessary to enrich KRAS association and regulate its activities.
Collapse
Affiliation(s)
- Jessica J. Waninger
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Medical Education, University of Michigan, Ann Arbor, MI, USA
- Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Tyler S. Beyett
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Varun V. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Ronald F. Siebenaler
- Department of Medical Education, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Carson Kenum
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sunita Shankar
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - John J.G. Tesmer
- Departments of Biological Sciences and Medicinal Chemistry & Molecular Pharmacology, Purdue University, Indiana, USA
| |
Collapse
|
7
|
Solly EL, Psaltis PJ, Bursill CA, Tan JTM. The Role of miR-181c in Mechanisms of Diabetes-Impaired Angiogenesis: An Emerging Therapeutic Target for Diabetic Vascular Complications. Front Pharmacol 2021; 12:718679. [PMID: 34483928 PMCID: PMC8414254 DOI: 10.3389/fphar.2021.718679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is estimated to affect up to 700 million people by the year 2045, contributing to an immense health and economic burden. People living with diabetes have a higher risk of developing numerous debilitating vascular complications, leading to an increased need for medical care, a reduced quality of life and increased risk of early death. Current treatments are not satisfactory for many patients who suffer from impaired angiogenesis in response to ischaemia, increasing their risk of ischaemic cardiovascular conditions. These vascular pathologies are characterised by endothelial dysfunction and abnormal angiogenesis, amongst a host of impaired signaling pathways. Therapeutic stimulation of angiogenesis holds promise for the treatment of diabetic vascular complications that stem from impaired ischaemic responses. However, despite significant effort and research, there are no established therapies that directly stimulate angiogenesis to improve ischaemic complications such as ischaemic heart disease and peripheral artery disease, highlighting the immense unmet need. However, despite significant effort and research, there are no established therapies that directly stimulate angiogenesis in a clinical setting, highlighting the immense unmet need. MicroRNAs (miRNAs) are emerging as powerful targets for multifaceted diseases including diabetes and cardiovascular disease. This review highlights the potential role of microRNAs as therapeutic targets for rescuing diabetes-impaired angiogenesis, with a specific focus on miR-181c, which we have previously identified as an important angiogenic regulator. Here we summarise the pathways currently known to be regulated by miR-181c, which include the classical angiogenesis pathways that are dysregulated in diabetes, mitochondrial function and axonal guidance, and describe how these relate both directly and indirectly to angiogenesis. The pleiotropic actions of miR-181c across multiple key angiogenic signaling pathways and critical cellular processes highlight its therapeutic potential as a novel target for treating diabetic vascular complications.
Collapse
Affiliation(s)
- Emma L Solly
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Christina A Bursill
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia
| | - Joanne T M Tan
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
8
|
Li JN, Sun HL, Wang MY, Chen PS. E-cadherin Interacts With Posttranslationally-Modified AGO2 to Enhance miRISC Activity. Front Cell Dev Biol 2021; 9:671244. [PMID: 34291046 PMCID: PMC8287304 DOI: 10.3389/fcell.2021.671244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/31/2021] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs which post-transcriptionally suppress target mRNAs expression and/or translation to modulate pathophyological processes. Expression and function of miRNAs are fine-tuned by a conserved biogenesis machinery involves two RNase-dependent processing steps of miRNA maturation and the final step of miRNA-induced silencing complex (miRISC)-mediated target silencing. A functional miRISC requires Argonaute 2 (AGO2) as an essential catalytic component which plays central roles in miRISC function. We uncovered a post-translational regulatory mechanism of AGO2 by E-cadherin. Mechanistically, E-cadherin activates ERK to phosphorylate AGO2, along with enhanced protein glycosylation. Consequently, the phosphorylated AGO2 was stabilized and ultimately resulted in induced miRISC activity on gene silencing. This study revealed a novel pathway for miRNA regulation through an E-cadherin-mediated miRISC activation.
Collapse
Affiliation(s)
- Jie-Ning Li
- College of Medicine, Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Lung Sun
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, United States
| | - Ming-Yang Wang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Pai-Sheng Chen
- College of Medicine, Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
9
|
Torres Fernández LA, Mitschka S, Ulas T, Weise S, Dahm K, Becker M, Händler K, Beyer M, Windhausen J, Schultze JL, Kolanus W. The stem cell-specific protein TRIM71 inhibits maturation and activity of the pro-differentiation miRNA let-7 via two independent molecular mechanisms. RNA (NEW YORK, N.Y.) 2021; 27:rna.078696.121. [PMID: 33975917 PMCID: PMC8208056 DOI: 10.1261/rna.078696.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/29/2021] [Indexed: 05/05/2023]
Abstract
The stem cell-specific RNA-binding protein TRIM71/LIN-41 was the first identified target of the pro-differentiation and tumor suppressor miRNA let-7. TRIM71 has essential functions in embryonic development and a proposed oncogenic role in several cancer types, such as hepatocellular carcinoma. Here, we show that TRIM71 regulates let-7 expression and activity via two independent mechanisms. On the one hand, TRIM71 enhances pre-let-7 degradation through its direct interaction with LIN28 and TUT4, thereby inhibiting let-7 maturation and indirectly promoting the stabilization of let-7 targets. On the other hand, TRIM71 represses the activity of mature let-7 via its RNA-dependent interaction with the RNA-Induced Silencing Complex (RISC) effector protein AGO2. We found that TRIM71 directly binds and stabilizes let-7 targets, suggesting that let-7 activity inhibition occurs on active RISCs. MiRNA enrichment analysis of several transcriptomic datasets from mouse embryonic stem cells and human hepatocellular carcinoma cells suggests that these let-7 regulatory mechanisms shape transcriptomic changes during developmental and oncogenic processes. Altogether, our work reveals a novel role for TRIM71 as a miRNA repressor and sheds light on a dual mechanism of let-7 regulation.
Collapse
Affiliation(s)
| | | | - Thomas Ulas
- German Center for Neurodegenerative Diseases (DZNE) & Life and Medical Sciences Institute (LIMES), University of Bonn
| | - Stefan Weise
- Life and Medical Sciences Institute (LIMES), University of Bonn
| | - Kilian Dahm
- Life and Medical Sciences Institute (LIMES), University of Bonn
| | - Matthias Becker
- German Center for Neurodegenerative Diseases (DZNE), University of Bonn
| | - Kristian Händler
- German Center for Neurodegenerative Diseases (DZNE), University of Bonn
| | - Marc Beyer
- Life and Medical Sciences Institute (LIMES)
| | | | - Joachim L Schultze
- German Center for Neurodegenerative Diseases (DZNE) & Life and Medical Sciences Institute (LIMES), University of Bonn
| | | |
Collapse
|
10
|
Annese T, Tamma R, De Giorgis M, Ribatti D. microRNAs Biogenesis, Functions and Role in Tumor Angiogenesis. Front Oncol 2020; 10:581007. [PMID: 33330058 PMCID: PMC7729128 DOI: 10.3389/fonc.2020.581007] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNA molecules, evolutionary conserved. They target more than one mRNAs, thus influencing multiple molecular pathways, but also mRNAs may bind to a variety of miRNAs, either simultaneously or in a context-dependent manner. miRNAs biogenesis, including miRNA transcription, processing by Drosha and Dicer, transportation, RISC biding, and miRNA decay, are finely controlled in space and time. miRNAs are critical regulators in various biological processes, such as differentiation, proliferation, apoptosis, and development in both health and disease. Their dysregulation is involved in tumor initiation and progression. In tumors, they can act as onco-miRNAs or oncosuppressor-miRNA participating in distinct cellular pathways, and the same miRNA can perform both activities depending on the context. In tumor progression, the angiogenic switch is fundamental. miRNAs derived from tumor cells, endothelial cells, and cells of the surrounding microenvironment regulate tumor angiogenesis, acting as pro-angiomiR or anti-angiomiR. In this review, we described miRNA biogenesis and function, and we update the non-classical aspects of them. The most recent role in the nucleus, as transcriptional gene regulators and the different mechanisms by which they could be dysregulated, in tumor initiation and progression, are treated. In particular, we describe the role of miRNAs in sprouting angiogenesis, vessel co-option, and vasculogenic mimicry. The role of miRNAs in lymphoma angiogenesis is also discussed despite the scarcity of data. The information presented in this review reveals the need to do much more to discover the complete miRNA network regulating angiogenesis, not only using high-throughput computational analysis approaches but also morphological ones.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
11
|
Hentzschel F, Obrova K, Marti M. No evidence for Ago2 translocation from the host erythrocyte into the Plasmodium parasite. Wellcome Open Res 2020; 5:92. [PMID: 33501380 PMCID: PMC7808052 DOI: 10.12688/wellcomeopenres.15852.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Plasmodium parasites rely on various host factors to grow and replicate within red blood cells (RBC). While many host proteins are known that mediate parasite adhesion and invasion, few examples of host enzymes co-opted by the parasite during intracellular development have been described. Recent studies suggested that the host protein Argonaute 2 (Ago2), which is involved in RNA interference, can translocate into the parasite and affect its development. Here, we investigated this hypothesis. Methods: We used several different monoclonal antibodies to test for Ago2 localisation in the human malaria parasite, P. falciparum and rodent P. berghei parasites. In addition, we biochemically fractionated infected red blood cells to localize Ago2. We also quantified parasite growth and sexual commitment in the presence of the Ago2 inhibitor BCI-137. Results: Ago2 localization by fluorescence microscopy produced inconclusive results across the three different antibodies, suggesting cross-reactivity with parasite targets. Biochemical separation of parasite and RBC cytoplasm detected Ago2 only in the RBC cytoplasm and not in the parasite. Inhibition of Ago2 using BCl-137 did not result in altered parasite development. Conclusion: Ago2 localization in infected RBCs by microscopy is confounded by non-specific binding of antibodies. Complementary results using biochemical fractionation and Ago2 detection by western blot did not detect the protein in the parasite cytosol, and growth assays using a specific inhibitor demonstrated that its catalytical activity is not required for parasite development. We therefore conclude that previous data localising Ago2 to parasite ring stages are due to antibody cross reactivity, and that Ago2 is not required for intracellular Plasmodium development.
Collapse
Affiliation(s)
- Franziska Hentzschel
- Wellcome Center for Integrative Parasitology; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Klara Obrova
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
12
|
Wang D, Wang T, Gill A, Hilliard T, Chen F, Karamyshev AL, Zhang F. Uncovering the cellular capacity for intensive and specific feedback self-control of the argonautes and MicroRNA targeting activity. Nucleic Acids Res 2020; 48:4681-4697. [PMID: 32297952 PMCID: PMC7229836 DOI: 10.1093/nar/gkaa209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
The miRNA pathway has three segments—biogenesis, targeting and downstream regulatory effectors. We aimed to better understand their cellular control by exploring the miRNA-mRNA-targeting relationships. We first used human evolutionarily conserved sites. Strikingly, AGOs 1–3 are all among the top 14 mRNAs with the highest miRNA site counts, along with ANKRD52, the phosphatase regulatory subunit of the recently identified AGO phosphorylation cycle; and the AGO phosphorylation cycle mRNAs share much more than expected miRNA sites. The mRNAs for TNRC6, which acts with AGOs to channel miRNA-mediated regulatory actions onto specific mRNAs, are also heavily miRNA-targeted. In contrast, upstream miRNA biogenesis mRNAs are not, and neither are downstream regulatory effectors. In short, binding site enrichment in miRNA targeting machinery mRNAs, but neither upstream biogenesis nor downstream effector mRNAs, was observed, endowing a cellular capacity for intensive and specific feedback control of the targeting activity. The pattern was confirmed with experimentally determined miRNA-mRNA target relationships. Moreover, genetic experiments demonstrated cellular utilization of this capacity. Thus, we uncovered a capacity for intensive, and specific, feedback-regulation of miRNA targeting activity directly by miRNAs themselves, i.e. segment-specific feedback auto-regulation of miRNA pathway, complementing miRNAs pairing with transcription factors to form hybrid feedback-loop.
Collapse
Affiliation(s)
- Degeng Wang
- Department of Environmental Toxicology, Lubbock, TX 79409, USA.,The Institute of Environmental and Human Health (TIEHH), Lubbock, TX 79409, USA
| | - Tingzeng Wang
- Department of Environmental Toxicology, Lubbock, TX 79409, USA.,The Institute of Environmental and Human Health (TIEHH), Lubbock, TX 79409, USA
| | - Audrey Gill
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA
| | - Terrell Hilliard
- Department of Environmental Toxicology, Lubbock, TX 79409, USA.,The Institute of Environmental and Human Health (TIEHH), Lubbock, TX 79409, USA
| | - Fengqian Chen
- Department of Environmental Toxicology, Lubbock, TX 79409, USA.,The Institute of Environmental and Human Health (TIEHH), Lubbock, TX 79409, USA
| | - Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock TX 79430, USA
| | - Fangyuan Zhang
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
13
|
MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nat Rev Neurol 2020; 16:506-519. [DOI: 10.1038/s41582-020-0369-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
|
14
|
Shankar S, Tien JCY, Siebenaler RF, Chugh S, Dommeti VL, Zelenka-Wang S, Wang XM, Apel IJ, Waninger J, Eyunni S, Xu A, Mody M, Goodrum A, Zhang Y, Tesmer JJ, Mannan R, Cao X, Vats P, Pitchiaya S, Ellison SJ, Shi J, Kumar-Sinha C, Crawford HC, Chinnaiyan AM. An essential role for Argonaute 2 in EGFR-KRAS signaling in pancreatic cancer development. Nat Commun 2020; 11:2817. [PMID: 32499547 PMCID: PMC7272436 DOI: 10.1038/s41467-020-16309-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 04/20/2020] [Indexed: 01/14/2023] Open
Abstract
Both KRAS and EGFR are essential mediators of pancreatic cancer development and interact with Argonaute 2 (AGO2) to perturb its function. Here, in a mouse model of mutant KRAS-driven pancreatic cancer, loss of AGO2 allows precursor lesion (PanIN) formation yet prevents progression to pancreatic ductal adenocarcinoma (PDAC). Precursor lesions with AGO2 ablation undergo oncogene-induced senescence with altered microRNA expression and EGFR/RAS signaling, bypassed by loss of p53. In mouse and human pancreatic tissues, PDAC progression is associated with increased plasma membrane localization of RAS/AGO2. Furthermore, phosphorylation of AGO2Y393 disrupts both the wild-type and oncogenic KRAS-AGO2 interaction, albeit under different conditions. ARS-1620 (G12C-specific inhibitor) disrupts the KRASG12C-AGO2 interaction, suggesting that the interaction is targetable. Altogether, our study supports a biphasic model of pancreatic cancer development: an AGO2-independent early phase of PanIN formation reliant on EGFR-RAS signaling, and an AGO2-dependent phase wherein the mutant KRAS-AGO2 interaction is critical for PDAC progression.
Collapse
Affiliation(s)
- Sunita Shankar
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jean Ching-Yi Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ronald F Siebenaler
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Seema Chugh
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Vijaya L Dommeti
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sylvia Zelenka-Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiao-Ming Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ingrid J Apel
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jessica Waninger
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sanjana Eyunni
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alice Xu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Malay Mody
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew Goodrum
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - John J Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pankaj Vats
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sethuramasundaram Pitchiaya
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephanie J Ellison
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chandan Kumar-Sinha
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Howard C Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Urology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
15
|
Liao ZX, Huang KY, Kempson IM, Li HJ, Tseng SJ, Yang PC. Nanomodified strategies to overcome EGFR-tyrosine kinase inhibitors resistance in non-small cell lung cancer. J Control Release 2020; 324:482-492. [PMID: 32497570 DOI: 10.1016/j.jconrel.2020.05.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
Lung cancer is the primary cause of cancer-related death worldwide. 85%-90% of cases are non-small cell lung cancer (NSCLC) which characteristically exhibits altered epidermal growth factor receptor (EGFR) signaling is a major driver pathway. Unfortunately, therapeutic outcomes in treating NSCLC are compromised by the emergence of drug resistance in response to EGFR-tyrosine kinase inhibitor (TKI) targeted therapy due to the acquired resistance mutation EGFR T790M or activation of alternative pathways. There is current need for a new generation of TKIs to be developed to treat EGFR-TKI-resistant NSCLC. To overcome the above problems and improve clinical efficacy, nanotechnology with targeting abilities and sustained release has been proposed for EGFR-TKI-resistant NSCLC treatment and has already achieved success in in vitro or in vivo models. In this review, we summarize and illustrate representative nano-formulations targeting EGFR-TKI-resistant NSCLC. The described advances may pave the way to better understanding and design of nanocarriers and multifunctional nanosystems for efficient treatment for drug resistant NSCLC.
Collapse
Affiliation(s)
- Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Kuo-Yen Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ivan M Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Hsin-Jung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - S-Ja Tseng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 10051, Taiwan; National Taiwan University YongLin Scholar, YongLin Institute of Health, National Taiwan University, Taipei 10672, Taiwan.
| | - Pan-Chyr Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; The Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan; Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan.
| |
Collapse
|
16
|
Hentzschel F, Obrova K, Marti M. No evidence for Ago2 translocation from the host erythrocyte into the Plasmodium parasite. Wellcome Open Res 2020; 5:92. [PMID: 33501380 PMCID: PMC7808052 DOI: 10.12688/wellcomeopenres.15852.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2020] [Indexed: 02/15/2024] Open
Abstract
Background: Plasmodium parasites rely on various host factors to grow and replicate within red blood cells (RBC). While many host proteins are known that mediate parasite adhesion and invasion, few examples of host enzymes co-opted by the parasite during intracellular development have been described. Recent studies suggested that the host protein Argonaute 2 (Ago2), which is involved in RNA interference, can translocate into the parasite and affect its development. Here, we investigated this hypothesis. Methods: We used several different monoclonal antibodies to test for Ago2 localisation in the human malaria parasite, P. falciparum and rodent P. berghei parasites. In addition, we biochemically fractionated infected red blood cells to localize Ago2. We also quantified parasite growth and sexual commitment in the presence of the Ago2 inhibitor BCI-137. Results: Ago2 localization by fluorescence microscopy produced inconclusive results across the three different antibodies, suggesting cross-reactivity with parasite targets. Biochemical separation of parasite and RBC cytoplasm detected Ago2 only in the RBC cytoplasm and not in the parasite. Inhibition of Ago2 using BCl-137 did not result in altered parasite development. Conclusion: Ago2 localization in infected RBCs by microscopy is confounded by non-specific binding of antibodies. Complementary results using biochemical fractionation and Ago2 detection by western blot did not detect the protein in the parasite cytosol, and growth assays using a specific inhibitor demonstrated that its catalytical activity is not required for parasite development. We therefore conclude that previous data localising Ago2 to parasite ring stages are due to antibody cross reactivity, and that Ago2 is not required for intracellular Plasmodium development.
Collapse
Affiliation(s)
- Franziska Hentzschel
- Wellcome Center for Integrative Parasitology; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Klara Obrova
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
17
|
Li X, Wang X, Cheng Z, Zhu Q. AGO2 and its partners: a silencing complex, a chromatin modulator, and new features. Crit Rev Biochem Mol Biol 2020; 55:33-53. [DOI: 10.1080/10409238.2020.1738331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaojing Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Xueying Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Müller M, Fazi F, Ciaudo C. Argonaute Proteins: From Structure to Function in Development and Pathological Cell Fate Determination. Front Cell Dev Biol 2020; 7:360. [PMID: 32039195 PMCID: PMC6987405 DOI: 10.3389/fcell.2019.00360] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
The highly conserved Argonaute protein family members play a central role in the regulation of gene expression networks, orchestrating the establishment and the maintenance of cell identity throughout the entire life cycle, as well as in several human disorders, including cancers. Four functional Argonaute proteins (AGO1-4), with high structure similarity, have been described in humans and mice. Interestingly, only AGO2 is robustly expressed during human and mouse early development, in contrast to the other AGOs. Consequently, AGO2 is indispensable for early development in vivo and in vitro. Here, we review the roles of Argonaute proteins during early development by focusing on the interplay between specific domains of the protein and their function. Moreover, we report recent works highlighting the importance of AGO posttranslational modifications in cancer.
Collapse
Affiliation(s)
- Madlen Müller
- Swiss Federal Institute of Technology Zurich, Department of Biology, IMHS, Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Sciences Program, University of Zurich, Zurich, Switzerland
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Constance Ciaudo
- Swiss Federal Institute of Technology Zurich, Department of Biology, IMHS, Zurich, Switzerland
| |
Collapse
|
19
|
Ré DA, Cambiagno DA, Arce AL, Tomassi AH, Giustozzi M, Casati P, Ariel FD, Manavella PA. CURLY LEAF Regulates MicroRNA Activity by Controlling ARGONAUTE 1 Degradation in Plants. MOLECULAR PLANT 2020; 13:72-87. [PMID: 31606467 DOI: 10.1016/j.molp.2019.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/13/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
CURLY LEAF (CLF) encodes the methyltransferase subunit of the Polycomb Repressor Complex 2 (PRC2), which regulates the expression of target genes through H3K27 trimethylation. We isolated a new CLF mutant allele (clf-78) using a genetic screen designed to identify microRNA (miRNA) deficient mutants. CLF mutant plants showed impaired miRNA activity caused by increased ubiquitination and enhanced degradation of ARGONAUTE 1 (AGO1) in specific tissues. Such CLF-mediated AGO1 regulation was evident when plants were exposed to UV radiation, which caused increased susceptibility of clf mutants to some UV-induced responses. Furthermore, we showed that CLF directly regulates FBW2, which in turn triggers AGO1 degradation in the clf mutants. Interestingly, AGO1 bound to a target appeared particularly prone to degradation in the mutant plants, a process that was exacerbated when the complex bound a non-cleavable target. Thus, prolonged AGO1-target interaction seems to favor AGO1 degradation, suggesting that non-cleavable miRNA targets may overcome translation inhibition by modulating AGO1 stability in plants.
Collapse
Affiliation(s)
- Delfina A Ré
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Damian A Cambiagno
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Agustin L Arce
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Ariel H Tomassi
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Marisol Giustozzi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| | - Federico D Ariel
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| |
Collapse
|
20
|
Abstract
The Argonaute (AGO) family of proteins plays an essential role in the process of microRNA (miRNA)-mediated gene silencing. More specifically, they are the only known proteins to associate directly with miRNAs within the RNA-induced silencing complex (RISC). Given the importance of miRNA regulation of the transcriptome and its vast implications for human disease, it is essential to understand the molecular underpinnings of miRNA-AGO interactions. Although there are methods available to investigate mature miRNA decay and loading onto AGO2, no feasible method exists to detail the opposite process: release of miRNA from associated AGO proteins. In this chapter, we describe in detail a methodology derived from biochemical approaches, which can be used to quantify the release of any given miRNA from AGOs.
Collapse
Affiliation(s)
- Kyung-Won Min
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.,Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung, South Korea
| | - J Grayson Evans
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Erick C Won
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
21
|
Abstract
The coordination of cell fate decisions within complex multicellular structures rests on intercellular communication. To generate ordered patterns, cells need to know their relative positions within the growing structure. This is commonly achieved via the production and perception of mobile signaling molecules. In animal systems, such positional signals often act as morphogens and subdivide a field of cells into domains of discrete cell identities using a threshold-based readout of their mobility gradient. Reflecting the independent origin of multicellularity, plants evolved distinct signaling mechanisms to drive cell fate decisions. Many of the basic principles underlying developmental patterning are, however, shared between animals and plants, including the use of signaling gradients to provide positional information. In plant development, small RNAs can act as mobile instructive signals, and similar to classical morphogens in animals, employ a threshold-based readout of their mobility gradient to generate precisely defined cell fate boundaries. Given the distinctive nature of peptide morphogens and small RNAs, how might mechanisms underlying the function of traditionally morphogens be adapted to create morphogen-like behavior using small RNAs? In this review, we highlight the contributions of mobile small RNAs to pattern formation in plants and summarize recent studies that have advanced our understanding regarding the formation, stability, and interpretation of small RNA gradients.
Collapse
Affiliation(s)
- Simon Klesen
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Kristine Hill
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
22
|
Abstract
Bacterial-derived metabolites profoundly influence the host's cellular and organismal physiology. Seth et al. (2019) report that via interspecies S-nitrosylation, microbiota-derived nitric oxide directly alters the host's Argonaute family protein activity, and consequently impinges on the overall post-transcriptional gene silencing program through the microRNA (miRNA) machinery.
Collapse
|
23
|
Chen EYY, Chen JS, Ying SY. The microRNA and the perspectives of miR-302. Heliyon 2019; 5:e01167. [PMID: 30723835 PMCID: PMC6351428 DOI: 10.1016/j.heliyon.2019.e01167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 12/24/2022] Open
Abstract
MiRNAs are naturally occurring, small, non-coding RNA molecules that post-transcriptionally regulate the expression of a large number of genes involved in various biological processes, either through mRNA degradation or through translation inhibition. MiRNAs play important roles in many aspects of physiology and pathology throughout the body, particularly in cancer, which have made miRNAs attractive tools and targets for translational research. The types of non-coding RNAs, biogenesis of miRNAs, circulating miRNAs, and direct delivery of miRNA were briefly reviewed. As a case of point, the role and perspective of miR-302, a family of ES-specific miRNA, on cancer, iPSCs, heart disease were presented.
Collapse
Affiliation(s)
- Emily Yen Yu Chen
- Department of Integrative Anatomical Sciences, Keck School of Medicine, BMT-403, University of Southern California, 1333 San Pablo Street, Los Angeles, CA 90033, USA
- WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA 90670, USA
| | - Jack S. Chen
- WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA 90670, USA
| | - Shao-Yao Ying
- Department of Integrative Anatomical Sciences, Keck School of Medicine, BMT-403, University of Southern California, 1333 San Pablo Street, Los Angeles, CA 90033, USA
| |
Collapse
|
24
|
Giambruno R, Mihailovich M, Bonaldi T. Mass Spectrometry-Based Proteomics to Unveil the Non-coding RNA World. Front Mol Biosci 2018; 5:90. [PMID: 30467545 PMCID: PMC6236024 DOI: 10.3389/fmolb.2018.00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/15/2018] [Indexed: 01/03/2023] Open
Abstract
The interaction between non-coding RNAs (ncRNAs) and proteins is crucial for the stability, localization and function of the different classes of ncRNAs. Although ncRNAs, when embedded in various ribonucleoprotein (RNP) complexes, control the fundamental processes of gene expression, their biological functions and mechanisms of action are still largely unexplored. Mass Spectrometry (MS)-based proteomics has emerged as powerful tool to study the ncRNA world: on the one hand, by identifying the proteins interacting with distinct ncRNAs; on the other hand, by measuring the impact of ncRNAs on global protein levels. Here, we will first provide a concise overview on the basic principles of MS-based proteomics for systematic protein identification and quantification; then, we will recapitulate the main approaches that have been implemented for the screening of ncRNA interactors and the dissection of ncRNA-protein complex composition. Finally, we will describe examples of various proteomics strategies developed to characterize the effect of ncRNAs on gene expression, with a focus on the systematic identification of microRNA (miRNA) targets.
Collapse
Affiliation(s)
| | | | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
25
|
Abstract
MicroRNAs (miRNAs) are known as the master regulators of gene expression, and for the last two decades our knowledge of their functional reach keeps expanding. Recent studies have shown that a miRNA’s role in regulation extends to extracellular and intracellular organelles. Several studies have shown a role for miRNA in regulating the mitochondrial genome in normal and disease conditions. Mitochondrial dysfunction occurs in many human pathologies, such as cardiovascular disease, diabetes, cancer, and neurological diseases. These studies have shed some light on regulation of the mitochondrial genome as well as helped to explain the role of miRNA in altering mitochondrial function and the ensuing effects on cells. Although the field has grown in recent years, many questions still remain. For example, little is known about how nuclear-encoded miRNAs translocate to the mitochondrial matrix. Knowledge of the mechanisms of miRNA transport into the mitochondrial matrix is likely to provide important insights into our understanding of disease pathophysiology and could represent new targets for therapeutic intervention. For this review, our focus will be on the role of a subset of miRNAs, known as MitomiR, in mitochondrial function. We also discuss the potential mechanisms used by these nuclear-encoded miRNAs for import into the mitochondrial compartment. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/microrna-translocation-into-the-mitochondria/ .
Collapse
Affiliation(s)
| | - Samarjit Das
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
26
|
Rajgor D, Sanderson TM, Amici M, Collingridge GL, Hanley JG. NMDAR-dependent Argonaute 2 phosphorylation regulates miRNA activity and dendritic spine plasticity. EMBO J 2018; 37:e97943. [PMID: 29712715 PMCID: PMC5983126 DOI: 10.15252/embj.201797943] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) repress translation of target mRNAs by associating with Argonaute (Ago) proteins to form the RNA-induced silencing complex (RISC), underpinning a powerful mechanism for fine-tuning protein expression. Specific miRNAs are required for NMDA receptor (NMDAR)-dependent synaptic plasticity by modulating the translation of proteins involved in dendritic spine morphogenesis or synaptic transmission. However, it is unknown how NMDAR stimulation stimulates RISC activity to rapidly repress translation of synaptic proteins. We show that NMDAR stimulation transiently increases Akt-dependent phosphorylation of Ago2 at S387, which causes an increase in binding to GW182 and a rapid increase in translational repression of LIMK1 via miR-134. Furthermore, NMDAR-dependent down-regulation of endogenous LIMK1 translation in dendrites and dendritic spine shrinkage requires phospho-regulation of Ago2 at S387. AMPAR trafficking and hippocampal LTD do not involve S387 phosphorylation, defining this mechanism as a specific pathway for structural plasticity. This work defines a novel mechanism for the rapid transduction of NMDAR stimulation into miRNA-mediated translational repression to control dendritic spine morphology.
Collapse
Affiliation(s)
- Dipen Rajgor
- Centre for Synaptic Plasticity and School of Biochemistry, University of Bristol, Bristol, UK
| | - Thomas M Sanderson
- Centre for Synaptic Plasticity and School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Mascia Amici
- Centre for Synaptic Plasticity and School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Graham L Collingridge
- Centre for Synaptic Plasticity and School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Jonathan G Hanley
- Centre for Synaptic Plasticity and School of Biochemistry, University of Bristol, Bristol, UK
| |
Collapse
|
27
|
Paradis-Isler N, Boehm J. NMDA receptor-dependent dephosphorylation of serine 387 in Argonaute 2 increases its degradation and affects dendritic spine density and maturation. J Biol Chem 2018; 293:9311-9325. [PMID: 29735530 DOI: 10.1074/jbc.ra117.001007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
Argonaute (AGO) proteins are essential components of the microRNA (miRNA) pathway. AGO proteins are loaded with miRNAs to target mRNAs and thereby regulate mRNA stability and protein translation. As such, AGO proteins are important actors in controlling local protein synthesis, for instance, at dendritic spines and synapses. Although miRNA-mediated regulation of dendritic mRNAs has become a focus of intense interest over the past years, the mechanisms regulating neuronal AGO proteins remain largely unknown. Here, using rat hippocampal neurons, we report that dendritic Ago2 is down-regulated by the proteasome upon NMDA receptor activation. We found that Ser-387 in Ago2 is dephosphorylated upon NMDA treatment and that this dephosphorylation precedes Ago2 degradation. Expressing Ser-387 phosphorylation-deficient or phosphomimetic Ago2 in neurons, we observed that this phosphorylation site is involved in modulating dendritic spine morphology and postsynaptic density protein 95 (PSD-95) expression in spines. Collectively, our results point toward a signaling pathway linking NMDA receptor-dependent Ago2 dephosphorylation and turnover to postsynaptic structural changes. They support a model in which NMDA receptor-mediated dephosphorylation of Ago2 and Ago2 turnover contributes to the de-repression of mRNAs involved in spine growth and maturation.
Collapse
Affiliation(s)
- Nicolas Paradis-Isler
- From the Département Neurosciences, Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Jannic Boehm
- From the Département Neurosciences, Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
28
|
Bridge KS, Shah KM, Li Y, Foxler DE, Wong SCK, Miller DC, Davidson KM, Foster JG, Rose R, Hodgkinson MR, Ribeiro PS, Aboobaker AA, Yashiro K, Wang X, Graves PR, Plevin MJ, Lagos D, Sharp TV. Argonaute Utilization for miRNA Silencing Is Determined by Phosphorylation-Dependent Recruitment of LIM-Domain-Containing Proteins. Cell Rep 2018; 20:173-187. [PMID: 28683311 PMCID: PMC5507773 DOI: 10.1016/j.celrep.2017.06.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/27/2017] [Accepted: 06/09/2017] [Indexed: 10/26/2022] Open
Abstract
As core components of the microRNA-induced silencing complex (miRISC), Argonaute (AGO) proteins interact with TNRC6 proteins, recruiting other effectors of translational repression/mRNA destabilization. Here, we show that LIMD1 coordinates the assembly of an AGO-TNRC6 containing miRISC complex by binding both proteins simultaneously at distinct interfaces. Phosphorylation of AGO2 at Ser 387 by Akt3 induces LIMD1 binding, which in turn enables AGO2 to interact with TNRC6A and downstream effector DDX6. Conservation of this serine in AGO1 and 4 indicates this mechanism may be a fundamental requirement for AGO function and miRISC assembly. Upon CRISPR-Cas9-mediated knockout of LIMD1, AGO2 miRNA-silencing function is lost and miRNA silencing becomes dependent on a complex formed by AGO3 and the LIMD1 family member WTIP. The switch to AGO3 utilization occurs due to the presence of a glutamic acid residue (E390) on the interaction interface, which allows AGO3 to bind to LIMD1, AJUBA, and WTIP irrespective of Akt signaling.
Collapse
Affiliation(s)
- Katherine S Bridge
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kunal M Shah
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Yigen Li
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Daniel E Foxler
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Sybil C K Wong
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Duncan C Miller
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kathryn M Davidson
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - John G Foster
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Ruth Rose
- School of Biological and Chemical Sciences, Queen Mary University of London, Fogg Building, Mile End Road, London E1 4NS, UK
| | | | - Paulo S Ribeiro
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - A Aziz Aboobaker
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| | - Kenta Yashiro
- Cardiac Regeneration and Therapeutics, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Xiaozhong Wang
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | - Paul R Graves
- Department of Radiation Oncology, New York-Presbyterian Brooklyn Methodist Hospital, 506 6th Street, Brooklyn, NY 11215, USA
| | - Michael J Plevin
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Dimitris Lagos
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Tyson V Sharp
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
29
|
Abstract
MicroRNAs (miRNAs), widely distributed, small regulatory RNA genes, target both messenger RNA (mRNA) degradation and suppression of protein translation based on sequence complementarity between the miRNA and its targeted mRNA. Different names have been used to describe various types of miRNA. During evolution, RNA retroviruses or transgenes invaded the eukaryotic genome and were inserted itself in the noncoding regions of DNA, conceivably acting as transposon-like jumping genes, providing defense from viral invasion and fine-tuning of gene expression as a secondary level of gene modulation in eukaryotes. When a transposon is inserted in the intron, it becomes an intronic miRNA, taking advantage of the protein synthesis machinery, i.e., mRNA transcription and splicing, as a means for processing and maturation. MiRNAs have been found to play an important, but not life-threatening, role in embryonic development. They might play a pivotal role in diverse biological systems in various organisms, facilitating a quick response and accurate plotting of body physiology and structures. Based on these unique properties, manufactured intronic miRNAs have been developed for in vitro evaluation of gene function, in vivo gene therapy, and generation of transgenic animal models. The biogenesis of miRNAs, circulating miRNAs, miRNAs and cancer, iPSCs, and heart disease are presented in this chapter, highlighting some recent studies on these topics.
Collapse
Affiliation(s)
- Shao-Yao Ying
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Donald C Chang
- WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA, USA
| | - Shi-Lung Lin
- Division of Regenerative Medicine, WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA, USA
| |
Collapse
|
30
|
Skopelitis DS, Benkovics AH, Husbands AY, Timmermans MCP. Boundary Formation through a Direct Threshold-Based Readout of Mobile Small RNA Gradients. Dev Cell 2017; 43:265-273.e6. [PMID: 29107557 DOI: 10.1016/j.devcel.2017.10.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/28/2017] [Accepted: 10/03/2017] [Indexed: 11/17/2022]
Abstract
Small RNAs have emerged as a new class of mobile signals. Here, we investigate their mechanism of action and show that mobile small RNAs generate sharply defined domains of target gene expression through an intrinsic and direct threshold-based readout of their mobility gradients. This readout is highly sensitive to small RNA levels at the source, allowing plasticity in the positioning of a target gene expression boundary. Besides patterning their immediate targets, the readouts of opposing small RNA gradients enable specification of robust, uniformly positioned developmental boundaries. These patterning properties of small RNAs are reminiscent of those of animal morphogens. However, their mode of action and the intrinsic nature of their gradients distinguish mobile small RNAs from classical morphogens and present a unique direct mechanism through which to relay positional information. Mobile small RNAs and their targets thus emerge as highly portable, evolutionarily tractable regulatory modules through which to create pattern.
Collapse
Affiliation(s)
| | - Anna H Benkovics
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Aman Y Husbands
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Marja C P Timmermans
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA; Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| |
Collapse
|
31
|
Quévillon Huberdeau M, Zeitler DM, Hauptmann J, Bruckmann A, Fressigné L, Danner J, Piquet S, Strieder N, Engelmann JC, Jannot G, Deutzmann R, Simard MJ, Meister G. Phosphorylation of Argonaute proteins affects mRNA binding and is essential for microRNA-guided gene silencing in vivo. EMBO J 2017. [PMID: 28645918 DOI: 10.15252/embj.201696386] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Argonaute proteins associate with microRNAs and are key components of gene silencing pathways. With such a pivotal role, these proteins represent ideal targets for regulatory post-translational modifications. Using quantitative mass spectrometry, we find that a C-terminal serine/threonine cluster is phosphorylated at five different residues in human and Caenorhabditis elegans In human, hyper-phosphorylation does not affect microRNA binding, localization, or cleavage activity of Ago2. However, mRNA binding is strongly affected. Strikingly, on Ago2 mutants that cannot bind microRNAs or mRNAs, the cluster remains unphosphorylated indicating a role at late stages of gene silencing. In C. elegans, the phosphorylation of the conserved cluster of ALG-1 is essential for microRNA function in vivo Furthermore, a single point mutation within the cluster is sufficient to phenocopy the loss of its complete phosphorylation. Interestingly, this mutant retains its capacity to produce and bind microRNAs and represses expression when artificially tethered to an mRNA Altogether, our data suggest that the phosphorylation state of the serine/threonine cluster is important for Argonaute-mRNA interactions.
Collapse
Affiliation(s)
- Miguel Quévillon Huberdeau
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Centre (L'Hôtel-Dieu de Québec), Quebec City, Québec, Canada.,Laval University Cancer Research Centre, Quebec City, Québec, Canada
| | - Daniela M Zeitler
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Judith Hauptmann
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Astrid Bruckmann
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Lucile Fressigné
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Centre (L'Hôtel-Dieu de Québec), Quebec City, Québec, Canada.,Laval University Cancer Research Centre, Quebec City, Québec, Canada
| | - Johannes Danner
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Sandra Piquet
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Centre (L'Hôtel-Dieu de Québec), Quebec City, Québec, Canada.,Laval University Cancer Research Centre, Quebec City, Québec, Canada
| | - Nicholas Strieder
- Department of Statistical Bioinformatics, University of Regensburg, Regensburg, Germany
| | - Julia C Engelmann
- Department of Statistical Bioinformatics, University of Regensburg, Regensburg, Germany
| | - Guillaume Jannot
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Centre (L'Hôtel-Dieu de Québec), Quebec City, Québec, Canada.,Laval University Cancer Research Centre, Quebec City, Québec, Canada
| | - Rainer Deutzmann
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Martin J Simard
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Centre (L'Hôtel-Dieu de Québec), Quebec City, Québec, Canada .,Laval University Cancer Research Centre, Quebec City, Québec, Canada
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
32
|
Sun Y, Sun Y, Zhao R. Establishment of MicroRNA delivery system by PP7 bacteriophage-like particles carrying cell-penetrating peptide. J Biosci Bioeng 2017; 124:242-249. [PMID: 28442387 DOI: 10.1016/j.jbiosc.2017.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 02/08/2023]
Abstract
MicroRNAs have great therapeutic potential in cancer and other diseases. However, their instability and low in vivo delivery efficiency limits their application. Recombinant PP7 bacteriophage-based virus-like particles (VLPs) could protect microRNAs against rapid degradation by RNase by packaging specific exogenous pre-microRNAs using the pac site. Insertion of a cell-penetrating peptide (CPP) into the AB-loop of VLPs could significantly improve the delivery efficiency of microRNAs into mammalian cells. Unlike other microRNA delivery methods (viral or non-viral vectors), recombinant PP7 VLPs carrying a CPP and microRNA could be efficiently expressed in Escherichia coli using the one-plasmid double expression system. Here we showed that PP7 VLPs carrying a CPP penetrated hepatoma SK-HEP-1 cells and delivered the pre-microRNA-23b, which was processed into a mature product within 24 h; a concentration of 10 nM was sufficient for the inhibition of hepatoma cell migration via the downregulation of liver-intestine cadherin expression. Furthermore, PP7 VLPs carrying a CPP and a pre-microRNA were not infectious, replicative, or cytotoxic. Therefore, recombinant PP7 VLPs can be used for simultaneous and targeted delivery of both microRNAs and peptides because of their ability to package specific exogenous RNA using the pac site and to display peptides.
Collapse
Affiliation(s)
- Yanli Sun
- Institute of Nanomedicine Technology, Department of Laboratory Medicine, Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261053, China.
| | - Yanhua Sun
- Department of Hematology, Weifang People's Hospital, Weifang 261000, China
| | - Ronglan Zhao
- Institute of Nanomedicine Technology, Department of Laboratory Medicine, Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
33
|
Leung AKL. The Whereabouts of microRNA Actions: Cytoplasm and Beyond. Trends Cell Biol 2016; 25:601-610. [PMID: 26410406 DOI: 10.1016/j.tcb.2015.07.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/23/2015] [Accepted: 07/17/2015] [Indexed: 12/31/2022]
Abstract
MicroRNAs (miRNAs) are a conserved class of approximately 22 nucleotide (nt) short noncoding RNAs that normally silence gene expression via translational repression and/or degradation of targeted mRNAs in plants and animals. Identifying the whereabouts of miRNAs potentially informs miRNA functions, some of which are perhaps specialized to specific cellular compartments. In this review, the significance of miRNA localizations in the cytoplasm, including those at RNA granules and endomembranes, and the export of miRNAs to extracellular space will be discussed. How miRNA localizations and functions are regulated by protein modifications on the core miRNA-binding protein Argonaute (AGO) during normal and stress conditions will be explored, and in conclusion new AGO partners, non-AGO miRNA-binding proteins, and the emergent understanding of miRNAs found in the nucleoplasm, nucleoli, and mitochondria will be discussed.
Collapse
Affiliation(s)
- Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
34
|
Post-Translational Modifications and RNA-Binding Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:297-317. [PMID: 27256391 DOI: 10.1007/978-3-319-29073-7_12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA-binding proteins affect cellular metabolic programs through development and in response to cellular stimuli. Though much work has been done to elucidate the roles of a handful of RNA-binding proteins and their effect on RNA metabolism, the progress of studies to understand the effects of post-translational modifications of this class of proteins is far from complete. This chapter summarizes the work that has been done to identify the consequence of post-translational modifications to some RNA-binding proteins. The effects of these modifications have been shown to increase the panoply of functions that a given RNA-binding protein can assume. We will survey the experimental methods that are used to identify the presence of several protein modifications and methods that attempt to discern the consequence of these modifications.
Collapse
|
35
|
Dysregulated RNA-Induced Silencing Complex (RISC) Assembly within CNS Corresponds with Abnormal miRNA Expression during Autoimmune Demyelination. J Neurosci 2015; 35:7521-37. [PMID: 25972178 DOI: 10.1523/jneurosci.4794-14.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) associate with Argonaute (Ago), GW182, and FXR1 proteins to form RNA-induced silencing complexes (RISCs). RISCs represent a critical checkpoint in the regulation and bioavailability of miRNAs. Recent studies have revealed dysregulation of miRNAs in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE); however, the function of RISCs in EAE and MS is largely unknown. Here, we examined the expression of Ago, GW182, and FXR1 in CNS tissue, oligodendrocytes (OLs), brain-infiltrating T lymphocytes, and CD3(+)splenocytes (SCs) of EAE mic, and found that global RISC protein levels were significantly dysregulated. Specifically, Ago2 and FXR1 levels were decreased in OLs and brain-infiltrating T cells in EAE mice. Accordingly, assembly of Ago2/GW182/FXR1 complexes in EAE brain tissues was disrupted, as confirmed by immunoprecipitation experiments. In parallel with alterations in RISC complex content in OLs, we found downregulation of miRNAs essential for differentiation and survival of OLs and myelin synthesis. In brain-infiltrating T lymphocytes, aberrant RISC formation contributed to miRNA-dependent proinflammatory helper T-cell polarization. In CD3(+) SCs, we found increased expression of both Ago2 and FXR1 in EAE compared with nonimmunized mice. Therefore, our results demonstrate a gradient in expression of miRNA between primary activated T cells in the periphery and polarized CNS-infiltrating T cells. These results suggest that, in polarized autoreactive effector T cells, miRNA synthesis is inhibited in response to dysregulated RISC assembly, allowing these cells to maintain a highly specific proinflammatory program. Therefore, our findings may provide a mechanism that leads to miRNA dysregulation in EAE/MS.
Collapse
|
36
|
Josa-Prado F, Henley JM, Wilkinson KA. SUMOylation of Argonaute-2 regulates RNA interference activity. Biochem Biophys Res Commun 2015; 464:1066-1071. [PMID: 26188511 PMCID: PMC4624959 DOI: 10.1016/j.bbrc.2015.07.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/14/2015] [Indexed: 12/21/2022]
Abstract
Post-translational modification of substrate proteins by small ubiquitin-like modifier (SUMO) regulates a vast array of cellular processes. SUMOylation occurs through three sequential enzymatic steps termed E1, E2 and E3. Substrate selection can be determined through interactions between the target protein and the SUMO E2 conjugating enzyme Ubc9 and specificity can be enhanced by substrate interactions with E3 ligase enzymes. We used the putative substrate recognition (PINIT) domain from the SUMO E3 PIAS3 as bait to identify potential SUMO substrates. One protein identified was Argonaute-2 (Ago2), which mediates RNA-induced gene silencing through binding small RNAs and promoting degradation of complimentary target mRNAs. We show that Ago2 can be SUMOylated in mammalian cells by both SUMO1 and SUMO2. SUMOylation occurs primarily at K402, and mutation of the SUMO consensus site surrounding this lysine reduces Ago2-mediated siRNA-induced silencing in a luciferase-based reporter assay. These results identify SUMOylation as a potential regulator of Ago2 activity and open new avenues for research into the mechanisms underlying the regulation of RNA-induced gene silencing. Argonaute-2 (Ago2) is SUMOylated in mammalian cells. SUMOylation of Ago2 takes place primarily at lysine 402. Abolishing Ago2 SUMOylation reduces its functional activity.
Collapse
Affiliation(s)
- Fernando Josa-Prado
- School of Biochemistry, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Jeremy M Henley
- School of Biochemistry, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Kevin A Wilkinson
- School of Biochemistry, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, United Kingdom.
| |
Collapse
|