1
|
Mierke CT. Softness or Stiffness What Contributes to Cancer and Cancer Metastasis? Cells 2025; 14:584. [PMID: 40277910 PMCID: PMC12026216 DOI: 10.3390/cells14080584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Beyond the genomic and proteomic analysis of bulk and single cancer cells, a new focus of cancer research is emerging that is based on the mechanical analysis of cancer cells. Therefore, several biophysical techniques have been developed and adapted. The characterization of cancer cells, like human cancer cell lines, started with their mechanical characterization at mostly a single timepoint. A universal hypothesis has been proposed that cancer cells need to be softer to migrate and invade tissues and subsequently metastasize in targeted organs. Thus, the softness of cancer cells has been suggested to serve as a universal physical marker for the malignancy of cancer types. However, it has turned out that there exists the opposite phenomenon, namely that stiffer cancer cells are more migratory and invasive and therefore lead to more metastases. These contradictory results question the universality of the role of softness of cancer cells in the malignant progression of cancers. Another problem is that the various biophysical techniques used can affect the mechanical properties of cancer cells, making it even more difficult to compare the results of different studies. Apart from the instrumentation, the culture and measurement conditions of the cancer cells can influence the mechanical measurements. The review highlights the main advances of the mechanical characterization of cancer cells, discusses the strength and weaknesses of the approaches, and questions whether the passive mechanical characterization of cancer cells is still state-of-the art. Besides the cell models, conditions and biophysical setups, the role of the microenvironment on the mechanical characteristics of cancer cells is presented and debated. Finally, combinatorial approaches to determine the malignant potential of tumors, such as the involvement of the ECM, the cells in a homogeneous or heterogeneous association, or biological multi-omics analyses, together with the dynamic-mechanical analysis of cancer cells, are highlighted as new frontiers of research.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Sciences, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Botticelli M, Metzcar J, Phillips T, Cox S, Keshavanarayana P, Spill F. A hybrid computational model of cancer spheroid growth with ribose-induced collagen stiffening. Front Bioeng Biotechnol 2025; 13:1515962. [PMID: 40271351 PMCID: PMC12014586 DOI: 10.3389/fbioe.2025.1515962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/26/2025] [Indexed: 04/25/2025] Open
Abstract
Metastasis, the leading cause of death in cancer patients, arises when cancer cells disseminate from a primary solid tumour to distant organs. Growth and invasion of the solid tumour often involve collective cell migration, which is profoundly influenced by cell-cell interactions and the extracellular matrix (ECM). The ECM's biochemical composition and mechanical properties, such as stiffness, regulate cancer cell behaviour and migration dynamics. Mathematical modelling serves as a pivotal tool for studying and predicting these complex dynamics, with hybrid discrete-continuous models offering a powerful approach by combining agent-based representations of cells with continuum descriptions of the surrounding microenvironment. In this study, we investigate the impact of ECM stiffness, modulated via ribose-induced collagen cross-linking, on cancer spheroid growth and invasion. We employed a hybrid discrete-continuous model implemented in PhysiCell to simulate spheroid dynamics, successfully replicating three-dimensional in vitro experiments. The model incorporates detailed representations of cell-cell and cell-ECM interactions, ECM remodelling, and cell proliferation. Our simulations align with experimental observations of two breast cancer cell lines, non-invasive MCF7 and invasive HCC 1954, under varying ECM stiffness conditions. The results demonstrate that increased ECM stiffness due to ribose-induced cross-linking inhibits spheroid invasion in invasive cells, whereas non-invasive cells remain largely unaffected. Furthermore, our simulations show that higher ECM degradation by the cells not only enables spheroid growth and invasion but also facilitates the formation of multicellular protrusions. Conversely, increasing the maximum speed that cells can reach due to cell-ECM interactions enhances spheroid growth while promoting single-cell invasion. This hybrid modelling approach enhances our understanding of the interplay between cancer cell migration, proliferation, and ECM mechanical properties, paving the way for future studies incorporating additional ECM characteristics and microenvironmental conditions.
Collapse
Affiliation(s)
- Margherita Botticelli
- School of Mathematics, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - John Metzcar
- Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States
| | - Thomas Phillips
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Susan Cox
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Pradeep Keshavanarayana
- School of Mathematics, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Computational Medicine, University College London, London, United Kingdom
| | - Fabian Spill
- School of Mathematics, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
d'Humières J, Wang L, Sherwood DR, Plastino J. The actin protrusion deforms the nucleus during invasion through basement membrane. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643012. [PMID: 40161654 PMCID: PMC11952552 DOI: 10.1101/2025.03.13.643012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cell invasion through basement membrane (BM) extracellular matrix barriers is important during organ development, immune cell trafficking, and cancer metastasis. Here we study an invasion event, anchor cell (AC) invasion, which occurs during Caenorhabditis elegans development. The actin protrusion of the invading AC mechanically displaces the BM, but it is not known how forces are balanced to prevent the growing actin protrusion from pushing itself backward when confronted with a load. Here we observe that the distal end of the actin protrusion in the invading AC abuts the nucleus and deforms it. Further we show that there is a correlation between invasion efficiency and nuclear deformation: under mutant conditions where invasion is reduced, nuclear deformation is diminished. However, nuclear deformation and invasion are unaffected by interfering with the molecular connections between the actin and microtubule cytoskeletons and the nuclear envelope. Together these data suggest that the AC actin protrusion braces against the nucleus to apply forces during invasion, but that nucleus-cytoskeleton molecular connections are not necessary for this to occur. SUMMARY STATEMENT Actin-based membrane protrusions in invading cells apply force to basement membrane (BM) barriers to help break through them. In cell motility in 2D, the actin protrusion uses cell-substrate adhesions for leverage to push forward against obstacles in what is known as the molecular clutch. The situation is different in 3D invasion, where the adhesive substrate is being effaced by the invading cell. It is not clear, in this case, why the growing actin protrusion doesn't push itself backwards instead of extending forwards through the BM. The data presented here provide evidence that the distal end of the invasive actin protrusion is braced against the stiff, immobile nucleus, allowing growth of the proximal end to apply force on the BM.
Collapse
|
4
|
Xiao H, Gong X, Jordan SN, Liang Z, Mak M. Viscosity regulates cell spreading and cell-extracellular matrix interactions. FEBS J 2025; 292:740-758. [PMID: 39529371 PMCID: PMC12002552 DOI: 10.1111/febs.17306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/16/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Fluid viscosity and osmolarity are among some of the underappreciated mechanical stimuli that cells can detect. Abnormal changes of multiple fluidic factors such as viscosity and osmolarity have been linked with diseases such as cystic fibrosis, cancer, and coronary heart disease. Changes in viscosity have been recently suggested as a regulator of cell locomotion. These novel studies focus on cell migration and spreading on glass substrates and through microchannels, and it remains a question whether viscosity impacts the cellular remodeling of extracellular matrices (ECMs). Here, we demonstrate that elevated viscosity induces cellular remodeling of collagen substrates and enhances cell spreading on ECM-mimetic substrates. Our results expand on recent work showing that viscosity induces increased cellular forces and demonstrates that viscosity can drive local ECM densification. Our data further show that microtubules, Ras-related C3 botulinum toxin substrate 1 (Rac1), actin-related protein 2/3 (Arp2/3) complex, Rho-associated protein kinase 1 (ROCK), and myosin are important regulators of viscosity-induced ECM remodeling. In the context of viscosity-induced cell spreading, cells cultured on glass and collagen substrates exhibit markedly different responses to pharmacological treatments, indicating that microtubules, Rac1, and Arp2/3 play distinct roles in regulating cellular spreading depending on the substrate. In addition, our results demonstrate that high osmotic pressures override viscosity-induced cell spreading by suppressing membrane ruffling. Our results demonstrate viscosity as a regulator of ECM remodeling and cell spreading in a fibrillar microenvironment. We also reveal a complex interplay between viscosity and osmolarity. We anticipate that our research can pave the way for future investigations into the crucial roles played by viscosity in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Hugh Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Xiangyu Gong
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Seyma Nayir Jordan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Zixie Liang
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
5
|
Kelly H, Inada M, Itoh Y. The Diverse Pathways for Cell Surface MT1-MMP Localization in Migratory Cells. Cells 2025; 14:209. [PMID: 39937000 PMCID: PMC11816416 DOI: 10.3390/cells14030209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
Controlled cell migration is an essential biological process in health, while uncontrolled cell migration contributes to disease progression. For cells to migrate through tissue, they must first degrade the extracellular matrix (ECM), which acts as a physical barrier to cell migration. A type I transmembrane-type matrix metalloproteinase, MT1-MMP, is the key enzyme involved in this process. It has been extensively shown that MT1-MMP promotes the migration of different cell types in tissue, including fibroblasts, epithelial cells, endothelial cells, macrophages, mesenchymal stem cells, and cancer cells. MT1-MMP is tightly regulated at different levels, and its localization to leading-edge membrane structures is an essential process for MT1-MMP to promote cellular invasion. Different cells display different motility-associated membrane structures, which contribute to their invasive ability, and there are diverse mechanisms of MT1-MMP localization to these structures. In this article, we will discuss the current understanding of MT1-MMP regulation, in particular, localization mechanisms to these different motility-associated membrane structures.
Collapse
Affiliation(s)
- Hannah Kelly
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK;
| | - Masaki Inada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan;
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Yoshifumi Itoh
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK;
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
6
|
Cai G, Rodgers NC, Liu AP. Unjamming Transition as a Paradigm for Biomechanical Control of Cancer Metastasis. Cytoskeleton (Hoboken) 2024. [PMID: 39633605 DOI: 10.1002/cm.21963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Tumor metastasis is a complex phenomenon that poses significant challenges to current cancer therapeutics. While the biochemical signaling involved in promoting motile phenotypes is well understood, the role of biomechanical interactions has recently begun to be incorporated into models of tumor cell migration. Specifically, we propose the unjamming transition, adapted from physical paradigms describing the behavior of granular materials, to better discern the transition toward an invasive phenotype. In this review, we introduce the jamming transition broadly and narrow our discussion to the different modes of 3D tumor cell migration that arise. Then we discuss the mechanical interactions between tumor cells and their neighbors, along with the interactions between tumor cells and the surrounding extracellular matrix. We center our discussion on the interactions that induce a motile state or unjamming transition in these contexts. By considering the interplay between biochemical and biomechanical signaling in tumor cell migration, we can advance our understanding of biomechanical control in cancer metastasis.
Collapse
Affiliation(s)
- Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole C Rodgers
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Xu E, Huang Z, Zhu K, Hu J, Ma X, Wang Y, Zhu J, Zhang C. PDGFRB promotes dedifferentiation and pulmonary metastasis through rearrangement of cytoskeleton under hypoxic microenvironment in osteosarcoma. Cell Signal 2024; 125:111501. [PMID: 39505287 DOI: 10.1016/j.cellsig.2024.111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Osteosarcoma (OS) cells commonly suffer from hypoxia and dedifferentiation, resulting in poor prognosis. We plan to identify the role of hypoxia on dedifferentiation and the associated cellular signaling. METHODS We performed sphere formation assays and determined spheroid cells as dedifferentiated cells by detecting stem cell-like markers. RNAi assay was used to explore the relationship between hypoxia inducible factor 1 subunit alpha (HIF1A) and platelet derived growth factor receptor beta (PDGFRB). We obtained PDGFRB knockdown and overexpression cells through lentiviral infection experiments and detected the expression of PDGFRB, p-PDGFRB, focal adhesion kinase (FAK), p-FAK, phosphorylated myosin light chain 2 (p-MLC2), and ras homolog family member A (RhoA) in each group. The effects of PDGFRB on cytoskeleton rearrangement and cell adhesion were explored by immunocytochemistry. Wound-healing experiments, transwell assays, and animal trials were employed to investigate the effect of PDGFRB on OS cell metastasis both in vitro and in vivo. RESULTS Dedifferentiated OS cells were found to exhibit high expression of HIF1A and PDGFRB, and HIF1A upregulated PDGFRB, subsequently activated RhoA, and increased the phosphorylation of MLC2. PDGFRB also enhanced the phosphorylation of FAK. The OS cell morphology and vinculin distribution were altered by PDGFRB. PDGFRB promoted cell dedifferentiation and had a significant impact on the migration and invasion abilities of OS cells in vitro. In addition, PDGFRB increased pulmonary metastasis of OS cells in vivo. CONCLUSION Our results demonstrated that HIF1A up-regulated PDGFRB under hypoxic conditions, and PDGFRB regulated the actin cytoskeleton, a process likely linked to the activation of RhoA and the phosphorylation of, thereby promoting OS dedifferentiation and pulmonary metastasis.
Collapse
Affiliation(s)
- Enjie Xu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Zhen Huang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Kunpeng Zhu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Jianping Hu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Xiaolong Ma
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Yongjie Wang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Jiazhuang Zhu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Chunlin Zhang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China.
| |
Collapse
|
8
|
Pirayeshfard L, Luo S, Githaka JM, Saini A, Touret N, Goping IS, Julien O. Comparing the BAD Protein Interactomes in 2D and 3D Cell Culture Using Proximity Labeling. J Proteome Res 2024; 23:3433-3443. [PMID: 38959414 PMCID: PMC11302415 DOI: 10.1021/acs.jproteome.4c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Protein-protein interaction studies using proximity labeling techniques, such as biotin ligase-based BioID, have become integral in understanding cellular processes. Most studies utilize conventional 2D cell culture systems, potentially missing important differences in protein behavior found in 3D tissues. In this study, we investigated the protein-protein interactions of a protein, Bcl-2 Agonist of cell death (BAD), and compared conventional 2D culture conditions to a 3D system, wherein cells were embedded within a 3D extracellular matrix (ECM) mimic. Using BAD fused to the engineered biotin ligase miniTurbo (BirA*), we identified both overlapping and distinct BAD interactomes under 2D and 3D conditions. The known BAD binding proteins 14-3-3 isoforms and Bcl-XL interacted with BAD in both 2D and 3D. Of the 131 BAD-interactors identified, 56% were specific to 2D, 14% were specific to 3D, and 30% were common to both conditions. Interaction network analysis demonstrated differential associations between 2D and 3D interactomes, emphasizing the impact of the culture conditions on protein interactions. The 2D-3D overlap interactome encapsulated the apoptotic program, which is a well-known role of BAD. The 3D unique pathways were enriched in ECM signaling, suggestive of hitherto unknown functions for BAD. Thus, exploring protein-protein interactions in 3D provides novel clues into cell behavior. This exciting approach has the potential to bridge the knowledge gap between tractable 2D cell culture and organoid-like 3D systems.
Collapse
Affiliation(s)
- Leila Pirayeshfard
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Shu Luo
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | - Arashdeep Saini
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Nicolas Touret
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department
of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
9
|
Dent LG, Curry N, Sparks H, Bousgouni V, Maioli V, Kumar S, Munro I, Butera F, Jones I, Arias-Garcia M, Rowe-Brown L, Dunsby C, Bakal C. Environmentally dependent and independent control of 3D cell shape. Cell Rep 2024; 43:114016. [PMID: 38636520 DOI: 10.1016/j.celrep.2024.114016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
How cancer cells determine their shape in response to three-dimensional (3D) geometric and mechanical cues is unclear. We develop an approach to quantify the 3D cell shape of over 60,000 melanoma cells in collagen hydrogels using high-throughput stage-scanning oblique plane microscopy (ssOPM). We identify stereotypic and environmentally dependent changes in shape and protrusivity depending on whether a cell is proximal to a flat and rigid surface or is embedded in a soft environment. Environmental sensitivity metrics calculated for small molecules and gene knockdowns identify interactions between the environment and cellular factors that are important for morphogenesis. We show that the Rho guanine nucleotide exchange factor (RhoGEF) TIAM2 contributes to shape determination in environmentally independent ways but that non-muscle myosin II, microtubules, and the RhoGEF FARP1 regulate shape in ways dependent on the microenvironment. Thus, changes in cancer cell shape in response to 3D geometric and mechanical cues are modulated in both an environmentally dependent and independent fashion.
Collapse
Affiliation(s)
- Lucas G Dent
- Dynamical Cell Systems Group, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Nathan Curry
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Hugh Sparks
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Vicky Bousgouni
- Dynamical Cell Systems Group, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Vincent Maioli
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Sunil Kumar
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Ian Munro
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Francesca Butera
- Dynamical Cell Systems Group, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Ian Jones
- Dynamical Cell Systems Group, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Mar Arias-Garcia
- Dynamical Cell Systems Group, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Leo Rowe-Brown
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Chris Dunsby
- Photonics Group, Department of Physics, Imperial College London, London SW7 2AZ, UK.
| | - Chris Bakal
- Dynamical Cell Systems Group, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
10
|
Ramírez-Cuéllar J, Ferrari R, Sanz RT, Valverde-Santiago M, García-García J, Nacht AS, Castillo D, Le Dily F, Neguembor MV, Malatesta M, Bonnin S, Marti-Renom MA, Beato M, Vicent GP. LATS1 controls CTCF chromatin occupancy and hormonal response of 3D-grown breast cancer cells. EMBO J 2024; 43:1770-1798. [PMID: 38565950 PMCID: PMC11066098 DOI: 10.1038/s44318-024-00080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
The cancer epigenome has been studied in cells cultured in two-dimensional (2D) monolayers, but recent studies highlight the impact of the extracellular matrix and the three-dimensional (3D) environment on multiple cellular functions. Here, we report the physical, biochemical, and genomic differences between T47D breast cancer cells cultured in 2D and as 3D spheroids. Cells within 3D spheroids exhibit a rounder nucleus with less accessible, more compacted chromatin, as well as altered expression of ~2000 genes, the majority of which become repressed. Hi-C analysis reveals that cells in 3D are enriched for regions belonging to the B compartment, have decreased chromatin-bound CTCF and increased fusion of topologically associating domains (TADs). Upregulation of the Hippo pathway in 3D spheroids results in the activation of the LATS1 kinase, which promotes phosphorylation and displacement of CTCF from DNA, thereby likely causing the observed TAD fusions. 3D cells show higher chromatin binding of progesterone receptor (PR), leading to an increase in the number of hormone-regulated genes. This effect is in part mediated by LATS1 activation, which favors cytoplasmic retention of YAP and CTCF removal.
Collapse
Affiliation(s)
- Julieta Ramírez-Cuéllar
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Roberto Ferrari
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rosario T Sanz
- Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), C/ Baldiri Reixac, 4-8, 08028, Barcelona, Spain
| | - Marta Valverde-Santiago
- Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), C/ Baldiri Reixac, 4-8, 08028, Barcelona, Spain
| | - Judith García-García
- Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), C/ Baldiri Reixac, 4-8, 08028, Barcelona, Spain
| | - A Silvina Nacht
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
| | - David Castillo
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona, 08028, Spain
| | - Francois Le Dily
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
| | - Maria Victoria Neguembor
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
| | - Marco Malatesta
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Sarah Bonnin
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
| | - Marc A Marti-Renom
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona, 08028, Spain
- ICREA, Barcelona, Spain
| | - Miguel Beato
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Guillermo P Vicent
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain.
- Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), C/ Baldiri Reixac, 4-8, 08028, Barcelona, Spain.
| |
Collapse
|
11
|
Chen Y, McDonald JA. Collective cell migration relies on PPP1R15-mediated regulation of the endoplasmic reticulum stress response. Curr Biol 2024; 34:1390-1402.e4. [PMID: 38428416 PMCID: PMC11003853 DOI: 10.1016/j.cub.2024.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/19/2023] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
Collective cell migration is integral to many developmental and disease processes. Previously, we discovered that protein phosphatase 1 (Pp1) promotes border cell collective migration in the Drosophila ovary. We now report that the Pp1 phosphatase regulatory subunit dPPP1R15 is a critical regulator of border cell migration. dPPP1R15 is an ortholog of mammalian PPP1R15 proteins that attenuate the endoplasmic reticulum (ER) stress response. We show that, in collectively migrating border cells, dPPP1R15 phosphatase restrains an active physiological protein kinase R-like ER kinase- (PERK)-eIF2α-activating transcription factor 4 (ATF4) stress pathway. RNAi knockdown of dPPP1R15 blocks border cell delamination from the epithelium and subsequent migration, increases eIF2α phosphorylation, reduces translation, and drives expression of the stress response transcription factor ATF4. We observe similar defects upon overexpression of ATF4 or the eIF2α kinase PERK. Furthermore, we show that normal border cells express markers of the PERK-dependent ER stress response and require PERK and ATF4 for efficient migration. In many other cell types, unresolved ER stress induces initiation of apoptosis. In contrast, border cells with chronic RNAi knockdown of dPPP1R15 survive. Together, our results demonstrate that the PERK-eIF2α-ATF4 pathway, regulated by dPPP1R15 activity, counteracts the physiological ER stress that occurs during collective border cell migration. We propose that in vivo collective cell migration is intrinsically "stressful," requiring tight homeostatic control of the ER stress response for collective cell cohesion, dynamics, and movement.
Collapse
Affiliation(s)
- Yujun Chen
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, KS 66506, USA
| | - Jocelyn A McDonald
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, KS 66506, USA.
| |
Collapse
|
12
|
Guo Z, Bergeron KF, Mounier C. Oleate Promotes Triple-Negative Breast Cancer Cell Migration by Enhancing Filopodia Formation through a PLD/Cdc42-Dependent Pathway. Int J Mol Sci 2024; 25:3956. [PMID: 38612766 PMCID: PMC11012533 DOI: 10.3390/ijms25073956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer, particularly triple-negative breast cancer (TNBC), poses a global health challenge. Emerging evidence has established a positive association between elevated levels of stearoyl-CoA desaturase 1 (SCD1) and its product oleate (OA) with cancer development and metastasis. SCD1/OA leads to alterations in migration speed, direction, and cell morphology in TNBC cells, yet the underlying molecular mechanisms remain elusive. To address this gap, we aim to investigate the impact of OA on remodeling the actin structure in TNBC cell lines, and the underlying signaling. Using TNBC cell lines and bioinformatics tools, we show that OA stimulation induces rapid cell membrane ruffling and enhances filopodia formation. OA treatment triggers the subcellular translocation of Arp2/3 complex and Cdc42. Inhibiting Cdc42, not the Arp2/3 complex, effectively abolishes OA-induced filopodia formation and cell migration. Additionally, our findings suggest that phospholipase D is involved in Cdc42-dependent filopodia formation and cell migration. Lastly, the elevated expression of Cdc42 in breast tumor tissues is associated with a lower survival rate in TNBC patients. Our study outlines a new signaling pathway in the OA-induced migration of TNBC cells, via the promotion of Cdc42-dependent filopodia formation, providing a novel insight for therapeutic strategies in TNBC treatment.
Collapse
Affiliation(s)
| | | | - Catherine Mounier
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H2X 1Y4, Canada
| |
Collapse
|
13
|
Feng X, Molteni H, Gregory M, Lanza J, Polsani N, Gupta I, Wyetzner R, Hawkins MB, Holmes G, Hopyan S, Harris MP, Atit RP. Apical expansion of calvarial osteoblasts and suture patency is dependent on fibronectin cues. Development 2024; 151:dev202371. [PMID: 38602508 PMCID: PMC11165720 DOI: 10.1242/dev.202371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
The skull roof, or calvaria, is comprised of interlocking plates of bones that encase the brain. Separating these bones are fibrous sutures that permit growth. Currently, we do not understand the instructions for directional growth of the calvaria, a process which is error-prone and can lead to skeletal deficiencies or premature suture fusion (craniosynostosis, CS). Here, we identify graded expression of fibronectin (FN1) in the mouse embryonic cranial mesenchyme (CM) that precedes the apical expansion of calvaria. Conditional deletion of Fn1 or Wasl leads to diminished frontal bone expansion by altering cell shape and focal actin enrichment, respectively, suggesting defective migration of calvarial progenitors. Interestingly, Fn1 mutants have premature fusion of coronal sutures. Consistently, syndromic forms of CS in humans exhibit dysregulated FN1 expression, and we also find FN1 expression altered in a mouse CS model of Apert syndrome. These data support a model of FN1 as a directional substrate for calvarial osteoblast migration that may be a common mechanism underlying many cranial disorders of disparate genetic etiologies.
Collapse
Affiliation(s)
- Xiaotian Feng
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Helen Molteni
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Megan Gregory
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jennifer Lanza
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nikaya Polsani
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Isha Gupta
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rachel Wyetzner
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - M. Brent Hawkins
- Department of Genetics, Harvard Medical School, Department of Orthopedics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sevan Hopyan
- Department of Developmental Biology, Hospital for Sick Kids, Toronto ON, M5G 0A4, Canada
| | - Matthew P. Harris
- Department of Genetics, Harvard Medical School, Department of Orthopedics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Radhika P. Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Genome Sciences and Genetics, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Lamour G, Malo M, Crépin R, Pelta J, Labdi S, Campillo C. Dynamically Mapping the Topography and Stiffness of the Leading Edge of Migrating Cells Using AFM in Fast-QI Mode. ACS Biomater Sci Eng 2024; 10:1364-1378. [PMID: 38330438 DOI: 10.1021/acsbiomaterials.3c01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Cell migration profoundly influences cellular function, often resulting in adverse effects in various pathologies including cancer metastasis. Directly assessing and quantifying the nanoscale dynamics of living cell structure and mechanics has remained a challenge. At the forefront of cell movement, the flat actin modules─the lamellipodium and the lamellum─interact to propel cell migration. The lamellipodium extends from the lamellum and undergoes rapid changes within seconds, making measurement of its stiffness a persistent hurdle. In this study, we introduce the fast-quantitative imaging (fast-QI) mode, demonstrating its capability to simultaneously map both the lamellipodium and the lamellum with enhanced spatiotemporal resolution compared with the classic quantitative imaging (QI) mode. Specifically, our findings reveal nanoscale stiffness gradients in the lamellipodium at the leading edge, where it appears to be slightly thinner and significantly softer than the lamellum. Additionally, we illustrate the fast-QI mode's accuracy in generating maps of height and effective stiffness through a streamlined and efficient processing of force-distance curves. These results underscore the potential of the fast-QI mode for investigating the role of motile cell structures in mechanosensing.
Collapse
Affiliation(s)
- Guillaume Lamour
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Michel Malo
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Raphaël Crépin
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Juan Pelta
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Sid Labdi
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Clément Campillo
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| |
Collapse
|
15
|
Crossley RM, Johnson S, Tsingos E, Bell Z, Berardi M, Botticelli M, Braat QJS, Metzcar J, Ruscone M, Yin Y, Shuttleworth R. Modeling the extracellular matrix in cell migration and morphogenesis: a guide for the curious biologist. Front Cell Dev Biol 2024; 12:1354132. [PMID: 38495620 PMCID: PMC10940354 DOI: 10.3389/fcell.2024.1354132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The extracellular matrix (ECM) is a highly complex structure through which biochemical and mechanical signals are transmitted. In processes of cell migration, the ECM also acts as a scaffold, providing structural support to cells as well as points of potential attachment. Although the ECM is a well-studied structure, its role in many biological processes remains difficult to investigate comprehensively due to its complexity and structural variation within an organism. In tandem with experiments, mathematical models are helpful in refining and testing hypotheses, generating predictions, and exploring conditions outside the scope of experiments. Such models can be combined and calibrated with in vivo and in vitro data to identify critical cell-ECM interactions that drive developmental and homeostatic processes, or the progression of diseases. In this review, we focus on mathematical and computational models of the ECM in processes such as cell migration including cancer metastasis, and in tissue structure and morphogenesis. By highlighting the predictive power of these models, we aim to help bridge the gap between experimental and computational approaches to studying the ECM and to provide guidance on selecting an appropriate model framework to complement corresponding experimental studies.
Collapse
Affiliation(s)
- Rebecca M. Crossley
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Samuel Johnson
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Erika Tsingos
- Computational Developmental Biology Group, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, Netherlands
| | - Zoe Bell
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Massimiliano Berardi
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Optics11 life, Amsterdam, Netherlands
| | | | - Quirine J. S. Braat
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, Netherlands
| | - John Metzcar
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States
- Department of Informatics, Indiana University, Bloomington, IN, United States
| | | | - Yuan Yin
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
16
|
Phillips TA, Marcotti S, Cox S, Parsons M. Imaging actin organisation and dynamics in 3D. J Cell Sci 2024; 137:jcs261389. [PMID: 38236161 PMCID: PMC10906668 DOI: 10.1242/jcs.261389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
The actin cytoskeleton plays a critical role in cell architecture and the control of fundamental processes including cell division, migration and survival. The dynamics and organisation of F-actin have been widely studied in a breadth of cell types on classical two-dimensional (2D) surfaces. Recent advances in optical microscopy have enabled interrogation of these cytoskeletal networks in cells within three-dimensional (3D) scaffolds, tissues and in vivo. Emerging studies indicate that the dimensionality experienced by cells has a profound impact on the structure and function of the cytoskeleton, with cells in 3D environments exhibiting cytoskeletal arrangements that differ to cells in 2D environments. However, the addition of a third (and fourth, with time) dimension leads to challenges in sample preparation, imaging and analysis, necessitating additional considerations to achieve the required signal-to-noise ratio and spatial and temporal resolution. Here, we summarise the current tools for imaging actin in a 3D context and highlight examples of the importance of this in understanding cytoskeletal biology and the challenges and opportunities in this domain.
Collapse
Affiliation(s)
- Thomas A. Phillips
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
- Microscopy Innovation Centre, King's College London, Guys Campus, London SE1 1UL, UK
| | - Susan Cox
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| |
Collapse
|
17
|
Newman D, Young LE, Waring T, Brown L, Wolanska KI, MacDonald E, Charles-Orszag A, Goult BT, Caswell PT, Sakuma T, Yamamoto T, Machesky LM, Morgan MR, Zech T. 3D matrix adhesion feedback controls nuclear force coupling to drive invasive cell migration. Cell Rep 2023; 42:113554. [PMID: 38100355 DOI: 10.1016/j.celrep.2023.113554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 06/23/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Cell invasion is a multi-step process, initiated by the acquisition of a migratory phenotype and the ability to move through complex 3D extracellular environments. We determine the composition of cell-matrix adhesion complexes of invasive breast cancer cells in 3D matrices and identify an interaction complex required for invasive migration. βPix and myosin18A (Myo18A) drive polarized recruitment of non-muscle myosin 2A (NM2A) to adhesion complexes at the tips of protrusions. Actomyosin force engagement then displaces the Git1-βPix complex from paxillin, establishing a feedback loop for adhesion maturation. We observe active force transmission to the nucleus during invasive migration that is needed to pull the nucleus forward. The recruitment of NM2A to adhesions creates a non-muscle myosin isoform gradient, which extends from the protrusion to the nucleus. We postulate that this gradient facilitates coupling of cell-matrix interactions at the protrusive cell front with nuclear movement, enabling effective invasive migration and front-rear cell polarity.
Collapse
Affiliation(s)
- Daniel Newman
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Lorna E Young
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Thomas Waring
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Louise Brown
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Katarzyna I Wolanska
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ewan MacDonald
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Laura M Machesky
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, UK; Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, UK
| | - Mark R Morgan
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Tobias Zech
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
18
|
Jahin I, Phillips T, Marcotti S, Gorey MA, Cox S, Parsons M. Extracellular matrix stiffness activates mechanosensitive signals but limits breast cancer cell spheroid proliferation and invasion. Front Cell Dev Biol 2023; 11:1292775. [PMID: 38125873 PMCID: PMC10731024 DOI: 10.3389/fcell.2023.1292775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Breast cancer is characterized by physical changes that occur in the tumor microenvironment throughout growth and metastasis of tumors. Extracellular matrix stiffness increases as tumors develop and spread, with stiffer environments thought to correlate with poorer disease prognosis. Changes in extracellular stiffness and other physical characteristics are sensed by integrins which integrate these extracellular cues to intracellular signaling, resulting in modulation of proliferation and invasion. However, the co-ordination of mechano-sensitive signaling with functional changes to groups of tumor cells within 3-dimensional environments remains poorly understood. Here we provide evidence that increasing the stiffness of collagen scaffolds results in increased activation of ERK1/2 and YAP in human breast cancer cell spheroids. We also show that ERK1/2 acts upstream of YAP activation in this context. We further demonstrate that YAP, matrix metalloproteinases and actomyosin contractility are required for collagen remodeling, proliferation and invasion in lower stiffness scaffolds. However, the increased activation of these proteins in higher stiffness 3-dimensional collagen gels is correlated with reduced proliferation and reduced invasion of cancer cell spheroids. Our data collectively provide evidence that higher stiffness 3-dimensional environments induce mechano-signaling but contrary to evidence from 2-dimensional studies, this is not sufficient to promote pro-tumorigenic effects in breast cancer cell spheroids.
Collapse
Affiliation(s)
| | | | | | | | | | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| |
Collapse
|
19
|
Arif S, Moulin VJ. Extracellular vesicles on the move: Traversing the complex matrix of tissues. Eur J Cell Biol 2023; 102:151372. [PMID: 37972445 DOI: 10.1016/j.ejcb.2023.151372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
Extracellular vesicles are small particles involved in intercellular signaling. They are produced by virtually all cell types, transport biological molecules, and are released into the extracellular space. Studies on extracellular vesicles have become more numerous in recent years, leading to promising research on their potential impact on health and disease. Despite significant progress in understanding the bioactivity of extracellular vesicles, most in vitro and in vivo studies overlook their transport through the extracellular matrix in tissues. The interaction or free diffusion of extracellular vesicles in their environment can provide valuable insights into their efficacy and function. Therefore, understanding the factors that influence the transport of extracellular vesicles in the extracellular matrix is essential for the development of new therapeutic approaches that involve the use of these extracellular vesicles. This review discusses the importance of the interaction between extracellular vesicles and the extracellular matrix and the different factors that influence their diffusion. In addition, we evaluate their role in tissue homeostasis, pathophysiology, and potential clinical applications. Understanding the complex interaction between extracellular vesicles and the extracellular matrix is critical in order to develop effective strategies to target specific cells and tissues in a wide range of clinical applications.
Collapse
Affiliation(s)
- Syrine Arif
- Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada; Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Véronique J Moulin
- Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada; Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
20
|
Wei Z, Liu J, Jia Y, Lei M, Zhang S, Xi P, Ma Y, Zhang M, Ma J, Wang L, Guo H, Xu F. Fiber Microarchitecture in Interpenetrating Collagen-Alginate Hydrogel with Tunable Mechanical Plasticity Regulates Tumor Cell Migration. Adv Healthc Mater 2023; 12:e2301586. [PMID: 37506713 DOI: 10.1002/adhm.202301586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/13/2023] [Indexed: 07/30/2023]
Abstract
The fiber structures of tumor microenvironment (TME) are well-known in regulating tumor cell behaviors, and the plastic remolding of TME has recently been suggested to enhance tumor metastasis as well. However, the interrelationship between the fiber microarchitecture and matrix plasticity is inextricable by existing in vitro models. The individual roles of fiber microarchitecture and matrix plasticity in tuning tumor cell behaviors remain elusive. This study develops an interpenetrating collagen-alginate hydrogel platform with independently tunable matrix plasticity and fiber microarchitecture through an interpenetrating strategy of alginate networks and collagen I networks. With this hydrogel platform, it is demonstrated that tumor cells in high plasticity hydrogels are more extensive and aggressive than in low plasticity hydrogels and fiber structures only have influence in high plasticity hydrogels. The study further elucidates the underlying mechanisms through analyzing the distribution of forces within the matrix and tracking the focal adhesions (FAs) and finds that highly plastic hydrogels can activate the FAs formation, whereas the maturation and stability of FAs are dominated by fiber dispersion. This study not only establishes new ideas on how cells interact with TME cues but also would help to further finely tailor engineered hydrogel platforms for studying tumor behaviors in vitro.
Collapse
Affiliation(s)
- Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jingyi Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuanbo Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Meng Lei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Songbai Zhang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, P. R. China
| | - Pan Xi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Min Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, P. R. China
| | - Jinlu Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Lin Wang
- College of Medicine, Xi'an International University, Xi'an, Shaanxi, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi'an, Shaanxi, 710077, China
| | - Hui Guo
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
21
|
Zhang X, Shi X, Zhang D, Gong X, Wen Z, Demandel I, Zhang J, Rossello-Martinez A, Chan TJ, Mak M. Compression drives diverse transcriptomic and phenotypic adaptations in melanoma. Proc Natl Acad Sci U S A 2023; 120:e2220062120. [PMID: 37722033 PMCID: PMC10523457 DOI: 10.1073/pnas.2220062120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/07/2023] [Indexed: 09/20/2023] Open
Abstract
Physical forces are prominent during tumor progression. However, it is still unclear how they impact and drive the diverse phenotypes found in cancer. Here, we apply an integrative approach to investigate the impact of compression on melanoma cells. We apply bioinformatics to screen for the most significant compression-induced transcriptomic changes and investigate phenotypic responses. We show that compression-induced transcriptomic changes are associated with both improvement and worsening of patient prognoses. Phenotypically, volumetric compression inhibits cell proliferation and cell migration. It also induces organelle stress and intracellular oxidative stress and increases pigmentation in malignant melanoma cells and normal human melanocytes. Finally, cells that have undergone compression become more resistant to cisplatin treatment. Our findings indicate that volumetric compression is a double-edged sword for melanoma progression and drives tumor evolution.
Collapse
Affiliation(s)
- Xingjian Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
- Yale Cancer Center, Yale University, New Haven, CT06511
| | - Xin Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
| | - Dingyao Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
| | - Xiangyu Gong
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
| | - Zhang Wen
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
| | - Israel Demandel
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
| | - Junqi Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
| | | | - Trevor J. Chan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
- Yale Cancer Center, Yale University, New Haven, CT06511
| |
Collapse
|
22
|
Sadhu RK, Hernandez-Padilla C, Eisenbach YE, Penič S, Zhang L, Vishwasrao HD, Behkam B, Konstantopoulos K, Shroff H, Iglič A, Peles E, Nain AS, Gov NS. Experimental and theoretical model for the origin of coiling of cellular protrusions around fibers. Nat Commun 2023; 14:5612. [PMID: 37699891 PMCID: PMC10497540 DOI: 10.1038/s41467-023-41273-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Protrusions at the leading-edge of a cell play an important role in sensing the extracellular cues during cellular spreading and motility. Recent studies provided indications that these protrusions wrap (coil) around the extracellular fibers. However, the physics of this coiling process, and the mechanisms that drive it, are not well understood. We present a combined theoretical and experimental study of the coiling of cellular protrusions on fibers of different geometry. Our theoretical model describes membrane protrusions that are produced by curved membrane proteins that recruit the protrusive forces of actin polymerization, and identifies the role of bending and adhesion energies in orienting the leading-edges of the protrusions along the azimuthal (coiling) direction. Our model predicts that the cell's leading-edge coils on fibers with circular cross-section (above some critical radius), but the coiling ceases for flattened fibers of highly elliptical cross-section. These predictions are verified by 3D visualization and quantitation of coiling on suspended fibers using Dual-View light-sheet microscopy (diSPIM). Overall, we provide a theoretical framework, supported by experiments, which explains the physical origin of the coiling phenomenon.
Collapse
Affiliation(s)
- Raj Kumar Sadhu
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Institut Curie, PSL Research University, CNRS, UMR 168, Paris, France.
| | | | - Yael Eshed Eisenbach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Samo Penič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Lixia Zhang
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Harshad D Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Hari Shroff
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
23
|
Sakamoto R, Maeda YT. Unveiling the physics underlying symmetry breaking of the actin cytoskeleton: An artificial cell-based approach. Biophys Physicobiol 2023; 20:e200032. [PMID: 38124798 PMCID: PMC10728624 DOI: 10.2142/biophysico.bppb-v20.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/18/2023] [Indexed: 12/23/2023] Open
Abstract
Single-cell behaviors cover many biological functions, such as cell division during morphogenesis and tissue metastasis, and cell migration during cancer cell invasion and immune cell responses. Symmetry breaking of the positioning of organelles and the cell shape are often associated with these biological functions. One of the main players in symmetry breaking at the cellular scale is the actin cytoskeleton, comprising actin filaments and myosin motors that generate contractile forces. However, because the self-organization of the actomyosin network is regulated by the biochemical signaling in cells, how the mechanical contraction of the actin cytoskeleton induces diverse self-organized behaviors and drives the cell-scale symmetry breaking remains unclear. In recent times, to understand the physical underpinnings of the symmetry breaking exhibited in the actin cytoskeleton, artificial cell models encapsulating the cytoplasmic actomyosin networks covered with lipid monolayers have been developed. By decoupling the actomyosin mechanics from the complex biochemical signaling within living cells, this system allows one to study the self-organization of actomyosin networks confined in cell-sized spaces. We review the recent developments in the physics of confined actomyosin networks and provide future perspectives on the artificial cell-based approach. This review article is an extended version of the Japanese article, The Physical Principle of Cell Migration Under Confinement: Artificial Cell-based Bottom-up Approach, published in SEIBUTSU BUTSURI Vol. 63, p. 163-164 (2023).
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Physics, Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
- Department of Biomedical Engineering, Yale University, Connecticut 06520, USA
- Systems Biology Institute, Yale University, Connecticut 06516, USA
| | - Yusuke T. Maeda
- Department of Physics, Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
24
|
Du Q, Li N, Lian J, Guo J, Zhang Y, Zhang F. Dimensional effect of graphene nanostructures on cytoskeleton-coupled anti-tumor metastasis. SMART MEDICINE 2023; 2:e20230014. [PMID: 39188348 PMCID: PMC11235939 DOI: 10.1002/smmd.20230014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/12/2023] [Indexed: 08/28/2024]
Abstract
Interactions between inorganic materials and living systems can be strongly influenced by the dimensional property of the materials, which can in turn impact biological activities. Although the role of biomaterials at the molecular and cellular scales has been studied, research investigating the effects of biomaterials across multiple dimensional scales is relatively scarce. Herein, comparing the effectiveness of two-dimensional graphene oxide nanosheets (GOs) and three-dimensional graphene oxide quantum dots (GOQDs) (though not zero-dimensional because of their significant surface area) in cancer therapies, we have discovered that GOs, with the same mass concentration, exhibit stronger anti-cancer and anti-tumor metastasis properties than GOQDs. Our research, which employed liquid-phase atomic force microscopy, revealed that lower-dimensional GOs create a more extensive nano-bio interface that impedes actin protein polymerization into the cytoskeleton, leading to the prevention of tumor metastasis. These results help to better understand the underlying mechanisms and offer a dimensional perspective on the potential of optimizing the properties of graphene-based materials for clinical applications, e.g., cancer therapy.
Collapse
Affiliation(s)
- Qiqige Du
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Na Li
- Key Laboratory of Optical Technology and Instrument for MedicineMinistry of EducationUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Jiaqi Lian
- Key Laboratory of Optical Technology and Instrument for MedicineMinistry of EducationUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Jun Guo
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Yi Zhang
- Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiChina
| | - Feng Zhang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
- Key Laboratory of Optical Technology and Instrument for MedicineMinistry of EducationUniversity of Shanghai for Science and TechnologyShanghaiChina
| |
Collapse
|
25
|
Sadhu RK, Iglič A, Gov NS. A minimal cell model for lamellipodia-based cellular dynamics and migration. J Cell Sci 2023; 136:jcs260744. [PMID: 37497740 DOI: 10.1242/jcs.260744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
One ubiquitous cellular structure for performing various tasks, such as spreading and migration over external surfaces, is the sheet-like protrusion called a lamellipodium, which propels the leading edge of the cell. Despite the detailed knowledge about the many components of this cellular structure, it is not yet fully understood how these components self-organize spatiotemporally to form lamellipodia. We review here recent theoretical works where we have demonstrated that membrane-bound protein complexes that have intrinsic curvature and recruit the protrusive forces of the cytoskeleton result in a simple, yet highly robust, organizing feedback mechanism that organizes the cytoskeleton and the membrane. This self-organization mechanism accounts for the formation of flat lamellipodia at the leading edge of cells spreading over adhesive substrates, allowing for the emergence of a polarized, motile 'minimal cell' model. The same mechanism describes how lamellipodia organize to drive robust engulfment of particles during phagocytosis and explains in simple physical terms the spreading and migration of cells over fibers and other curved surfaces. This Review highlights that despite the complexity of cellular composition, there might be simple general physical principles that are utilized by the cell to drive cellular shape dynamics.
Collapse
Affiliation(s)
- Raj Kumar Sadhu
- Institut Curie, PSL Research University, CNRS, UMR 168, Paris 75005, France
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
26
|
Parlani M, Jorgez C, Friedl P. Plasticity of cancer invasion and energy metabolism. Trends Cell Biol 2023; 33:388-402. [PMID: 36328835 PMCID: PMC10368441 DOI: 10.1016/j.tcb.2022.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Energy deprivation is a frequent adverse event in tumors that is caused by mutations, malperfusion, hypoxia, and nutrition deficit. The resulting bioenergetic stress leads to signaling and metabolic adaptation responses in tumor cells, secures survival, and adjusts migration activity. The kinetic responses of cancer cells to energy deficit were recently identified, including a switch of invasive cancer cells to energy-conservative amoeboid migration and an enhanced capability for distant metastasis. We review the energy programs employed by different cancer invasion modes including collective, mesenchymal, and amoeboid migration, as well as their interconversion in response to energy deprivation, and we discuss the consequences for metastatic escape. Understanding the energy requirements of amoeboid and other dissemination strategies offers rationales for improving therapeutic targeting of metastatic cancer progression.
Collapse
Affiliation(s)
- Maria Parlani
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen 6525GA, The Netherlands
| | - Carolina Jorgez
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peter Friedl
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen 6525GA, The Netherlands; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Genomics Center, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
27
|
Hanafy NAN. Extracellular alkaline pH enhances migratory behaviors of hepatocellular carcinoma cells as a caution against the indiscriminate application of alkalinizing drug therapy: In vitro microscopic studies. Acta Histochem 2023; 125:152032. [PMID: 37119607 DOI: 10.1016/j.acthis.2023.152032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
The migratory process is a highly organized, differentiated, and polarized stage by which many signaling pathways are regulated to control cell migration. Since the significant evidence of migrating cells is the reorganization of the cytoskeleton. In the recent study, the cell migration model was assessed on the fact that any disruption obtained in the cellular monolayer confluent, may cause stimulation for surrounding cells to migrate. We attempt to demonstrate the morphological alterations associated with these migrating cells. In this case, sterilized 1 N NaOH (1 µl) was used as alkaline burnt. It leads to scratching the monolayer of hepatocellular carcinoma (HLF cell line) allowing cells to lose their connection. Scanning electron microscopy (SEM), fluorescence microscopy, light inverted microscopy, and dark field were used for discovering the morphological alterations associated with migrating cancer cells. The findings show that cells exhibited distinctive alterations including a polarizing stage, accumulation of the actin nodules in front of the nucleus, and protrusions. Nuclei appeared as lobulated shapes during migration. Lamellipodia and uropod were extended as well. Additionally, TGFβ1 proved its expression in HLF and SNU449 after their stimulation. It is demonstrated that hepatocellular carcinoma cells can migrate after their stimulation and there is a caution against the indiscriminate application of alkalinizing drug therapy.
Collapse
Affiliation(s)
- Nemany A N Hanafy
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| |
Collapse
|
28
|
Jiang N, Xu L, Han Y, Wang S, Duan X, Dai J, Hu Y, Liu X, Liu Z, Huang J. High-Throughput Electromechanical Coupling Chip Systems for Real-Time 3D Invasion/Migration Assay of Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300882. [PMID: 37088781 DOI: 10.1002/advs.202300882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Cell invasion/migration through three-dimensional (3D) tissues is not only essential for physiological/pathological processes, but a hallmark of cancer malignancy. However, how to quantify spatiotemporal dynamics of 3D cell migration/invasion is challenging. Here, this work reports a 3D cell invasion/migration assay (3D-CIMA) based on electromechanical coupling chip systems, which can monitor spatiotemporal dynamics of 3D cell invasion/migration in a real-time, label-free, nondestructive, and high-throughput way. In combination with 3D topological networks and complex impedance detection technology, this work shows that 3D-CIMA can quantitively characterize collective invasion/migration dynamics of cancer cells in 3D extracellular matrix (ECM) with controllable biophysical/biomechanical properties. More importantly, this work further reveals that it has the capability to not only carry out quantitative evaluation of anti-tumor drugs in 3D microenvironments that minimize the impact of cell culture dimensions, but also grade clinical cancer specimens. The proposed 3D-CIMA offers a new quantitative methodology for investigating cell interactions with 3D extracellular microenvironments, which has potential applications in various fields like mechanobiology, drug screening, and even precision medicine.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Liang Xu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Yiming Han
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shuyi Wang
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xiaocen Duan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Jingyao Dai
- Department of Hepatobiliary Surgery, Air Force Medical Center, Beijing, P. R. China, 100142
| | - Yunxing Hu
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Fifth Central Hospital of Tianjin, Tianjin, 300450, P. R. China
| | - Zhiqiang Liu
- Department of Physiology and Pathopgysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
29
|
Caswell PT. ARF3 weights the balance for prostate cancer metastasis. J Cell Biol 2023; 222:e202303037. [PMID: 36920439 PMCID: PMC10040632 DOI: 10.1083/jcb.202303037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Patrick T. Caswell discusses work from Bryant and colleagues (2023. J. Cell Biol.https://doi.org/10.1083/jcb.202206115) which shows how ARF3 impacts metastasis in prostate cancer by regulating a switch between modes of collective invasion.
Collapse
Affiliation(s)
- Patrick T. Caswell
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
30
|
Taniguchi A, Nishigami Y, Kajiura-Kobayashi H, Takao D, Tamaoki D, Nakagaki T, Nonaka S, Sonobe S. Light-sheet microscopy reveals dorsoventral asymmetric membrane dynamics of Amoeba proteus during pressure-driven locomotion. Biol Open 2023; 12:287678. [PMID: 36716104 PMCID: PMC9986612 DOI: 10.1242/bio.059671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Amoebae are found all around the world and play an essential role in the carbon cycle in the environment. Therefore, the behavior of amoebae is a crucial factor when considering the global environment. Amoebae change their distribution through amoeboid locomotion, which are classified into several modes. In the pressure-driven mode, intracellular hydrostatic pressure generated by the contraction of cellular cortex actomyosin causes the pseudopod to extend. During amoeboid locomotion, the cellular surface exhibits dynamic deformation. Therefore, to understand the mechanism of amoeboid locomotion, it is important to characterize cellular membrane dynamics. Here, to clarify membrane dynamics during pressure-driven amoeboid locomotion, we developed a polkadot membrane staining method and performed light-sheet microscopy in Amoeba proteus, which exhibits typical pressure-driven amoeboid locomotion. It was observed that the whole cell membrane moved in the direction of movement, and the dorsal cell membrane in the posterior part of the cell moved more slowly than the other membrane. In addition, membrane complexity varied depending on the focused characteristic size of the membrane structure, and in general, the dorsal side was more complex than the ventral side. In summary, the membrane dynamics of Amoeba proteus during pressure-driven locomotion are asymmetric between the dorsal and ventral sides. This article has an associated interview with the co-first authors of the paper.
Collapse
Affiliation(s)
- Atsushi Taniguchi
- Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Okazaki, Aichi, Japan.,Spatiotemporal Regulations 444-8585 Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Aichi 444-8585, Japan.,Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Yukinori Nishigami
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Hiroko Kajiura-Kobayashi
- Laboratory of Regeneration Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Daisuke Takao
- Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Daisuke Tamaoki
- Faculty of Science, Academic Assembly, University of Toyama, Gofuku, Toyama 930-8555, Japan
| | - Toshiyuki Nakagaki
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Shigenori Nonaka
- Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Okazaki, Aichi, Japan.,Spatiotemporal Regulations 444-8585 Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Aichi 444-8585, Japan
| | - Seiji Sonobe
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan
| |
Collapse
|
31
|
Feng X, Molteni H, Gregory M, Lanza J, Polsani N, Wyetzner R, Hawkins MB, Holmes G, Hopyan S, Harris MP, Atit RP. Apical expansion of calvarial osteoblasts and suture patency is dependent on graded fibronectin cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524278. [PMID: 36711975 PMCID: PMC9882209 DOI: 10.1101/2023.01.16.524278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The skull roof, or calvaria, is comprised of interlocking plates of bone. Premature suture fusion (craniosynostosis, CS) or persistent fontanelles are common defects in calvarial development. Although some of the genetic causes of these disorders are known, we lack an understanding of the instructions directing the growth and migration of progenitors of these bones, which may affect the suture patency. Here, we identify graded expression of Fibronectin (FN1) protein in the mouse embryonic cranial mesenchyme (CM) that precedes the apical expansion of calvarial osteoblasts. Syndromic forms of CS exhibit dysregulated FN1 expression, and we find FN1 expression is altered in a mouse CS model as well. Conditional deletion of Fn1 in CM causes diminished frontal bone expansion by altering cell polarity and shape. To address how osteoprogenitors interact with the observed FN1 prepattern, we conditionally ablate Wasl/N-Wasp to disrupt F-actin junctions in migrating cells, impacting lamellipodia and cell-matrix interaction. Neural crest-targeted deletion of Wasl results in a diminished actin network and reduced expansion of frontal bone primordia similar to conditional Fn1 mutants. Interestingly, defective calvaria formation in both the Fn1 and Wasl mutants occurs without a significant change in proliferation, survival, or osteogenesis. Finally, we find that CM-restricted Fn1 deletion leads to premature fusion of coronal sutures. These data support a model of FN1 as a directional substrate for calvarial osteoblast migration that may be a common mechanism underlying many cranial disorders of disparate genetic etiologies.
Collapse
Affiliation(s)
- Xiaotian Feng
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Helen Molteni
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Megan Gregory
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Jennifer Lanza
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Nikaya Polsani
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Rachel Wyetzner
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - M Brent Hawkins
- Dept of Genetics, Harvard Medical School, Dept. of Orthopedics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Greg Holmes
- Dept. of _Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sevan Hopyan
- Dept. of Developmental Biology, Hospital for Sick Kids, Toronto, Canada
| | - Matthew P Harris
- Dept of Genetics, Harvard Medical School, Dept. of Orthopedics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Radhika P Atit
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| |
Collapse
|
32
|
Dupard SJ, Garcia AG, Bourgine PE. Customizable 3D printed perfusion bioreactor for the engineering of stem cell microenvironments. Front Bioeng Biotechnol 2023; 10:1081145. [PMID: 36698631 PMCID: PMC9870251 DOI: 10.3389/fbioe.2022.1081145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Faithful modeling of tissues and organs requires the development of systems reflecting their dynamic 3D cellular architecture and organization. Current technologies suffer from a lack of design flexibility and complex prototyping, preventing their broad adoption by the scientific community. To make 3D cell culture more available and adaptable we here describe the use of the fused deposition modeling (FDM) technology to rapid-prototype 3D printed perfusion bioreactors. Our 3D printed bioreactors are made of polylactic acid resulting in reusable systems customizable in size and shape. Following design confirmation, our bioreactors were biologically validated for the culture of human mesenchymal stromal cells under perfusion for up to 2 weeks on collagen scaffolds. Microenvironments of various size/volume (6-12 mm in diameter) could be engineered, by modulating the 3D printed bioreactor design. Metabolic assay and confocal microscopy confirmed the homogenous mesenchymal cell distribution throughout the material pores. The resulting human microenvironments were further exploited for the maintenance of human hematopoietic stem cells. Following 1 week of stromal coculture, we report the recapitulation of 3D interactions between the mesenchymal and hematopoietic fractions, associated with a phenotypic expansion of the blood stem cell populations.Our data confirm that perfusion bioreactors fit for cell culture can be generated using a 3D printing technology and exploited for the 3D modeling of complex stem cell systems. Our approach opens the gates for a more faithful investigation of cellular processes in relation to a dynamic 3D microenvironment.
Collapse
Affiliation(s)
- Steven J. Dupard
- Cell, Tissue and Organ engineering laboratory, Biomedical Centre (BMC), Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Alejandro Garcia Garcia
- Cell, Tissue and Organ engineering laboratory, Biomedical Centre (BMC), Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Paul E. Bourgine
- Cell, Tissue and Organ engineering laboratory, Biomedical Centre (BMC), Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
33
|
Li C, Zheng Z, Wu X, Xie Q, Liu P, Hu Y, Chen M, Liu L, Zhao W, Chen L, Guo J, Song Y. Stiff matrix induced srGAP2 tension gradients control migration direction in triple-negative breast cancer. Theranostics 2023; 13:59-76. [PMID: 36593959 PMCID: PMC9800732 DOI: 10.7150/thno.77313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
Rationale: Cells migrating through interstitial matrix enables stiffening of the tumor micro-environment. To overcome the stiff resistance of extracellular matrix, aggressive cells require the extracellular mechanosensory activation and intracellular tension response. Mechanotransduction linker srGAP2 can synergistically control the mechanical-biochemical process of malignant cell migration. Methods: To mimic the tumor micro-environment containing abundant collagen fibers and moving durotaxis of triple-negative breast cancer cells, the stiff-directed matrix was established. The newly designed srGAP2 tension probe was used to real-time supervise srGAP2 tension in living cells. The phosphorylation sites responsible for srGAP2 tension were identified by phosphorylated mutagenesis. Transwell assays and Xenograft mouse model were performed to evaluate TNBC cells invasiveness in vitro and in vivo. Fluorescence staining and membrane protein isolation were used to detect protein localization. Results: The present study shows srGAP2 serves as a linker to transmit the mechanical signals among cytoskeleton and membrane. SrGAP2 exhibits tension gradients among different parts in the stiff-directionally migrating triple-negative breast cancer cells. Cells showing the polarized tension that increased in the leading edge move faster, particularly guided by the stiff interstitial matrix. The srGAP2 tension-directed cell migration results from the upstream events of PKCα-mediated phosphorylation at Ser206 in the F-bar domain of srGAP2. In addition, Syndecan-4 (SDC4), a transmembrane mechanoreceptor protein, drives PKCα regional recruit on the area of membrane trending deformation, which requires the distinct extent of extracellular mechanics. Conclusion: SDC4-PKCα polarized distribution leads to the intracellular tension gradient of srGAP2, presenting the extra- and intracellular physiochemical integration and essential for persistent cell migration in stiff matrix and caner progression. Targeting the srGAP2-related physicochemical signaling could be developed into the therapeutic strategies of inhibiting breast cancer cell invasion and durotaxis.
Collapse
Affiliation(s)
- Chen Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China.,Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Zihui Zheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China.,Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Xiang Wu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China.,Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China.,Department of Anesthesiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315040, PR China
| | - Qiu Xie
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China.,Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Ping Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, People's Republic of China
| | - Yunfeng Hu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China.,Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Mei Chen
- Department of Pathology, Xuzhou Central Hospital, Xuzhou 221009, PR China
| | - Liming Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China.,Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Wangxing Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China.,Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Linlin Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China.,Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Jun Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China.,Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China.,✉ Corresponding authors: Jun Guo, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210023, Jiangsu, China. E-mail: ; Dr Ying Song, Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing 210029, China. E-mail:
| | - Ying Song
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,✉ Corresponding authors: Jun Guo, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210023, Jiangsu, China. E-mail: ; Dr Ying Song, Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing 210029, China. E-mail:
| |
Collapse
|
34
|
Merino-Casallo F, Gomez-Benito MJ, Hervas-Raluy S, Garcia-Aznar JM. Unravelling cell migration: defining movement from the cell surface. Cell Adh Migr 2022; 16:25-64. [PMID: 35499121 PMCID: PMC9067518 DOI: 10.1080/19336918.2022.2055520] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Cell motility is essential for life and development. Unfortunately, cell migration is also linked to several pathological processes, such as cancer metastasis. Cells' ability to migrate relies on many actors. Cells change their migratory strategy based on their phenotype and the properties of the surrounding microenvironment. Cell migration is, therefore, an extremely complex phenomenon. Researchers have investigated cell motility for more than a century. Recent discoveries have uncovered some of the mysteries associated with the mechanisms involved in cell migration, such as intracellular signaling and cell mechanics. These findings involve different players, including transmembrane receptors, adhesive complexes, cytoskeletal components , the nucleus, and the extracellular matrix. This review aims to give a global overview of our current understanding of cell migration.
Collapse
Affiliation(s)
- Francisco Merino-Casallo
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Silvia Hervas-Raluy
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
35
|
Cowan JM, Duggan JJ, Hewitt BR, Petrie RJ. Non-muscle myosin II and the plasticity of 3D cell migration. Front Cell Dev Biol 2022; 10:1047256. [PMID: 36438570 PMCID: PMC9691290 DOI: 10.3389/fcell.2022.1047256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/31/2022] [Indexed: 09/08/2024] Open
Abstract
Confined cells migrating through 3D environments are also constrained by the laws of physics, meaning for every action there must be an equal and opposite reaction for cells to achieve motion. Fascinatingly, there are several distinct molecular mechanisms that cells can use to move, and this is reflected in the diverse ways non-muscle myosin II (NMII) can generate the mechanical forces necessary to sustain 3D cell migration. This review summarizes the unique modes of 3D migration, as well as how NMII activity is regulated and localized within each of these different modes. In addition, we highlight tropomyosins and septins as two protein families that likely have more secrets to reveal about how NMII activity is governed during 3D cell migration. Together, this information suggests that investigating the mechanisms controlling NMII activity will be helpful in understanding how a single cell transitions between distinct modes of 3D migration in response to the physical environment.
Collapse
Affiliation(s)
| | | | | | - Ryan J. Petrie
- Department of Biology, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
36
|
Kuburich NA, den Hollander P, Pietz JT, Mani SA. Vimentin and cytokeratin: Good alone, bad together. Semin Cancer Biol 2022; 86:816-826. [PMID: 34953942 PMCID: PMC9213573 DOI: 10.1016/j.semcancer.2021.12.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 01/27/2023]
Abstract
The cytoskeleton plays an integral role in maintaining the integrity of epithelial cells. Epithelial cells primarily employ cytokeratin in their cytoskeleton, whereas mesenchymal cells use vimentin. During the epithelial-mesenchymal transition (EMT), cytokeratin-positive epithelial cells begin to express vimentin. EMT induces stem cell properties and drives metastasis, chemoresistance, and tumor relapse. Most studies of the functions of cytokeratin and vimentin have relied on the use of either epithelial or mesenchymal cell types. However, it is important to understand how these two cytoskeleton intermediate filaments function when co-expressed in cells undergoing EMT. Here, we discuss the individual and shared functions of cytokeratin and vimentin that coalesce during EMT and how alterations in intermediate filament expression influence carcinoma progression.
Collapse
Affiliation(s)
- Nick A Kuburich
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Petra den Hollander
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Jordan T Pietz
- Department of Creative Services, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.
| |
Collapse
|
37
|
Rodríguez-Fernández JL, Criado-García O. A meta-analysis indicates that the regulation of cell motility is a non-intrinsic function of chemoattractant receptors that is governed independently of directional sensing. Front Immunol 2022; 13:1001086. [PMID: 36341452 PMCID: PMC9630654 DOI: 10.3389/fimmu.2022.1001086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Chemoattraction, defined as the migration of a cell toward a source of a chemical gradient, is controlled by chemoattractant receptors. Chemoattraction involves two basic activities, namely, directional sensing, a molecular mechanism that detects the direction of a source of chemoattractant, and actin-based motility, which allows the migration of a cell towards it. Current models assume first, that chemoattractant receptors govern both directional sensing and motility (most commonly inducing an increase in the migratory speed of the cells, i.e. chemokinesis), and, second, that the signaling pathways controlling both activities are intertwined. We performed a meta-analysis to reassess these two points. From this study emerge two main findings. First, although many chemoattractant receptors govern directional sensing, there are also receptors that do not regulate cell motility, suggesting that is the ability to control directional sensing, not motility, that best defines a chemoattractant receptor. Second, multiple experimental data suggest that receptor-controlled directional sensing and motility can be controlled independently. We hypothesize that this independence may be based on the existence of separated signalling modules that selectively govern directional sensing and motility in chemotactic cells. Together, the information gathered can be useful to update current models representing the signalling from chemoattractant receptors. The new models may facilitate the development of strategies for a more effective pharmacological modulation of chemoattractant receptor-controlled chemoattraction in health and disease.
Collapse
|
38
|
Groenendyk J, Stoletov K, Paskevicius T, Li W, Dai N, Pujol M, Busaan E, Ng HH, Boukouris AE, Saleme B, Haromy A, Cui K, Hu M, Yan Y, Zhang R, Michelakis E, Chen XZ, Lewis JD, Tang J, Agellon LB, Michalak M. Loss of the fructose transporter SLC2A5 inhibits cancer cell migration. Front Cell Dev Biol 2022; 10:896297. [PMID: 36268513 PMCID: PMC9578049 DOI: 10.3389/fcell.2022.896297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Metastasis is the primary cause of cancer patient death and the elevation of SLC2A5 gene expression is often observed in metastatic cancer cells. Here we evaluated the importance of SLC2A5 in cancer cell motility by silencing its gene. We discovered that CRISPR/Cas9-mediated inactivation of the SLC2A5 gene inhibited cancer cell proliferation and migration in vitro as well as metastases in vivo in several animal models. Moreover, SLC2A5-attenuated cancer cells exhibited dramatic alterations in mitochondrial architecture and localization, uncovering the importance of SLC2A5 in directing mitochondrial function for cancer cell motility and migration. The direct association of increased abundance of SLC2A5 in cancer cells with metastatic risk in several types of cancers identifies SLC2A5 as an important therapeutic target to reduce or prevent cancer metastasis.
Collapse
Affiliation(s)
- Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | | | - Wenjuan Li
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Ning Dai
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Myriam Pujol
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Erin Busaan
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Hoi Hei Ng
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Bruno Saleme
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Alois Haromy
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Miao Hu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Yanan Yan
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | | | - Xing-Zhen Chen
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - John D. Lewis
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jingfeng Tang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Luis B. Agellon
- School of Human Nutrition, McGill University, Montreal, QC, Canada
- *Correspondence: Luis B. Agellon, ; Marek Michalak,
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Luis B. Agellon, ; Marek Michalak,
| |
Collapse
|
39
|
Time-Series Clustering of Single-Cell Trajectories in Collective Cell Migration. Cancers (Basel) 2022; 14:cancers14194587. [PMID: 36230509 PMCID: PMC9559181 DOI: 10.3390/cancers14194587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In this study, we normalized trajectories containing both mesenchymal and epithelial cells to remove the effect of cell location on clustering, and performed a dimensionality reduction on the time series data before clustering. When the clustering results were superimposed on the trajectories prior to normalization, the results still showed similarities in location, indicating that this method can find cells with similar migration patterns. These data highlight the reliability of this method in identifying consistent migration patterns in collective cell migration. Abstract Collective invasion drives multicellular cancer cells to spread to surrounding normal tissues. To fully comprehend metastasis, the methodology of analysis of individual cell migration in tissue should be well developed. Extracting and classifying cells with similar migratory characteristics in a colony would facilitate an understanding of complex cell migration patterns. Here, we used electrospun fibers as the extracellular matrix for the in vitro modeling of collective cell migration, clustering of mesenchymal and epithelial cells based on trajectories, and analysis of collective migration patterns based on trajectory similarity. We normalized the trajectories to eliminate the effect of cell location on clustering and used uniform manifold approximation and projection to perform dimensionality reduction on the time-series data before clustering. When the clustering results were superimposed on the trajectories before normalization, the results still exhibited positional similarity, thereby demonstrating that this method can identify cells with similar migration patterns. The same cluster contained both mesenchymal and epithelial cells, and this result was related to cell location and cell division. These data highlight the reliability of this method in identifying consistent migration patterns during collective cell migration. This provides new insights into the epithelial–mesenchymal interactions that affect migration patterns.
Collapse
|
40
|
Liu Y, Ren X, Wu J, Wilkins JA, Lin F. T Cells Chemotaxis Migration Studies with a Multi-Channel Microfluidic Device. MICROMACHINES 2022; 13:1567. [PMID: 36295920 PMCID: PMC9611841 DOI: 10.3390/mi13101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Immune surveillance is dependent on lymphocyte migration and targeted recruitment. This can involve different modes of cell motility ranging from random walk to highly directional environment-guided migration driven by chemotaxis. This study protocol describes a flow-based microfluidic device to perform quantitative multiplex cell migration assays with the potential to investigate in real time the migratory response of T cells at the population or single-cell level. The device also allows for subsequent in situ fixation and direct fluorescence analysis of the cells in the microchannel.
Collapse
Affiliation(s)
- Yang Liu
- Department of Physics and Astronomy, University of Manitoba, 30A Sifton Rd, 301 Allen Bldg, Winnipeg, MB R3T 2N2, Canada
| | - Xiaoou Ren
- Department of Physics and Astronomy, University of Manitoba, 30A Sifton Rd, 301 Allen Bldg, Winnipeg, MB R3T 2N2, Canada
| | - Jiandong Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - John A. Wilkins
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba and Health Sciences Centre, 799 JBRC, 715 McDermot Ave, Winnipeg, MB R3E 3P4, Canada
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, 30A Sifton Rd, 301 Allen Bldg, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
41
|
Klicka K, Grzywa TM, Mielniczuk A, Klinke A, Włodarski PK. The role of miR-200 family in the regulation of hallmarks of cancer. Front Oncol 2022; 12:965231. [PMID: 36158660 PMCID: PMC9492973 DOI: 10.3389/fonc.2022.965231] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
MiRNAs are short non-coding RNAs that regulate gene expression post-transcriptionally contributing to the development of different diseases including cancer. The miR-200 family consists of five members, miR-200a, miR-200b, miR-200c, miR-141, and miR-429. Their expression is dysregulated in cancer tissue and their level is altered in the body fluids of cancer patients. Moreover, the levels of miR-200 family members correlate with clinical parameters such as cancer patients' survival which makes them potentially useful as diagnostic and prognostic biomarkers. MiRNAs can act as either oncomiRs or tumor suppressor miRNAs depending on the target genes and their role in the regulation of key oncogenic signaling pathways. In most types of cancer, the miR-200 family acts as tumor suppressor miRNA and regulates all features of cancer. In this review, we summarized the expression pattern of the miR-200 family in different types of cancer and their potential utility as biomarkers. Moreover, we comprehensively described the role of miR-200 family members in the regulation of all hallmarks of cancer proposed by Hanahan and Weinberg with the focus on the epithelial-mesenchymal transition, invasiveness, and metastasis of tumor cells.
Collapse
Affiliation(s)
- Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Alicja Klinke
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
42
|
Bousgouni V, Inge O, Robertson D, Jones I, Clatworthy I, Bakal C. ARHGEF9 regulates melanoma morphogenesis in environments with diverse geometry and elasticity by promoting filopodial-driven adhesion. iScience 2022; 25:104795. [PMID: 36039362 PMCID: PMC9418690 DOI: 10.1016/j.isci.2022.104795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/27/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Rho GTP Exchange Factors (RhoGEFs) and Rho GTPase Activating Proteins (RhoGAPs) are large families of molecules that regulate shape determination in all eukaryotes. In pathologies such as melanoma, RhoGEF and RhoGAP activity underpins the ability of cells to invade tissues of varying elasticity. To identify RhoGEFs and RhoGAPs that regulate melanoma cell shape on soft and/or stiff materials, we performed genetic screens, in tandem with single-cell quantitative morphological analysis. We show that ARHGEF9/Collybistin (Cb) is essential for cell shape determination on both soft and stiff materials, and in cells embedded in 3D soft hydrogel. ARHGEF9 is required for melanoma cells to invade 3D matrices. Depletion of ARHGEF9 results in loss of tension at focal adhesions decreased cell-wide contractility, and the inability to stabilize protrusions. Taken together we show that ARHGEF9 promotes the formation of actin-rich filopodia, which serves to establish and stabilize adhesions and determine melanoma cell shape.
Collapse
Affiliation(s)
- Vicky Bousgouni
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Oliver Inge
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David Robertson
- Division of Breast Cancer Research, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Ian Jones
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Innes Clatworthy
- Core Research Laboratories, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Chris Bakal
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
43
|
Myocyte Culture with Decellularized Skeletal Muscle Sheet with Observable Interaction with the Extracellular Matrix. Bioengineering (Basel) 2022; 9:bioengineering9070309. [PMID: 35877360 PMCID: PMC9311603 DOI: 10.3390/bioengineering9070309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
In skeletal muscles, muscle fibers are highly organized and bundled within the basement membrane. Several microfabricated substrate models have failed to mimic the macrostructure of native muscle, including various extracellular matrix (ECM) proteins. Therefore, we developed and evaluated a system using decellularized muscle tissue and mouse myoblasts C2C12 to analyze the interaction between native ECM and myocytes. Chicken skeletal muscle was sliced into sheets and decellularized to prepare decellularized skeletal muscle sheets (DSMS). C2C12 was then seeded and differentiated on DSMS. Immunostaining for ECM molecules was performed to examine the relationship between myoblast adhesion status, myotube orientation, and collagen IV orientation. Myotube survival in long-term culture was confirmed by calcein staining. C2C12 myoblasts adhered to scaffolds in DSMS and developed adhesion plaques and filopodia. Furthermore, C2C12 myotubes showed orientation along the ECM orientation within DSMS. Compared to plastic dishes, detachment was less likely to occur on DSMS, and long-term incubation was possible. This culture technique reproduces a cell culture environment reflecting the properties of living skeletal muscle, thereby allowing studies on the interaction between the ECM and myocytes.
Collapse
|
44
|
Linehan JB, Zepeda JL, Mitchell TA, LeClair EE. Follow that cell: leukocyte migration in L-plastin mutant zebrafish. Cytoskeleton (Hoboken) 2022; 79:26-37. [PMID: 35811499 DOI: 10.1002/cm.21717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Actin assemblies are important in motile cells such as leukocytes which form dynamic plasma membrane extensions or podia. L-plastin (LCP1) is a leukocyte-specific calcium-dependent actin-bundling protein that, in mammals, is known to affect immune cell migration. Previously, we generated CRISPR/Cas9 engineered zebrafish lacking L-plastin (lcp1-/-) and reported that they had reduced survival to adulthood, suggesting that lack of this actin-bundler might negatively affect the immune system. To test this hypothesis, we examined the distribution and migration of neutrophils and macrophages in the transparent tail of early zebrafish larvae using cell-specific markers and an established wound-migration assay. Knockout larvae were similar to their heterozygous siblings in having equal body sizes and comparable numbers of neutrophils in caudal hematopoietic tissue at two days post-fertilization, indicating no gross defect in neutrophil production or developmental migration. When stimulated by a tail wound, all genotypes of neutrophils were equally migratory in a two-hour window. However for macrophages we observed both migration defects and morphological differences. L-plastin knockout macrophages (lcp1 -/-) still homed to wounds but were slower, less directional and had a star-like morphology with many leading and trailing projections. In contrast, heterozygous macrophages lcp1 (+/-) were faster, more directional, and had a streamlined, slug-like morphology. Overall, these findings show that in larval zebrafish L-plastin knockout primarily affects the macrophage response with possible consequences for organismal immunity. Consistent with our observations, we propose a model in which cytoplasmic L-plastin negatively regulates macrophage integrin adhesion by holding these transmembrane heterodimers in a 'clasped', inactive form and is a necessary part of establishing macrophage polarity during chemokine-induced motility. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- J B Linehan
- Department of Biological Sciences, DePaul University, USA
| | - J L Zepeda
- Department of Biological Sciences, DePaul University, USA
| | - T A Mitchell
- Department of Biological Sciences, DePaul University, USA
| | - E E LeClair
- Department of Biological Sciences, DePaul University, USA
| |
Collapse
|
45
|
Merino-Casallo F, Gomez-Benito MJ, Martinez-Cantin R, Garcia-Aznar JM. A mechanistic protrusive-based model for 3D cell migration. Eur J Cell Biol 2022; 101:151255. [PMID: 35843121 DOI: 10.1016/j.ejcb.2022.151255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Cell migration is essential for a variety of biological processes, such as embryogenesis, wound healing, and the immune response. After more than a century of research-mainly on flat surfaces-, there are still many unknowns about cell motility. In particular, regarding how cells migrate within 3D matrices, which more accurately replicate in vivo conditions. We present a novel in silico model of 3D mesenchymal cell migration regulated by the chemical and mechanical profile of the surrounding environment. This in silico model considers cell's adhesive and nuclear phenotypes, the effects of the steric hindrance of the matrix, and cells ability to degradate the ECM. These factors are crucial when investigating the increasing difficulty that migrating cells find to squeeze their nuclei through dense matrices, which may act as physical barriers. Our results agree with previous in vitro observations where fibroblasts cultured in collagen-based hydrogels did not durotax toward regions with higher collagen concentrations. Instead, they exhibited an adurotactic behavior, following a more random trajectory. Overall, cell's migratory response in 3D domains depends on its phenotype, and the properties of the surrounding environment, that is, 3D cell motion is strongly dependent on the context.
Collapse
Affiliation(s)
- Francisco Merino-Casallo
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Ruben Martinez-Cantin
- Robotics, Perception and Real Time Group (RoPeRT), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Computer Science and System Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain.
| |
Collapse
|
46
|
Caballero D, Lima AC, Abreu CM, Neves NM, Correlo VM, Oliveira JM, Reis RL, Kundu SC. Quantifying protrusions as tumor-specific biophysical predictors of cancer invasion in in vitro tumor micro-spheroid models. IN VITRO MODELS 2022; 1:229-239. [PMID: 39871869 PMCID: PMC11756473 DOI: 10.1007/s44164-022-00020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 01/29/2025]
Abstract
An important hallmark in cancer research is the discovery of suitable features capable to reliably predict tumor invasiveness, and consequently, their metastatic potential at an early stage. Current methods are based on molecular biomarker screening and imaging that may not reveal the altered properties of tumor cells, being also labor-intensive and costly. Biophysical-based methodologies provide a new framework assessing-and even predicting-the invasion potential of tumors with improved accuracy. In particular, the stochastic fluctuations of cancer invasive protrusions can be used as a tumor-specific biophysical indicator of its aggressiveness. In this methodology, tumor micro-spheroids with different metastatic capabilities were employed as in vitro models to analyze protrusion activity. It is described the procedure for extracting the descriptive biophysical parameters characteristic of protrusion activity, which magnitude depends on the invasion capability of tumors. Next, a simple mathematical approach is employed to define a predictive index that correlates with tumor invasiveness. Overall, this innovative approach may provide a simple method for unveiling cancer invasiveness and complement existing diagnosis methodologies. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-022-00020-1.
Collapse
Affiliation(s)
- D. Caballero
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - A. C. Lima
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - C. M. Abreu
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - N. M. Neves
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - V. M. Correlo
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - J. M. Oliveira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - R. L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - S. C. Kundu
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
47
|
Hylton RK, Heebner JE, Grillo MA, Swulius MT. Cofilactin filaments regulate filopodial structure and dynamics in neuronal growth cones. Nat Commun 2022; 13:2439. [PMID: 35508487 PMCID: PMC9068697 DOI: 10.1038/s41467-022-30116-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Cofilin is best known for its ability to sever actin filaments and facilitate cytoskeletal recycling inside of cells, but at higher concentrations in vitro, cofilin stabilizes a more flexible, hyper-twisted state of actin known as “cofilactin”. While this filament state is well studied, a structural role for cofilactin in dynamic cellular processes has not been observed. With a combination of cryo-electron tomography and fluorescence imaging in neuronal growth cones, we observe that filopodial actin filaments switch between a fascin-linked and a cofilin-decorated state, and that cofilactin is associated with a variety of dynamic events within filopodia. The switch to cofilactin filaments occurs in a graded fashion and correlates with a decline in fascin cross-linking within the filopodia, which is associated with curvature in the bundle. Our tomographic data reveal that the hyper-twisting of actin from cofilin binding leads to a rearrangement of filament packing, which largely excludes fascin from the base of filopodia. Our results provide mechanistic insight into the fundamentals of cytoskeletal remodeling inside of confined cellular spaces, and how the interplay between fascin and cofilin regulates the dynamics of searching filopodia. In this manuscript the authors show that Filopodia switch between bundles of fascin-crosslinked actin and cofilin-decorated filaments, which exclude fascin binding due to altered structure and packing, as well as affect filopodial searching dynamics.
Collapse
Affiliation(s)
- Ryan K Hylton
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Jessica E Heebner
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Michael A Grillo
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Matthew T Swulius
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
48
|
Geiger F, Schnitzler LG, Brugger MS, Westerhausen C, Engelke H. Directed invasion of cancer cell spheroids inside 3D collagen matrices oriented by microfluidic flow in experiment and simulation. PLoS One 2022; 17:e0264571. [PMID: 35231060 PMCID: PMC8887745 DOI: 10.1371/journal.pone.0264571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/14/2022] [Indexed: 01/07/2023] Open
Abstract
Invasion is strongly influenced by the mechanical properties of the extracellular matrix. Here, we use microfluidics to align fibers of a collagen matrix and study the influence of fiber orientation on invasion from a cancer cell spheroid. The microfluidic setup allows for highly oriented collagen fibers of tangential and radial orientation with respect to the spheroid, which can be described by finite element simulations. In invasion experiments, we observe a strong bias of invasion towards radial as compared to tangential fiber orientation. Simulations of the invasive behavior with a Brownian diffusion model suggest complete blockage of migration perpendicularly to fibers allowing for migration exclusively along fibers. This slows invasion toward areas with tangentially oriented fibers down, but does not prevent it.
Collapse
Affiliation(s)
- Florian Geiger
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lukas G. Schnitzler
- Experimental Physics I, Institute of Physics, University of Augsburg, Augsburg, Germany
| | - Manuel S. Brugger
- Experimental Physics I, Institute of Physics, University of Augsburg, Augsburg, Germany
- Stiftung der Deutschen Wirtschaft (sdw) gGmbH, Berlin, Germany
| | - Christoph Westerhausen
- Experimental Physics I, Institute of Physics, University of Augsburg, Augsburg, Germany
- Physiology, Institute of Theoretical Medicine, University of Augsburg, Augsburg, Germany
- Center for NanoScience (CeNS), Munich, Germany
- * E-mail: (CW); (HE)
| | - Hanna Engelke
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- Center for NanoScience (CeNS), Munich, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Graz, Austria
- * E-mail: (CW); (HE)
| |
Collapse
|
49
|
Nguyen RY, Xiao H, Gong X, Arroyo A, Cabral AT, Fischer TT, Flores KM, Zhang X, Robert ME, Ehrlich BE, Mak M. Cytoskeletal dynamics regulates stromal invasion behavior of distinct liver cancer subtypes. Commun Biol 2022; 5:202. [PMID: 35241781 PMCID: PMC8894393 DOI: 10.1038/s42003-022-03121-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Drug treatment against liver cancer has limited efficacy due to heterogeneous response among liver cancer subtypes. In addition, the functional biophysical phenotypes which arise from this heterogeneity and contribute to aggressive invasive behavior remain poorly understood. This study interrogated how heterogeneity in liver cancer subtypes contributes to differences in invasive phenotypes and drug response. Utilizing histological analysis, quantitative 2D invasion metrics, reconstituted 3D hydrogels, and bioinformatics, our study linked cytoskeletal dynamics to differential invasion profiles and drug resistance in liver cancer subtypes. We investigated cytoskeletal regulation in 2D and 3D culture environments using two liver cancer cell lines, SNU-475 and HepG2, chosen for their distinct cytoskeletal features and invasion profiles. For SNU-475 cells, a model for aggressive liver cancer, many cytoskeletal inhibitors abrogated 2D migration but only some suppressed 3D migration. For HepG2 cells, cytoskeletal inhibition did not significantly affect 3D migration but did affect proliferative capabilities and spheroid core growth. This study highlights cytoskeleton driven phenotypic variation, their consequences and coexistence within the same tumor, as well as efficacy of targeting biophysical phenotypes that may be masked in traditional screens against tumor growth.
Collapse
Affiliation(s)
- Ryan Y Nguyen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Hugh Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Xiangyu Gong
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Alfredo Arroyo
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Aidan T Cabral
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Tom T Fischer
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Kaitlin M Flores
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Xuchen Zhang
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Marie E Robert
- Department of Pathology, Yale University, New Haven, CT, USA
| | | | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
50
|
PRR11 induces filopodia formation and promotes cell motility via recruiting ARP2/3 complex in non-small cell lung cancer cells. Genes Dis 2022; 9:230-244. [PMID: 35005120 PMCID: PMC8720695 DOI: 10.1016/j.gendis.2021.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/25/2021] [Accepted: 02/21/2021] [Indexed: 12/25/2022] Open
Abstract
Filopodia, a finger-like structure and actin-rich plasma-membrane protrusion at the leading edge of the cell, has important roles in cell motility. However, the mechanisms of filopodia generation are not well-understood via the actin-related protein 2/3 (ARP2/3) complex in Non-Small Cell Lung Cancer (NSCLC) cells. We previously have demonstrated that PRR11 associates with the ARP2/3 complex to regulate cytoskeleton-nucleoskeleton assembly and chromatin remodeling. In this study, we further demonstrate that PRR11 involves in filopodia formation, focal adhesion turnover and cell motility through ARP2/3 complex. Cell phenotype assays revealed that the silencing of PRR11 increased cellular size and inhibited cell motility in NSCLC cells. Mechanistically, PRR11 recruited and co-localized with Arp2 at the membrane protrusion to promote filopodia formation but not lamellipodia formation. Notably, PRR11 mutant deletion of the proline-rich region 2 (amino acid residues 185–200) abrogated the effect of filopodia formation. In addition, PRR11-depletion inhibited filopodial actin filaments assembly and increased the level of active integrin β1 in the cell surface, whereas reduced the phosphorylation level of focal adhesion kinase (FAKY397) to repress focal adhesion turnover and cell motility in NSCLC cells. Taken together, our findings indicate that PRR11 has critical roles in controlling filopodia formation, focal adhesion turnover and cell motility by recruiting ARP2/3 complex, thus dysregualted expression of PRR11 potentially facilitates tumor metastasis in NSCLC cells.
Collapse
|