1
|
Wang M, Wang Y, Zhang H. Dietary polyphenols for tumor therapy: bioactivities, nano-therapeutic systems and delivery strategies. Food Funct 2025; 16:853-866. [PMID: 39831400 DOI: 10.1039/d4fo04715j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Various dietary polyphenols have demonstrated potent anti-tumor properties and are being evaluated as potential adjuncts in cancer treatment. Although several reviews have offered extensive insights into the anti-tumor activities of dietary polyphenols, they frequently lack a detailed discussion on the design of therapeutic protocols and targeted delivery strategies of these compounds, which impedes the translation of their biological activity into clinical practice. This article aims to deliver a comprehensive review of the anti-tumor properties of dietary polyphenols, while also examining the design and implementation of nanotherapy systems based on these compounds. Additionally, given the challenges of low water solubility and stability of dietary polyphenols, this article outlines the current methodologies for the formulation and delivery of nano-preparations to enhance tumor targeting and therapeutic efficacy. This comprehensive review aspires to deepen our understanding of the operational mechanisms of dietary polyphenols and expand their clinical applications, thereby facilitating the development of polyphenol-based dietary supplements and food additives, and promoting the progress of dietary polyphenol-related nanomedicine.
Collapse
Affiliation(s)
- Minglu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China.
| | - Ying Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China.
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
2
|
Jones RD. Information Transmission in G Protein-Coupled Receptors. Int J Mol Sci 2024; 25:1621. [PMID: 38338905 PMCID: PMC10855935 DOI: 10.3390/ijms25031621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of receptors in the human genome and constitute about 30% of all drug targets. In this article, intended for a non-mathematical audience, both experimental observations and new theoretical results are compared in the context of information transmission across the cell membrane. The amount of information actually currently used or projected to be used in clinical settings is a small fraction of the information transmission capacity of the GPCR. This indicates that the number of yet undiscovered drug targets within GPCRs is much larger than what is currently known. Theoretical studies with some experimental validation indicate that localized heat deposition and dissipation are key to the identification of sites and mechanisms for drug action.
Collapse
Affiliation(s)
- Roger D Jones
- European Centre for Living Technology, University of Venice, 30123 Venice, Italy
| |
Collapse
|
3
|
Schmidt B, Sers C, Klein N. BannMI deciphers potential n-to-1 information transduction in signaling pathways to unravel message of intrinsic apoptosis. BIOINFORMATICS ADVANCES 2023; 4:vbad175. [PMID: 38187472 PMCID: PMC10769817 DOI: 10.1093/bioadv/vbad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/28/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
Motivation Cell fate decisions, such as apoptosis or proliferation, are communicated via signaling pathways. The pathways are heavily intertwined and often consist of sequential interaction of proteins (kinases). Information integration takes place on the protein level via n-to-1 interactions. A state-of-the-art procedure to quantify information flow (edges) between signaling proteins (nodes) is network inference. However, edge weight calculation typically refers to 1-to-1 interactions only and relies on mean protein phosphorylation levels instead of single cell distributions. Information theoretic measures such as the mutual information (MI) have the potential to overcome these shortcomings but are still rarely used. Results This work proposes a Bayesian nearest neighbor-based MI estimator (BannMI) to quantify n-to-1 kinase dependency in signaling pathways. BannMI outperforms the state-of-the-art MI estimator on protein-like data in terms of mean squared error and Pearson correlation. Using BannMI, we analyze apoptotic signaling in phosphoproteomic cancerous and noncancerous breast cell line data. Our work provides evidence for cooperative signaling of several kinases in programmed cell death and identifies a potential key role of the mitogen-activated protein kinase p38. Availability and implementation Source code and applications are available at: https://github.com/zuiop11/nn_info and can be downloaded via Pip as Python package: nn-info.
Collapse
Affiliation(s)
- Bettina Schmidt
- Research Center Trustworthy Data Science and Security, Universitätsallianz Ruhr, 44227 Dortmund, North Rhine-Westphalia, Germany
- Department of Computer Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Christine Sers
- Institute of Pathology, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Department of Biology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Nadja Klein
- Research Center Trustworthy Data Science and Security, Universitätsallianz Ruhr, 44227 Dortmund, North Rhine-Westphalia, Germany
- Department of Statistics, Technische Universität Dortmund, 44227 Dortmund, North Rhine-Westphalia, Germany
| |
Collapse
|
4
|
Koval A, Zhang X, Katanaev VL. Improved approaches to channel capacity estimation discover compromised GPCR signaling in diverse cancer cells. iScience 2023; 26:107270. [PMID: 37502258 PMCID: PMC10368911 DOI: 10.1016/j.isci.2023.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Intracellular signaling orchestrates an organism's development and functioning and underlies various pathologies, such as cancer, when aberrant. A universal cell signaling characteristic is channel capacity - the measure of how much information a given transmitting system can reliably transduce. Here, we describe improved approaches to quantify GPCR signaling channel capacity in single cells, averaged across cell population. We assess the channel capacity based on distribution of residuals by the cellular response amplitude. We further develop means to handle irregularly responding cancer cells using the integral values of their response to different agonist concentrations. These approaches enabled us to analyze, for the first time, channel capacity in single cancer cells. A universal feature emerging for different cancer cell types is a decreased channel capacity of their GPCR signaling. These findings provide experimental validation to the hypothesis that cancer is an information disease, bearing importance for basic cancer biology and anticancer drug discovery.
Collapse
Affiliation(s)
- Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Center in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Xin Zhang
- Department of Cell Physiology and Metabolism, Translational Research Center in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Vladimir L. Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Center in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| |
Collapse
|
5
|
Jones RD, Jones AM. Model of ligand-triggered information transmission in G-protein coupled receptor complexes. Front Endocrinol (Lausanne) 2023; 14:1111594. [PMID: 37361529 PMCID: PMC10286511 DOI: 10.3389/fendo.2023.1111594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/21/2023] [Indexed: 06/28/2023] Open
Abstract
We present a model for the effects of ligands on information transmission in G-Protein Coupled Receptor (GPCR) complexes. The model is built ab initio entirely on principles of statistical mechanics and tenets of information transmission theory and was validated in part using agonist-induced effector activity and signaling bias for the angiotensin- and adrenergic-mediated signaling pathways, with in vitro observations of phosphorylation sites on the C tail of the GPCR complex, and single-cell information-transmission experiments. The model extends traditional kinetic models that form the basis for many existing models of GPCR signaling. It is based on maximizing the rates of entropy production and information transmission through the GPCR complex. The model predicts that (1) phosphatase-catalyzed reactions, as opposed to kinase-catalyzed reactions, on the C-tail and internal loops of the GPCR are responsible for controlling the signaling activity, (2) signaling favors the statistical balance of the number of switches in the ON state and the number in the OFF state, and (3) biased-signaling response depends discontinuously on ligand concentration.
Collapse
Affiliation(s)
- Roger D. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- European Centre for Living Technology, Ca’ Foscari University of Venice, Venice, Italy
- Systems Engineering and Research Center, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Alan M. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Li ZM, Liu G, Gao Y, Zhao MG. Targeting CDK7 in oncology: The avenue forward. Pharmacol Ther 2022; 240:108229. [PMID: 35700828 DOI: 10.1016/j.pharmthera.2022.108229] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
Cyclin-dependent kinase (CDK) 7 is best characterized for the ability to regulate biological processes, including the cell cycle and gene transcription. Abnormal CDK7 activity is observed in various tumours and represents a driving force for tumourigenesis. Therefore, CDK7 may be an appealing target for cancer treatment. Whereas, the enthusiasm for CDK7-targeted therapeutic strategy is mitigated due to the widely possessed belief that this protein is essential for normal cells. Indeed, the fact confronts the consensus. This is the first review to introduce the role of CDK7 in pan-cancers via a combined analysis of comprehensive gene information and (pre)clinical research results. We also discuss the recent advances in protein structure and summarize the understanding of mechanisms underlying CDK7 function. These endeavours highlight the pivotal roles of CDK7 in tumours and may contribute to the development of effective CDK7 inhibitors within the strategy of structure-based drug discovery for cancer therapy.
Collapse
Affiliation(s)
- Zhi-Mei Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Guan Liu
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xinsi Road 1, Xi'an 710038, Shaanxi, PR China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, PR China.
| | - Ming-Gao Zhao
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China; Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xinsi Road 1, Xi'an 710038, Shaanxi, PR China.
| |
Collapse
|
7
|
Sugumaran A, Pandiyan R, Kandasamy P, Antoniraj MG, Navabshan I, Sakthivel B, Dharmaraj S, Chinnaiyan SK, Ashokkumar V, Ngamcharussrivichai C. Marine biome-derived secondary metabolites, a class of promising antineoplastic agents: A systematic review on their classification, mechanism of action and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155445. [PMID: 35490806 DOI: 10.1016/j.scitotenv.2022.155445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most deadly diseases on the planet. Over the past decades, numerous antineoplastic compounds have been discovered from natural resources such as medicinal plants and marine species as part of multiple drug discovery initiatives. Notably, several marine flora (e.g. Ascophyllum nodosum, Sargassum thunbergii) have been identified as a rich source for novel cytotoxic compounds of different chemical forms. Despite the availability of enormous chemically enhanced new resources, the anticancer potential of marine flora and fauna has received little attention. Interestingly, numerous marine-derived secondary metabolites (e.g., Cytarabine, Trabectedin) have exhibited anticancer effects in preclinical cancer models. Most of the anticancer drugs obtained from marine sources stimulated apoptotic signal transduction pathways in cancer cells, such as the intrinsic and extrinsic pathways. This review highlights the sources of different cytotoxic secondary metabolites obtained from marine bacteria, algae, fungi, invertebrates, and vertebrates. Furthermore, this review provides a comprehensive overview of the utilisation of numerous marine-derived cytotoxic compounds as anticancer drugs, as well as their modes of action (e.g., molecular target). Finally, it also discusses the future prospects of marine-derived drug developments and their constraints.
Collapse
Affiliation(s)
- Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Rajesh Pandiyan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai 600073, India
| | - Palanivel Kandasamy
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, Inselspital, University of Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Mariya Gover Antoniraj
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Science, Ben-Gurion University of Negev, Israel
| | - Irfan Navabshan
- Crescent School of Pharmacy, B.S. Abdur Rahman Cresent Institute of Science and Technology, Chennai, India
| | | | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Santhosh Kumar Chinnaiyan
- Department of Pharmaceutics, Srikrupa Institute of Pharmaceutical Sciences, Velikatta, Kondapak, Siddipet, Telangana State 502277, India.
| | - Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand.
| | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Chai S, Wen Z, Zhang R, Bai Y, Liu J, Li J, Kongling W, Chen W, Wang F, Gao L. CCL25/CCR9 interaction promotes the malignant behavior of salivary adenoid cystic carcinoma via the PI3K/AKT signaling pathway. PeerJ 2022; 10:e13844. [PMID: 36003306 PMCID: PMC9394511 DOI: 10.7717/peerj.13844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/14/2022] [Indexed: 01/18/2023] Open
Abstract
Background CC chemokine receptor 9 (CCR9), an organ-specific chemokine receptor, interacts with its exclusive ligand CCL25 to promote tumor proliferation and metastasis. However, the effect of CCR9 on salivary adenoid cystic carcinoma (SACC) malignant behavior remains unknown. This study aimed to investigate the specific molecular mechanism by which CCR9/CCL25 modulates malignant progression in SACC. Methods Immunohistochemistry staining and RT-qPCR analyses were performed to detect the correlation of CCR9 expression and tumor progression-associated markers in SACC. In vitro, SACC cell proliferation and apoptosis were evaluated using Cell Counting Kit-8 and colon formation, and cell migration and invasion were detected by wound healing and transwell assays. Vercirnon was used as an inhibitor of CCR9, and LY294002 was used as an inhibitor of the PI3K/AKT pathway in this study. Western blot and RT-qPCR assays were carried out to measure the downstream factors of the interaction of CCL25 and CCR9. The effect of CCL25 on the development of SACC in vivo was examined by a xenograft tumor model in nude mice following CCL25, Vercirnon and LY294002 treatment. Results CCR9 was highly expressed in SACC compared with adjacent salivary gland tissues, and its level was associated with tumor proliferation and metastases. CCL25 enhanced cell proliferation, migration, and invasion through its interaction with CCR9 and exerted an antiapoptotic effect on SACC cells. Targeting CCR9 via Vercirnon significantly reduced the phosphorylation level of AKT induced by CCL25. CCL25/CCR9 could activate its downstream factors through the PI3K/AKT signaling pathway, such as cyclin D1, BCL2 and SLUG, thus promoting SACC cell proliferation, antiapoptosis, invasion and metastasis. The in vivo data from the xenograft mouse models further proved that CCL25 administration promoted malignant tumor progression by activating the PI3K/AKT pathway. Conclusion The interaction of CCL25 and CCR9 promotes tumor growth and metastasis in SACC by activating the PI3K/AKT signaling pathway, offering a promising strategy for SACC treatment.
Collapse
Affiliation(s)
- Songling Chai
- School of Stomatology, Dalian Medical University, Dalian, China,The Affiliated Stomatological Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Zhihao Wen
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Rongxin Zhang
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yuwen Bai
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Jing Liu
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Juanjuan Li
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Wenyao Kongling
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Weixian Chen
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Fu Wang
- School of Stomatology, Dalian Medical University, Dalian, China,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Lu Gao
- School of Stomatology, Dalian Medical University, Dalian, China,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Lu Y, Li M, Zhou Q, Fang D, Wu R, Li Q, Chen L, Su S. Dynamic network biomarker analysis and system pharmacology methods to explore the therapeutic effects and targets of Xiaoyaosan against liver cirrhosis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115324. [PMID: 35489663 DOI: 10.1016/j.jep.2022.115324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoyaosan is a traditional Chinese herbal formula that has long been used to treat liver cirrhosis, liver failure, and hepatocarcinoma (HCC). However, little is known about its mechanism of action and targets in treating chronic liver disease. AIM OF THE STUDY This study aimed to detect the critical transition of HCC progression and to explore the regulatory mechanism and targets of Xiaoyaosan treating liver cirrhosis (cirrhosis) using integrative medicinal research involving system biology and pharmacology. MATERIALS AND METHODS We recruited chronic liver disease participants to obtain gene expression data and applied the dynamic network biomarker (DNB) method to identify molecular markers and the critical transition. We combined network pharmacology and DNB analysis to locate the potential DNBs (targets). Then we validated the DNBs in the liver cirrhosis rat models using Xiaoyaosan treatment. The expression of genes encoding the four DNBs, including Cebpa, Csf1, Egfr, and Il7r, were further validated in rat liver tissue using Western blot analysis. RESULTS We found EGFR, CEBPA, Csf1, Ccnb1, Rrmm2, C3, Il7r, Ccna2, and Peg10 overlap in the DNB list and Xiaoyaosan-Target-Disease (XTD) network constructed using network pharmacology databases. We investigated the diagnostic ability of each member in the DNB cluster and found EGFR, CEBPA, CSF1, and IL7R had high diagnostic abilities with AUC >0.7 and P-value < 0.05. We validated these findings in rats and found that liver function improved significantly and fibrotic changes were relieved in the Xiaoyaosan treatment group. The expression levels of CSF1 and IL7R in the Xiaoyaosan group were significantly lower than those in the cirrhosis model group. In contrast, CEBPA expression in the Xiaoyaosan group was significantly higher than that in the cirrhosis model group. The expression of EGFR in the Xiaoyaosan group was slightly decreased than in the model group but not significantly. CONCLUSION Using the DNB method and network pharmacology approach, this study revealed that CEBPA, IL7R, EGFR, and CSF1 expression was remarkably altered in chronic liver disease and thus, may play an important role in driving the progression of cirrhosis. Therefore, CEBPA, IL7R, EGFR, and CSF1 may be important targets of Xiaoyaosan in treating cirrhosis and can be considered for developing novel therapeutics.
Collapse
Affiliation(s)
- Yiyu Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Meiyi Li
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Shenzhen Research Institute, Sha Tin, New Territories, Hong Kong, China
| | - Qianmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dongdong Fang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qingya Li
- Henan University of Chinese Medicine, Henan, 450046, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Shibing Su
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
10
|
Kelty-Stephen DG, Mangalam M. Turing's cascade instability supports the coordination of the mind, brain, and behavior. Neurosci Biobehav Rev 2022; 141:104810. [PMID: 35932950 DOI: 10.1016/j.neubiorev.2022.104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/09/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Turing inspired a computer metaphor of the mind and brain that has been handy and has spawned decades of empirical investigation, but he did much more and offered behavioral and cognitive sciences another metaphor-that of the cascade. The time has come to confront Turing's cascading instability, which suggests a geometrical framework driven by power laws and can be studied using multifractal formalism and multiscale probability density function analysis. Here, we review a rapidly growing body of scientific investigations revealing signatures of cascade instability and their consequences for a perceiving, acting, and thinking organism. We review work related to executive functioning (planning to act), postural control (bodily poise for turning plans into action), and effortful perception (action to gather information in a single modality and action to blend multimodal information). We also review findings on neuronal avalanches in the brain, specifically about neural participation in body-wide cascades. Turing's cascade instability blends the mind, brain, and behavior across space and time scales and provides an alternative to the dominant computer metaphor.
Collapse
Affiliation(s)
- Damian G Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, NY, USA.
| | - Madhur Mangalam
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|
11
|
Ying T, Alexander H. Quantifying information of intracellular signaling: progress with machine learning. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:10.1088/1361-6633/ac7a4a. [PMID: 35724636 PMCID: PMC9507437 DOI: 10.1088/1361-6633/ac7a4a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Cells convey information about their extracellular environment to their core functional machineries. Studying the capacity of intracellular signaling pathways to transmit information addresses fundamental questions about living systems. Here, we review how information-theoretic approaches have been used to quantify information transmission by signaling pathways that are functionally pleiotropic and subject to molecular stochasticity. We describe how recent advances in machine learning have been leveraged to address the challenges of complex temporal trajectory datasets and how these have contributed to our understanding of how cells employ temporal coding to appropriately adapt to environmental perturbations.
Collapse
Affiliation(s)
- Tang Ying
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
| | - Hoffmann Alexander
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
12
|
Kim GT, Kim EY, Shin SH, Lee H, Lee SH, Sohn KY, Kim JW. Suppression of tumor progression by thioredoxin-interacting protein-dependent adenosine 2B receptor degradation in a PLAG-treated Lewis lung carcinoma-1 model of non-small cell lung cancer. Neoplasia 2022; 31:100815. [PMID: 35728512 PMCID: PMC9209866 DOI: 10.1016/j.neo.2022.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
PLAG effectively inhibited excessive growth of LLC1 cells in an NSCLC model. PLAG inhibited tumor growth by inducing adenosine 2B receptor (A2BR) degradation. Unlike antagonists, PLAG terminates rather than suppresses signaling pathways. A2BR degradation by PLAG occurs through expression and re-localization of TXNIP.
Extracellular adenosine in the tumor microenvironment plays a vital role in cancer development. Specifically, activation of adenosine receptors affects tumor cell growth and adenosine release. We examined the anti-tumor efficacy of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) in animal models, revealing the role of PLAG in inhibiting tumor progression by promoting the degradation of adenosine 2B receptors (A2BRs) in tumors. PLAG induced the expression of thioredoxin-interacting protein (TXNIP), a type of α-arrestin that accelerates A2BR internalization by interacting with A2BR complexes containing β-arrestin. Engulfed receptors bound to TXNIP were rapidly degraded after E3 ligase recruitment and ubiquitination, resulting in early termination of intracellular signals that promote tumor overgrowth. However, in control cancer cells, A2BRs bound to protein phosphatase 2A and were returned to the cell membrane instead of being degraded, resulting in continuous receptor-mediated signaling by pathways including the Raf-Erk axis, which promotes tumor proliferation. A TXNIP-silenced cell-implanted mouse model and TXNIP knockout (KO) mice were used to verify that PLAG-mediated suppression of tumor progression is dependent on TXNIP expression. Increased tumor growth was observed in TXNIP-silenced cell-implanted mice, and the anti-tumor effects of PLAG, including delayed tumor overgrowth, were greatly reduced. However, the anti-tumor effects of PLAG were observed in cancer cell-implanted TXNIP-KO mice, which indicates that PLAG produces anti-tumor effects by enhancing TXNIP expression in tumor cells. These essential functions of PLAG, including delaying tumor growth via A2BR degradation, suggest innovative directions for anticancer drug development.
Collapse
Affiliation(s)
- Guen Tae Kim
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Eun Young Kim
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Su-Hyun Shin
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Hyowon Lee
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Se Hee Lee
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Ki-Young Sohn
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Jae Wha Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Kwahak-ro, Daejeon, South Korea.
| |
Collapse
|
13
|
Huang Y, Liu M, Liu C, Dong N, Chen L. The Natural Product Andrographolide Ameliorates Calcific Aortic Valve Disease by Regulating the Proliferation of Valve Interstitial Cells via the MAPK-ERK Pathway. Front Pharmacol 2022; 13:871748. [PMID: 35571082 PMCID: PMC9100698 DOI: 10.3389/fphar.2022.871748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is an active pathobiological process that involves fibrosis and calcification of aortic valve leaflets, thereby causing cardiac hemodynamic changes and eventually heart failure. Cell proliferation changes at the initial stage of CAVD are an important target for pharmaceutical intervention. This study aimed to investigate whether andrographolide (AGP) could inhibit the proliferation of valve interstitial cells (VICs) in vitro and in vivo to delay the process of CAVD. Cell proliferative factors were tested in both healthy and CAVD aortic valve samples. Cell cycle, cell growth, and calcification of VICs were assessed using flow cytometry, CCK8 assay, EdU staining, and Alizarin Red S staining. The expression of cell proliferative factors and osteogenic factors were quantified by qRT-PCR or immunofluorescence staining. The interaction between AGP and ERK (extracellular regulated protein kinases) was detected by molecular docking. In addition, a high-fat diet-fed animal model was used to verify the effect of AGP on CAVD in vivo. In conclusion, we found that AGP ameliorates aortic valve incrassation by inhibiting cell proliferation via the MAPK-ERK signaling pathway. Therefore, AGP is a promising drug that prevents the occurrence of CAVD via regulating cell proliferation.
Collapse
Affiliation(s)
- Yuming Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chungeng Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Nianguo Dong, ; Liang Chen,
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Nianguo Dong, ; Liang Chen,
| |
Collapse
|
14
|
Hameduh T, Mokry M, Miller AD, Adam V, Heger Z, Haddad Y. A rotamer relay information system in the epidermal growth factor receptor-drug complexes reveals clues to new paradigm in protein conformational change. Comput Struct Biotechnol J 2021; 19:5443-5454. [PMID: 34667537 PMCID: PMC8511715 DOI: 10.1016/j.csbj.2021.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 11/04/2022] Open
Abstract
Cancer cells can escape the effects of chemotherapy through mutations and upregulation of a tyrosine kinase protein called the epidermal growth factor receptor (EGFR). In the past two decades, four generations of tyrosine kinase inhibitors targeting EGFR have been developed. Using comparative structure analysis of 116 EGFR-drug complex crystal structures, cluster analysis produces two clans of 73 and 43 structures, respectively. The first clan of 73 structures is larger and is comprised mostly of the C-helix-IN conformation while the second clan of 43 structures correlates with the C-helix-OUT conformation. A deep rotamer analysis identifies 43 residues (18%) of the total of 237 residues spanning the kinase structures under investigation with significant rotamer variations between the C-helix-IN and C-helix-OUT clans. The locations of these rotamer variations take on the appearance of side chain conformational relays extending out from points of EGFR mutation to different regions of the EGFR kinase. Accordingly, we propose that key EGFR mutations act singly or together to induce drug resistant conformational changes in EGFR that are communicated via these side chain conformational relays. Accordingly, these side chain conformational relays appear to play a significant role in the development of tumour resistance. This phenomenon also suggests a new paradigm in protein conformational change that is mediated by supportive relays of rotamers on the protein surface, rather than through conventional backbone movements.
Collapse
Affiliation(s)
- Tareq Hameduh
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Michal Mokry
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Andrew D. Miller
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
- KP Therapeutics (Europe) s.r.o., Purkyňova 649/127, Brno CZ-61200, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| |
Collapse
|
15
|
Fiebelkow J, Guendel A, Guendel B, Mehwald N, Jetka T, Komorowski M, Waldherr S, Schaper F, Dittrich A. The tyrosine phosphatase SHP2 increases robustness and information transfer within IL-6-induced JAK/STAT signalling. Cell Commun Signal 2021; 19:94. [PMID: 34530865 PMCID: PMC8444181 DOI: 10.1186/s12964-021-00770-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022] Open
Abstract
Background Cell-to-cell heterogeneity is an inherent feature of multicellular organisms and is central in all physiological and pathophysiological processes including cellular signal transduction. The cytokine IL-6 is an essential mediator of pro- and anti-inflammatory processes. Dysregulated IL-6-induced intracellular JAK/STAT signalling is associated with severe inflammatory and proliferative diseases. Under physiological conditions JAK/STAT signalling is rigorously controlled and timely orchestrated by regulatory mechanisms such as expression of the feedback-inhibitor SOCS3 and activation of the protein-tyrosine phosphatase SHP2 (PTPN11). Interestingly, the function of negative regulators seems not to be restricted to controlling the strength and timely orchestration of IL-6-induced STAT3 activation. Exemplarily, SOCS3 increases robustness of late IL-6-induced STAT3 activation against heterogenous STAT3 expression and reduces the amount of information transferred through JAK/STAT signalling. Methods Here we use multiplexed single-cell analyses and information theoretic approaches to clarify whether also SHP2 contributes to robustness of STAT3 activation and whether SHP2 affects the amount of information transferred through IL-6-induced JAK/STAT signalling. Results SHP2 increases robustness of both basal, cytokine-independent STAT3 activation and early IL-6-induced STAT3 activation against differential STAT3 expression. However, SHP2 does not affect robustness of late IL-6-induced STAT3 activation. In contrast to SOCS3, SHP2 increases the amount of information transferred through IL-6-induced JAK/STAT signalling, probably by reducing cytokine-independent STAT3 activation and thereby increasing sensitivity of the cells. These effects are independent of SHP2-dependent MAPK activation. Conclusion In summary, the results of this study extend our knowledge of the functions of SHP2 in IL-6-induced JAK/STAT signalling. SHP2 is not only a repressor of basal and cytokine-induced STAT3 activity, but also ensures robustness and transmission of information.![]() Plain English summary Cells within a multicellular organism communicate with each other to exchange information about the environment. Communication between cells is facilitated by soluble molecules that transmit information from one cell to the other. Cytokines such as interleukin-6 are important soluble mediators that are secreted when an organism is faced with infections or inflammation. Secreted cytokines bind to receptors within the membrane of their target cells. This binding induces activation of an intracellular cascade of reactions called signal transduction, which leads to cellular responses. An important example of intracellular signal transduction is JAK/STAT signalling. In healthy organisms signalling is controlled and timed by regulatory mechanisms, whose activation results in a controlled shutdown of signalling pathways. Interestingly, not all cells within an organism are identical. They differ in the amount of proteins involved in signal transduction, such as STAT3. These differences shape cellular communication and responses to intracellular signalling. Here, we show that an important negative regulatory protein called SHP2 (or PTPN11) is not only responsible for shutting down signalling, but also for steering signalling in heterogeneous cell populations. SHP2 increases robustness of STAT3 activation against variable STAT3 amounts in individual cells. Additionally, it increases the amount of information transferred through JAK/STAT signalling by increasing the dynamic range of pathway activation in heterogeneous cell populations. This is an amazing new function of negative regulatory proteins that contributes to communication in heterogeneous multicellular organisms in health and disease. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00770-7.
Collapse
Affiliation(s)
- Jessica Fiebelkow
- Institute of Biology, Department of Systems Biology, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - André Guendel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Beate Guendel
- Institute of Biology, Department of Systems Biology, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany.,Karolinska Institutet, Clintec, Huddinge, Sweden
| | - Nora Mehwald
- Institute of Biology, Department of Systems Biology, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Tomasz Jetka
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong, Hong Kong
| | - Michal Komorowski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warszawa, Poland
| | | | - Fred Schaper
- Institute of Biology, Department of Systems Biology, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany.,Center for Dynamic Systems: Systems Engineering (CDS), Otto-von-Guericke University, Magdeburg, Germany.,Magdeburg Center for Systems Biology (MACS), Otto-von-Guericke University, Magdeburg, Germany
| | - Anna Dittrich
- Institute of Biology, Department of Systems Biology, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany. .,Center for Dynamic Systems: Systems Engineering (CDS), Otto-von-Guericke University, Magdeburg, Germany. .,Magdeburg Center for Systems Biology (MACS), Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
16
|
Song A, Wang Y, Jiang F, Yan E, Zhou J, Ye J, Zhang H, Ding X, Li G, Wu Y, Zheng Y, Song X. Ubiquitin D Promotes Progression of Oral Squamous Cell Carcinoma via NF-Kappa B Signaling. Mol Cells 2021; 44:468-480. [PMID: 34230226 PMCID: PMC8334351 DOI: 10.14348/molcells.2021.2229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/24/2021] [Accepted: 05/12/2021] [Indexed: 01/24/2023] Open
Abstract
Ubiquitin D (UBD) is highly upregulated in many cancers, and plays a pivotal role in the pathophysiological processes of cancers. However, its roles and underlying mechanisms in oral squamous cell carcinoma (OSCC) are still unclear. In the present study, we investigated the role of UBD in patients with OSCC. Quantitative real-time polymerase chain reaction and Western blot were used to measure the expression of UBD in OSCC tissues. Immunohistochemistry assay was used to detect the differential expressions of UBD in 244 OSCC patients and 32 cases of normal oral mucosae. In addition, CCK-8, colony formation, wound healing and Transwell assays were performed to evaluate the effect of UBD on the cell proliferation, migration, and invasion in OSCC. Furthermore, a xenograft tumor model was established to verify the role of UBD on tumor formation in vivo. We found that UBD was upregulated in human OSCC tissues and cell lines and was associated with clinical and pathological features of patients. Moreover, the overexpression of UBD promoted the proliferation, migration and invasion of OSCC cells; however, the knockdown of UBD exerted the opposite effects. In this study, our results also suggested that UBD promoted OSCC progression through NF-κB signaling. Our findings indicated that UBD played a critical role in OSCC and may serve as a prognostic biomarker and potential therapeutic target for OSCC treatment.
Collapse
Affiliation(s)
- An Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Yi Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Feng Jiang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Enshi Yan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Junbo Zhou
- Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210000, China
| | - Jinhai Ye
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Hongchuang Zhang
- Department of Stomatology, Xuzhou No. 1 Peoples Hospital, Xuzhou 221000, China
| | - Xu Ding
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
| | - Gang Li
- Department of Stomatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Yunong Wu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Yang Zheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Xiaomeng Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| |
Collapse
|
17
|
The Signaling Duo CXCL12 and CXCR4: Chemokine Fuel for Breast Cancer Tumorigenesis. Cancers (Basel) 2020; 12:cancers12103071. [PMID: 33096815 PMCID: PMC7590182 DOI: 10.3390/cancers12103071] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Breast cancer remains the most common malignancy in women. In this review, we explore the role of the CXCL12/CXCR4 pathway in breast cancer. We show that the CXCL12/CXCR4 cascade is involved in nearly every aspect of breast cancer tumorigenesis including proliferation, cell motility and distant metastasis. Moreover, we summarize current knowledge about the CXCL12/CXCR4-targeted therapies. Due to the critical roles of this pathway in breast cancer and other malignancies, we believe that audiences in different fields will find this overview helpful. Abstract The CXCL12/CXCR4 signaling pathway has emerged in the recent years as a key player in breast cancer tumorigenesis. This pathway controls many aspects of breast cancer development including cancer cell proliferation, motility and metastasis to all target organs. Moreover, the CXCL12/CXCR4 cascade affects both immune and stromal cells, creating tumor-supporting microenvironment. In this review, we examine state-of-the-art knowledge about detrimental roles of the CXCL12/CXCR4 signaling, discuss its therapeutic potential and suggest further research directions beneficial both for basic research and personalized medicine in breast cancer.
Collapse
|
18
|
Jing W, Bi Y, Wang G, Zeng S, Han L, Yang H, Wang N, Zhao Y. Krill Oil Perturbs Proliferation and Migration of Mouse Colon Cancer Cells in vitro by Impeding Extracellular Signal-Regulated Protein Kinase Signaling Pathway. Lipids 2020; 56:141-153. [PMID: 32931040 DOI: 10.1002/lipd.12281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/25/2022]
Abstract
The prevalence of colorectal cancer (CRC) continues to increase. Treatment of CRC remains a significant clinical challenge, and effective therapies for advanced CRC are desperately needed. Increasing attention and ongoing research efforts have focused on krill oil that may provide health benefits to the human body. Here we report that krill oil exerts in vitro anticancer activity through a direct inhibition on proliferation, colony formation, migration, and invasion of mouse colon cancer cells. Krill oil inhibited the proliferation and colony formation of CT-26 colon cancer cells by causing G0/G1 cell cycle arrest and apoptosis. Cell cycle arrest was attributable to reduction of cyclin D1 levels in krill oil-treated cells. Further studies revealed that krill oil induced mitochondrial-dependent apoptosis of CT-26 cells, including loss of mitochondrial membrane potential, increased cytosolic calcium levels, activation of caspase-3, and downregulation of anti-apoptotic proteins MCL-1 and BCL-XL. Krill oil suppressed migration of CT-26 cells by disrupting the microfilaments and microtubules. Extracellular signal-regulated protein kinase (ERK) plays crucial roles in regulating proliferation and migration of cancer cells. We found that krill oil attenuated the activation of ERK signaling pathway to exert the effects on cell cycle, apoptosis, and migration of colon cancer cells. We speculate that polyunsaturated fatty acids of krill oil may dampen ERK activation by decreasing the phospholipid saturation of cell membrane. Although findings from in vitro studies may not necessarily translate in vivo, our study provides insights into the possibility that krill oil or its components could have therapeutic potential in colon cancer.
Collapse
Affiliation(s)
- Weiqiang Jing
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua Xi Road, Jinan, 250012, China
| | - Yuxuan Bi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua Xi Road, Jinan, 250012, China
| | - Ganyu Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua Xi Road, Jinan, 250012, China
| | - Shuyan Zeng
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua Xi Road, Jinan, 250012, China
| | - Lihui Han
- Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Shandong University, Wenhua Xi Road, Jinan, 250012, China
| | - Hui Yang
- Department of Radiology, Qilu Hospital, Shandong University, Wenhua Xi Road, Jinan, 250012, China
| | - Na Wang
- Jinan Jiyuan Biological Technology Co., Ltd, Longao North Road, Jinan, 250102, China
| | - Yunxue Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua Xi Road, Jinan, 250012, China.,Department of Immunology, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Shandong University, Wenhua Xi Road, Jinan, 250012, China
| |
Collapse
|
19
|
Han C, Zhong J, Hu J, Liu H, Liu R, Ling F. Single-Sample Node Entropy for Molecular Transition in Pre-deterioration Stage of Cancer. Front Bioeng Biotechnol 2020; 8:809. [PMID: 32766227 PMCID: PMC7381145 DOI: 10.3389/fbioe.2020.00809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022] Open
Abstract
A complex disease, especially cancer, always has pre-deterioration stage during its progression, which is difficult to identify but crucial to drug research and clinical intervention. However, using a few samples to find mechanisms that propel cancer crossing the pre-deterioration stage is still a complex problem. In this study, we successfully developed a novel single-sample model based on node entropy with a priori established protein interaction network. Using this model, critical stages were successfully detected in simulation data and four TCGA datasets, indicating its sensitivity and robustness. Besides, compared with the results of the differential analysis, our results showed that most of dynamic network biomarkers identified by node entropy, such as NKD2 or DAAM1, located in upstream in many important cancer-related signaling pathways regulated intergenic signaling within pathways. We also identified some novel prognostic biomarkers such as PER2, TNFSF4, MMP13 and ENO4 using node entropy rather than expression level. More importantly, we found the switch of non-specific pathways related to DNA damage repairing was the main driven force for cancer progression. In conclusion, we have successfully developed a dynamic node entropy model based on single case data to find out tipping point and possible mechanism for cancer progression. These findings may provide new target genes in therapeutic intervention tactics.
Collapse
Affiliation(s)
- Chongyin Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jiayuan Zhong
- School of Mathematics, South China University of Technology, Guangzhou, China
| | - Jiaqi Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Huisheng Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Rui Liu
- School of Mathematics, South China University of Technology, Guangzhou, China
| | - Fei Ling
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|