1
|
Chen Z, He J, Guo Y, Hao Y, Lv W, Chen Z, Wang J, Yang Y, Wang K, Liu Z, Ouyang Q, Su Z, Hu P, Xiao G. Adherent junctions: Physiology, role in hydrocephalus and potential therapeutic targets. IBRO Neurosci Rep 2025; 18:283-292. [PMID: 39995568 PMCID: PMC11849119 DOI: 10.1016/j.ibneur.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
In all epithelial cells, the adherent junctions (AJs) with cadherin as the core play an important role in the maintenance of the connection and the formation of apical-basal polarity. The ependymal cells close to the ventricular system rely on AJs with N-cadherin at the core to maintain their normal morphology and function. Therefore, it has an important impact on the function and disease of the central nervous system. Hydrocephalus is a pathological phenomenon of excessive cerebrospinal fluid accumulating in the ventricular system accompanied by continuous ventricular dilatation, which can be divided into obstructive hydrocephalus and communicating hydrocephalus according to the pathogenesis. Obstructive hydrocephalus is often associated with excessive ependymal cells produced by differentiation of radial glial cells. The etiology of communicating hydrocephalus is mainly related to the dyskinesia of cerebrospinal fluid. In addition, the damage of the brain barrier can lead to brain edema and aggravate the symptoms. At present, the researches on the pathogenesis of hydrocephalus are mainly focused on the development of ependymal cells and cilia, while less attention has been paid to molecules such as AJs, which play an important role in maintaining the polarity of ependymal cells. This paper discusses the formation and function of AJs and their role in preventing hydrocephalus by preserving the polarity of ependymal cilia, regulating the number of ependymal cells, and upholding the brain barrier integrity to impede hydrocephalus exacerbation, which provides a new direction for the study of hydrocephalus.
Collapse
Affiliation(s)
- Zhiye Chen
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, PR China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Jian He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yating Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yue Hao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Wentao Lv
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zexin Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Junqiang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yijian Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Kaiyue Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhikun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Qian Ouyang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Department of Neurosurgery, Zhuzhou Hospital, Central South University Xiangya School of Medicine, Zhuzhou, Hunan 412000, PR China
| | - Zhangjie Su
- Department of Neurosurgery, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB21 2QQ, UK
| | - Pingsheng Hu
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, PR China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| |
Collapse
|
2
|
Wang CE, Ogden SK. G Protein-Coupled Receptor Signal Intersection at the Primary Cilium. Bioessays 2025:e70015. [PMID: 40277275 DOI: 10.1002/bies.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
Primary cilia are singular projections that extend from the surface of most vertebrate cell types. The surface area of the primary cilium (PC) is estimated to represent only 1/100th of the total membrane surface of an average cell. Despite this, the PC provides essential contributions to inter- and intracellular communication by housing receptors and downstream effectors for myriad cell-signaling cascades. G protein-coupled receptors (GPCRs) commonly enrich along ciliary membranes to control a diverse range of cellular behaviors by signaling through a shared pool of downstream effectors. This suggests the hypothesis that the PC provides an environment that is conducive to complementary or competitive GPCR Signal Crosstalk. In this Hypothesis Bio Essay, we use the Sonic Hedgehog (SHH) pathway as a case study to inform models of how GPCR signals could intersect in primary cilia and suggest general strategies to test each model.
Collapse
Affiliation(s)
- Christina E Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
3
|
Tian S, Gleeson JG. Prefrontal cortex modulation of stress by primary cilia. Neuron 2025; 113:1126-1128. [PMID: 40245842 DOI: 10.1016/j.neuron.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/19/2025]
Abstract
In this issue of Neuron, Yang et al.1 reveal that primary cilia in mouse prefrontal cortex excitatory neurons regulate stress responses via cAMP/PKA signaling. Stress induces ciliary elongation, enhancing corticosterone-mediated neuronal inhibition. Cilia loss reduces stress sensitivity, highlighting their role in stress adaptation, with potential therapeutic relevance.
Collapse
Affiliation(s)
- Shixiong Tian
- Laboratory for Pediatric Brain Disease, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, CA 92037, USA.
| |
Collapse
|
4
|
Yang J, Dong Y, Liu J, Peng Y, Wang D, Li L, Hu X, Li J, Wang L, Chu J, Ma J, Shi H, Shi SH. Primary ciliary protein kinase A activity in the prefrontal cortex modulates stress in mice. Neuron 2025; 113:1276-1289.e5. [PMID: 40056898 DOI: 10.1016/j.neuron.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/26/2024] [Accepted: 02/04/2025] [Indexed: 03/10/2025]
Abstract
Primary cilia are cellular antennae emanating from vertebrate cell surfaces to sense and transduce extracellular signals intracellularly to regulate cell behavior and function. However, their signal sensing and physiological functions in neocortical neurons remain largely unclear. Here, we show that, in response to various animal stressors, primary cilia in the mouse prefrontal cortex (PFC) exhibit consistent axonemal elongation. Selective removal of excitatory neuron primary cilia in the prefrontal but not sensory cortex leads to a reduction in animal stress sensing and response. Treatment with corticosterone, the major stress hormone, elicits an increase in primary ciliary cyclic adenosine 3',5'-monphosphate (cAMP) level in PFC excitatory neurons and a decrease in neuronal excitability dependent on primary cilia. Suppression of primary ciliary protein kinase A (PKA) activity in PFC excitatory neurons reduces animal stress. These results suggest that excitatory neurons in the PFC are involved in sensing and regulating animal stress via primary ciliary cAMP/PKA signaling.
Collapse
Affiliation(s)
- Jiajun Yang
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Yingjie Dong
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Jie Liu
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Yuwei Peng
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Ding Wang
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Lei Li
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Xiaoqing Hu
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Jinfeng Li
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Liang Wang
- Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen, P.R. China
| | - Jun Chu
- Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen, P.R. China
| | - Jian Ma
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Hang Shi
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China.
| | - Song-Hai Shi
- New Cornerstone Science Laboratory, IDG/McGovern Institute of Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, P.R. China; Chinese Institute for Brain Research, Beijing, P.R. China.
| |
Collapse
|
5
|
DeCaen PG, Kimura LF. Methods to assess neuronal primary cilia electrochemical signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646689. [PMID: 40235990 PMCID: PMC11996568 DOI: 10.1101/2025.04.01.646689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Primary cilia are polymodal sensory organelles which project from the apical side of polarized cells. They are found in all brain hemispheres but are most pronounced in neurons which comprise the granular layers of the hippocampus and cerebellum. Pathogenic variants in genes which encode primary cilia components are responsible for neuronal ciliopathies- a group of central nervous system disorders characterized by neurodevelopmental conditions such as intellectual disability, seizure, ataxia, and sensory deficits. In the hippocampus, neuronal primary cilia form chemical synapses with axons and their membranes are populated with unique sets of ion channels and G protein-coupled receptors (GPCRs). Primary cilia are small and privileged compartments that are challenging organelles to study. In detail, we describe cilia electrophysiology methods and the use of cilia-specific fluorescent sensors to assay neuronal polycystin channel function and serotonergic receptor signaling, respectively. These tools allow researchers to assay calcium, cAMP and channel-related signaling pathways in isolated neurons in real time and in semi-quantitative terms, while enhancing our understanding of this understudied organelle and its dysregulation in ciliopathy disease states.
Collapse
|
6
|
DeCaen PG, Kimura LF. Methods to Assess Neuronal Primary Cilia Electrochemical Signaling. J Cell Physiol 2025; 240:e70034. [PMID: 40227694 PMCID: PMC11996007 DOI: 10.1002/jcp.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Primary cilia are polymodal sensory organelles which project from the apical side of polarized cells. They are found in all brain hemispheres but are most pronounced in neurons, which comprise the granular layers of the hippocampus and cerebellum. Pathogenic variants in genes which encode primary cilia components are responsible for neuronal ciliopathies-a group of central nervous system disorders characterized by neurodevelopmental conditions such as intellectual disability, seizure, ataxia, and sensory deficits. In the hippocampus, neuronal primary cilia form chemical synapses with axons and their membranes are populated with unique sets of ion channels and G protein-coupled receptors (GPCRs). Primary cilia are small and privileged compartments that are challenging organelles to study. In detail, we describe cilia electrophysiology methods and the use of cilia-specific fluorescent sensors to assay neuronal polycystin channel function and serotonergic receptor signaling, respectively. These tools allow researchers to assay calcium, cAMP and channel-related signaling pathways in isolated neurons in real-time and in semi-quantitative terms, while enhancing our understanding of this understudied organelle and its dysregulation in ciliopathy disease states.
Collapse
Affiliation(s)
- Paul G. DeCaen
- Feinberg School of Medicine, Department of PharmacologyNorthwestern UniversityChicagoIllinoisUSA
| | - Louise F. Kimura
- Feinberg School of Medicine, Department of PharmacologyNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
7
|
Laporte D, Sagot I. Microtubule Reorganization and Quiescence: an Intertwined Relationship. Physiology (Bethesda) 2025; 40:0. [PMID: 39378102 DOI: 10.1152/physiol.00036.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024] Open
Abstract
Quiescence is operationally defined as a reversible proliferation arrest. This cellular state is central to both organism development and homeostasis, and its dysregulation causes many pathologies. The quiescent state encompasses very diverse cellular situations depending on the cell type and its environment. Further, quiescent cell properties evolve with time, a process that is thought to be the origin of aging in multicellular organisms. Microtubules are found in all eukaryotes and are essential for cell proliferation as they support chromosome segregation and intracellular trafficking. Upon proliferation cessation and quiescence establishment, the microtubule cytoskeleton was shown to undergo significant remodeling. The purpose of this review is to examine the literature in search of evidence to determine whether the observed microtubule reorganizations are merely a consequence of quiescence establishment or if they somehow participate in this cell fate decision.
Collapse
Affiliation(s)
- Damien Laporte
- Centre National de la Recherche ScientifiqueUniversité de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095, Bordeaux, France
| | - Isabelle Sagot
- Centre National de la Recherche ScientifiqueUniversité de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095, Bordeaux, France
| |
Collapse
|
8
|
Ulgen DH, Chioino A, Zanoletti O, Quintana A, Sanz E, Sandi C. Mitochondrial control of ciliary gene expression and structure in striatal neurons. J Physiol 2025. [PMID: 39964840 DOI: 10.1113/jp287948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Mitochondria play essential metabolic roles and are increasingly understood to interact with other organelles, influencing cellular function and disease. Primary cilia, as sensory and signalling organelles, are crucial for neuronal communication and function. Emerging evidence suggests that mitochondria and primary cilia may interact to regulate cellular processes, as recently shown in brain cells such as astrocytes. Here, we investigated whether mitochondria also regulate primary cilia in neurons, focusing on molecular pathways linking both organelles and structural components within cilia. We employed a cross-species, molecular pathway-focused approach to explore connections between mitochondrial and ciliary pathways in neurons, revealing strong associations suggesting coordinated functionality. Furthermore, we found that viral-induced downregulation of the mitochondrial fusion gene mitofusin 2 (Mfn2) in dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) of the nucleus accumbens (NAc) altered ciliary gene expression, with Crocc - the gene encoding rootletin - showing the most pronounced downregulation. This reduction in Crocc expression was linked to decreased levels of rootletin protein, a key structural component of the ciliary rootlet. Notably, viral-mediated overexpression of rootletin restored ciliary complexity and elongation, without compromising neuronal adaptation to Mfn2 downregulation. Our findings provide novel evidence of a functional mitochondria-cilia interaction in neurons, specifically in striatal D1-MSNs. These results reveal a previously unrecognized role of mitochondrial dynamics in regulating ciliary structure in neurons, with potential implications for neuropsychiatric and neurodegenerative disease mechanisms. KEY POINTS: Mitochondria are cell structures known for producing energy but are also emerging as regulators of other cellular components, including primary cilia, antenna-like structures involved in cell communication. Previous studies suggest that mitochondria may influence cilia structure and function, including in astrocytes. However, this has not been explored in neurons. This study shows that natural variation in mitochondrial molecular pathways correlates with primary cilia pathways in striatal medium spiny neurons in both rats and mice. Reducing expression of mitofusin 2 (Mfn2), a key mitochondrial protein involved in fusion and mitochondria-endoplasmic reticulum interactions, changes specific molecular ciliary pathways, notably including Crocc, a gene essential for cilia structure, and reduces the levels of its protein product, rootletin, which supports cilia integrity. Our findings reveal an important role for mitochondria in regulating ciliary structure in neurons, highlighting a potential pathway for mitochondrial regulation of neuronal signalling.
Collapse
Affiliation(s)
- Dogukan H Ulgen
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alessandro Chioino
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Albert Quintana
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Elisenda Sanz
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Zhang X, Cao Y, Wang M, Li Y, Yin H, Ni H, Yang S, Yu F, Yang J, Peng L, Hu M, Li D, Liu D. Primary Cilia Regulate the Homeostasis and Regeneration of the Stem Cell Niche in the Tooth. J Cell Physiol 2025; 240:e31517. [PMID: 39734274 DOI: 10.1002/jcp.31517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 12/31/2024]
Abstract
Primary cilia, functioning as crucial hubs for signal sensing and transduction, are integral to the development and maintenance of homeostasis across various organs. However, their roles in tooth homeostasis and repair remain inadequately understood. In this study, we reveal an indispensable role for primary cilia in regulating the homeostasis and regeneration of teeth, primarily through the regulation of cell proliferation. Using cilium-deficient mice, we demonstrate that disruption of ciliary homeostasis leads to abnormal tooth morphology, stunted growth and notably impaired tooth repair. RNA sequencing reveals a dysregulation in genes associated with various biological processes such as cell proliferation, differentiation, and cycle regulation. Furthermore, we show that cilium-deficient mice display reduced cell proliferation. Our findings highlight a critical function for primary cilia in the regulation of tooth homeostasis and regeneration and have important implications for the development of tooth regeneration therapies.
Collapse
Affiliation(s)
- Xinming Zhang
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yuxin Cao
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Mengge Wang
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, China
| | - Yujia Li
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Hanxiao Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hua Ni
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Song Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Fan Yu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jia Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lisu Peng
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Meilin Hu
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dayong Liu
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
- School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases Shijiazhuang, Shijiazhuang, China
| |
Collapse
|
10
|
Zhu D, Pan Y, Yang Y, Wang S. Regulation of the Cilia as a Potential Treatment for Senescence and Tumors: A Review. J Cell Physiol 2025; 240:e31499. [PMID: 39660388 DOI: 10.1002/jcp.31499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
Millions of people worldwide die from malignant tumors every year, and the current clinical treatment is still based on radiotherapy and chemotherapy. Immunotherapy-adjuvant chemotherapy is widely applied, yet resistance to various factors persists in the management of advanced malignancies. Recently researchers have gradually discovered that the integrity of primary cilia is closely related to many diseases. The phenotypic changes in primary cilia are found in some cases of progeria, tumorigenesis, and drug resistance. Primary cilia seem to mediate signaling during these diseases. Hedgehog inhibitors have emerged in recent years to treat tumors by controlling signaling proteins on primary cilia. There is evidence for the use of anti-tumor drugs to treat senescence-related disease. Considering the close relationship between aging and obesity, as well as the obesity is the phenotype of many ciliopathies. Therefore, we speculate that some anti-tumor or anti-aging drugs can treat ciliopathies. Additionally, there is evidence suggesting that anti-aging drugs for tumor treatment, in which the process may be mediated by cilia. This review elucidates for the first time that cilia may be involved in the regulation of senescence, metabolic, tumorigenesis, and tumor resistance and hypothesizes that cilia can be regulated to treat these diseases in the future.
Collapse
Affiliation(s)
- Danping Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqin Pan
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Yang
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shukui Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Quelhas P, Oliveira R, Kieling C, Vieira S, dos Santos J. Structural Disruption of Cilia and Increased Cytoplasmic Tubulin in Biliary Atresia-An Exploratory Study Focusing on Early Postoperative Prognosis Following Portoenterostomy. Biomedicines 2025; 13:87. [PMID: 39857671 PMCID: PMC11763231 DOI: 10.3390/biomedicines13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/13/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Introduction: Biliary atresia (BA) is a progressive hepatobiliary disease in infants, leading to liver failure and the need for transplantation. While its etiopathogenesis remains unclear, recent studies suggest primary cilia (PC) disruption plays a role. This study investigates correlations between PC and cytoplasmic tubulin (TUBA4A) alterations with hypoxia in patients with the isolated form of BA, focusing on native liver survival. Methods: Using qualitative and quantitative digital image analysis of immunofluorescence-stained liver samples, we assessed PC and TUBA4A features correlating these findings with HIF-1α nuclear positivity, clinical-laboratory data, and early native liver survival. Liver samples from fourteen BA patients and six controls with another liver disease were analyzed by digital image analysis, with data evaluated using Spearman's correlation and independent t-tests. Results: HIF-1α positivity in cholangiocytes was observed in 42.8% of BA patients. While the PC ratio per biliary structure (cilia ratio status, CRs) was similar between BA patients and controls, PC length was decreased in BA patients. Cytoplasmic TUBA4A levels were elevated in BA patients. CRs positively correlated with lower cytoplasmic TUBA4A expression and was higher in patients without HIF-1α nuclear positivity. Reduced cilia length correlated with higher bilirubin levels at portoenterostomy. Predictors of early poor prognosis (death or need for transplantation until 1 year of life) included HIF-1α positivity, elevated direct bilirubin levels, decreased cilia length, PC bending, and increased TUBA4A expression. Conclusions: Reduced PC length, PC bending, and increased intensity of cytoplasmic TUBA4A expression occur in the isolated BA clinical type and negatively impact the early prognosis after post-portoenterostomy. These findings suggest the existence of a disruption in the tubulin transport between cytoplasm and PC. The detrimental effect of HIF-1alpha pathway activation over early native liver survival was confirmed, although independently from PC or cytoplasmic tubulin features.
Collapse
Affiliation(s)
- Patrícia Quelhas
- Faculty of Health Sciences, Health Science Investigation Center of University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
| | - Rui Oliveira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Germano de Sousa-Centro de Diagnóstico Histopatológico CEDAP, University of Coimbra, 3000-377 Coimbra, Portugal
| | - Carlos Kieling
- Unidade de Gastroenterologia e Hepatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil; (C.K.); (S.V.)
| | - Sandra Vieira
- Unidade de Gastroenterologia e Hepatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil; (C.K.); (S.V.)
- Department of Pediatrics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil
- Programa de Transplante de Fígado Pediátrico, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
| | - Jorge dos Santos
- Faculty of Health Sciences, Health Science Investigation Center of University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
| |
Collapse
|
12
|
Fitzsimons LA, Staurengo-Ferrari L, Khomula EV, Bogen O, Araldi D, Bonet IJM, Green PG, Jordan EE, Sclafani F, Nowak CE, Moulton JK, Ganter GK, Levine JD, Tucker KL. The Nociceptor Primary Cilium Contributes to Mechanical Nociceptive Threshold and Inflammatory and Neuropathic Pain. J Neurosci 2024; 44:e1265242024. [PMID: 39349056 PMCID: PMC11580782 DOI: 10.1523/jneurosci.1265-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/16/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
The primary cilium, a single microtubule-based organelle protruding from the cell surface and critical for neural development, also functions in adult neurons. While some dorsal root ganglion neurons elaborate a primary cilium, whether it is expressed by and functional in nociceptors is unknown. Recent studies have shown the role of Hedgehog, whose canonical signaling is primary cilium dependent, in nociceptor sensitization. We establish the presence of primary cilia in soma of rat nociceptors, where they contribute to mechanical threshold, prostaglandin E2 (PGE2)-induced hyperalgesia, and chemotherapy-induced neuropathic pain (CIPN). Intrathecal administration of siRNA targeting Ift88, a primary cilium-specific intraflagellar transport (IFT) protein required for ciliary integrity, resulted in attenuation of Ift88 mRNA and nociceptor primary cilia. Attenuation of primary cilia was associated with an increase in mechanical nociceptive threshold in vivo and decrease in nociceptor excitability in vitro, abrogation of hyperalgesia, and nociceptor sensitization induced by both a prototypical pronociceptive inflammatory mediator PGE2 and paclitaxel CIPN, in a sex-specific fashion. siRNA targeting Ift52, another IFT protein, and knockdown of NompB, the Drosophila Ift88 ortholog, also abrogated CIPN and reduced baseline mechanosensitivity, respectively, providing independent confirmation for primary cilia control of nociceptor function. Hedgehog-induced hyperalgesia is attenuated by Ift88 siRNA, supporting the role for primary cilia in Hedgehog-induced hyperalgesia. Attenuation of CIPN by cyclopamine (intradermal and intraganglion), which inhibits Hedgehog signaling, supports the role of Hedgehog in CIPN. Our findings support the role of the nociceptor primary cilium in control of mechanical nociceptive threshold and inflammatory and neuropathic pain, the latter Hedgehog-dependent.
Collapse
Affiliation(s)
- Lindsey A Fitzsimons
- Deparment of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
| | - Larissa Staurengo-Ferrari
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Eugen V Khomula
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Oliver Bogen
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Dionéia Araldi
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Ivan J M Bonet
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Paul G Green
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
- Department of Preventative and Restorative Dental Sciences, University of California San Francisco, San Francisco 94115
| | - Ethan E Jordan
- Deparment of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
| | - Finn Sclafani
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Connor E Nowak
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Julie K Moulton
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Geoffrey K Ganter
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Jon D Levine
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
- Department of Medicine, Division of Neuroscience, University of California San Francisco, San Francisco 94115
| | - Kerry L Tucker
- Deparment of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
| |
Collapse
|
13
|
Kobayashi Y, Hamamoto A, Saito Y. Ciliary length variations impact cilia-mediated signaling and biological responses. J Biochem 2024; 176:369-383. [PMID: 39115281 DOI: 10.1093/jb/mvae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/24/2024] [Indexed: 11/05/2024] Open
Abstract
Primary cilia are thin hair-like organelles that protrude from the surface of most mammalian cells. They act as specialized cell antennas that can vary widely in response to specific stimuli. However, the effect of changes in cilia length on cellular signaling and behavior remains unclear. Therefore, we aimed to characterize the elongated primary cilia induced by different chemical agents, lithium chloride (LiCl), cobalt chloride (CoCl2) and rotenone, using human retinal pigmented epithelial 1 (hRPE1) cells expressing ciliary G protein-coupled receptor (GPCR), melanin-concentrating hormone (MCH) receptor 1 (MCHR1). MCH induces cilia shortening mainly via MCHR1-mediated Akt phosphorylation. Therefore, we verified the proper functioning of the MCH-MCHR1 axis in elongated cilia. Although MCH shortened cilia that were elongated by LiCl and rotenone, it did not shorten CoCl2-induced elongated cilia, which exhibited lesser Akt phosphorylation. Furthermore, serum readdition was found to delay cilia shortening in CoCl2-induced elongated cilia. In contrast, rotenone-induced elongated cilia rapidly shortened via a chopping mechanism at the tip of the cilia. Conclusively, we found that each chemical exerted different effects on ciliary GPCR signaling and serum-mediated ciliary structure dynamics in cells with elongated cilia. These results provide a basis for understanding the functional consequences of changes in ciliary length.
Collapse
|
14
|
Patel MB, Griffin PJ, Olson SF, Dai J, Hou Y, Malik T, Das P, Zhang G, Zhao W, Witman GB, Lechtreck KF. Distribution and bulk flow analyses of the intraflagellar transport (IFT) motor kinesin-2 support an "on-demand" model for Chlamydomonas ciliary length control. Cytoskeleton (Hoboken) 2024; 81:586-604. [PMID: 38456596 PMCID: PMC11380706 DOI: 10.1002/cm.21851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Most cells tightly control the length of their cilia. The regulation likely involves intraflagellar transport (IFT), a bidirectional motility of multi-subunit particles organized into trains that deliver building blocks into the organelle. In Chlamydomonas, the anterograde IFT motor kinesin-2 consists of the motor subunits FLA8 and FLA10 and the nonmotor subunit KAP. KAP dissociates from IFT at the ciliary tip and diffuses back to the cell body. This observation led to the diffusion-as-a-ruler model of ciliary length control, which postulates that KAP is progressively sequestered into elongating cilia because its return to the cell body will require increasingly more time, limiting motor availability at the ciliary base, train assembly, building block supply, and ciliary growth. Here, we show that Chlamydomonas FLA8 also returns to the cell body by diffusion. However, more than 95% of KAP and FLA8 are present in the cell body and, at a given time, just ~1% of the motor participates in IFT. After repeated photobleaching of both cilia, IFT of fluorescent kinesin subunits continued indicating that kinesin-2 cycles from the large cell-body pool through the cilia and back. Furthermore, growing and full-length cilia contained similar amounts of kinesin-2 subunits and the size of the motor pool at the base changed only slightly with ciliary length. These observations are incompatible with the diffusion-as-a-ruler model, but rather support an "on-demand model," in which the cargo load of the trains is regulated to assemble cilia of the desired length.
Collapse
Affiliation(s)
- Mansi B Patel
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Paul J Griffin
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Spencer F Olson
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Jin Dai
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Yuqing Hou
- Department of Radiology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Tara Malik
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Poulomi Das
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Gui Zhang
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Winston Zhao
- Department of Radiology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - George B Witman
- Department of Radiology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
15
|
Kumari A, Caliz AD, Yoo HJ, Kant S, Vertii A. TNF-alpha promotes cilia elongation via mixed lineage kinases signaling in mouse fibroblasts and human RPE-1 cells. Cytoskeleton (Hoboken) 2024; 81:639-647. [PMID: 38767050 PMCID: PMC11576261 DOI: 10.1002/cm.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/10/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
The primary cilium is a characteristic feature of most non-immune cells and functions as an environmental signal transduction sensor. The defects in primary cilium have profound effects on the developmental program, including the maturation of retinal epithelium. The ciliary length is tightly regulated during ciliogenesis, but the impact of inflammation on ciliary length remains elusive. The current study investigates the outcome of inflammatory stimuli for the primary cilium length in retinal epithelium cells and mouse embryonic fibroblasts. Here, we report that exposure to the pro-inflammatory cytokine TNF-alpha elongates cilia in a mixed-lineage kinase (MLK)-dependent manner. Pro-inflammatory stimuli such as bacterial LPS and interferon-gamma have similar effects on ciliary length. In contrast, febrile condition-mimicking heat stress dramatically reduced the number of ciliated cells regardless of TNF-alpha exposure but did not shorten TNF-induced elongation, suggesting distinct but rapid effects of inflammatory stresses on ciliogenesis.
Collapse
Affiliation(s)
- Amrita Kumari
- Molecular, Cell and Cancer Biology Department, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Amada D Caliz
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hyung-Jin Yoo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shashi Kant
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anastassiia Vertii
- Molecular, Cell and Cancer Biology Department, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
16
|
Li C, Liu Y, Luo S, Yang M, Li L, Sun L. A review of CDKL: An underestimated protein kinase family. Int J Biol Macromol 2024; 277:133604. [PMID: 38964683 DOI: 10.1016/j.ijbiomac.2024.133604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Cyclin-dependent kinase-like (CDKL) family proteins are serine/threonine protein kinases and is a specific branch of CMGC (including CDK, MAPK, GSK). Its name is due to the sequence similarity with CDK and it consists of 5 members. Their function in protein phosphorylation underpins their important role in cellular activities, including cell cycle, apoptosis, autophagy and microtubule dynamics. CDKL proteins have been demonstrated to regulate the length of primary cilium, which is a dynamic and diverse signaling hub and closely associated with multiple diseases. Furthermore, CDKL proteins have been shown to be involved in the development and progression of several diseases, including cancer, neurodegenerative diseases and kidney disease. In this review, we summarize the structural characteristics and discovered functions of CDKL proteins and their role in diseases, which might be helpful for the development of innovative therapeutic strategies for disease.
Collapse
Affiliation(s)
- Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
17
|
Burkhalter MD, Stiff T, Maerz LD, Casar Tena T, Wiese H, Gerhards J, Sailer SA, Vu LAT, Duong Phu M, Donow C, Alupei M, Iben S, Groth M, Wiese S, Church JA, Jeggo PA, Philipp M. Cilia defects upon loss of WDR4 are linked to proteasomal hyperactivity and ubiquitin shortage. Cell Death Dis 2024; 15:660. [PMID: 39251572 PMCID: PMC11384789 DOI: 10.1038/s41419-024-07042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
The WD repeat-containing protein 4 (WDR4) has repeatedly been associated with primary microcephaly, a condition of impaired brain and skull growth. Often, faulty centrosomes cause microcephaly, yet aberrant cilia may also be involved. Here, we show using a combination of approaches in human fibroblasts, zebrafish embryos and patient-derived cells that WDR4 facilitates cilium formation. Molecularly, we associated WDR4 loss-of-function with increased protein synthesis and concomitant upregulation of proteasomal activity, while ubiquitin precursor pools are reduced. Inhibition of proteasomal activity as well as supplementation with free ubiquitin restored normal ciliogenesis. Proteasome inhibition ameliorated microcephaly phenotypes. Thus, we propose that WDR4 loss-of-function impairs head growth and neurogenesis via aberrant cilia formation, initially caused by disturbed protein and ubiquitin homeostasis.
Collapse
Affiliation(s)
- Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Tom Stiff
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Lars D Maerz
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Teresa Casar Tena
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Heike Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Julian Gerhards
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Steffen A Sailer
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Linh Anna Trúc Vu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Max Duong Phu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany
| | - Cornelia Donow
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Marius Alupei
- Department of Dermatology, Ulm University, 89081, Ulm, Germany
| | - Sebastian Iben
- Department of Dermatology, Ulm University, 89081, Ulm, Germany
| | - Marco Groth
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute, 07745, Jena, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Joseph A Church
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, 90033, USA
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, 72074, Tübingen, Germany.
| |
Collapse
|
18
|
Ansari SS, Dillard ME, Zhang Y, Austria MA, Boatwright N, Shelton EL, Stewart DP, Johnson A, Wang CE, Young BM, Rankovic Z, Hansen BS, Pruett-Miller SM, Carisey AF, Schuetz JD, Robinson CG, Ogden SK. Sonic Hedgehog activates prostaglandin signaling to stabilize primary cilium length. J Cell Biol 2024; 223:e202306002. [PMID: 38856684 PMCID: PMC11166601 DOI: 10.1083/jcb.202306002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 04/03/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
Sonic Hedgehog (SHH) is a driver of embryonic patterning that, when corrupted, triggers developmental disorders and cancers. SHH effector responses are organized through primary cilia (PC) that grow and retract with the cell cycle and in response to extracellular cues. Disruption of PC homeostasis corrupts SHH regulation, placing significant pressure on the pathway to maintain ciliary fitness. Mechanisms by which ciliary robustness is ensured in SHH-stimulated cells are not yet known. Herein, we reveal a crosstalk circuit induced by SHH activation of Phospholipase A2α that drives ciliary E-type prostanoid receptor 4 (EP4) signaling to ensure PC function and stabilize ciliary length. We demonstrate that blockade of SHH-EP4 crosstalk destabilizes PC cyclic AMP (cAMP) equilibrium, slows ciliary transport, reduces ciliary length, and attenuates SHH pathway induction. Accordingly, Ep4-/- mice display shortened neuroepithelial PC and altered SHH-dependent neuronal cell fate specification. Thus, SHH initiates coordination between distinct ciliary receptors to maintain PC function and length homeostasis for robust downstream signaling.
Collapse
Affiliation(s)
- Shariq S. Ansari
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Miriam E. Dillard
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yan Zhang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mary Ashley Austria
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Rhodes College Summer Plus Program, Memphis, TN, USA
| | - Naoko Boatwright
- Department of Pediatrics, Monroe Carell Jr. Children’s Hospital at Vanderbilt and Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Elaine L. Shelton
- Department of Pediatrics, Monroe Carell Jr. Children’s Hospital at Vanderbilt and Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Daniel P. Stewart
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Amanda Johnson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Christina E. Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Brandon M. Young
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Baranda S. Hansen
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Alexandre F. Carisey
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - John D. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Camenzind G. Robinson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Stacey K. Ogden
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
19
|
Yoshida S, Kawamura A, Aoki K, Wiriyasermkul P, Sugimoto S, Tomiyoshi J, Tajima A, Ishida Y, Katoh Y, Tsukada T, Tsuneoka Y, Yamada K, Nagamori S, Nakayama K, Yoshida K. Positive regulation of Hedgehog signaling via phosphorylation of GLI2/GLI3 by DYRK2 kinase. Proc Natl Acad Sci U S A 2024; 121:e2320070121. [PMID: 38968120 PMCID: PMC11252808 DOI: 10.1073/pnas.2320070121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/02/2024] [Indexed: 07/07/2024] Open
Abstract
Hedgehog (Hh) signaling, an evolutionarily conserved pathway, plays an essential role in development and tumorigenesis, making it a promising drug target. Multiple negative regulators are known to govern Hh signaling; however, how activated Smoothened (SMO) participates in the activation of downstream GLI2 and GLI3 remains unclear. Herein, we identified the ciliary kinase DYRK2 as a positive regulator of the GLI2 and GLI3 transcription factors for Hh signaling. Transcriptome and interactome analyses demonstrated that DYRK2 phosphorylates GLI2 and GLI3 on evolutionarily conserved serine residues at the ciliary base, in response to activation of the Hh pathway. This phosphorylation induces the dissociation of GLI2/GLI3 from suppressor, SUFU, and their translocation into the nucleus. Loss of Dyrk2 in mice causes skeletal malformation, but neural tube development remains normal. Notably, DYRK2-mediated phosphorylation orchestrates limb development by controlling cell proliferation. Taken together, the ciliary kinase DYRK2 governs the activation of Hh signaling through the regulation of two processes: phosphorylation of GLI2 and GLI3 downstream of SMO and cilia formation. Thus, our findings of a unique regulatory mechanism of Hh signaling expand understanding of the control of Hh-associated diseases.
Collapse
Affiliation(s)
- Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Akira Kawamura
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Katsuhiko Aoki
- Radioisotope Research Facilities, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Pattama Wiriyasermkul
- Center for Stable Isotope Medical Research, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Shinya Sugimoto
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Laboratory of Amyloid Regulation, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Junnosuke Tomiyoshi
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Ayasa Tajima
- Center for Stable Isotope Medical Research, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Department of Molecular Biology, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Yamato Ishida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Takehiro Tsukada
- Department of Biomolecular Science, Toho University, Chiba274-8510, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo143-8540, Japan
| | - Kohji Yamada
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Shushi Nagamori
- Center for Stable Isotope Medical Research, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| |
Collapse
|
20
|
Macarelli V, Harding EC, Gershlick DC, Merkle FT. A Short Sequence Targets Transmembrane Proteins to Primary Cilia. Cells 2024; 13:1156. [PMID: 38995007 PMCID: PMC11240719 DOI: 10.3390/cells13131156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Primary cilia are finger-like sensory organelles that extend from the bodies of most cell types and have a distinct lipid and protein composition from the plasma membrane. This partitioning is maintained by a diffusion barrier that restricts the entry of non-ciliary proteins, and allows the selective entry of proteins harboring a ciliary targeting sequence (CTS). However, CTSs are not stereotyped and previously reported sequences are insufficient to drive efficient ciliary localisation across diverse cell types. Here, we describe a short peptide sequence that efficiently targets transmembrane proteins to primary cilia in all tested cell types, including human neurons. We generate human-induced pluripotent stem cell (hiPSC) lines stably expressing a transmembrane construct bearing an extracellular HaloTag and intracellular fluorescent protein, which enables the bright, specific labeling of primary cilia in neurons and other cell types to facilitate studies of cilia in health and disease. We demonstrate the utility of this resource by developing an image analysis pipeline for the automated measurement of primary cilia to detect changes in their length associated with altered signaling or disease state.
Collapse
Affiliation(s)
- Viviana Macarelli
- Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK; (V.M.); (E.C.H.)
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Edward C. Harding
- Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK; (V.M.); (E.C.H.)
| | - David C. Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK;
| | - Florian T. Merkle
- Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK; (V.M.); (E.C.H.)
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| |
Collapse
|
21
|
Nishimura Y. [Regulation of adipose progenitors and fibro-adipogenic progenitors through primary cilia]. Nihon Yakurigaku Zasshi 2024; 159:188-191. [PMID: 38684399 DOI: 10.1254/fpj.23108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The primary cilium, an antenna-like structure of cell membrane, detects various signals and regulates cellular functions such as proliferation and differentiation. The impairment of primary cilium is associated with the etiologies of diseases including cancer, obesity, and congenital anomalies. In this review, novel functions of trichoplein, a suppressor of ciliogenesis, on the regulation of adipose progenitors and fibro-adipogenic progenitors are focused. Trichoplein-knockout mice show resistance to high-fat diet-induced obesity and accelerated regeneration after skeletal muscle injury. The primary cilia of adipose progenitors from trichoplein-knockout mice are elongated, leading to the inhibitions of the accumulation of lipid raft to the base of primary cilia and the phosphorylation of AKT. The primary cilia of fibro-adipogenic progenitors from trichoplein-knockout mice are also elongated, causing the increased expression of IL-13 through IL-33 receptor signaling. These mechanisms are involved in the resistance to diet-induced obesity and improved regeneration. These findings suggest that targeting the primary cilia of specific cells may be a novel therapeutic approach through modulating cellular functions.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine
- Research Center for Cilia and Diseases, Mie University Graduate School of Medicine
| |
Collapse
|
22
|
Muhamad NA, Masutani K, Furukawa S, Yuri S, Toriyama M, Matsumoto C, Itoh S, Shinagawa Y, Isotani A, Toriyama M, Itoh H. Astrocyte-Specific Inhibition of the Primary Cilium Suppresses C3 Expression in Reactive Astrocyte. Cell Mol Neurobiol 2024; 44:48. [PMID: 38822888 PMCID: PMC11144130 DOI: 10.1007/s10571-024-01482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
C3-positive reactive astrocytes play a neurotoxic role in various neurodegenerative diseases. However, the mechanisms controlling C3-positive reactive astrocyte induction are largely unknown. We found that the length of the primary cilium, a cellular organelle that receives extracellular signals was increased in C3-positive reactive astrocytes, and the loss or shortening of primary cilium decreased the count of C3-positive reactive astrocytes. Pharmacological experiments suggested that Ca2+ signalling may synergistically promote C3 expression in reactive astrocytes. Conditional knockout (cKO) mice that specifically inhibit primary cilium formation in astrocytes upon drug stimulation exhibited a reduction in the proportions of C3-positive reactive astrocytes and apoptotic cells in the brain even after the injection of lipopolysaccharide (LPS). Additionally, the novel object recognition (NOR) score observed in the cKO mice was higher than that observed in the neuroinflammation model mice. These results suggest that the primary cilium in astrocytes positively regulates C3 expression. We propose that regulating astrocyte-specific primary cilium signalling may be a novel strategy for the suppression of neuroinflammation.
Collapse
Affiliation(s)
- Nor Atiqah Muhamad
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Kohei Masutani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Shota Furukawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Shunsuke Yuri
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Michinori Toriyama
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 1 Gakuenuegahara, Sanda, Hyogo, 669-1330, Japan
| | - Chuya Matsumoto
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Seiya Itoh
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Yuichiro Shinagawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Ayako Isotani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Manami Toriyama
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan.
| | - Hiroshi Itoh
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
23
|
Zhao M, Yin N, Yang R, Li S, Zhang S, Faiola F. Assessment and Comparison of Early Developmental Toxicity of Six Per- and Polyfluoroalkyl Substances with Human Embryonic Stem Cell Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8215-8227. [PMID: 38687897 DOI: 10.1021/acs.est.3c10758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are extensively utilized in varieties of products and tend to accumulate in the human body including umbilical cord blood and embryos/fetuses. In this study, we conducted an assessment and comparison of the potential early developmental toxicity of perfluorooctanoic acid (PFOA), undecafluorohexanoic acid (PFHxA), heptafluorobutyric acid, perfluorooctanesulfonate (PFOS), perfluorohexanesulfonate, and perfluorobutyric acid at noncytotoxic concentrations relevant to human exposure using models based on human embryonic stem cells in both three-dimensional embryoid body (EB) and monolayer differentiation configurations. All six compounds influenced the determination of cell fate by disrupting the expression of associated markers in both models and, in some instances, even led to alterations in the formation of cystic EBs. The expression of cilia-related gene IFT122 was significantly inhibited. Additionally, PFOS and PFOA inhibited ciliogenesis, while PFOA specifically reduced the cilia length. Transcriptome analysis revealed that PFOS altered 1054 genes and disrupted crucial signaling pathways such as WNT and TGF-β, which play integral roles in cilia transduction and are critical for early embryonic development. These results provide precise and comprehensive insights into the potential adverse health effects of these six PFAS compounds directly concerning early human embryonic development.
Collapse
Affiliation(s)
- Miaomiao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shichang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuxian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Jurisch-Yaksi N, Wachten D, Gopalakrishnan J. The neuronal cilium - a highly diverse and dynamic organelle involved in sensory detection and neuromodulation. Trends Neurosci 2024; 47:383-394. [PMID: 38580512 DOI: 10.1016/j.tins.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
Cilia are fascinating organelles that act as cellular antennae, sensing the cellular environment. Cilia gained significant attention in the late 1990s after their dysfunction was linked to genetic diseases known as ciliopathies. Since then, several breakthrough discoveries have uncovered the mechanisms underlying cilia biogenesis and function. Like most cells in the animal kingdom, neurons also harbor cilia, which are enriched in neuromodulatory receptors. Yet, how neuronal cilia modulate neuronal physiology and animal behavior remains poorly understood. By comparing ciliary biology between the sensory and central nervous systems (CNS), we provide new perspectives on the functions of cilia in brain physiology.
Collapse
Affiliation(s)
- Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7491 Trondheim, Norway.
| | - Dagmar Wachten
- Department of Biophysical Imaging, Institute of Innate Immunity, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany; Institute for Human Genetics, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07740 Jena, Germany
| |
Collapse
|
25
|
Wang W, Dai X, Li Y, Li M, Chi Z, Hu X, Wang Z. The miR-669a-5p/G3BP/HDAC6/AKAP12 Axis Regulates Primary Cilia Length. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305068. [PMID: 38088586 PMCID: PMC10853727 DOI: 10.1002/advs.202305068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/13/2023] [Indexed: 02/10/2024]
Abstract
Primary cilia are conserved organelles in most mammalian cells, acting as "antennae" to sense external signals. Maintaining a physiological cilium length is required for cilium function. MicroRNAs (miRNAs) are potent gene expression regulators, and aberrant miRNA expression is closely associated with ciliopathies. However, how miRNAs modulate cilium length remains elusive. Here, using the calcium-shock method and small RNA sequencing, a miRNA is identified, namely, miR-669a-5p, that is highly expressed in the cilia-enriched noncellular fraction. It is shown that miR-669a-5p promotes cilium elongation but not cilium formation in cultured cells. Mechanistically, it is demonstrated that miR-669a-5p represses ras-GTPase-activating protein SH3-domain-binding protein (G3BP) expression to inhibit histone deacetylase 6 (HDAC6) expression, which further upregulates A-kinase anchor protein 12 (AKAP12) expression. This effect ultimately blocks cilia disassembly and leads to greater cilium length, which can be restored to wild-type lengths by either upregulating HDAC6 or downregulating AKAP12. Collectively, these results elucidate a previously unidentified miR-669a-5p/G3BP/HDAC6/AKAP12 signaling pathway that regulates cilium length, providing potential pharmaceutical targets for treating ciliopathies.
Collapse
Affiliation(s)
- Weina Wang
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Xuyao Dai
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Yue Li
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Mo Li
- School of Public HealthHebei UniversityBaoding071000China
| | - Zongqi Chi
- School of Public HealthHebei UniversityBaoding071000China
| | - Xiaoyu Hu
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Zhenshan Wang
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| |
Collapse
|
26
|
Ueda Y, Matsunaga D, Deguchi S. Asymmetric response emerges between creation and disintegration of force-bearing subcellular structures as revealed by percolation analysis. Integr Biol (Camb) 2024; 16:zyae012. [PMID: 38900169 DOI: 10.1093/intbio/zyae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Cells dynamically remodel their internal structures by modulating the arrangement of actin filaments (AFs). In this process, individual AFs exhibit stochastic behavior without knowing the macroscopic higher-order structures they are meant to create or disintegrate, but the mechanism allowing for such stochastic process-driven remodeling of subcellular structures remains incompletely understood. Here we employ percolation theory to explore how AFs interacting only with neighboring ones without recognizing the overall configuration can nonetheless create a substantial structure referred to as stress fibers (SFs) at particular locations. We determined the interaction probabilities of AFs undergoing cellular tensional homeostasis, a fundamental property maintaining intracellular tension. We showed that the duration required for the creation of SFs is shortened by the increased amount of preexisting actin meshwork, while the disintegration occurs independently of the presence of actin meshwork, suggesting that the coexistence of tension-bearing and non-bearing elements allows cells to promptly transition to new states in accordance with transient environmental changes. The origin of this asymmetry between creation and disintegration, consistently observed in actual cells, is elucidated through a minimal model analysis by examining the intrinsic nature of mechano-signal transmission. Specifically, unlike the symmetric case involving biochemical communication, physical communication to sense environmental changes is facilitated via AFs under tension, while other free AFs dissociated from tension-bearing structures exhibit stochastic behavior. Thus, both the numerical and minimal models demonstrate the essence of intracellular percolation, in which macroscopic asymmetry observed at the cellular level emerges not from microscopic asymmetry in the interaction probabilities of individual molecules, but rather only as a consequence of the manner of the mechano-signal transmission. These results provide novel insights into the role of the mutual interplay between distinct subcellular structures with and without tension-bearing capability. Insight: Cells continuously remodel their internal elements or structural proteins in response to environmental changes. Despite the stochastic behavior of individual structural proteins, which lack awareness of the larger subcellular structures they are meant to create or disintegrate, this self-assembly process somehow occurs to enable adaptation to the environment. Here we demonstrated through percolation simulations and minimal model analyses that there is an asymmetry in the response between the creation and disintegration of subcellular structures, which can aid environmental adaptation. This asymmetry inherently arises from the nature of mechano-signal transmission through structural proteins, namely tension-mediated information exchange within cells, despite the stochastic behavior of individual proteins lacking asymmetric characters in themselves.
Collapse
Affiliation(s)
- Yuika Ueda
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University
| | - Daiki Matsunaga
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University
| |
Collapse
|
27
|
Dupont N, Claude-Taupin A, Codogno P. A historical perspective of macroautophagy regulation by biochemical and biomechanical stimuli. FEBS Lett 2024; 598:17-31. [PMID: 37777819 DOI: 10.1002/1873-3468.14744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023]
Abstract
Macroautophagy is a lysosomal degradative pathway for intracellular macromolecules, protein aggregates, and organelles. The formation of the autophagosome, a double membrane-bound structure that sequesters cargoes before their delivery to the lysosome, is regulated by several stimuli in multicellular organisms. Pioneering studies in rat liver showed the importance of amino acids, insulin, and glucagon in controlling macroautophagy. Thereafter, many studies have deciphered the signaling pathways downstream of these biochemical stimuli to control autophagosome formation. Two signaling hubs have emerged: the kinase mTOR, in a complex at the surface of lysosomes which is sensitive to nutrients and hormones; and AMPK, which is sensitive to the cellular energetic status. Besides nutritional, hormonal, and energetic fluctuations, many organs have to respond to mechanical forces (compression, stretching, and shear stress). Recent studies have shown the importance of mechanotransduction in controlling macroautophagy. This regulation engages cell surface sensors, such as the primary cilium, in order to translate mechanical stimuli into biological responses.
Collapse
Affiliation(s)
- Nicolas Dupont
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université Paris Cité, France
| | - Aurore Claude-Taupin
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université Paris Cité, France
| | - Patrice Codogno
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université Paris Cité, France
| |
Collapse
|
28
|
Adametz F, Müller A, Stilgenbauer S, Burkhalter MD, Philipp M. Aging Associates with Cilium Elongation and Dysfunction in Kidney and Pancreas. Adv Biol (Weinh) 2023; 7:e2300194. [PMID: 37537358 DOI: 10.1002/adbi.202300194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/08/2023] [Indexed: 08/05/2023]
Abstract
Cilia are best known and most studied for their manifold functions enabling proper embryonic development. Loss of cilia or dysfunction thereof results in a great variety of congenital malformations and syndromes. However, there are also cilia-driven conditions, which manifest only later in life, such as polycystic kidney disease. Even degenerative diseases in the central nervous system have recently been linked to alterations in cilia biology. Surprisingly though, there is very little knowledge regarding cilia in normally aged organisms absent any disease. Here, it is provided evidence that cilia in naturally aged mice are considerably elongated in the kidney and pancreas, respectively. Moreover, such altered cilia appear to have become dysfunctional as indicated by changes in cellular signaling.
Collapse
Affiliation(s)
- Fabian Adametz
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Annika Müller
- Department of Internal Medicine III, Ulm University, 89081, Ulm, Germany
| | | | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomis, University of Tübingen, 72074, Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomis, University of Tübingen, 72074, Tübingen, Germany
| |
Collapse
|
29
|
Saito M, Otsu W, Miyadera K, Nishimura Y. Recent advances in the understanding of cilia mechanisms and their applications as therapeutic targets. Front Mol Biosci 2023; 10:1232188. [PMID: 37780208 PMCID: PMC10538646 DOI: 10.3389/fmolb.2023.1232188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
The primary cilium is a single immotile microtubule-based organelle that protrudes into the extracellular space. Malformations and dysfunctions of the cilia have been associated with various forms of syndromic and non-syndromic diseases, termed ciliopathies. The primary cilium is therefore gaining attention due to its potential as a therapeutic target. In this review, we examine ciliary receptors, ciliogenesis, and ciliary trafficking as possible therapeutic targets. We first discuss the mechanisms of selective distribution, signal transduction, and physiological roles of ciliary receptors. Next, pathways that regulate ciliogenesis, specifically the Aurora A kinase, mammalian target of rapamycin, and ubiquitin-proteasome pathways are examined as therapeutic targets to regulate ciliogenesis. Then, in the photoreceptors, the mechanism of ciliary trafficking which takes place at the transition zone involving the ciliary membrane proteins is reviewed. Finally, some of the current therapeutic advancements highlighting the role of large animal models of photoreceptor ciliopathy are discussed.
Collapse
Affiliation(s)
- Masaki Saito
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Wataru Otsu
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Keiko Miyadera
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Mie University Research Center for Cilia and Diseases, Tsu, Mie, Japan
| |
Collapse
|