1
|
Hasan AKMM, Hamed M, Hasan J, Martyniuk CJ, Niyogi S, Chivers DP. A review of the neurobehavioural, physiological, and reproductive toxicity of microplastics in fishes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116712. [PMID: 39002376 DOI: 10.1016/j.ecoenv.2024.116712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Microplastics (MPs) have emerged as widespread environmental pollutants, causing significant threats to aquatic ecosystems and organisms. This review examines the toxic effects of MPs on fishes, with a focus on neurobehavioural, physiological, and reproductive impacts, as well as the underlying mechanisms of toxicity. Evidence indicates that MPs induce a range of neurobehavioural abnormalities in fishes, affecting social interactions and cognitive functions. Altered neurotransmitter levels are identified as a key mechanism driving behavioural alterations following MP exposure. Physiological abnormalities in fishes exposed to MPs are also reported, including neurotoxicity, immunotoxicity, and oxidative stress. These physiological disruptions can compromise the individual health of aquatic organisms. Furthermore, reproductive abnormalities linked to MP exposure are discussed, with a particular emphasis on disruptions in endocrine signaling pathways. These disruptions can impair reproductive success in fish species, impacting population numbers. Here we explore the critical role of endocrine disruptions in mediating reproductive effects after exposure to MPs, focusing primarily on the hypothalamic-pituitary-gonadal axis. Our review highlights the urgent need for interdisciplinary research efforts aimed at elucidating the full extent of MP toxicity and its implications for aquatic ecosystems. Lastly, we identify knowledge gaps for future research, including investigations into the transgenerational impacts, if any, of MP exposure and quantifying synergetic/antagonistic effects of MPs with other environmental pollutants. This expanded knowledge regarding the potential risks of MPs to aquatic wildlife is expected to aid policymakers in developing mitigation strategies to protect aquatic species.
Collapse
Affiliation(s)
- A K M Munzurul Hasan
- Department of Biology, University of Saskatchewan, Saskatoon SK, S7N 5E2, Canada.
| | - Mohamed Hamed
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA
| | - Jabed Hasan
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon SK, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon SK, S7N 5E2, Canada
| |
Collapse
|
2
|
Abugessaisa I, Manabe RI, Kawashima T, Tagami M, Takahashi C, Okazaki Y, Bandinelli S, Kasukawa T, Ferrucci L. OVCH1 Antisense RNA 1 is differentially expressed between non-frail and frail old adults. GeroScience 2024; 46:2063-2081. [PMID: 37817005 PMCID: PMC10828349 DOI: 10.1007/s11357-023-00961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
While some old adults stay healthy and non-frail up to late in life, others experience multimorbidity and frailty often accompanied by a pro-inflammatory state. The underlying molecular mechanisms for those differences are still obscure. Here, we used gene expression analysis to understand the molecular underpinning between non-frail and frail individuals in old age. Twenty-four adults (50% non-frail and 50% frail) from InCHIANTI study were included. Total RNA extracted from whole blood was analyzed by Cap Analysis of Gene Expression (CAGE). CAGE identified transcription start site (TSS) and active enhancer regions. We identified a set of differentially expressed (DE) TSS and enhancer between non-frail and frail and male and female participants. Several DE TSSs were annotated as lncRNA (XIST and TTTY14) and antisense RNAs (ZFX-AS1 and OVCH1 Antisense RNA 1). The promoter region chr6:366,786,54-366,787,97;+ was DE and overlapping the longevity CDKN1A gene. GWAS-LD enrichment analysis identifies overlapping LD-blocks with the DE regions with reported traits in GWAS catalog (isovolumetric relaxation time and urinary tract infection frequency). Furthermore, we used weighted gene co-expression network analysis (WGCNA) to identify changes of gene expression associated with clinical traits and identify key gene modules. We performed functional enrichment analysis of the gene modules with significant trait/module correlation. One gene module is showing a very distinct pattern in hub genes. Glycogen Phosphorylase L (PYGL) was the top ranked hub gene between non-frail and frail. We predicted transcription factor binding sites (TFBS) and motif activity. TF involved in age-related pathways (e.g., FOXO3 and MYC) shows different expression patterns between non-frail and frail participants. Expanding the study of OVCH1 Antisense RNA 1 and PYGL may help understand the mechanisms leading to loss of homeostasis that ultimately causes frailty.
Collapse
Affiliation(s)
- Imad Abugessaisa
- Laboratory for Large-Scale Biomedical Data Technology, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan.
| | - Ri-Ichiroh Manabe
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Tsugumi Kawashima
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Michihira Tagami
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Chitose Takahashi
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Yasushi Okazaki
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Stefania Bandinelli
- Azienda USL Toscana Centro, InCHIANTI, Villa Margherita, Primo piano Viale Michelangelo, 41, 50125, Firenze, Italy
| | - Takeya Kasukawa
- Laboratory for Large-Scale Biomedical Data Technology, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital 5th floor, 3001 S. Hanover Street, Baltimore, MD, 21225, USA
| |
Collapse
|
3
|
Zeng B, Knapp EM, Skaritanov E, Oramas R, Sun J. ETS transcription factors regulate precise matrix metalloproteinase expression and follicle rupture in Drosophila. Development 2024; 151:dev202276. [PMID: 38345299 PMCID: PMC10946439 DOI: 10.1242/dev.202276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
Drosophila matrix metalloproteinase 2 (MMP2) is specifically expressed in posterior follicle cells of stage-14 egg chambers (mature follicles) and is crucial for the breakdown of the follicular wall during ovulation, a process that is highly conserved from flies to mammals. The factors that regulate spatiotemporal expression of MMP2 in follicle cells remain unknown. Here, we demonstrate crucial roles for the ETS-family transcriptional activator Pointed (Pnt) and its endogenous repressor Yan in the regulation of MMP2 expression. We found that Pnt is expressed in posterior follicle cells and overlaps with MMP2 expression in mature follicles. Genetic analysis demonstrated that pnt is both required and sufficient for MMP2 expression in follicle cells. In addition, Yan was temporally upregulated in stage-13 follicle cells to fine-tune Pnt activity and MMP2 expression. Furthermore, we identified a 1.1 kb core enhancer that is responsible for the spatiotemporal expression of MMP2 and contains multiple pnt/yan binding motifs. Mutation of pnt/yan binding sites significantly impaired the Mmp2 enhancer activity. Our data reveal a mechanism of transcriptional regulation of Mmp2 expression in Drosophila ovulation, which could be conserved in other biological systems.
Collapse
Affiliation(s)
- Baosheng Zeng
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Elizabeth M. Knapp
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Ekaterina Skaritanov
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Rebecca Oramas
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Jianjun Sun
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
4
|
Tu KJ, Stewart CE, Hendrickson PG, Regal JA, Kim SY, Ashley DM, Waitkus MS, Reitman ZJ. Pooled genetic screens to identify vulnerabilities in TERT-promoter-mutant glioblastoma. Oncogene 2023; 42:3274-3286. [PMID: 37741952 PMCID: PMC10615780 DOI: 10.1038/s41388-023-02845-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
Pooled genetic screens represent a powerful approach to identify vulnerabilities in cancer. Here we used pooled CRISPR/Cas9-based approaches to identify vulnerabilities associated with telomerase reverse transcriptase (TERT) promoter mutations (TPMs) found in >80% of glioblastomas. We first developed a platform to detect perturbations that cause long-term growth defects in a TPM-mutated glioblastoma cell line. However, we could not detect dependencies on either TERT itself or on an E-twenty six transcription (ETS) factor known to activate TPMs. To explore this finding, we cataloged TPM status for 441 cell lines and correlated this with genome-wide screening data. We found that TPM status was not associated with differential dependency on TERT, but that E-twenty six (ETS) transcription factors represent key dependencies in both TPM+ and TPM- lines. Further, we found that TPMs are associated with expression of gene programs regulated by a wide array of ETS-factors in both cell lines and primary glioblastoma tissues. This work contributes a unique TPM cell line reagent, establishes TPM status for many deeply-profiled cell lines, and catalogs TPM-associated vulnerabilities. The results highlight challenges in executing genetic screens to detect TPM-specific vulnerabilities, and suggest redundancy in the genetic network that regulates TPM function with therapeutic implications.
Collapse
Affiliation(s)
- Kevin J Tu
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 21044, USA
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Connor E Stewart
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Peter G Hendrickson
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Joshua A Regal
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - So Young Kim
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - David M Ashley
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, 27710, USA
- The Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC, 27710, USA
| | - Matthew S Waitkus
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, 27710, USA
- The Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC, 27710, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, 27710, USA.
- The Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC, 27710, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
5
|
Mumtaz S, Usman Rashid M, Khan RU, Malkani N. miR-4482 and miR-3912 aim for 3'UTR of ERG mRNA in prostate cancer. PLoS One 2023; 18:e0286996. [PMID: 37310937 DOI: 10.1371/journal.pone.0286996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023] Open
Abstract
Ets-related gene (ERG) is overexpressed as a fusion protein in prostate cancer. During metastasis, the pathological role of ERG is associated with cell proliferation, invasion, and angiogenesis. Here, we hypothesized that miRNAs regulate ERG expression through its 3'UTR. Several bioinformatics tools were used to identify miRNAs and their binding sites on 3'UTR of ERG. The selected miRNAs expression was analyzed in prostate cancer samples by qPCR. The miRNAs overexpression was induced in prostate cancer cells (VCaP) to analyze ERG expression. Reporter gene assay was performed to evaluate the ERG activity in response to selected miRNAs. The expression of ERG downstream target genes was also investigated through qPCR after miRNAs overexpression. To observe the effects of selected miRNAs on cell proliferation and migration, scratch assay was performed to calculate the cell migration rate. miR-4482 and miR-3912 were selected from bioinformatics databases. miR-4482 and -3912 expression were decreased in prostate cancer samples, as compared to controls (p<0.05 and p<0.001), respectively. Overexpression of miR-4482 and miR-3912 significantly reduced ERG mRNA (p<0.001 and p<0.01), respectively) and protein (p<0.01) in prostate cancer cells. The transcriptional activity of ERG was significantly reduced (p<0.01) in response to miR-4482 and-3912. ERG angiogenic targets and cell migration rate was also reduced significantly (p<0.001) after miR-4482 and -3912 over-expression. This study indicates that miR-4482 and -3912 can suppress the ERG expression and its target genes, thereby, halt prostate cancer progression. These miRNAs may be employed as a potential therapeutic target for the miRNA-based therapy against prostate cancer.
Collapse
Affiliation(s)
- Sidra Mumtaz
- Department of Zoology, GC University, Lahore, Pakistan
| | - Muhammad Usman Rashid
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | | | - Naila Malkani
- Department of Zoology, GC University, Lahore, Pakistan
| |
Collapse
|
6
|
Turkmen E, Sogutlu F, Erdogan M, Biray Avci C. Evaluation of the anticancer effect of telomerase inhibitor BIBR1532 in anaplastic thyroid cancer in terms of apoptosis, migration and cell cycle. Med Oncol 2023; 40:196. [PMID: 37284891 DOI: 10.1007/s12032-023-02063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
Anaplastic thyroid cancer (ATC) represents the type with the worst prognosis among thyroid cancers. In ATC with a highly invasive phenotype, selective targeting of TERT with BIBR1532 may be a goal-driven approach to preserving healthy tissues. In present study, it was aimed to investigate the effects of treatment of SW1736 cells with BIBR1532 on apoptosis, cell cycle progression, and migration. The apoptotic effect of BIBR1532 on SW1736 cells was examined using the Annexin V method, the cytostatic effect using cell cycle test, migration properties using wound healing assay. Gene expression differences were determined by real-time qRT-PCR and differences in protein level by ELISA test. BIBR1532-treated SW1736 cells had 3.1-fold increase in apoptosis compared to their untreated counterpart. There was 58.1% arrest in the G0/G1 phase and 27.6% arrest in the S phase of the cell cycle in untreated group, treatment with BIBR1532 increased cell population in G0/G1 phase to 80.9% and decreased in S phase to 7.1%. Treatment with the TERT inhibitor resulted in a 50.8% decrease in cell migration compared to the untreated group. After BIBR1532 treatment of SW1736 cells, upregulation of BAD, BAX, CASP8, CYCS, TNFSF10, CDKN2A genes, and downregulation of BCL2L11, XIAP, CCND2 genes were detected. BIBR1532 treatment resulted in an increase in BAX and p16 proteins, and a decrease in concentration of BCL-2 protein compared to untreated group. Targeting TERT with BIBR1532 as a mono drug or using of BIBR1532 at "priming stage" prior to chemotherapy treatment in ATC may present a novel and promising treatment strategy.
Collapse
Affiliation(s)
- Ecem Turkmen
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Mehmet Erdogan
- Department of Endocrinology and Metabolism, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey.
| |
Collapse
|
7
|
Zhang R, Datta S. Adaptive Sparse Multi-Block PLS Discriminant Analysis: An Integrative Method for Identifying Key Biomarkers from Multi-Omics Data. Genes (Basel) 2023; 14:genes14050961. [PMID: 37239321 DOI: 10.3390/genes14050961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
With the growing use of high-throughput technologies, multi-omics data containing various types of high-dimensional omics data is increasingly being generated to explore the association between the molecular mechanism of the host and diseases. In this study, we present an adaptive sparse multi-block partial least square discriminant analysis (asmbPLS-DA), an extension of our previous work, asmbPLS. This integrative approach identifies the most relevant features across different types of omics data while discriminating multiple disease outcome groups. We used simulation data with various scenarios and a real dataset from the TCGA project to demonstrate that asmbPLS-DA can identify key biomarkers from each type of omics data with better biological relevance than existing competitive methods. Moreover, asmbPLS-DA showed comparable performance in the classification of subjects in terms of disease status or phenotypes using integrated multi-omics molecular profiles, especially when combined with other classification algorithms, such as linear discriminant analysis and random forest. We have made the R package called asmbPLS that implements this method publicly available on GitHub. Overall, asmbPLS-DA achieved competitive performance in terms of feature selection and classification. We believe that asmbPLS-DA can be a valuable tool for multi-omics research.
Collapse
Affiliation(s)
- Runzhi Zhang
- Department of Biostatistics, University of Florida, Gainesville, FL 32603, USA
| | - Susmita Datta
- Department of Biostatistics, University of Florida, Gainesville, FL 32603, USA
| |
Collapse
|
8
|
Zhang LY, Tan Y, Luo XJ, Wu JF, Ni YR. The roles of ETS transcription factors in liver fibrosis. Hum Cell 2023; 36:528-539. [PMID: 36547849 DOI: 10.1007/s13577-022-00848-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
E26 transformation specific or E twenty-six (ETS) protein family consists of 28 transcription factors, five of which, named ETS1/2, PU.1, ERG and EHF, are known to involve in the development of liver fibrosis, and are expected to become diagnostic markers or therapeutic targets of liver fibrosis. In recent years, some small molecule inhibitors of ETS protein family have been discovered, which might open up a new path for the liver fibrosis therapy targeting ETS. This article reviews the research progress of ETS family members in the development liver fibrosis as well as their prospect of clinical application.
Collapse
Affiliation(s)
- Li-Ye Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Yong Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Xiao-Jie Luo
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Jiang-Feng Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, China.
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.
| | - Yi-Ran Ni
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, China.
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.
| |
Collapse
|
9
|
Hair Follicle-Related MicroRNA-34a Serum Expression and rs2666433A/G Variant in Patients with Alopecia: A Cross-Sectional Analysis. Biomolecules 2022; 12:biom12050602. [PMID: 35625530 PMCID: PMC9138785 DOI: 10.3390/biom12050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 01/10/2023] Open
Abstract
Alopecia areata (AA) is a type of immune-mediated alopecia. Recent studies have suggested microRNAs’ (miRNAs) implication in several cellular processes, including epidermal and hair follicle biology. Single nucleotide polymorphisms (SNPs) can modify gene expression levels, which may induce an autoimmune response. This case−control study included 480 participants (240 for each case/control group). MicroRNA-34a gene (MIR-34A) rs2666433A/G variant was genotyped using real-time allelic discrimination polymerase chain reaction (PCR). Additionally, circulatory miR-34a levels were quantified by quantitative reverse transcription PCR (qRT-PCR). On comparing between alopecia and non-alopecia cohorts, a higher frequency of A variant was noted among patients when compared to controls—A allele: 28 versus 18% (p < 0.001); A/A genotype: 9 versus 2%; A/G genotype: 39 versus 32% (p < 0.001). A/A and A/G carriers were more likely to develop alopecia under heterozygote comparison (OR = 1.83, 95% CI = 1.14−2.93), homozygote comparison (OR = 4.19, 95% CI = 1.33−13.1), dominant (OR = 2.0, 95% CI = 1.27−3.15), recessive (OR = 3.36, 95% CI = 1.08−10.48), over-dominant (OR = 1.65, 95% CI = 1.04−32.63), and log additive (OR = 1.91, 95% CI = 1.3−2.82) models. Serum miR-34a expression levels were upregulated in alopecia patients with a median and quartile fold change of 27.3 (1.42−2430). Significantly higher levels were more pronounced in A/A genotype patients (p < 0.01). Patients carrying the heterozygote genotype (rs2666433 * A/G) were two times more likely to develop more severe disease grades. Stratified analysis by sex revealed the same results. A high expression level was associated with concomitant autoimmune comorbidities (p = 0.001), in particular SLE (p = 0.007) and vitiligo (p = 0.049). In conclusion, the MIR34A rs2666433 (A/G) variant is associated with AA risk and severity in the studied population. Furthermore, high miR-34a circulatory levels could play a role in disease pathogenesis.
Collapse
|
10
|
Fanis P, Morrou M, Tomazou M, Michailidou K, Spyrou GM, Toumba M, Skordis N, Neocleous V, Phylactou LA. Methylation status of hypothalamic Mkrn3 promoter across puberty. Front Endocrinol (Lausanne) 2022; 13:1075341. [PMID: 36714607 PMCID: PMC9880154 DOI: 10.3389/fendo.2022.1075341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Makorin RING finger protein 3 (MKRN3) is an important factor located on chromosome 15 in the imprinting region associated with Prader-Willi syndrome. Imprinted MKRN3 is expressed in hypothalamic regions essential for the onset of puberty and mutations in the gene have been found in patients with central precocious puberty. The pubertal process is largely controlled by epigenetic mechanisms that include, among other things, DNA methylation at CpG dinucleotides of puberty-related genes. In the present study, we investigated the methylation status of the Mkrn3 promoter in the hypothalamus of the female mouse before, during and after puberty. Initially, we mapped the 32 CpG dinucleotides in the promoter, the 5'UTR and the first 50 nucleotides of the coding region of the Mkrn3 gene. Moreover, we identified a short CpG island region (CpG islet) located within the promoter. Methylation analysis using bisulfite sequencing revealed that CpG dinucleotides were methylated regardless of developmental stage, with the lowest levels of methylation being found within the CpG islet region. In addition, the CpG islet region showed significantly lower methylation levels at the pre-pubertal stage when compared with the pubertal or post-pubertal stage. Finally, in silico analysis of transcription factor binding sites on the Mkrn3 CpG islet identified the recruitment of 29 transcriptional regulators of which 14 were transcriptional repressors. Our findings demonstrate the characterization and differential methylation of the CpG dinucleotides located in the Mkrn3 promoter that could influence the transcriptional activity in pre-pubertal compared to pubertal or post-pubertal period. Further studies are needed to clarify the possible mechanisms and effects of differential methylation of the Mkrn3 promoter.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria Morrou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George M. Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Meropi Toumba
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Child Endocrine Care, Department of Pediatrics, Aretaeio Hospital, Nicosia, Cyprus
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Division of Pediatric Endocrinology, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus
- Medical School, University of Nicosia, Nicosia, Cyprus
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- *Correspondence: Leonidas A. Phylactou,
| |
Collapse
|
11
|
Wei G, Wang L, Wan X, Tan Y. [ELF4 promotes proliferation and inhibits apoptosis of human insulinoma cells by activating Akt signaling]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1329-1333. [PMID: 34658346 DOI: 10.12122/j.issn.1673-4254.2021.09.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of overexpression of the oncogenic transcription factor ELF4 on proliferation and apoptosis in human insulinoma cells and explore the underlying mechanism. METHODS A human insulinoma BON cell line with stable overexpression of ELF4 (BON-ELF4 cells) was constructed using a recombinant retrovirus vector and the expression of ELF4 protein was verified using Western blotting. MTT assay was used to assess the proliferation of BON-ELF4 cells and BON-Vector cells, and the cell apoptosis induced by treatment with epirubicin (0.1 μmol/L for 24 h) was analyzed by detecting the expressions of cleaved caspase-8, caspase-9, and PARP using Western blotting. Flow cytometry with Annexin VFITC/PI staining was performed to analyze the numbers of apoptotic BON-Vector or BON-ELF4 cells. The expressions of phosphorylated Akt and total Akt in the cells were detected using Western blotting. RESULTS BON-ELF4 cell line with stable overexpression of ELF4 was successfully established. ELF4 overexpression significantly promoted the proliferation (P < 0.05) and obviously suppressed epirubicin- induced apoptosis in BON cells, resulting also in significantly reduced expressions of cleaved caspase-8, caspase-9 and PARP (P < 0.05). The results of flow cytometry showed a significantly lower apoptotic rate in BON-ELF4 cells than in BON-Vector cells following epirubicin treatment (6.03% vs 22.90%). The phosphorylation levels of Akt (Thr308 and Ser473) were significantly increased (P < 0.05) while the level of total Akt remained unchanged (P>0.05) in ELF4- overexpressing cells. CONCLUSION ELF4 overexpression enhances the proliferation and suppresses apoptosis of insulinomas cells by activating Akt signaling.
Collapse
Affiliation(s)
- G Wei
- Department of Endocrinology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - L Wang
- Department of Healthcare, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - X Wan
- Department of Endocrinology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Y Tan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
12
|
Gu ML, Zhou XX, Ren MT, Shi KD, Yu MS, Jiao WR, Wang YM, Zhong WX, Ji F. Blockage of ETS homologous factor inhibits the proliferation and invasion of gastric cancer cells through the c-Met pathway. World J Gastroenterol 2020; 26:7497-7512. [PMID: 33384550 PMCID: PMC7754554 DOI: 10.3748/wjg.v26.i47.7497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/13/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common and deadliest types of cancer worldwide due to its delayed diagnosis and high metastatic frequency, but its exact pathogenesis has not been fully elucidated. ETS homologous factor (EHF) is an important member of the ETS family and contributes to the pathogenesis of multiple malignant tumors. To date, whether EHF participates in the development of GC via the c-Met signaling pathway remains unclear.
AIM To investigate the role and mechanism of EHF in the occurrence and development of GC.
METHODS The expression of EHF mRNA in GC tissues and cell lines was measured by quantitative PCR. Western blotting was performed to determine the protein expression of EHF, c-Met, and its downstream signal molecules. The EHF expression in GC tissues was further detected by immunohistochemical staining. To investigate the role of EHF in GC oncogenesis, small interfering RNA (siRNA) against EHF was transfected into GC cells. The cell proliferation of GC cells was determined by Cell Counting Kit-8 and colony formation assays. Flow cytometry was performed following Annexin V/propidium iodide (PI) to identify apoptotic cells and PI staining to analyze the cell cycle. Cell migration and invasion were assessed by transwell assays.
RESULTS The data showed that EHF was upregulated in GC tissues and cell lines in which increased expression of c-Met was also observed. Silencing of EHF by siRNA reduced the proliferation of GC cells. Inhibition of EHF induced significant apoptosis and cell cycle arrest in GC cells. Cell migration and invasion were significantly inhibited. EHF silencing led to c-Met downregulation and further blocked the Ras/c-Raf/extracellular signal-related kinase 1/2 (Erk1/2) pathway. Additionally, phosphatase and tensin homolog was upregulated and glycogen synthase kinase 3 beta was deactivated. Moreover, inactivation of signal transducer and activator of transcription 3 was detected following EHF inhibition, leading to inhibition of the epithelial-to-mesenchymal transition (EMT).
CONCLUSION These results suggest that EHF plays a key role in cell proliferation, invasion, apoptosis, the cell cycle and EMT via the c-Met pathway. Therefore, EHF may serve as an antineoplastic target for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Meng-Li Gu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xin-Xin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Meng-Ting Ren
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Ke-Da Shi
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Mo-Sang Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Wen-Rui Jiao
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Ya-Mei Wang
- Department of Gastroenterology, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu 322000, Zhejiang Province, China
| | - Wei-Xiang Zhong
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
13
|
Song Y, Liu Y, Pan S, Xie S, Wang ZW, Zhu X. Role of the COP1 protein in cancer development and therapy. Semin Cancer Biol 2020; 67:43-52. [PMID: 32027978 DOI: 10.1016/j.semcancer.2020.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/31/2022]
Abstract
COP1, an E3 ubiquitin ligase, has been demonstrated to play a vital role in the regulation of cell proliferation, apoptosis and DNA repair. Accumulated evidence has revealed that COP1 is involved in carcinogenesis via targeting its substrates, including p53, c-Jun, ETS, β-catenin, STAT3, MTA1, p27, 14-3-3σ, and C/EBPα, for ubiquitination and degradation. COP1 can play tumor suppressive and oncogenic roles in human malignancies, urging us to summarize the functions of COP1 in tumorigenesis. In this review, we describe the structure of COP1 and its known substrates. Moreover, we dissect the function of COP1 by physiological (mouse models), pathological (human tumor specimens) and biochemical (ubiquitin substrates) Evidence. Furthermore, we discuss COP1 as a potential therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Shangdan Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
14
|
The Management and Prognosis of Facial and Scalp Angiosarcoma: A Retrospective Analysis of 15 Patients. Ann Plast Surg 2020; 83:55-62. [PMID: 31192879 DOI: 10.1097/sap.0000000000001865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Angiosarcomas are extremely aggressive malignant tumors that arise from vascular endothelial cells. The risk factors, etiology, prognostic factors, and optimal management strategies for angiosarcomas are as yet unknown. METHODS We retrospectively analyzed data from 15 patients who were treated in Asan Medical Center, Seoul, Republic of Korea, in the past 12 years, to assess the effect of different treatment modalities and reconstructive methods on the locoregional recurrence, metastasis, and overall survival. RESULTS A total of 15 patients were identified (median age at diagnosis, 72 years; range, 61-82 years). Median tumor size was 6 cm. Median follow-up was 287 days. The median overall survival was 14.96 months; a total of 13 (87%) patients had died by the end of the study.The median locoregional recurrence, metastasis, and overall survival were 7.3, 6.5, and 16.7 months, respectively. On univariate analysis, the use of adjuvant therapy after surgery (vs surgery without adjuvant therapy) was associated with delayed median time to detection of recurrence (7.9 months vs 3.1 months, respectively; P = 0.825), delayed median time to metastasis (8.7 months vs 3.1 months, respectively; P = 0.191), and better median overall survival (7.3 months vs 3.1 months, respectively; P = 0.078).The use of flap versus skin graft as a reconstructive method was associated with delayed median recurrence (8.75 vs 7.32 months, respectively; P = 0.274) and earlier median metastasis (3.75 vs 6.53 months, respectively; P = 0.365), but the same median overall survival of 16.7 months (P value: 0.945) and tumor smaller or bigger than 5 cm show earlier median time to detection of recurrence (4.17-7.32 months; P = 0.41), earlier median time to metastasis (3.75-6.53 months; P = 0.651), but better median overall survival of 18.21 versus 16.7 months, respectively (P = 0.111). CONCLUSIONS Multimodal treatment that combines surgery with adjuvant therapy is the best management strategy that influences survival positively in patients with angiosarcoma. The study shows that the reconstructive method does not affect the prognosis in these patients. So it is better to choose the simplest suitable resection and reconstructive method with the least complications and to avoid unnecessary procedures.
Collapse
|
15
|
Song P, Hong J, Wang Y, Yao X, Zhan Y, Yin R, Yu M, Li C, Yang X, Ge C. Transcriptional regulation of human abraxas brother protein 1 expression by yin yang 1. Biochem Cell Biol 2020; 99:223-230. [PMID: 32845162 DOI: 10.1139/bcb-2019-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abraxas brother protein 1 (ABRO1) is a subunit of the deubiquitinating enzyme BRCC36-containing isopeptidase complex and plays important roles in cellular responses to stress by interacting with its binding partners, such as ubiquitin-specific peptidase 7, p53, activating transcription factor 4, THAP-domain containing 5, and serine hydroxymethyltransferase. However, the transcriptional regulation of ABRO1 remains unexplored. In this study, we identified and characterized the core regulatory elements of the human ABRO1 gene and mapped them to the ABRO1 promoter region. Additionally, 5' rapid amplification of cDNA ends revealed that the transcriptional start site (TSS) was located -13 bp upstream from the start codon. Reporter gene, chromatin immunoprecipitation, and electrophoretic mobility shift assays demonstrated that ABRO1 transcription was regulated through cis-acting elements located in the region -89 to -59 bp upstream of the ABRO1 TSS and that these elements were targeted by yin yang 1 transcription factor (YY1). Moreover, YY1 overexpression increased human ABRO1 mRNA and protein expression, and small-interfering RNA-mediated downregulation of YY1 attenuated ABRO1 expression. These results suggested that YY1 positively regulated human ABRO1 expression by binding to cis-acting elements located in the ABRO1 TSS.
Collapse
Affiliation(s)
- Pan Song
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.,College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100022, China
| | - Jian Hong
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.,8th Medical Center, the General Hospital of Chinese People's Liberation Army, Beijing 100091, China
| | - Yuan Wang
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xuelian Yao
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.,Graduate School, Anhui Medical University, Hefei 230032, China
| | - Yiqun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ronghua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Changyan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Changhui Ge
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.,Graduate School, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
16
|
Altered Transcription Factor Binding and Gene Bivalency in Islets of Intrauterine Growth Retarded Rats. Cells 2020; 9:cells9061435. [PMID: 32527043 PMCID: PMC7348746 DOI: 10.3390/cells9061435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Intrauterine growth retardation (IUGR), which induces epigenetic modifications and permanent changes in gene expression, has been associated with the development of type 2 diabetes. Using a rat model of IUGR, we performed ChIP-Seq to identify and map genome-wide histone modifications and gene dysregulation in islets from 2- and 10-week rats. IUGR induced significant changes in the enrichment of H3K4me3, H3K27me3, and H3K27Ac marks in both 2-wk and 10-wk islets, which were correlated with expression changes of multiple genes critical for islet function in IUGR islets. ChIP-Seq analysis showed that IUGR-induced histone mark changes were enriched at critical transcription factor binding motifs, such as C/EBPs, Ets1, Bcl6, Thrb, Ebf1, Sox9, and Mitf. These transcription factors were also identified as top upstream regulators in our previously published transcriptome study. In addition, our ChIP-seq data revealed more than 1000 potential bivalent genes as identified by enrichment of both H3K4me3 and H3K27me3. The poised state of many potential bivalent genes was altered by IUGR, particularly Acod1, Fgf21, Serpina11, Cdh16, Lrrc27, and Lrrc66, key islet genes. Collectively, our findings suggest alterations of histone modification in key transcription factors and genes that may contribute to long-term gene dysregulation and an abnormal islet phenotype in IUGR rats.
Collapse
|
17
|
Meng D, Li Z, Ma X, Wu L, Fu L, Qin G. ETV5 overexpression contributes to tumor growth and progression of thyroid cancer through PIK3CA. Life Sci 2020; 253:117693. [PMID: 32325133 DOI: 10.1016/j.lfs.2020.117693] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
AIMS Thyroid cancer is a common endocrine malignancy and sex hormone plays an important role in it. We have previously shown that activation of estrogen receptor (ER) α promotes thyroid cancer cell proliferation and invasion. Here, we attempted to investigate the role of ETS variant 5 (ETV5) on estrogen drived thyroid malignancy. MAIN METHODS Ten patients with follicular thyroid cancer were enrolled in this study. Cell proliferation and migration ability were analyzed by CCK-8 assay and cell migration assay, respectively. Chromatin immunoprecipitation-PCR and luciferase assay were conducted to analyze the relationship of ETV5 and PIK3CA. KEY FINDINGS ETV5 is highly expressed in thyroid tissues from patients with follicular thyroid cancer as well as in FTC133 cells. 17b-estradiol or overexpression of ERα induced an increase in ETV5 protein level in FTC133 cells. Knockdown of ETV5 inhibited FTC133 cell proliferation, migration, and epithelial-mesenchymal transition, while 17b-estradiol could not correct this effect. Additionally, the level of PIK3CA was markedly decreased in ETV5 knockdown cells and had a positive correlation with ETV5 in thyroid cancer patients. Chromatin immunoprecipitation-PCR analysis and luciferase assay confirmed that ETV5 directly targeted PIK3CA and that ETV5 was bound to the promoter region of PIK3CA. In addition, PIK3CA overexpression abrogated ETV5-induced cell growth, migration and epithelial-mesenchymal transition. SIGNIFICANCE ETV5 enhanced cell proliferation, migration, and epithelial-mesenchymal transition through the PIK3CA signaling pathway, indicating that ETV5 may be a therapeutic target in thyroid cancer.
Collapse
Affiliation(s)
- Dongdong Meng
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhifu Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaojun Ma
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lina Wu
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lijun Fu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Guijun Qin
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
18
|
Hecker N, Hiller M. A genome alignment of 120 mammals highlights ultraconserved element variability and placenta-associated enhancers. Gigascience 2020; 9:giz159. [PMID: 31899510 PMCID: PMC6941714 DOI: 10.1093/gigascience/giz159] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/29/2019] [Accepted: 12/13/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Multiple alignments of mammalian genomes have been the basis of many comparative genomic studies aiming at annotating genes, detecting regions under evolutionary constraint, and studying genome evolution. A key factor that affects the power of comparative analyses is the number of species included in a genome alignment. RESULTS To utilize the increased number of sequenced genomes and to provide an accessible resource for genomic studies, we generated a mammalian genome alignment comprising 120 species. We used this alignment and the CESAR method to provide protein-coding gene annotations for 119 non-human mammals. Furthermore, we illustrate the utility of this alignment by 2 exemplary analyses. First, we quantified how variable ultraconserved elements (UCEs) are among placental mammals. Leveraging the high taxonomic coverage in our alignment, we estimate that UCEs contain on average 4.7%-15.6% variable alignment columns. Furthermore, we show that the center regions of UCEs are generally most constrained. Second, we identified enhancer sequences that are only conserved in placental mammals. We found that these enhancers are significantly associated with placenta-related genes, suggesting that some of these enhancers may be involved in the evolution of placental mammal-specific aspects of the placenta. CONCLUSION The 120-mammal alignment and all other data are available for analysis and visualization in a genome browser at https://genome-public.pks.mpg.de/and for download at https://bds.mpi-cbg.de/hillerlab/120MammalAlignment/.
Collapse
Affiliation(s)
- Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, 01187 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, 01187 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
| |
Collapse
|
19
|
Wang J, Li Y, Lu L, Zheng M, Zhang X, Tian H, Wang W, Ru S. Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113024. [PMID: 31454586 DOI: 10.1016/j.envpol.2019.113024] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/31/2019] [Accepted: 08/04/2019] [Indexed: 05/12/2023]
Abstract
The ubiquity of microplastics in the world's ocean has aroused great concern. However, the ecological effects of microplastics at environmentally realistic concentrations are unclear. Here we showed that exposure of marine medaka (Oryzias melastigma) to environmentally relevant concentrations of 10 μm polystyrene microplastics for 60 days not only led to microplastic accumulation in the gill, intestine, and liver, but also caused oxidative stress and histological changes. Moreover, 2, 20, and 200 μg/L microplastics delayed gonad maturation and decreased the fecundity of female fish. Alterations of the hypothalamus-pituitary-gonadal (HPG) axis were investigated to reveal the underlying mechanisms, and gene transcription analysis showed that microplastic exposure had significantly negative regulatory effects in female HPG axis. Transcription of genes involved in the steroidogenesis pathway in females were also downregulated. This disruption resulted in decreased concentrations of 17β-estradiol (E2) and testosterone (T) in female plasma. Furthermore, parental exposure to 20 μg/L microplastics postponed the incubation time and decreased the hatching rate, heart rate, and body length of the offspring. Overall, the present study demonstrated for the first time that environmentally relevant concentrations of microplastics had adverse effects on the reproduction of marine medaka and might pose a potential threat to marine fish populations.
Collapse
Affiliation(s)
- Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lin Lu
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Mingyi Zheng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
20
|
Osmanbeyoglu HU, Shimizu F, Rynne-Vidal A, Alonso-Curbelo D, Chen HA, Wen HY, Yeung TL, Jelinic P, Razavi P, Lowe SW, Mok SC, Chiosis G, Levine DA, Leslie CS. Chromatin-informed inference of transcriptional programs in gynecologic and basal breast cancers. Nat Commun 2019; 10:4369. [PMID: 31554806 PMCID: PMC6761109 DOI: 10.1038/s41467-019-12291-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/02/2019] [Indexed: 02/08/2023] Open
Abstract
Chromatin accessibility data can elucidate the developmental origin of cancer cells and reveal the enhancer landscape of key oncogenic transcriptional regulators. We develop a computational strategy called PSIONIC (patient-specific inference of networks informed by chromatin) to combine chromatin accessibility data with large tumor expression data and model the effect of enhancers on transcriptional programs in multiple cancers. We generate a new ATAC-seq data profiling chromatin accessibility in gynecologic and basal breast cancer cell lines and apply PSIONIC to 723 patient and 96 cell line RNA-seq profiles from ovarian, uterine, and basal breast cancers. Our computational framework enables us to share information across tumors to learn patient-specific TF activities, revealing regulatory differences between and within tumor types. PSIONIC-predicted activity for MTF1 in cell line models correlates with sensitivity to MTF1 inhibition, showing the potential of our approach for personalized therapy. Many identified TFs are significantly associated with survival outcome. To validate PSIONIC-derived prognostic TFs, we perform immunohistochemical analyses in 31 uterine serous tumors for ETV6 and 45 basal breast tumors for MITF and confirm that the corresponding protein expression patterns are also significantly associated with prognosis.
Collapse
Affiliation(s)
- Hatice U Osmanbeyoglu
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Computational & Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Fumiko Shimizu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Angela Rynne-Vidal
- Department of Gynecologic Oncology and Reproductive Medicine-Research, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Direna Alonso-Curbelo
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hsuan-An Chen
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hannah Y Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tsz-Lun Yeung
- Department of Gynecologic Oncology and Reproductive Medicine-Research, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Petar Jelinic
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine-Research, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Douglas A Levine
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Christina S Leslie
- Computational & Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
21
|
Regulatory mechanisms of Robo4 and their effects on angiogenesis. Biosci Rep 2019; 39:BSR20190513. [PMID: 31160487 PMCID: PMC6620384 DOI: 10.1042/bsr20190513] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
Roundabout4 (Robo4) is a transmembrane receptor that belongs to the Roundabout (Robo) family of axon guidance molecules. Robo4 is an endothelial-specific receptor that participates in endothelial cell migration, proliferation, and angiogenesis and the maintenance of vasculature homeostasis. The purpose of this review is to summarize and analyze three main mechanisms related to the expression and function of Robo4 during developmental and pathological angiogenesis. In this review, static shear stress and the binding of transcription factors such as E26 transformation-specific variant 2 (ETV2) and Slit3 induce Robo4 expression and activate Robo4 during tissue and organ development. Robo4 interacts with Slit2 or UNC5B to maintain vascular integrity, while a disturbed flow and the expression of transcription factors in inflammatory or neoplastic environments alter Robo4 expression levels, although these changes have uncertain functions. Based on the mechanisms described above, we discuss the aberrant expression of Robo4 in angiogenesis-related diseases and propose antiangiogenic therapies targeting the Robo4 signaling pathway for the treatment of ocular neovascularization lesions and tumors. Finally, although many problems related to Robo4 signaling pathways remain to be resolved, Robo4 is a promising and potentially valuable therapeutic target for treating pathological angiogenesis and developmental defects in angiogenesis.
Collapse
|
22
|
Batmanov K, Delabie J, Wang J. BayesPI-BAR2: A New Python Package for Predicting Functional Non-coding Mutations in Cancer Patient Cohorts. Front Genet 2019; 10:282. [PMID: 31001324 PMCID: PMC6454009 DOI: 10.3389/fgene.2019.00282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/15/2019] [Indexed: 12/21/2022] Open
Abstract
Most of somatic mutations in cancer occur outside of gene coding regions. These mutations may disrupt the gene regulation by affecting protein-DNA interaction. A study of these disruptions is important in understanding tumorigenesis. However, current computational tools process DNA sequence variants individually, when predicting the effect on protein-DNA binding. Thus, it is a daunting task to identify functional regulatory disturbances among thousands of mutations in a patient. Previously, we have reported and validated a pipeline for identifying functional non-coding somatic mutations in cancer patient cohorts, by integrating diverse information such as gene expression, spatial distribution of the mutations, and a biophysical model for estimating protein binding affinity. Here, we present a new user-friendly Python package BayesPI-BAR2 based on the proposed pipeline for integrative whole-genome sequence analysis. This may be the first prediction package that considers information from both multiple mutations and multiple patients. It is evaluated in follicular lymphoma and skin cancer patients, by focusing on sequence variants in gene promoter regions. BayesPI-BAR2 is a useful tool for predicting functional non-coding mutations in whole genome sequencing data: it allows identification of novel transcription factors (TFs) whose binding is altered by non-coding mutations in cancer. BayesPI-BAR2 program can analyze multiple datasets of genome-wide mutations at once and generate concise, easily interpretable reports for potentially affected gene regulatory sites. The package is freely available at http://folk.uio.no/junbaiw/BayesPI-BAR2/.
Collapse
Affiliation(s)
- Kirill Batmanov
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Jan Delabie
- Department of Pathology, University Health Network, Toronto, ON, Canada
| | - Junbai Wang
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
23
|
Hsing M, Wang Y, Rennie PS, Cox ME, Cherkasov A. ETS transcription factors as emerging drug targets in cancer. Med Res Rev 2019; 40:413-430. [PMID: 30927317 DOI: 10.1002/med.21575] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/07/2019] [Accepted: 03/07/2019] [Indexed: 12/11/2022]
Abstract
The ETS family of proteins consists of 28 transcription factors, many of which have been implicated in development and progression of a variety of cancers. While one family member, ERG, has been rigorously studied in the context of prostate cancer where it plays a critical role, other ETS factors keep emerging as potential hallmark oncodrivers. In recent years, numerous studies have reported initial discoveries of small molecule inhibitors of ETS proteins and opened novel avenues for ETS-directed cancer therapies. This review summarizes the state of the art data on therapeutic targeting of ETS family members and highlights the corresponding drug discovery strategies.
Collapse
Affiliation(s)
- Michael Hsing
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul S Rennie
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael E Cox
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
Kurafeiski JD, Pinto P, Bornberg-Bauer E. Evolutionary Potential of Cis-Regulatory Mutations to Cause Rapid Changes in Transcription Factor Binding. Genome Biol Evol 2019; 11:406-414. [PMID: 30597011 PMCID: PMC6370388 DOI: 10.1093/gbe/evy269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2018] [Indexed: 01/25/2023] Open
Abstract
Transcriptional regulation is crucial for all biological processes and well investigated at the molecular level for a wide range of organisms. However, it is quite unclear how innovations, such as the activity of a novel regulatory element, evolve. In the case of transcription factor (TF) binding, both a novel TF and a novel-binding site would need to evolve concertedly. Since promiscuous functions have recently been identified as important intermediate steps in creating novel specific functions in many areas such as enzyme evolution and protein-protein interactions, we ask here how promiscuous binding of TFs to TF-binding sites (TFBSs) affects the robustness and evolvability of this tightly regulated system. Specifically, we investigate the binding behavior of several hundred TFs from different species at unprecedented breadth. Our results illustrate multiple aspects of TF-binding interactions, ranging from correlations between the strength of the interaction bond and specificity, to preferences regarding TFBS nucleotide composition in relation to both domains and binding specificity. We identified a subset of high A/T binding motifs. Motifs in this subset had many functionally neutral one-error mutants, and were bound by multiple different binding domains. Our results indicate that, especially for some TF-TFBS associations, low binding specificity confers high degrees of evolvability, that is that few mutations facilitate rapid changes in transcriptional regulation, in particular for large and old TF families. In this study we identify binding motifs exhibiting behavior indicating high evolutionary potential for innovations in transcriptional regulation.
Collapse
Affiliation(s)
| | - Paulo Pinto
- Molecular Evolution and Bioinformatics, University of Muenster, Germany
| | | |
Collapse
|
25
|
Fry EA, Mallakin A, Inoue K. Translocations involving ETS family proteins in human cancer. INTEGRATIVE CANCER SCIENCE AND THERAPEUTICS 2018; 5:10.15761/ICST.1000281. [PMID: 30542624 PMCID: PMC6287620 DOI: 10.15761/icst.1000281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ETS transcription factors regulate expression of genes involved in normal cell development, proliferation, differentiation, angiogenesis, and apoptosis, consisting of 28 family members in humans. Dysregulation of these transcription factors facilitates cell proliferation in cancers, and several members participate in invasion and metastasis by activating certain gene transcriptions. ETS1 and ETS2 are the founding members of the ETS family and regulate transcription by binding to ETS sequences. Three chimeric genes involving ETS genes have been identified in human cancers, which are EWS-FLI1 in Ewing's sarcoma, TMPRSS2-ERG in prostate cancer, and ETV6-RUNX1 in acute lymphocytic leukemia. Although these fusion transcripts definitely contribute to the pathogenesis of the disease, the impact of these fusion transcripts on patients' prognosis is highly controversial. In the present review, the roles of ETS protein translocations in human carcinogenesis are discussed.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| | | | - Kazushi Inoue
- Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
26
|
Koyano-Nakagawa N, Garry DJ. Etv2 as an essential regulator of mesodermal lineage development. Cardiovasc Res 2018; 113:1294-1306. [PMID: 28859300 DOI: 10.1093/cvr/cvx133] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/24/2017] [Indexed: 11/14/2022] Open
Abstract
The 'master regulatory factors' that position at the top of the genetic hierarchy of lineage determination have been a focus of intense interest, and have been investigated in various systems. Etv2/Etsrp71/ER71 is such a factor that is both necessary and sufficient for the development of haematopoietic and endothelial lineages. As such, genetic ablation of Etv2 leads to complete loss of blood and vessels, and overexpression can convert non-endothelial cells to the endothelial lineage. Understanding such master regulatory role of a lineage is not only a fundamental quest in developmental biology, but also holds immense possibilities in regenerative medicine. To harness its activity and utility for therapeutic interventions, it is essential to understand the regulatory mechanisms, molecular function, and networks that surround Etv2. In this review, we provide a comprehensive overview of Etv2 biology focused on mouse and human systems.
Collapse
Affiliation(s)
- Naoko Koyano-Nakagawa
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 2231 6th st. SE, Minneapolis, MN 55455, USA
| | - Daniel J Garry
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 2231 6th st. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
27
|
Zhang GW, Tian X, Li Y, Wang ZQ, Li XD, Zhu CY. Down-regulation of ETS2 inhibits the invasion and metastasis of renal cell carcinoma cells by inducing EMT via the PI3K/Akt signaling pathway. Biomed Pharmacother 2018; 104:119-126. [PMID: 29772431 DOI: 10.1016/j.biopha.2018.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
V-ets erythroblastosis virus E26 oncogene homolog 2 (ETS2), belonging to the ETS family of transcription factors, is implicated in a broad range of cellular functions. Recently, ETS2 has been found playing an important role in the progression of some types of cancers. However, it remains unclear whether ETS2 has any effects on renal cell carcinoma (RCC). In this study, we investigated the biological functions of ETS2 in RCC. The results showed that ETS2 was highly expressed in RCC tissues and cell lines and its expression had an association with clinicopathological characteristics of RCC patients. In addition, down-regulation of ETS2 significantly inhibited RCC cell invasion in vitro and metastasis in vivo as well as suppressed the epithelial-mesenchymal transition (EMT) process. We also found that ETS2 down-regulation significantly reduced the levels of PI3K and Akt phosphorylation in RCC cells. Taken together, we suggest that ETS2 is of potential value as a molecular target for RCC treatment.
Collapse
Affiliation(s)
- Guang-Wei Zhang
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Xin Tian
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Yang Li
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Zhi-Qiang Wang
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Xiao-Dong Li
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Chao-Yang Zhu
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China.
| |
Collapse
|
28
|
Butler MS, Roshan-Moniri M, Hsing M, Lau D, Kim A, Yen P, Mroczek M, Nouri M, Lien S, Axerio-Cilies P, Dalal K, Yau C, Ghaidi F, Guo Y, Yamazaki T, Lawn S, Gleave ME, Gregory-Evans CY, McIntosh LP, Cox ME, Rennie PS, Cherkasov A. Discovery and characterization of small molecules targeting the DNA-binding ETS domain of ERG in prostate cancer. Oncotarget 2018; 8:42438-42454. [PMID: 28465491 PMCID: PMC5522078 DOI: 10.18632/oncotarget.17124] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 04/04/2017] [Indexed: 12/23/2022] Open
Abstract
Genomic alterations involving translocations of the ETS-related gene ERG occur in approximately half of prostate cancer cases. These alterations result in aberrant, androgen-regulated production of ERG protein variants that directly contribute to disease development and progression. This study describes the discovery and characterization of a new class of small molecule ERG antagonists identified through rational in silico methods. These antagonists are designed to sterically block DNA binding by the ETS domain of ERG and thereby disrupt transcriptional activity. We confirmed the direct binding of a lead compound, VPC-18005, with the ERG-ETS domain using biophysical approaches. We then demonstrated VPC-18005 reduced migration and invasion rates of ERG expressing prostate cancer cells, and reduced metastasis in a zebrafish xenograft model. These results demonstrate proof-of-principal that small molecule targeting of the ERG-ETS domain can suppress transcriptional activity and reverse transformed characteristics of prostate cancers aberrantly expressing ERG. Clinical advancement of the developed small molecule inhibitors may provide new therapeutic agents for use as alternatives to, or in combination with, current therapies for men with ERG-expressing metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Miriam S Butler
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Mani Roshan-Moniri
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Michael Hsing
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Desmond Lau
- Department of Biochemistry and Molecular Biology, Department of Chemistry, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ari Kim
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Paul Yen
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Marta Mroczek
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Mannan Nouri
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Scott Lien
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Peter Axerio-Cilies
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Kush Dalal
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Clement Yau
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Fariba Ghaidi
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Yubin Guo
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Takeshi Yamazaki
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Sam Lawn
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology and Visual Sciences, Eye Care Centre, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, Department of Chemistry, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michael E Cox
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Paul S Rennie
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
29
|
Suico MA, Shuto T, Kai H. Roles and regulations of the ETS transcription factor ELF4/MEF. J Mol Cell Biol 2018; 9:168-177. [PMID: 27932483 PMCID: PMC5907832 DOI: 10.1093/jmcb/mjw051] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Most E26 transformation-specific (ETS) transcription factors are involved in the pathogenesis and progression of cancer. This is in part due to the roles of ETS transcription factors in basic biological processes such as growth, proliferation, and differentiation, and also because of their regulatory functions that have physiological relevance in tumorigenesis, immunity, and basal cellular homoeostasis. A member of the E74-like factor (ELF) subfamily of the ETS transcription factor family—myeloid elf-1-like factor (MEF), designated as ELF4—has been shown to be critically involved in immune response and signalling, osteogenesis, adipogenesis, cancer, and stem cell quiescence. ELF4 carries out these functions as a transcriptional activator or through interactions with its partner proteins. Mutations in ELF4 cause aberrant interactions and induce downstream processes that may lead to diseased cells. Knowing how ELF4 impinges on certain cellular processes and how it is regulated in the cells can lead to a better understanding of the physiological and pathological consequences of modulated ELF4 activity.
Collapse
Affiliation(s)
- Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| |
Collapse
|
30
|
Increased expression of EHF contributes to thyroid tumorigenesis through transcriptionally regulating HER2 and HER3. Oncotarget 2018; 7:57978-57990. [PMID: 27517321 PMCID: PMC5295405 DOI: 10.18632/oncotarget.11154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/27/2016] [Indexed: 12/19/2022] Open
Abstract
E26 transformation-specific (ETS) transcription factor EHF plays a tumor suppressor role in prostate cancer and esophageal squamous cell carcinoma (ESCC), whereas it is overexpressed and may act as an oncogene in ovarian and mammary cancers. However, its biological role in thyroid cancer remains totally unknown. The aim of this study was to explore the biological functions of EHF and its potential as a therapeutic target in thyroid cancer. Using quantitative RT-PCR (qRT-PCR) assay, we evaluated mRNA expression of EHF in a cohort of primary papillary thyroid cancers (PTCs) and matched non-cancerous thyroid tissues. The functions of knockdown and ectopic expression of EHF in thyroid cancer cells were determine by a series of in vitro and in vivo experiments. Moreover, dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays were performed to identify its downstream targets. Our data showed that EHF expression was significantly increased in PTCs compared with matched non-cancerous thyroid tissues. EHF knockdown significantly inhibited thyroid cancer cell proliferation, colony formation, migration, invasion and tumorigenic potential in nude mice and induced cell cycle arrested and apoptosis by modulating the PI3K/Akt and MAPK/Erk signaling pathways. On the other hand, ectopic expression of EHF in thyroid cancer cells notably promoted cell growth and invasiveness. Importantly, EHF was identified as a new transcription factor for HER2 and HER3, contributing to thyroid tumorigenesis. Altogether, our findings suggest that EHF is a novel functional oncogene in thyroid cancer by transcriptionally regulating HER2 and HER3, and may represent a potential therapeutic target for this cancer.
Collapse
|
31
|
Tsai YC, Zeng T, Abou-Kheir W, Yeh HL, Yin JJ, Lee YC, Chen WY, Liu YN. Disruption of ETV6 leads to TWIST1-dependent progression and resistance to epidermal growth factor receptor tyrosine kinase inhibitors in prostate cancer. Mol Cancer 2018; 17:42. [PMID: 29455655 PMCID: PMC5817720 DOI: 10.1186/s12943-018-0785-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/01/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND ETS variant gene 6 (ETV6) is a putative tumor suppressor and repressed by epidermal growth factor receptor (EGFR) signaling in prostate cancer. Since EGFR antagonists seem ineffective in castration-resistant prostate cancer (CRPC), we aim to study the role of ETV6 in the development of drug resistance. METHODS Etv6 target gene was validated by ChIP and promoter reporter assays. Correlation of ETV6 and TWIST1 was analyzed in human clinical datasets and tissue samples. Migration, invasion, and metastasis assays were used to measure the cellular responses after perturbation of ETV6 -TWIST1 axis. Proliferation and tumor growth in xenograft model were performed to evaluate the drug sensitivities of EGFR-tyrosine kinase inhibitors (TKIs). RESULTS ETV6 inhibits TWIST1 expression and disruption of ETV6 promotes TWIST1-dependent malignant phenotypes. Importantly, ETV6 is required to the anti-proliferation effects of EGFR-TKIs, partly due to the inhibitory function of ETV6 on TWIST1. We also found that EGFR-RAS signaling is tightly controlled by ETV6, supporting its role in TKI sensitivity. CONCLUSIONS Our study demonstrates that disruption of ETV6 contributes to EGFR-TKI resistance, which is likely due to derepression of TWIST1 and activation of EGFR-RAS signaling. Our results implicate ETV6 as a potential marker for predicting efficacy of an EGFR-targeted anticancer approach. Combination treatment of TWIST1 inhibitors could sensitize the anti-proliferation effects of EGFR-TKIs.
Collapse
Affiliation(s)
- Yuan-Chin Tsai
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Tao Zeng
- Department of Urology, The People's Hospital of Jiangxi Province, Nanchang, People's Republic of China
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hsiu-Lien Yeh
- Institute of Information System and Applications, National Tsing Hua University, Hsinchu, Taiwan
| | - Juan Juan Yin
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yi-Chao Lee
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Wei-Yu Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
| |
Collapse
|
32
|
Jomrich G, Maroske F, Stieger J, Preusser M, Ilhan-Mutlu A, Winkler D, Kristo I, Paireder M, Schoppmann SF. MK2 and ETV1 Are Prognostic Factors in Esophageal Adenocarcinomas. J Cancer 2018; 9:460-468. [PMID: 29483950 PMCID: PMC5820912 DOI: 10.7150/jca.22310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/26/2017] [Indexed: 12/19/2022] Open
Abstract
Background. Esophageal cancer is ranked in the top ten of diagnosed tumors worldwide. Even though improvements in survival could be noticed over the last years, prognosis remains poor. ETS translocation variant 1 (ETV1) is a member of a family of transcription factors and is phosphorylated by mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2). Aim of this study was to evaluate the prognostic role of MK2 and ETV1 in esophageal cancer. Methods. Consecutive patients that underwent surgical resection at the department of surgery at the Medical University of Vienna between 1991 and 2012 were included into this study. After microscopic analysis, tissue micro arrays (TMAs) were created and immunohistochemistry was performed with antibodies against MK2 and ETV1. Results. 323 patients were included in this study. Clinical data was achieved from a prospective patient data base. Nuclear overexpression of MK2 was observed in 143 (44.3%) cases for nuclear staining and in 142 (44.0%) cases a cytoplasmic overexpression of MK2 was observed. Nuclear and cytoplasmic ETV1 overexpression was detected in 20 cases (6.2%) and 30 cases (9.3%), respectively. In univariate survival analysis, cMK2 and nETV1 were found to be significantly associated with patients' overall survival. Whereas overexpression of cMK2 was associated with shorter, nETV1 was associated with longer overall survival. In multivariate survival analysis, both cMK2 and nETV1 were found to be independent prognostic factors for the subgroup of EAC as well. Discussion. Expression of MK2 and ETV1 are prognostic factors in patients, with esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Gerd Jomrich
- Department of Surgery, Medical University of Vienna, and Gastroesophageal Tumor Unit, Comprehensive Cancer Center (CCC), Spitalgasse 23, 1090 Vienna, Austria
| | - Florian Maroske
- Department of Surgery, Medical University of Vienna, and Gastroesophageal Tumor Unit, Comprehensive Cancer Center (CCC), Spitalgasse 23, 1090 Vienna, Austria
| | - Jasmin Stieger
- Department of Surgery, Medical University of Vienna, and Gastroesophageal Tumor Unit, Comprehensive Cancer Center (CCC), Spitalgasse 23, 1090 Vienna, Austria
| | - Matthias Preusser
- Department of Medicine 1, Medical University of Vienna, Vienna, Austria. Comprehensive Cancer Center (CCC), Spitalgasse 23, 1090 Vienna, Austria
| | - Aysegül Ilhan-Mutlu
- Department of Medicine 1, Medical University of Vienna, Vienna, Austria. Comprehensive Cancer Center (CCC), Spitalgasse 23, 1090 Vienna, Austria
| | - Daniel Winkler
- Vienna University of Economics and Business, Welthandelsplatz 1, AD, 1020 Vienna, Austria
| | - Ivan Kristo
- Department of Surgery, Medical University of Vienna, and Gastroesophageal Tumor Unit, Comprehensive Cancer Center (CCC), Spitalgasse 23, 1090 Vienna, Austria
| | - Matthias Paireder
- Department of Surgery, Medical University of Vienna, and Gastroesophageal Tumor Unit, Comprehensive Cancer Center (CCC), Spitalgasse 23, 1090 Vienna, Austria
| | - Sebastian Friedrich Schoppmann
- Department of Surgery, Medical University of Vienna, and Gastroesophageal Tumor Unit, Comprehensive Cancer Center (CCC), Spitalgasse 23, 1090 Vienna, Austria
| |
Collapse
|
33
|
Murphy SJ, Kosari F, Karnes RJ, Nasir A, Johnson SH, Gaitatzes AG, Smadbeck JB, Rangel LJ, Vasmatzis G, Cheville JC. Retention of Interstitial Genes between TMPRSS2 and ERG Is Associated with Low-Risk Prostate Cancer. Cancer Res 2017; 77:6157-6167. [PMID: 29127096 DOI: 10.1158/0008-5472.can-17-0529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/27/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022]
Abstract
TMPRSS2-ERG gene fusions occur in over 50% of prostate cancers, but their impact on clinical outcomes is not well understood. Retention of interstitial genes between TMPRSS2 and ERG has been reported to influence tumor progression in an animal model. In this study, we analyzed the status of TMPRSS2-ERG fusion genes and interstitial genes in tumors from a large cohort of men treated surgically for prostate cancer, associating alterations with biochemical progression. Through whole-genome mate pair sequencing, we mapped and classified rearrangements driving ETS family gene fusions in 133 cases of very low-, low-, intermediate-, and high-risk prostate cancer from radical prostatectomy specimens. TMPRSS2-ERG gene fusions were observed in 44% of cases, and over 90% of these fusions occurred in ERG exons 3 or 4. ERG fusions retaining interstitial sequences occurred more frequently in very low-risk tumors. These tumors also frequently displayed ERG gene fusions involving alternative 5'-partners to TMPRSS2, specifically SLC45A3 and NDRG1 and other ETS family genes, which retained interstitial TMPRSS2/ERG sequences. Lastly, tumors displaying TMPRSS2-ERG fusions that retained interstitial genes were less likely to be associated with biochemical recurrence (P = 0.028). Our results point to more favorable clinical outcomes in patients with ETS family fusion-positive prostate cancers, which retain potential tumor-suppressor genes in the interstitial regions between TMPRSS2 and ERG Identifying these patients at biopsy might improve patient management, particularly with regard to active surveillance. Cancer Res; 77(22); 6157-67. ©2017 AACR.
Collapse
Affiliation(s)
- Stephen J Murphy
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Farhad Kosari
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Aqsa Nasir
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sarah H Johnson
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Athanasios G Gaitatzes
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota.,Genomics Systems Unit, Mayo Clinic, Rochester, Minnesota
| | - James B Smadbeck
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Laureano J Rangel
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - George Vasmatzis
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota.
| | - John C Cheville
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota. .,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
34
|
Kalender Atak Z, Imrichova H, Svetlichnyy D, Hulselmans G, Christiaens V, Reumers J, Ceulemans H, Aerts S. Identification of cis-regulatory mutations generating de novo edges in personalized cancer gene regulatory networks. Genome Med 2017; 9:80. [PMID: 28854983 PMCID: PMC5575942 DOI: 10.1186/s13073-017-0464-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/02/2017] [Indexed: 01/05/2023] Open
Abstract
The identification of functional non-coding mutations is a key challenge in the field of genomics. Here we introduce μ-cisTarget to filter, annotate and prioritize cis-regulatory mutations based on their putative effect on the underlying "personal" gene regulatory network. We validated μ-cisTarget by re-analyzing the TAL1 and LMO1 enhancer mutations in T-ALL, and the TERT promoter mutation in melanoma. Next, we re-sequenced the full genomes of ten cancer cell lines and used matched transcriptome data and motif discovery to identify master regulators with de novo binding sites that result in the up-regulation of nearby oncogenic drivers. μ-cisTarget is available from http://mucistarget.aertslab.org .
Collapse
Affiliation(s)
- Zeynep Kalender Atak
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Hana Imrichova
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Dmitry Svetlichnyy
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Gert Hulselmans
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Valerie Christiaens
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Joke Reumers
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Hugo Ceulemans
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Stein Aerts
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium.
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
35
|
A bipolar role of the transcription factor ERG for cnidarian germ layer formation and apical domain patterning. Dev Biol 2017; 430:346-361. [PMID: 28818668 DOI: 10.1016/j.ydbio.2017.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/29/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023]
Abstract
Germ layer formation and axial patterning are biological processes that are tightly linked during embryonic development of most metazoans. In addition to canonical WNT, it has been proposed that ERK-MAPK signaling is involved in specifying oral as well as aboral territories in cnidarians. However, the effector and the molecular mechanism underlying latter phenomenon is unknown. By screening for potential effectors of ERK-MAPK signaling in both domains, we identified a member of the ETS family of transcription factors, Nverg that is bi-polarily expressed prior to gastrulation. We further describe the crucial role of NvERG for gastrulation, endomesoderm as well as apical domain formation. The molecular characterization of the obtained NvERG knock-down phenotype using previously described as well as novel potential downstream targets, provides evidence that a single transcription factor, NvERG, simultaneously controls expression of two different sets of downstream targets, leading to two different embryonic gene regulatory networks (GRNs) in opposite poles of the developing embryo. We also highlight the molecular interaction of cWNT and MEK/ERK/ERG signaling that provides novel insight into the embryonic axial organization of Nematostella, and show a cWNT repressive role of MEK/ERK/ERG signaling in segregating the endomesoderm in two sub-domains, while a common input of both pathways is required for proper apical domain formation. Taking together, we build the first blueprint for a global cnidarian embryonic GRN that is the foundation for additional gene specific studies addressing the evolution of embryonic and larval development.
Collapse
|
36
|
Kar A, Gutierrez-Hartmann A. ESE-1/ELF3 mRNA expression associates with poor survival outcomes in HER2 + breast cancer patients and is critical for tumorigenesis in HER2 + breast cancer cells. Oncotarget 2017; 8:69622-69640. [PMID: 29050229 PMCID: PMC5642504 DOI: 10.18632/oncotarget.18710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/23/2017] [Indexed: 12/25/2022] Open
Abstract
ESE-1/Elf3 and HER2 appear to establish a positive feedback regulatory loop, but the precise role of ESE-1 in HER2+ breast tumorigenesis remains unknown. Analyzing public repositories, we found that luminal B and HER2 subtype patients with high ESE-1 mRNA levels displayed worse relapse free survival. We stably knocked down ESE-1 in HER2+ luminal B BT474 cells and HER2 subtype SKBR3 cells, which resulted in decreased cell proliferation, colony formation, and anchorage-independent growth in vitro. Stable ESE-1 knockdown inhibited HER2-dependent signaling in BT474 cells and inhibited mTOR activation in SKBR3 cells, but reduced Akt signaling in both cell types. Expression of a constitutively-active Myr-Akt partially rescued the anti-proliferative effect of ESE-1 knockdown in both cell lines. Furthermore, ESE-1 knockdown inhibited cyclin D1, resulting in a G1 delay in both cell lines. Finally, ESE-1 knockdown completely inhibited BT474 cell xenograft tumors in NOD/SCID female mice, which correlated with reduced in vitro tumorsphere formation. Taken together, these results reveal the ESE-1 controls transformation via distinct upstream signaling mechanisms in SKBR3 and BT474 cells, which ultimately impinge on Akt and cyclin D1 in both cell types to regulate cell proliferation. Particularly significant is that ESE-1 controls tumorigenesis and is associated with worse clinical outcomes in HER2 breast cancer.
Collapse
Affiliation(s)
- Adwitiya Kar
- Cancer Biology Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Arthur Gutierrez-Hartmann
- Cancer Biology Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
37
|
Park SW, Do HJ, Choi W, Song H, Chung HJ, Kim JH. NANOG gene expression is regulated by the ETS transcription factor ETV4 in human embryonic carcinoma NCCIT cells. Biochem Biophys Res Commun 2017; 487:532-538. [DOI: 10.1016/j.bbrc.2017.04.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 01/27/2023]
|
38
|
Shen Z, Asa SL, Ezzat S. Ikaros and its interacting partner CtBP target the metalloprotease ADAMTS10 to modulate pituitary cell function. Mol Cell Endocrinol 2017; 439:126-132. [PMID: 27815209 DOI: 10.1016/j.mce.2016.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/28/2016] [Accepted: 10/29/2016] [Indexed: 12/23/2022]
Abstract
We have previously described the expression and up-regulation of the C-terminal Binding Protein (CtBP) in response to pituitary hypoxia. This co-repressor interacts with the hematopoietic factor Ikaros to target several components implicated in cellular growth and apoptotic pathways. To identify common transcriptional pituitary targets we performed promoter arrays using Ikaros and CtBP chromatin immunoprecipitated (ChIP) DNA from pituitary AtT20 cells. This approach yielded a finite list of gene targets common to both transcription factors. Of these, the metalloprotease ADAMTS10 emerged as a validated target. We show the ability of Ikaros to bind the ADAMTS10 promoter, influence its transfected activity, and induce endogenous gene expression. ADAMTS10 is expressed in primary pituitary cells and is down-regulated in Ikaros null mice. Further, knockdown of ADAMTS10 in AtT20 cells recapitulates the impact of Ikaros deficiency on POMC/ACTH hormone expression. These results uncover a novel role for the metalloprotease ADAMTS10 in the pituitary. Additionally, they position this metalloprotease as a potential functional integrator of the Ikaros-CtBP chromatin remodeling network.
Collapse
Affiliation(s)
- Zhongyi Shen
- Dept. of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario M5G 2M9, Canada; University Health Network and the Ontario Cancer Institute, Toronto, Ontario M5G 2M9, Canada
| | - Sylvia L Asa
- Dept. of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario M5G 2M9, Canada; University Health Network and the Ontario Cancer Institute, Toronto, Ontario M5G 2M9, Canada
| | - Shereen Ezzat
- Dept. of Medicine, University of Toronto, Toronto, Ontario M5G 2M9, Canada; University Health Network and the Ontario Cancer Institute, Toronto, Ontario M5G 2M9, Canada.
| |
Collapse
|
39
|
Increased expression of EHF via gene amplification contributes to the activation of HER family signaling and associates with poor survival in gastric cancer. Cell Death Dis 2016; 7:e2442. [PMID: 27787520 PMCID: PMC5134001 DOI: 10.1038/cddis.2016.346] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 09/04/2016] [Accepted: 09/26/2016] [Indexed: 01/29/2023]
Abstract
The biological function of E26 transformation-specific (ETS) transcription factor EHF/ESE-3 in human cancers remains largely unknown, particularly gastric cancer. The aim of this study was to explore the role of EHF in tumorigenesis and its potential as a therapeutic target in gastric cancer. By using quantitative RT-PCR (qRT-PCR), immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) assays, we investigated the expression and copy number of EHF in a cohort of gastric cancers and control subjects. Specific EHF siRNAs was used to determine the biologic impacts and mechanisms of altered EHF expression in vitro and in vivo. Dual-luciferase reporter, chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA) assays were performed to identify its downstream targets. Our results demonstrated that EHF was significantly upregulated and frequently amplified in gastric cancer tissues as compared with control subjects. Moreover, EHF amplification was positively correlated with its overexpression and significantly associated with poor clinical outcomes of gastric cancer patients. We also found that EHF knockdown notably inhibited gastric cancer cell proliferation, colony formation, migration, invasion and tumorigenic potential in nude mice and induced cell cycle arrest and apoptosis. Importantly, we identified EHF as a new HER2 transcription factor and the modulator of HER3 and HER4 in gastric cancer. Collectively, our findings suggest that EHF is a novel functional oncogene in gastric cancer by regulating the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases and may represent a potential prognostic marker and therapeutic target for this cancer.
Collapse
|
40
|
Kolobynina KG, Solovyova VV, Levay K, Rizvanov AA, Slepak VZ. Emerging roles of the single EF-hand Ca2+ sensor tescalcin in the regulation of gene expression, cell growth and differentiation. J Cell Sci 2016; 129:3533-3540. [PMID: 27609838 DOI: 10.1242/jcs.191486] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Tescalcin (TESC, also known as calcineurin-homologous protein 3, CHP3) is a 24-kDa EF-hand Ca2+-binding protein that has recently emerged as a regulator of cell differentiation and growth. The TESC gene has also been linked to human brain abnormalities, and high expression of tescalcin has been found in several cancers. The expression level of tescalcin changes dramatically during development and upon signal-induced cell differentiation. Recent studies have shown that tescalcin is not only subjected to up- or down-regulation, but also has an active role in pathways that drive cell growth and differentiation programs. At the molecular level, there is compelling experimental evidence showing that tescalcin can directly interact with and regulate the activities of the Na+/H+ exchanger NHE1, subunit 4 of the COP9 signalosome (CSN4) and protein kinase glycogen-synthase kinase 3 (GSK3). In hematopoetic precursor cells, tescalcin has been shown to couple activation of the extracellular signal-regulated kinase (ERK) cascade to the expression of transcription factors that control cell differentiation. The purpose of this Commentary is to summarize recent efforts that have served to characterize the biochemical, genetic and physiological attributes of tescalcin, and its unique role in the regulation of various cellular functions.
Collapse
Affiliation(s)
- Ksenia G Kolobynina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, 420000, Russian Federation
| | - Valeria V Solovyova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, 420000, Russian Federation
| | - Konstantin Levay
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, 420000, Russian Federation
| | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
41
|
Lee CM, Wu J, Xia Y, Hu J. ESE-1 in Early Development: Approaches for the Future. Front Cell Dev Biol 2016; 4:73. [PMID: 27446923 PMCID: PMC4924247 DOI: 10.3389/fcell.2016.00073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/17/2016] [Indexed: 01/14/2023] Open
Abstract
E26 transformation-specific (Ets) family of transcription factors are characterized by the presence of Ets-DNA binding domain and have been found to be highly involved in hematopoiesis and various tissue differentiation. ESE-1, or Elf3 in mice, is a member of epithelium-specific Ets sub-family which is most prominently expressed in epithelial tissues such as the gut, mammary gland, and lung. The role of ESE-1 during embryogenesis had long been alluded from 30% fetal lethality in homozygous knockout mice and its high expression in preimplantation mouse embryos, but there has been no in-depth of analysis of ESE-1 function in early development. With improved proteomics, gene editing tools and increasing knowledge of ESE-1 function in adult tissues, we hereby propose future research directions for the study of ESE-1 in embryogenesis, including studying its regulation at the protein level and at the protein family level, as well as better defining the developmental phase under investigation. Understanding the role of ESE-1 in early development will provide new insights into its involvement in tissue regeneration and cancer, as well as how it functions with other Ets factors as a protein family.
Collapse
Affiliation(s)
- Chan Mi Lee
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, SickKids Research Institute, SickKids HospitalToronto, ON, Canada; Laboratory Medicine and Pathobiology, University of TorontoToronto, ON, Canada
| | - Jing Wu
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, SickKids Research Institute, SickKids Hospital Toronto, ON, Canada
| | - Yi Xia
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, SickKids Research Institute, SickKids HospitalToronto, ON, Canada; Laboratory Medicine and Pathobiology, University of TorontoToronto, ON, Canada
| | - Jim Hu
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, SickKids Research Institute, SickKids HospitalToronto, ON, Canada; Laboratory Medicine and Pathobiology, University of TorontoToronto, ON, Canada
| |
Collapse
|
42
|
Kim SK, Park YK. Ewing sarcoma: a chronicle of molecular pathogenesis. Hum Pathol 2016; 55:91-100. [PMID: 27246176 DOI: 10.1016/j.humpath.2016.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/25/2016] [Accepted: 05/12/2016] [Indexed: 01/08/2023]
Abstract
Sarcomas have traditionally been classified according to their chromosomal alterations regardless of whether they accompany simple or complex genetic changes. Ewing sarcoma, a classic small round cell bone tumor, is a well-known mesenchymal malignancy that results from simple sarcoma-specific genetic alterations. The genetic alterations are translocations between genes of the TET/FET family (TLS/FUS, EWSR1, and TAF15) and genes of the E26 transformation-specific (ETS) family. In this review, we intend to summarize a chronicle of molecular findings of Ewing sarcoma including recent advances and explain resultant molecular pathogenesis.
Collapse
Affiliation(s)
- Sang Kyum Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Koo Park
- Department of Pathology, Kyung Hee University College of Medicine, Seoul, Korea.
| |
Collapse
|
43
|
Tsui KH, Lin YH, Chung LC, Chuang ST, Feng TH, Chiang KC, Chang PL, Yeh CJ, Juang HH. Prostate-derived ets factor represses tumorigenesis and modulates epithelial-to-mesenchymal transition in bladder carcinoma cells. Cancer Lett 2016; 375:142-151. [PMID: 26965996 DOI: 10.1016/j.canlet.2016.02.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 12/27/2022]
Abstract
Prostate-derived Ets (E-twenty six) factor (PDEF), an epithelium-specific member of the Ets family of transcription factors, has been shown to play a role in suppressing the development of many epithelium-derived cancers such as prostate and breast cancer. It is not clear, however, whether PDEF is involved in the development or progression of bladder cancer. In a comparison between normal urothelium and bladder tumor tissue, we identified significant decreases of PDEF in the tumor tissue. Further, the immunohistochemistry assays indicated a significantly higher immunostaining of PDEF in low-grade bladder tumors. Additionally, the highly differentiated transitional-cell bladder carcinoma RT-4 cells expressed significantly more PDEF levels than the bladder carcinoma HT1376 and the T24 cells. Ectopic overexpression of PDEF attenuated proliferation, invasion, and tumorigenesis of bladder carcinoma cells in vitro and in vivo. PDEF enhanced the expression levels of mammary serine protease inhibitor (MASPIN), N-myc downstream regulated gene 1 (NDRG1), KAI1, and B-cell translocation gene 2 (BTG2). PDEF modulated epithelial-mesenchymal-transition (EMT) by upregulating E-cadherin expression and downregulating the expression of N-cadherin, SNAIL, SLUG, and vimentin, leading to lower migration and invasion abilities of bladder carcinoma cells. Filamentous actin (F-actin) polarization and remodeling were observed in PDEF-knockdown RT-4 cells. Our results suggest that PDEF gene expression is associated with the extent of bladder neoplasia and PDEF modulated the expressions of EMT-related genes. The induction of BTG2, NDRG1, MASPIN, and KAI1 gene expressions by PDEF may explain the inhibitory functions of PDEF on the proliferation, invasion, and tumorigenesis in bladder carcinoma cells.
Collapse
Affiliation(s)
- Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan; Department of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan; Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Li-Chuan Chung
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Sung-Ting Chuang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Kun-Chun Chiang
- Zebafish Center, General Surgery Department, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Phei-Lang Chang
- Department of Urology, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan; Department of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Chi-Ju Yeh
- Department of Pathology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan; Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
44
|
Novel Research on Fusion Genes and Next-Generation Sequencing. Prostate Cancer 2016. [DOI: 10.1016/b978-0-12-800077-9.00004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant SOD1-mediated ALS. Proc Natl Acad Sci U S A 2015; 112:E6993-7002. [PMID: 26621731 DOI: 10.1073/pnas.1520639112] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ubiquitous expression of amyotrophic lateral sclerosis (ALS)-causing mutations in superoxide dismutase 1 (SOD1) provokes noncell autonomous paralytic disease. By combining ribosome affinity purification and high-throughput sequencing, a cascade of mutant SOD1-dependent, cell type-specific changes are now identified. Initial mutant-dependent damage is restricted to motor neurons and includes synapse and metabolic abnormalities, endoplasmic reticulum (ER) stress, and selective activation of the PRKR-like ER kinase (PERK) arm of the unfolded protein response. PERK activation correlates with what we identify as a naturally low level of ER chaperones in motor neurons. Early changes in astrocytes occur in genes that are involved in inflammation and metabolism and are targets of the peroxisome proliferator-activated receptor and liver X receptor transcription factors. Dysregulation of myelination and lipid signaling pathways and activation of ETS transcription factors occur in oligodendrocytes only after disease initiation. Thus, pathogenesis involves a temporal cascade of cell type-selective damage initiating in motor neurons, with subsequent damage within glia driving disease propagation.
Collapse
|
46
|
Booth A, Trudeau T, Gomez C, Lucia MS, Gutierrez-Hartmann A. Persistent ERK/MAPK activation promotes lactotrope differentiation and diminishes tumorigenic phenotype. Mol Endocrinol 2015; 28:1999-2011. [PMID: 25361391 DOI: 10.1210/me.2014-1168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The signaling pathways that govern the lactotrope-specific differentiated phenotype, and those that control lactotrope proliferation in both physiological and pathological lactotrope expansion, are poorly understood. Moreover, the specific role of MAPK signaling in lactotrope proliferation vs differentiation, whether activated phosphorylated MAPK is sufficient for prolactinoma tumor formation remain unknown. Given that oncogenic Ras mutations and persistently activated phosphorylated MAPK are found in human tumors, including prolactinomas and other pituitary tumors, a better understanding of the role of MAPK in lactotrope biology is required. Here we directly examined the role of persistent Ras/MAPK signaling in differentiation, proliferation, and tumorigenesis of rat pituitary somatolactotrope GH4 cells. We stimulated Ras/MAPK signaling in a persistent, long-term manner (over 6 d) in GH4 cells using two distinct approaches: 1) a doxycycline-inducible, oncogenic V12Ras expression system; and 2) continuous addition of exogenous epidermal growth factor. We find that long-term activation of the Ras/MAPK pathway over 6 days promotes differentiation of the bihormonal somatolactotrope GH4 precursor cell into a prolactin-secreting, lactotrope cell phenotype in vitro and in vivo with GH4 cell xenograft tumors. Furthermore, we show that persistent activation of the Ras/MAPK pathway not only fails to promote cell proliferation, but also diminishes tumorigenic characteristics in GH4 cells in vitro and in vivo. These data demonstrate that activated MAPK promotes differentiation and is not sufficient to drive tumorigenesis, suggesting that pituitary lactotrope tumor cells have the ability to evade the tumorigenic fate that is often associated with Ras/MAPK activation.
Collapse
Affiliation(s)
- Allyson Booth
- Program in Reproductive Sciences and Integrated Physiology (A.B., A.G.-H.) and Departments of Medicine and of Biochemistry and Molecular Genetics (T.T., C.G., A.G.-H.) and Pathology (M.S.L.), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045
| | | | | | | | | |
Collapse
|
47
|
Liu M, Gao W, van Velkinburgh JC, Wu Y, Ni B, Tian Y. Role of Ets Proteins in Development, Differentiation, and Function of T-Cell Subsets. Med Res Rev 2015; 36:193-220. [PMID: 26301869 DOI: 10.1002/med.21361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 07/12/2015] [Accepted: 07/23/2015] [Indexed: 12/18/2022]
Abstract
Through positive selection, double-positive cells in the thymus differentiate into CD4(+) or CD8(+) T single-positive cells that subsequently develop into different types of effective T cells, such as T-helper and cytotoxic T lymphocyte cells, that play distinctive roles in the immune system. Development, differentiation, and function of thymocytes and CD4(+) and CD8(+) T cells are controlled by a multitude of secreted and intracellular factors, ranging from cytokine signaling modules to transcription factors and epigenetic modifiers. Members of the E26 transformation specific (Ets) family of transcription factors, in particular, are potent regulators of these CD4(+) or CD8(+) T-cell processes. In this review, we summarize and discuss the functions and underlying mechanisms of the Ets family members that have been characterized as involved in these processes. Ongoing research of these factors is expected to identify practical applications for the Ets family members as novel therapeutic targets for inflammation-related diseases.
Collapse
Affiliation(s)
- Mian Liu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China.,Battalion 10 of Cadet Brigade, Third Military Medical University, Chongqing, 400038, P.R. China
| | - Weiwu Gao
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| | | | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| | - Bing Ni
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| | - Yi Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| |
Collapse
|
48
|
Quero L, Rozet F, Beuzeboc P, Hennequin C. The androgen receptor for the radiation oncologist. Cancer Radiother 2015; 19:220-7. [DOI: 10.1016/j.canrad.2015.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/01/2015] [Accepted: 02/04/2015] [Indexed: 01/11/2023]
|
49
|
The oncogene ERG: a key factor in prostate cancer. Oncogene 2015; 35:403-14. [PMID: 25915839 DOI: 10.1038/onc.2015.109] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/20/2022]
Abstract
ETS-related gene (ERG) is a member of the E-26 transformation-specific (ETS) family of transcription factors with roles in development that include vasculogenesis, angiogenesis, haematopoiesis and bone development. ERG's oncogenic potential is well known because of its involvement in Ewing's sarcoma and leukaemia. However, in the past decade ERG has become highly associated with prostate cancer development, particularly as a result of a gene fusion with the promoter region of the androgen-induced TMPRRSS2 gene. We review ERG's structure and function, and its role in prostate cancer. We discuss potential new therapies that are based on targeting ERG.
Collapse
|
50
|
Dean KC, Huang L, Chen Y, Lu X, Liu Y. An Rb1-dependent amplification loop between Ets1 and Zeb1 is evident in thymocyte differentiation and invasive lung adenocarcinoma. BMC Mol Biol 2015; 16:8. [PMID: 25880398 PMCID: PMC4364651 DOI: 10.1186/s12867-015-0038-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/26/2015] [Indexed: 01/02/2023] Open
Abstract
Background Ras pathway mutation leads to induction and Erk phosphorylation and activation of the Ets1 transcription factor. Ets1 in turn induces cyclin E and cyclin dependent kinase (cdk) 2 to drive cell cycle progression. Ets1 also induces expression of the epithelial-mesenchymal transition (EMT) transcription factor Zeb1, and thereby links Ras mutation to EMT, which is thought to drive tumor invasion. Ras pathway mutations are detected by the Rb1 tumor suppression pathway, and mutation or inactivation of the Rb1 pathway is required for EMT. Results We examined linkage between Rb1, Ets1 and Zeb1. We found that an Rb1-E2F complex binds the Ets1 promoter and constitutively limits Ets1 expression. But, Rb1 repression of Zeb1 provides the major impact of Rb1 on Ets1 expression. We link Rb1 repression of Zeb1 to induction of miR-200 family members, which in turn target Ets1 mRNA. These findings suggest that Ets1 and Zeb1 comprise an amplification loop that is dependent upon miR-200 and regulated by Rb1. Thus, induction of Ets1 when the Rb1 pathway is lost may contribute to deregulated cell cycle progression through Ets1 induction of cyclin E and cdk2. Consistent with such an amplification loop, we correlate expression of Ets1 and Zeb1 in mouse and human lung adenocarcinoma. In addition we demonstrate that Ets1 expression in thymocytes is also dependent upon Zeb1. Conclusions Taken together, our results provide evidence of an Rb1-dependent Ets1-Zeb1 amplification loop in thymocyte differentiation and tumor invasion. Electronic supplementary material The online version of this article (doi:10.1186/s12867-015-0038-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kevin C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, 301 E. Muhammad Ali Blvd., Louisville, KY, 40202, USA.
| | - Li Huang
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, 301 E. Muhammad Ali Blvd., Louisville, KY, 40202, USA. .,College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| | - Yao Chen
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, 301 E. Muhammad Ali Blvd., Louisville, KY, 40202, USA. .,The Second Affiliated Hospital, Central South University Xiangya School of Medicine, Changsha, Hunan Province, 410011, China.
| | - Xiaoqin Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, 301 E. Muhammad Ali Blvd., Louisville, KY, 40202, USA.
| | - Yongqing Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, 301 E. Muhammad Ali Blvd., Louisville, KY, 40202, USA. .,James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY, 40202, USA. .,Birth Defects Center, University of Louisville Health Sciences Center, Louisville, KY, 40202, USA.
| |
Collapse
|