1
|
Wu K, Zhou J, Tang Y, Zhang Q, Xiong L, Li X, Zhuo Z, Luo M, Yuan Y, Liu X, Zhong Z, Guo X, Yu Z, Sheng X, Luo G, Chen H. Werner syndrome exonuclease promotes gut regeneration and causes age-associated gut hyperplasia in Drosophila. PLoS Biol 2025; 23:e3003121. [PMID: 40261911 PMCID: PMC12013949 DOI: 10.1371/journal.pbio.3003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
Human Werner syndrome (adult progeria, a well-established model of human aging) is caused by mutations in the Werner syndrome (WRN) gene. However, the expression patterns and functions of WRN in natural aging remain poorly understood. Despite the link between WRN deficiencies and progeria, our analyses of human colon tissues, mouse crypts, and Drosophila midguts revealed that WRN expression does not decrease but rather increases in intestinal stem cells (ISCs) with aging. Mechanistically, we found that the Drosophila WRN homologue (WRNexo) binds to Heat shock 70-kDa protein cognate 3 (Hsc70-3/Bip) to regulate the unfolded protein response of the endoplasmic reticulum (UPRER). Activation of the WRNexo-mediated UPRER in ISCs is required for ISC proliferation during injury repair. However, persistent DNA damage during aging leads to chronic upregulation of WRNexo in ISCs, where excessive WRNexo-induced ER stress drives age-associated gut hyperplasia in Drosophila. This study reveals how elevated WRNexo contributes to stem cell aging, providing new insights into organ aging and the pathogenesis of age-related diseases, such as colon cancer.
Collapse
Affiliation(s)
- Kun Wu
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Juanyu Zhou
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yiming Tang
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiaoqiao Zhang
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lishou Xiong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaorong Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhangpeng Zhuo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mei Luo
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Yuan
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xingzhu Liu
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhendong Zhong
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - XiaoXin Guo
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zihua Yu
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Sheng
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guanzheng Luo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haiyang Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Tower J. Selectively advantageous instability in biotic and pre-biotic systems and implications for evolution and aging. FRONTIERS IN AGING 2024; 5:1376060. [PMID: 38818026 PMCID: PMC11137231 DOI: 10.3389/fragi.2024.1376060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
Rules of biology typically involve conservation of resources. For example, common patterns such as hexagons and logarithmic spirals require minimal materials, and scaling laws involve conservation of energy. Here a relationship with the opposite theme is discussed, which is the selectively advantageous instability (SAI) of one or more components of a replicating system, such as the cell. By increasing the complexity of the system, SAI can have benefits in addition to the generation of energy or the mobilization of building blocks. SAI involves a potential cost to the replicating system for the materials and/or energy required to create the unstable component, and in some cases, the energy required for its active degradation. SAI is well-studied in cells. Short-lived transcription and signaling factors enable a rapid response to a changing environment, and turnover is critical for replacement of damaged macromolecules. The minimal gene set for a viable cell includes proteases and a nuclease, suggesting SAI is essential for life. SAI promotes genetic diversity in several ways. Toxin/antitoxin systems promote maintenance of genes, and SAI of mitochondria facilitates uniparental transmission. By creating two distinct states, subject to different selective pressures, SAI can maintain genetic diversity. SAI of components of synthetic replicators favors replicator cycling, promoting emergence of replicators with increased complexity. Both classical and recent computer modeling of replicators reveals SAI. SAI may be involved at additional levels of biological organization. In summary, SAI promotes replicator genetic diversity and reproductive fitness, and may promote aging through loss of resources and maintenance of deleterious alleles.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
3
|
Chen Y, Li Z, Ge X, Lv H, Geng Z. Identification of novel hub genes for Alzheimer's disease associated with the hippocampus using WGCNA and differential gene analysis. Front Neurosci 2024; 18:1359631. [PMID: 38516314 PMCID: PMC10954837 DOI: 10.3389/fnins.2024.1359631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/28/2024] [Indexed: 03/23/2024] Open
Abstract
Background Alzheimer's disease (AD) is a common, refractory, progressive neurodegenerative disorder in which cognitive and memory deficits are highly correlated with abnormalities in hippocampal brain regions. There is still a lack of hippocampus-related markers for AD diagnosis and prevention. Methods Differently expressed genes were identified in the gene expression profile GSE293789 in the hippocampal brain region. Enrichment analyses GO, KEGG, and GSEA were used to identify biological pathways involved in the DEGs and AD-related group. WGCNA was used to identify the gene modules that are highly associated with AD in the samples. The intersecting genes of the genes in DEGs and modules were extracted and the top ten ranked hub genes were identified. Finally GES48350 was used as a validation cohort to predict the diagnostic efficacy of hub genes. Results From GSE293789, 225 DEGs were identified, which were mainly associated with calcium response, glutamatergic synapses, and calcium-dependent phospholipid-binding response. WGCNA analysis yielded dark green and bright yellow modular genes as the most relevant to AD. From these two modules, 176 genes were extracted, which were taken to be intersected with DEGs, yielding 51 intersecting genes. Then 10 hub genes were identified in them: HSPA1B, HSPB1, HSPA1A, DNAJB1, HSPB8, ANXA2, ANXA1, SOX9, YAP1, and AHNAK. Validation of these genes was found to have excellent diagnostic performance. Conclusion Ten AD-related hub genes in the hippocampus were identified, contributing to further understanding of AD development in the hippocampus and development of targets for therapeutic prevention.
Collapse
Affiliation(s)
- Yang Chen
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Zhaoxiang Li
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Xin Ge
- Science and Education Section, Baoding First Central Hospital, Baoding, China
| | - Huandi Lv
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zuojun Geng
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Jacobs ER, Ross GR, Padilla N, Pan AY, Liegl M, Puzyrenko A, Lai S, Dai Q, Uche N, Rubenstein JC, North PE, Ibrahim ESH, Sun Y, Felix JC, Rui H, Benjamin IJ. Profibrotic COVID-19 subphenotype exhibits enhanced localized ER-dependent HSP47 + expression in cardiac myofibroblasts in situ. J Mol Cell Cardiol 2023; 185:1-12. [PMID: 37839656 PMCID: PMC11000691 DOI: 10.1016/j.yjmcc.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
We recently described a subgroup of autopsied COVID-19 subjects (∼40%), termed 'profibrotic phenotype,' who exhibited clusters of myofibroblasts (Mfbs), which were positive for the collagen-specific chaperone heat shock protein 47 (HSP47+) in situ. This report identifies increased, localized (hot spot restricted) expression of αSMA, COLα1, POSTN and FAP supporting the identity of HSP47+ cells as myofibroblasts and characterizing a profibrotic extracellular matrix (ECM) phenotype. Coupled with increased GRP78 in COVID-19 subjects, these data could reflect induction of the unfolded protein response for mitigation of proteostasis (i.e., protein homeostasis) dysfunction in discrete clusters of cells. ECM shifts in selected COVID-19 subjects occur without significant increases in either global trichrome positive staining or myocardial injury based quantitively on standard H&E scoring. Our findings also suggest distinct mechanism(s) for ECM remodeling in the setting of SARS-CoV-2 infection. The ratio of CD163+/CD68+ cells is increased in hot spots of profibrotic hearts compared with either controls or outside of hot spots in COVID-19 subjects. In sum, matrix remodeling of human COVID-19 hearts in situ is characterized by site-restricted profibrotic mediated (e.g., HSP47+ Mfbs, CD163+ Mφs) modifications in ECM (i.e., COLα1, POSTN, FAP), with a strong correlation between COLα1 and HSP47+cells within hot spots. Given the established associations of viral infection (e.g., human immunodeficiency virus; HIV), myocardial fibrosis and sudden cardiac death, early screening tools (e.g., plasma biomarkers, noninvasive cardiac magnetic resonance imaging) for diagnosis, monitoring and treatment of fibrotic ECM remodeling are warranted for COVID-19 high-risk populations.
Collapse
Affiliation(s)
- Elizabeth R Jacobs
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States of America; Clement J. Zablocki VA Medical Center, Milwaukee, WI, United States of America
| | - Gracious R Ross
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Nathan Padilla
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Amy Y Pan
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States of America; Children's Research Institute, Milwaukee, WI, United States of America
| | - Melodee Liegl
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States of America; Children's Research Institute, Milwaukee, WI, United States of America
| | - Andrii Puzyrenko
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Shuping Lai
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Qiang Dai
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Nnamdi Uche
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Jason C Rubenstein
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Paula E North
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States of America; Children's Research Institute, Milwaukee, WI, United States of America
| | - El-Sayed H Ibrahim
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America; Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Yunguang Sun
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Juan C Felix
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Hallgeir Rui
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Ivor J Benjamin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States of America; Department of Cell Biology, Neuroanatomy and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States of America.
| |
Collapse
|
5
|
How CM, Cheng KC, Li YS, Pan MH, Wei CC. Tangeretin Supplementation Mitigates the Aging Toxicity Induced by Dietary Benzo[a]pyrene Exposure with Aberrant Proteostasis and Heat Shock Responses in Caenorhabditis elegans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13474-13482. [PMID: 37639537 DOI: 10.1021/acs.jafc.3c02307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Benzo[a]pyrene (BaP) is a common food contaminant that can impair organismal aging. Tangeretin (TAN) may mitigate aging toxicities as a dietary supplement. This study used Caenorhabditis elegans to investigate the effects of chronic exposure to BaP on aging and to determine whether TAN supplementation could alleviate BaP-induced toxicity. Early life exposure to BaP (10 μM) significantly inhibited growth by 5%, and exposure to 0.1 to 10 μM BaP impaired C. elegans motility, resulting in a 3.4-6.5% reduction in motility. Chronic exposure to BaP (10 μM) age-dependently aggravated aberrant protein aggregation (7% increase) and shortened the median lifespan of the worms from 20 to 16 days. In addition, BaP worsened the age-dependent decline in motility and pharyngeal pumping, as well as the accumulation of reactive oxygen species. Furthermore, exposure to BaP resulted in significantly higher relative transcript levels of approximately 1.8-2.0-fold for the hsp-16.1, hsp-16.2, hsp-16.49, and hsp-70 genes. Stressed worms exposed to BaP exhibited significantly lower survival under heat stress. Dietary TAN supplementation alleviated the BaP-induced decline in motility, pumping, and poly-Q accumulation and restored heat shock proteins' transcript levels. Our findings suggest that chronic BaP exposure adversely affects aging and that TAN exposure mitigates the BaP-induced aging toxicity.
Collapse
Affiliation(s)
- Chun Ming How
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Ko-Chun Cheng
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Yong-Shan Li
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| |
Collapse
|
6
|
Martins AD, Ribeiro JC, Ferreira R, Alves MG, Oliveira PF. Understanding the age-related alterations in the testis-specific proteome. Expert Rev Proteomics 2023; 20:331-343. [PMID: 37878493 DOI: 10.1080/14789450.2023.2274857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Fertility rates in developing countries have declined over the past decades, and the trend of delayed fatherhood is rising as societies develop. The reasons behind the decline in male fertility with advancing age remain mysterious, making it a compelling and crucial area for further research. However, the limited number of studies dedicated to unraveling this enigma poses a challenge. Thus, our objective is to illuminate some of the upregulated and downregulated mechanisms in the male testis during the aging process. AREAS COVERED Herein, we present a critical overview of the studies addressing the alterations of testicular proteome through the aging process, starting from sexually matured young males to end-of-life-expectancy aged males. The comparative studies of the proteomic testicular profile of men with and without spermatogenic impairment are also discussed and key proteins and pathways involved are highlighted. EXPERT OPINION The difficulty of making age-comparative studies, especially of advanced-age study subjects, makes this topic of study quite challenging. Another topic worth mentioning is the heterogeneous nature and vast cellular composition of testicular tissue, which makes proteome data interpretation tricky. The cell type sorting and comorbidities testing in the testicular tissue of the studied subjects would help mitigate these problems.
Collapse
Affiliation(s)
- Ana D Martins
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - João C Ribeiro
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Marco G Alves
- iBiMED-Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
7
|
Zhu W, Chi S, Wang Y, Li H, Wang Z, Gu S, Sun T, Xiang H, You P, Ren Y. A chromosome-level genome assembly of the Henosepilachna vigintioctomaculata provides insights into the evolution of ladybird beetles. DNA Res 2023; 30:6988042. [PMID: 36645207 PMCID: PMC9936504 DOI: 10.1093/dnares/dsad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
The ladybird beetle Henosepilachna vigintioctomaculata is an economically significant oligophagous pest that induces damage to many Solanaceae crops. An increasing number of studies have examined the population and phenotype diversity of ladybird beetles. However, few comparative genome analyses of ladybird beetle species have been conducted. Here, we obtained a high-quality chromosome-level genome assembly of H. vigintioctomaculata using various sequencing technologies, and the chromosome-level genome assembly was ~581.63 Mb, with 11 chromosomes successfully assembled. The phylogenetic analysis showed that H. vigintioctomaculata is a more ancient lineage than the other three sequenced ladybird beetles, Harmonia axyridis, Propylea japonica, and Coccinella septempunctata. We also compared positively selected genes (PSGs), transposable elements (TEs) ratios and insertion times, and key gene families associated with environmental adaptation among these ladybird beetles. The pattern of TEs evolution of H. vigintioctomaculata differs from the other three ladybird beetles. The PSGs were associated with ladybird beetles development. However, the key gene families associated with environmental adaptation in ladybird beetles varied. Overall, the high-quality draft genome sequence of H. vigintioctomaculata provides a useful resource for studies of beetle biology, especially for the invasive biology of ladybird beetles.
Collapse
Affiliation(s)
| | | | | | | | - Zhongkai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Songdong Gu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Ting Sun
- College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China
| | - Hui Xiang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | | | - Yandong Ren
- To whom correspondence should be addressed. Tel. +86-029-85310266; (Y.R.)
| |
Collapse
|
8
|
Zhang Y, Zhou Q, Lu L, Zhao C, Zhang H, Liu R, Pu Y, Yin L. Integrating Transcriptomics and Free Fatty Acid Profiling Analysis Reveal Cu Induces Shortened Lifespan and Increased Fat Accumulation and Oxidative Damage in C. elegans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5297342. [PMID: 36017239 PMCID: PMC9398846 DOI: 10.1155/2022/5297342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/03/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
Abstract
Nowadays, human beings are exposed to Cu in varieties of environmental mediums, resulting in health risks needing urgent attention. Our research found that Cu shortened lifespan and induced aging-related phenotypes of Caenorhabditis elegans (C. elegans). Transcriptomics data showed differential expression genes induced by Cu were mainly involved in regulation of metabolism and longevity, especially in fatty acid metabolism. Quantitative detection of free fatty acid by GC/MS further found that Cu upregulated free fatty acids of C. elegans. A mechanism study confirmed that Cu promoted the fat accumulation in nematodes, which was owing to disorder of fatty acid desaturase and CoA synthetase, endoplasmic reticulum unfolded protein response (UPRER), mitochondrial membrane potential, and unfolded protein response (UPRmt). In addition, Cu activated oxidative stress and prevented DAF-16 translocating into nuclear with a concomitant reduction in the expression of environmental stress-related genes. Taken together, the research suggested that Cu promoted aging and induced fat deposition and oxidative damage.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Qian Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Lu Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
9
|
HSPB8 Overexpression Ameliorates Cognitive Impairment in Diabetic Mice via Inhibiting NLRP3 Inflammation Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9251835. [PMID: 35958024 PMCID: PMC9359860 DOI: 10.1155/2022/9251835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/20/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with an elevated risk of cognitive impairment. And the underlying mechanism remains unillustrated. HSPB8 is a member of the small heat shock protein family. In this study, we found that the expression of HSPB8 was upregulated in the hippocampus of high − fat diet (HFD) + streptozotocin (STZ) − induced diabetic mice and N2a cells exposed to high glucose. Overexpression of HSPB8 relieved cognitive decline in DM mice. Mechanically, HSPB8 overexpression in the hippocampus of diabetic mice inhibited NOD-like receptor protein 3 (NLRP3) inflammasome activation via dephosphorylating mitochondrial fission-associated protein dynamin-related protein 1 (DRP1) at the phosphorylated site Ser616 (p-Drp1S616). Furthermore, HSPB8 overexpression increased mitochondrial membrane potential (MMP) and reduced oxidative stress. These results indicate a protective effect of HSPB8 in the hippocampus of diabetic mice and N2a cells exposed to high glucose. Overexpression of HSPB8 might be a useful strategy for treating T2DM-related cognitive decline.
Collapse
|
10
|
Rentscher KE, Carroll JE, Polsky LR, Lamkin DM. Chronic stress increases transcriptomic indicators of biological aging in mouse bone marrow leukocytes. Brain Behav Immun Health 2022; 22:100461. [PMID: 35481228 PMCID: PMC9035650 DOI: 10.1016/j.bbih.2022.100461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 01/13/2023] Open
Abstract
Research with animals and humans has demonstrated that chronic stress exposure can impact key biological aging pathways such as inflammation and DNA damage, suggesting a mechanism through which stress may increase risk for age-related disease. However, it is less clear whether these effects extend to other hallmarks of the aging process, such as cellular senescence. Male SCID mice were exposed to 14 days of restraint stress, with (n = 6) or without (n = 10) propranolol administration, or a non-stress control condition (n = 10). Normal femoral bone marrow leukocytes were isolated from engrafted leukemia cells that had been injected prior to the stressor, as the mice were also under a cancer challenge. We performed whole genome transcriptional profiling to assess indicators of biological aging: cell stress, DNA damage repair, cellular senescence markers p16INK4a and p21, and the pro-inflammatory senescence-associated secretory phenotype (SASP). ANCOVAs that adjusted for tumor load and Fisher's pairwise comparisons revealed that stressed mice had enhanced p16INK4a (p = .02) and p21 (p = .004), lower DNA damage repair (p < .001), and higher SASP (p = .03) gene expression than control mice. Stressed mice also showed up-regulated beta-adrenergic (CREB) and inflammatory (NF-кB, AP-1) and down-regulated cell stress (Nrf2) transcription factor activity relative to control mice (ps < .01). Propranolol reversed CREB and Nrf2 activity (ps < .03). Findings suggest that chronic stress exposure can impact several key biological aging pathways within bone marrow leukocytes and these effects may be partially mediated by sympathetic beta-adrenergic receptor activation.
Collapse
Affiliation(s)
- Kelly E. Rentscher
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, USA,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, USA,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA,Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, USA,Corresponding author. Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, 1000 N. 92nd St., Milwaukee, WI, 53226, USA.
| | - Judith E. Carroll
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, USA,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, USA,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Lilian R. Polsky
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, USA
| | - Donald M. Lamkin
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, USA,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, USA,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| |
Collapse
|
11
|
S. Bell H, Tower J. In vivo assay and modelling of protein and mitochondrial turnover during aging. Fly (Austin) 2021; 15:60-72. [PMID: 34002678 PMCID: PMC8143256 DOI: 10.1080/19336934.2021.1911286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/29/2022] Open
Abstract
To maintain homoeostasis, cells must degrade damaged or misfolded proteins and synthesize functional replacements. Maintaining a balance between these processes, known as protein turnover, is necessary for stress response and cellular adaptation to a changing environment. Damaged mitochondria must also be removed and replaced. Changes in protein and mitochondrial turnover are associated with aging and neurodegenerative disease, making it important to understand how these processes occur and are regulated in cells. To achieve this, reliable assays of turnover must be developed. Several methods exist, including pulse-labelling with radioactive or stable isotopes and strategies making use of fluorescent proteins, each with their own advantages and limitations. Both cell culture and live animals have been used for these studies, in systems ranging from yeast to mammals. In vivo assays are especially useful for connecting turnover to aging and disease. With its short life cycle, suitability for fluorescent imaging, and availability of genetic tools, Drosophila melanogaster is particularly well suited for this kind of analysis.
Collapse
Affiliation(s)
- Hans S. Bell
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Arora R, Siddaraju NK, Manjunatha SS, Sudarshan S, Fairoze MN, Kumar A, Chhabra P, Kaur M, Sreesujatha RM, Ahlawat S, Vijh RK. Muscle transcriptome provides the first insight into the dynamics of gene expression with progression of age in sheep. Sci Rep 2021; 11:22360. [PMID: 34785720 PMCID: PMC8595721 DOI: 10.1038/s41598-021-01848-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/02/2021] [Indexed: 01/13/2023] Open
Abstract
The dynamic synergy of genes and pathways in muscles in relation to age affects the muscle characteristics. Investigating the temporal changes in gene expression will help illustrate the molecular mechanisms underlying muscle development. Here we report the gene expression changes in skeletal muscles through successive age groups in Bandur, a meat type sheep of India. RNA sequencing data was generated from the longissimus thoracis muscles from four age groups, ranging from lamb to adult. Analysis of 20 highest expressed genes common across the groups revealed muscle protein, phosphorylation, acetylation, metal binding and transport as significant functions. Maximum differentiation was observed after 2.5–3 years on transition from lambs to adult. Transcriptional regulation by the TFAP2 transcription factors, IL-6 signaling and PI3K/AKT signaling pathways were enriched in younger animals. The gene-protein network demarcated key interactive genes involved in muscle development and proliferation that can be used as candidates for future research on improvement of muscle characteristics.
Collapse
Affiliation(s)
- Reena Arora
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, G T Road By-Pass, P O Box 129, Karnal, 132001, Haryana, India.
| | | | - S S Manjunatha
- Karnataka Veterinary Animal and Fisheries Sciences University, Bangalore, 560024, India
| | - S Sudarshan
- Karnataka Veterinary Animal and Fisheries Sciences University, Bangalore, 560024, India
| | | | - Ashish Kumar
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, G T Road By-Pass, P O Box 129, Karnal, 132001, Haryana, India
| | - Pooja Chhabra
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, G T Road By-Pass, P O Box 129, Karnal, 132001, Haryana, India
| | - Mandeep Kaur
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, G T Road By-Pass, P O Box 129, Karnal, 132001, Haryana, India
| | - R M Sreesujatha
- Karnataka Veterinary Animal and Fisheries Sciences University, Bangalore, 560024, India
| | - Sonika Ahlawat
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, G T Road By-Pass, P O Box 129, Karnal, 132001, Haryana, India
| | - Ramesh Kumar Vijh
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, G T Road By-Pass, P O Box 129, Karnal, 132001, Haryana, India
| |
Collapse
|
13
|
Sarzi-Puttini P, Giorgi V, Di Lascio S, Fornasari D. Acetyl-L-carnitine in chronic pain: A narrative review. Pharmacol Res 2021; 173:105874. [PMID: 34500063 DOI: 10.1016/j.phrs.2021.105874] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022]
Abstract
Acetyl-L-carnitine (ALC) is an endogenous molecule that not only plays a role in energy metabolism, but also has antioxidant properties, protects from oxidative stress, modulates brain neurotransmitters such as acetylcholine, serotonin and dopamine, and acts on neurotrophic factors such as nerve growth factor (NGF) and metabotropic glutamate (mGlu) receptors by means of epigenetic mechanisms. Importantly, it induces mGlu2 expression at nerve terminals, thus giving rise to analgesia and preventing spinal sensitisation. It has also been found to have even long-term neurotrophic and analgesic activity in experimental models of chronic inflammatory and neuropathic pain. The aim of this narrative review is to summarise the current evidence regarding the use of ALC in patients with chronic pain, and cognitive and mood disorders, and investigate the rationale underlying its use in patients with fibromyalgia syndrome, which is characterised by nociplastic changes that increase the sensitivity of the nervous system to pain.
Collapse
Affiliation(s)
| | - Valeria Giorgi
- Rheumatology Unit, ASST Fatebenefratelli Luigi Sacco University Hospital, Milan, Italy.
| | - Simona Di Lascio
- Department of Medical Biotechnology and Molecular Medicine, Università degli Studi di Milano, Milan, Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Molecular Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
14
|
Rai M, Coleman Z, Curley M, Nityanandam A, Platt A, Robles-Murguia M, Jiao J, Finkelstein D, Wang YD, Xu B, Fan Y, Demontis F. Proteasome stress in skeletal muscle mounts a long-range protective response that delays retinal and brain aging. Cell Metab 2021; 33:1137-1154.e9. [PMID: 33773104 PMCID: PMC8172468 DOI: 10.1016/j.cmet.2021.03.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/21/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
Neurodegeneration in the central nervous system (CNS) is a defining feature of organismal aging that is influenced by peripheral tissues. Clinical observations indicate that skeletal muscle influences CNS aging, but the underlying muscle-to-brain signaling remains unexplored. In Drosophila, we find that moderate perturbation of the proteasome in skeletal muscle induces compensatory preservation of CNS proteostasis during aging. Such long-range stress signaling depends on muscle-secreted Amyrel amylase. Mimicking stress-induced Amyrel upregulation in muscle reduces age-related accumulation of poly-ubiquitinated proteins in the brain and retina via chaperones. Preservation of proteostasis stems from the disaccharide maltose, which is produced via Amyrel amylase activity. Correspondingly, RNAi for SLC45 maltose transporters reduces expression of Amyrel-induced chaperones and worsens brain proteostasis during aging. Moreover, maltose preserves proteostasis and neuronal activity in human brain organoids challenged by thermal stress. Thus, proteasome stress in skeletal muscle hinders retinal and brain aging by mounting an adaptive response via amylase/maltose.
Collapse
Affiliation(s)
- Mamta Rai
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zane Coleman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michelle Curley
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anjana Nityanandam
- Stem Cell Core, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anna Platt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Maricela Robles-Murguia
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jianqin Jiao
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
15
|
Muscular HSP70 content is higher in elderly compared to young, but is normalized after 12 weeks of strength training. Eur J Appl Physiol 2021; 121:1689-1699. [PMID: 33677694 PMCID: PMC8144120 DOI: 10.1007/s00421-021-04633-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022]
Abstract
Purpose Aging is associated with increased myocellular stress and loss of muscle mass and function. Heat shock proteins (HSPs) are upregulated during periods of stress as part of the cells protective system. Exercise can affect both acute HSP regulation and when repeated regularly counteract unhealthy age-related changes in the muscle. Few studies have investigated effects of exercise on HSP content in elderly. The aim of the study was to compare muscular HSP levels in young and elderly and to investigate how training affects HSP content in muscles from aged males and females. Methods Thirty-eight elderly were randomized to 12 weeks of strength training (STG), functional strength training (FTG) or a control group (C). To compare elderly to young, 13 untrained young performed 11 weeks of strength training (Y). Muscle biopsies were collected before and after the intervention and analyzed for HSP27, αB-crystallin and HSP70. Results Baseline HSP70 were 35% higher in elderly than in young, whereas there were no differences between young and elderly in HSP27 or αB-crystallin. After the training intervention, HSP70 were reduced in STG (− 33 ± 32%; P = 0.001) and FTG (− 28 ± 30%; P = 0.012). The decrease in HSP70 was more pronounced in the oldest. In contrast, Y increased HSP27 (134 ± 1%; P < 0.001) and αB-crystallin (84 ± 94%; P = 0.008). Conclusion Twelve weeks of STG or FTG decreased the initial high levels of HSP70 in aged muscles. Thus, regular strength training can normalize some of the increases in cellular stress associated with normal aging, and lead to a healthier cellular environment in aged muscle cells. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-021-04633-4.
Collapse
|
16
|
Qu T, Calabrese P, Singhavi P, Tower J. Incorporating antagonistic pleiotropy into models for molecular replicators. Biosystems 2020; 201:104333. [PMID: 33359635 DOI: 10.1016/j.biosystems.2020.104333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 11/15/2022]
Abstract
In modern cells, chromosomal genes composed of DNA encode multi-subunit protein/RNA complexes that catalyze the replication of the chromosome and cell. One prevailing theory for the origin of life posits an early stage involving self-replicating macromolecules called replicators, which can be considered genes capable of self-replication. One prevailing theory for the genetics of aging in humans and other organisms is antagonistic pleiotropy, which posits that a gene can be beneficial in one context, and detrimental in another context. We previously reported that the conceptual simplicity of molecular replicators facilitates the generation of two simple models involving antagonistic pleiotropy. Here a third model is proposed, and each of the three models is presented with improved definition of the time variable. Computer simulations were used to calculate the proliferation of a hypothetical two-subunit replicator (AB), when one of the two subunits (B) exhibits antagonistic pleiotropy, leading to an advantage for B to be unstable. In model 1, instability of B yields free A subunits, which in turn stimulate the activity of other AB replicators. In model 2, B is lost and sometimes replaced by a more active mutant form, B'. In model 3, B becomes damaged and loses activity, and its instability allows it to be replaced by a new B. For each model, conditions were identified where instability of B was detrimental, and where instability of B was beneficial. The results are consistent with the hypothesis that antagonistic pleiotropy can promote molecular instability and system complexity, and provide further support for a model linking aging and evolution.
Collapse
Affiliation(s)
- Tianjiao Qu
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Peter Calabrese
- Quantitative and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Pratik Singhavi
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
17
|
Are Heat Shock Proteins an Important Link between Type 2 Diabetes and Alzheimer Disease? Int J Mol Sci 2020; 21:ijms21218204. [PMID: 33147803 PMCID: PMC7662599 DOI: 10.3390/ijms21218204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes (T2D) and Alzheimer’s disease (AD) are growing in prevalence worldwide. The development of T2D increases the risk of AD disease, while AD patients can show glucose imbalance due to an increased insulin resistance. T2D and AD share similar pathological features and underlying mechanisms, including the deposition of amyloidogenic peptides in pancreatic islets (i.e., islet amyloid polypeptide; IAPP) and brain (β-Amyloid; Aβ). Both IAPP and Aβ can undergo misfolding and aggregation and accumulate in the extracellular space of their respective tissues of origin. As a main response to protein misfolding, there is evidence of the role of heat shock proteins (HSPs) in moderating T2D and AD. HSPs play a pivotal role in cell homeostasis by providing cytoprotection during acute and chronic metabolic stresses. In T2D and AD, intracellular HSP (iHSP) levels are reduced, potentially due to the ability of the cell to export HSPs to the extracellular space (eHSP). The increase in eHSPs can contribute to oxidative damage and is associated with various pro-inflammatory pathways in T2D and AD. Here, we review the role of HSP in moderating T2D and AD, as well as propose that these chaperone proteins are an important link in the relationship between T2D and AD.
Collapse
|
18
|
Zatsepina O, Karpov D, Chuvakova L, Rezvykh A, Funikov S, Sorokina S, Zakluta A, Garbuz D, Shilova V, Evgen'ev M. Genome-wide transcriptional effects of deletions of sulphur metabolism genes in Drosophila melanogaster. Redox Biol 2020; 36:101654. [PMID: 32769010 PMCID: PMC7414014 DOI: 10.1016/j.redox.2020.101654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/21/2020] [Indexed: 01/15/2023] Open
Abstract
In recent years, the gasotransmitter hydrogen sulphide (H2S), produced by the transsulphuration pathway, has been recognized as a biological mediator playing an important role under normal conditions and in various pathologies in both eukaryotes and prokaryotes. The transsulphuration pathway (TSP) includes the conversion of homocysteine to cysteine following the breakdown of methionine. In Drosophila melanogaster and other eukaryotes, H2S is produced by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulphurtransferase (MST). In the experiments performed in this study, we were able to explore the CRISPR/Cas9 technique to obtain single and double deletions in homozygotes of these three major genes responsible for H2S production in Drosophila melanogaster. In most cases, the deletion of one studied gene does not result in the compensatory induction of two other genes responsible for H2S production. Transcriptomic studies demonstrated that the deletions of the above CBS and CSE genes alter genome expression to different degrees, with a more pronounced effect being exerted by deletion of the CBS gene. Furthermore, the double deletion of both CBS and CSE resulted in a cumulative effect on transcription in the resulting strains. Overall, we found that the obtained deletions affect numerous genes involved in various biological pathways. Specifically, genes involved in the oxidative reduction process, stress-response genes, housekeeping genes, and genes participating in olfactory and reproduction are among the most strongly affected. Furthermore, characteristic differences in the response to the deletions of the studied genes are apparently organ-specific and have clear-cut sex-specific characteristics. Single and double deletions of the three genes responsible for the production of H2S helped to elucidate new aspects of the biological significance of this vital physiological mediator.
Collapse
Affiliation(s)
- O Zatsepina
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - D Karpov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - L Chuvakova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - A Rezvykh
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - S Funikov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - S Sorokina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - A Zakluta
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - D Garbuz
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - V Shilova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - M Evgen'ev
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
19
|
Shilova V, Zatsepina O, Zakluta A, Karpov D, Chuvakova L, Garbuz D, Evgen'ev M. Age-dependent expression profiles of two adaptogenic systems and thermotolerance in Drosophila melanogaster. Cell Stress Chaperones 2020; 25:305-315. [PMID: 32040825 PMCID: PMC7058767 DOI: 10.1007/s12192-020-01074-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/21/2022] Open
Abstract
Here, we monitored the expression of three genes (hsp70, hsp22, and hsf1) involved in heat shock response in Drosophila melanogaster in males and females of different age. Also, we investigated age- and sex-dependent expression of three major genes participating in the production of hydrogen sulfide (H2S) (cse, cbs, and mst), implicated in stress resistance and aging. In addition to the control strain, we monitored the expression of all of these genes in a cbs knockout strain (cbs-/-) generated using the CRISPR technique. The tested strains differ in the induction capacities of the studied genes. Relative to the control strain, under normal conditions, the cbs-/- strain expresses all of the studied genes more abundantly, especially hsp22. In the control strain, aging leads to a dramatic increase in hsp22 synthesis, whereas in the cbs-/- strain, hsp22 induction is not pronounced. Furthermore, in 30-day-old cbs-/- flies, the constitutive expression of hsp70 and mst is decreased. Surprisingly, in the cbs-/- strain, we detected an upregulation of hsf1 transcription in the 30-day-old females. After heat shock in the control strain, hsp70 and hsp22 induction decreased with age in males and hsp22 decreased in females, while in the cbs-/- strain, a pronounced drop in the induction capacity of both hsp genes was seen in 30-day-old males and females. However, in most cases, the expression levels of hsf1 and H2S-producing genes do not exhibit pronounced changes depending on sex, age, or heat shock. Flies of control and cbs-/- strain exhibited strong reduction in basal thermotolerance with age. Our data suggest a cross-talk between the two studied ancient and universal adaptive systems.
Collapse
Affiliation(s)
- V Shilova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| | - O Zatsepina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| | - A Zakluta
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| | - D Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| | - L Chuvakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| | - D Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| | - M Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia.
| |
Collapse
|
20
|
Ren L, Han F, Xuan L, Lv Y, Gong L, Yan Y, Wan Z, Guo L, Liu H, Xu B, Sun Y, Yang S, Liu L. Clusterin ameliorates endothelial dysfunction in diabetes by suppressing mitochondrial fragmentation. Free Radic Biol Med 2019; 145:357-373. [PMID: 31614179 DOI: 10.1016/j.freeradbiomed.2019.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
Abstract
Clusterin (CLU) is a stress-responding protein associated with cytoprotection in a broad range of pathological processes. However, clusterin's function in diabetes-induced endothelial dysfunction has not been defined. Herein, using two diabetes models, we investigated the role of clusterin in endothelial dysfunction triggered by diabetes and the molecular mechanisms involved. The results revealed that clusterin overexpression inhibited ICAM-1/VCAM-1 expression in aortas and improved endothelium-dependent vasodilatation in db/db diabetic mice and streptozotocin (STZ)-induced diabetes models. Consistently, in vitro, adenoviral clusterin overexpression reduced the expression of a range of pro-inflammatory cytokines and suppressed monocyte adhesion to endothelial cells subjected to high glucose and high palmitate. Further study indicated that clusterin overexpression mitigated mitochondrial excessive fission and reduced mitochondrial ROS production. Conversely, silencing clusterin aggravated mitochondrial fission and endothelial inflammatory activation in high glucose-exposed endothelial cells. Accumulating evidence indicates that impaired mitochondrial dynamics plays a considerable role in promoting endothelial dysfunction in diabetic subjects. Therefore, treatments targeting mitochondrial undue fission may be promising measures to prevent vascular complications of diabetes. Furthermore, AMP-activated protein kinase (AMPK) activation contributed to the modulation of mitochondrial dynamics executed by clusterin. Mechanistically, clusterin promoted the phosphorylation of AMPKα and its downstream target acetyl-CoA carboxylase (ACC), while the inhibition of AMPKα negated the improvement in mitochondrial dynamics provided by clusterin overexpression. Over all, these findings suggest that clusterin exerts beneficial effects in endothelial cells under diabetic conditions via inhibiting mitochondrial fragmentation mediated by AMPK.
Collapse
Affiliation(s)
- Lulu Ren
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Feifei Han
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lingling Xuan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yali Lv
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lili Gong
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yan Yan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zirui Wan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lifang Guo
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - He Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Benshan Xu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yuan Sun
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Song Yang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lihong Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
21
|
Negative genetic correlation between longevity and its hormetic extension by dietary restriction in Drosophila melanogaster. Biogerontology 2019; 21:191-201. [PMID: 31786681 DOI: 10.1007/s10522-019-09852-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/23/2019] [Indexed: 12/18/2022]
Abstract
Longevity is a highly malleable trait which is influenced by many genetic and environmental factors including nutrition. Mild stress of dietary restriction (DR) is often beneficial by extending longevity in many organisms. Here, DR-induced effects on longevity were tested for genetic variation in a set of recombinant inbred lines (RIL) in D. melanogaster. Genetic variability was significant in the longevity response following a DR-treatment across RIL, with detrimental effects in several RIL but beneficial effects in other RIL. One quantitative trait locus (QTL) was consistently significant in the middle of chromosome 2 for DR-induced changes in longevity, including hormesis (an increase in longevity by DR). Another QTL co-localized with a previously found QTL for starvation resistance in females. Several other QTL were also significant on most chromosomal arms. Longevity in controls was negatively correlated to DR effects across RIL for longevity in females, the sex showing higher DR-induced hormesis. This negative genetic correlation highlights the importance to further investigate the effects of genetic variation in the strength of DR-induced hormesis in longevity and its sex-specificity.
Collapse
|
22
|
Sex and age specific reduction in stress resistance and mitochondrial DNA copy number in Drosophila melanogaster. Sci Rep 2019; 9:12305. [PMID: 31444377 PMCID: PMC6707197 DOI: 10.1038/s41598-019-48752-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/07/2019] [Indexed: 01/01/2023] Open
Abstract
Environmental stresses such as extreme temperatures, dehydration and food deprivation may have distinct consequences for different age-classes and for males and females across species. Here we investigate a natural population of the model organism Drosophila melanogaster. Males and females at ages 3, 19 and 35 days were tested for stress resistance; i.e. the ability of flies to cope with starvation and both cold and hot temperatures. Further, we tested a measure of metabolic efficiency, namely mitochondrial DNA copy number (mtDNA CN) in both sexes at all three age-classes. We hypothesize that stress resistance is reduced at old age and more so in males, and that mtDNA CN is a biomarker for sex- and age-dependent reductions in the ability to cope with harsh environments. We show that: (1) males exhibit reduced starvation tolerance at old age, whereas older females are better in coping with periods without food compared to younger females, (2) heat tolerance decreases with increasing age in males but not in females, (3) cold tolerance is reduced at old age in both sexes, and (4) old males have reduced mtDNA CN whereas mtDNA CN slightly increases with age in females. In conclusion, our data provide strong evidence for trait and sex specific consequences of aging with females generally being better at coping with environmental stress at old age. The reduced mtDNA CN in old males suggests reduced metabolic efficiency and this may partly explain why males are less stress tolerant at old age than females. We suggest that mtDNA CN might be a suitable biomarker for physiological robustness. Our findings likely extend to other taxa than Drosophila and therefore we discuss the observations in relation to aging and sex specific lifespan across species.
Collapse
|
23
|
Chang S, Guo X, Li G, Zhang X, Li J, Jia Y, Nie K. Acupuncture promotes expression of Hsp84/86 and delays brain ageing in SAMP8 mice. Acupunct Med 2019; 37:340-347. [PMID: 31412703 DOI: 10.1136/acupmed-2017-011577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: To study the effects of acupuncture on expression of heat shock protein (Hsp) 84 and 86, and brain ageing, in the senescence accelerated mouse prone 8 (SAMP8) model of Alzheimer’s disease. Methods: 7-month-old male senescence resistant mouse strain 1 (SAMR1) and SAMP8 mice were assigned to the following groups, with 15 animals in each group: SAMR1 control (Rc), SAMP8 control (Pc), SAMP8 acupuncture (Pa), SAMP8 sham-acupuncture (Psa). The Pa group was given acupuncture treatment once daily for 15 days. Neuromuscular coordination and cognitive function of the mice were evaluated by the tightrope test and Morris water maze test, respectively. The number of neurons in the CA1, CA3 and dentate gyrus (DG) regions of the hippocampus were measured. The levels of oxidative stress and protein carbonyl, mRNA and protein expression levels of Hsp84 and Hsp86 in the hippocampus were detected. Results: Compared with the Rc group, in the Pc mice there was a lower success rate for the tightrope test, impaired cognitive abilities, a decline in neuron numbers, reduced levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), increased levels of superoxide anion and protein carbonyl, and decreased mRNA and protein levels of Hsp84 and Hsp86 (all P<0.05). After acupuncture treatment, the success rate for the tightrope test was elevated, cognitive function was improved, neuron numbers were enhanced, levels of SOD and GSH-Px were increased, levels of superoxide anion and protein carbonyl were decreased, and Hsp84 and Hsp86 mRNA and protein expression were increased in the Pa mice when compared with the Pc and Psa groups (all P<0.05). Conclusion: Acupuncture may delay brain ageing in SAMP8 mice by reducing oxidative protein damage and promoting Hsp84 and Hsp86 expression.
Collapse
Affiliation(s)
- Shichen Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuanyang Guo
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Guomin Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First People’s Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Xuezhu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yujie Jia
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kun Nie
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
24
|
Yu L, Liang Q, Zhang W, Liao M, Wen M, Zhan B, Bao H, Cheng X. HSP22 suppresses diabetes-induced endothelial injury by inhibiting mitochondrial reactive oxygen species formation. Redox Biol 2019; 21:101095. [PMID: 30640127 PMCID: PMC6327915 DOI: 10.1016/j.redox.2018.101095] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 12/20/2022] Open
Abstract
The induction of mitochondrial reactive oxygen species (mtROS) by hyperglycemia is a key event responsible for endothelial activation and injury. Heat shock protein 22 (HSP22) is a stress-inducible protein associated with cytoprotection and apoptosis inhibition. However, whether HSP22 prevents hyperglycemia-induced vascular endothelial injury remains unclear. Here, we investigated whether HSP22 protects the vascular endothelium from hyperglycemia-induced injury by reducing mtROS production. We used a high-fat diet and streptozotocin injection model to induce type 2 diabetes mellitus (T2DM, metabolic syndrome) and exposed human umbilical vein endothelial cells (HUVECs) to high glucose following overexpression or silencing of HSP22 to explore the role of HSP22. We found that HSP22 markedly inhibited endothelial cell activation and vascular lesions by inhibiting endothelial adhesion and decreasing cytokine secretion. We performed confocal microscopy and flow cytometry assays using HUVECs and showed that HSP22 attenuated mtROS and mitochondrial dysfunction in hyperglycemia-stimulated endothelial cells. Mechanistically, using the mtROS inhibitor MitoTEMPO, we demonstrated that HSP22 suppressed endothelial activation and injury by eliminating hyperglycemia-mediated increases in mtROS. Furthermore, we found that HSP22 maintained the balance of mitochondrial fusion and fission by mitigating mtROS in vitro. HSP22 attenuated the development of vascular lesions by suppressing mtROS-mediated endothelial activation in a T2DM mouse model. This study provides evidence that HSP22 may be a promising therapeutic target for vascular complications in T2DM. HSP22 reduces endothelial inflammation under diabetic conditions. HSP22 restrains hyperglycemia-induced oxidative stress in the vascular endothelium. HSP22 reduces hyperglycemia-induced mtROS and endothelial mitochondrial dysfunction. HSP22 maintains the balance of mitochondrial fusion and fission by mitigating mtROS.
Collapse
Affiliation(s)
- Lingling Yu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, PR China
| | - Qian Liang
- Key Laboratory of Molecular Biology in Jiangxi Province, The Second Affiliated Hospital of Nanchang University, PR China
| | - Weifang Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, PR China
| | - Minqi Liao
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, PR China
| | - Minghua Wen
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, PR China
| | - Biming Zhan
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, PR China
| | - Huihui Bao
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, PR China.
| | - Xiaoshu Cheng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, Jiangxi, PR China.
| |
Collapse
|
25
|
Chen Y, Liu X, Jiang C, Liu L, Ordovas JM, Lai CQ, Shen L. Curcumin supplementation increases survival and lifespan in Drosophila under heat stress conditions. Biofactors 2018; 44:577-587. [PMID: 30488487 DOI: 10.1002/biof.1454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/08/2018] [Accepted: 08/15/2018] [Indexed: 11/07/2022]
Abstract
Harsh climate induces physiological stress thus compromising organismal survival. Our previous studies demonstrated that curcumin (CUR) supplementation increased survival of turtle under heat stress (HS). Here, we span this work to investigate the survival and lifespan of HS Drosophila fed a diet supplemented with CUR. For this purpose, female and male flies were fed basal diet (N) and CUR diet (0.2 mg/g), and exposed to three conditions: 25°C and 29°C continuously, and 34 °C for 2 h at days 1, 4, and 7, then kept at 25 °C. Lifespan analysis showed that, compared to N-25 °C flies, the mean lifespans of N-29 °C and N-34 °C flies were decreased significantly by 8.5-15.7% in males, and 3.7-7.9% in females. Conversely, in the CUR-supplemented diet, mean lifespans of C-29 °C and C-34 °C flies were significantly extended by 8.7-16.4% in males, and by 8.9-12.8% in females, compared to that of temperature-matched flies fed basal diets. The MDA levels of C-34 °C flies were significantly lower than those of N-34 °C flies, indicating CUR reduced oxidative stress caused by HS. Furthermore, CUR palliated the increased oxidative stress caused by HS, by increasing the expression of SOD1, CAT, and PHGPx and decreasing the expression of Hsp70 and Hsp83. Our results indicated that CUR supplementation increases the survival rate of Drosophila by enhancing thermal tolerance. © 2018 BioFactors, 44(6):577-587, 2018.
Collapse
Affiliation(s)
- Yong Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Zhejiang, Hangzhou, China
| | - Xin Liu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Zhejiang, Hangzhou, China
| | - Chenmin Jiang
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Zhejiang, Hangzhou, China
| | - Liang Liu
- Department of Statistics, The University of Georgia, Athens, GA, USA
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
- IMDEA Alimentacion, Madrid, Spain
| | - Chao-Qiang Lai
- USDA ARS, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Lirong Shen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Zhejiang, Hangzhou, China
| |
Collapse
|
26
|
Drosophila larvae fed palm fruit juice (PFJ) delay pupation via expression regulation of hormetic stress response genes linked to ageing and longevity. Exp Gerontol 2018; 106:198-221. [DOI: 10.1016/j.exger.2018.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 02/06/2023]
|
27
|
Tian X, Seluanov A, Gorbunova V. Molecular Mechanisms Determining Lifespan in Short- and Long-Lived Species. Trends Endocrinol Metab 2017; 28:722-734. [PMID: 28888702 PMCID: PMC5679293 DOI: 10.1016/j.tem.2017.07.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/16/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022]
Abstract
Aging is a global decline of physiological functions, leading to an increased susceptibility to diseases and ultimately death. Maximum lifespans differ up to 200-fold between mammalian species. Although considerable progress has been achieved in identifying conserved pathways that regulate individual lifespan within model organisms, whether the same pathways are responsible for the interspecies differences in longevity remains to be determined. Recent cross-species studies have begun to identify pathways responsible for interspecies differences in lifespan. Here, we review the evidence supporting the role of anticancer mechanisms, DNA repair machinery, insulin/insulin-like growth factor 1 signaling, and proteostasis in defining species lifespans. Understanding the mechanisms responsible for the dramatic differences in lifespan between species will have a transformative effect on developing interventions to improve human health and longevity.
Collapse
Affiliation(s)
- Xiao Tian
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
28
|
The Mitochondrial Lon Protease Is Required for Age-Specific and Sex-Specific Adaptation to Oxidative Stress. Curr Biol 2016; 27:1-15. [PMID: 27916526 DOI: 10.1016/j.cub.2016.10.044] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/14/2016] [Accepted: 10/21/2016] [Indexed: 12/14/2022]
Abstract
Multiple human diseases involving chronic oxidative stress show a significant sex bias, including neurodegenerative diseases, cancer, immune dysfunction, diabetes, and cardiovascular disease. However, a possible molecular mechanism for the sex bias in physiological adaptation to oxidative stress remains unclear. Here, we report that Drosophila melanogaster females but not males adapt to hydrogen peroxide stress, whereas males but not females adapt to paraquat (superoxide) stress. Stress adaptation in each sex requires the conserved mitochondrial Lon protease and is associated with sex-specific expression of Lon protein isoforms and proteolytic activity. Adaptation to oxidative stress is lost with age in both sexes. Transgenic expression of transformer gene during development transforms chromosomal males into pseudo-females and confers the female-specific pattern of Lon isoform expression, Lon proteolytic activity induction, and H2O2 stress adaptation; these effects were also observed using adult-specific transformation. Conversely, knockdown of transformer in chromosomal females eliminates the female-specific Lon isoform expression, Lon proteolytic activity induction, and H2O2 stress adaptation and produces the male-specific paraquat (superoxide) stress adaptation. Sex-specific expression of alternative Lon isoforms was also observed in mouse tissues. The results develop Drosophila melanogaster as a model for sex-specific stress adaptation regulated by the Lon protease, with potential implications for understanding sexual dimorphism in human disease.
Collapse
|
29
|
Elevated extension of longevity by cyclically heat stressing a set of recombinant inbred lines of Drosophila melanogaster throughout their adult life. Biogerontology 2016; 17:883-892. [DOI: 10.1007/s10522-016-9658-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/16/2016] [Indexed: 11/25/2022]
|
30
|
Huang J, Xie Y, Sun X, Zeh HJ, Kang R, Lotze MT, Tang D. DAMPs, ageing, and cancer: The 'DAMP Hypothesis'. Ageing Res Rev 2015; 24:3-16. [PMID: 25446804 DOI: 10.1016/j.arr.2014.10.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/24/2014] [Accepted: 10/22/2014] [Indexed: 12/25/2022]
Abstract
Ageing is a complex and multifactorial process characterized by the accumulation of many forms of damage at the molecular, cellular, and tissue level with advancing age. Ageing increases the risk of the onset of chronic inflammation-associated diseases such as cancer, diabetes, stroke, and neurodegenerative disease. In particular, ageing and cancer share some common origins and hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury, reprogrammed metabolism, and degradation system impairment (including within the ubiquitin-proteasome system and the autophagic machinery). Recent advances indicate that damage-associated molecular pattern molecules (DAMPs) such as high mobility group box 1, histones, S100, and heat shock proteins play location-dependent roles inside and outside the cell. These provide interaction platforms at molecular levels linked to common hallmarks of ageing and cancer. They can act as inducers, sensors, and mediators of stress through individual plasma membrane receptors, intracellular recognition receptors (e.g., advanced glycosylation end product-specific receptors, AIM2-like receptors, RIG-I-like receptors, and NOD1-like receptors, and toll-like receptors), or following endocytic uptake. Thus, the DAMP Hypothesis is novel and complements other theories that explain the features of ageing. DAMPs represent ideal biomarkers of ageing and provide an attractive target for interventions in ageing and age-associated diseases.
Collapse
|
31
|
Colinet H, Chertemps T, Boulogne I, Siaussat D. Age-related Decline of Abiotic Stress Tolerance in Young Drosophila melanogaster Adults. J Gerontol A Biol Sci Med Sci 2015; 71:1574-1580. [PMID: 26508297 DOI: 10.1093/gerona/glv193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/03/2015] [Indexed: 01/25/2023] Open
Abstract
Stress tolerance generally declines with age as a result of functional senescence. Age-dependent alteration of stress tolerance can also occur in early adult life. In Drosophila melanogaster, evidence of such a decline in young adults has only been reported for thermotolerance. It is not known whether early adult life entails a general stress tolerance reduction and whether the response is peculiar to thermal traits. The present work was designed to investigate whether newly eclosed D melanogaster adults present a high tolerance to a range of biotic and abiotic insults. We found that tolerance to most of the abiotic stressors tested (desiccation, paraquat, hydrogen peroxide, deltamethrin, and malathion) was high in newly eclosed adults before dramatically declining over the next days of adult life. No clear age-related pattern was found for resistance to biotic stress (septic or fungal infection) and starvation. These results suggest that newly eclosed adults present a culminating level of tolerance to extrinsic stress which is likely unrelated to immune process. We argue that stress tolerance variation at very young age is likely a residual attribute from the previous life stage (ontogenetic carryover) or a feature related to the posteclosion development.
Collapse
Affiliation(s)
- Hervé Colinet
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, France.
| | - Thomas Chertemps
- Institut of Ecology and Environmental Sciences of Paris (iEES Paris), UPMC Université Paris, France
| | - Isabelle Boulogne
- Institut of Ecology and Environmental Sciences of Paris (iEES Paris), UPMC Université Paris, France.,UFR Sciences Exactes et Naturelles, Université des Antilles, Cedex, France
| | - David Siaussat
- Institut of Ecology and Environmental Sciences of Paris (iEES Paris), UPMC Université Paris, France
| |
Collapse
|
32
|
Castillo-Quan JI, Kinghorn KJ, Bjedov I. Genetics and pharmacology of longevity: the road to therapeutics for healthy aging. ADVANCES IN GENETICS 2015; 90:1-101. [PMID: 26296933 DOI: 10.1016/bs.adgen.2015.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging can be defined as the progressive decline in tissue and organismal function and the ability to respond to stress that occurs in association with homeostatic failure and the accumulation of molecular damage. Aging is the biggest risk factor for human disease and results in a wide range of aging pathologies. Although we do not completely understand the underlying molecular basis that drives the aging process, we have gained exceptional insights into the plasticity of life span and healthspan from the use of model organisms such as the worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Single-gene mutations in key cellular pathways that regulate environmental sensing, and the response to stress, have been identified that prolong life span across evolution from yeast to mammals. These genetic manipulations also correlate with a delay in the onset of tissue and organismal dysfunction. While the molecular genetics of aging will remain a prosperous and attractive area of research in biogerontology, we are moving towards an era defined by the search for therapeutic drugs that promote healthy aging. Translational biogerontology will require incorporation of both therapeutic and pharmacological concepts. The use of model organisms will remain central to the quest for drug discovery, but as we uncover molecular processes regulated by repurposed drugs and polypharmacy, studies of pharmacodynamics and pharmacokinetics, drug-drug interactions, drug toxicity, and therapeutic index will slowly become more prevalent in aging research. As we move from genetics to pharmacology and therapeutics, studies will not only require demonstration of life span extension and an underlying molecular mechanism, but also the translational relevance for human health and disease prevention.
Collapse
Affiliation(s)
- Jorge Iván Castillo-Quan
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kerri J Kinghorn
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Ivana Bjedov
- Cancer Institute, University College London, London, UK
| |
Collapse
|
33
|
Sikulu MT, Monkman J, Dave KA, Hastie ML, Dale PE, Kitching RL, Killeen GF, Kay BH, Gorman JJ, Hugo LE. Proteomic changes occurring in the malaria mosquitoes Anopheles gambiae and Anopheles stephensi during aging. J Proteomics 2015; 126:234-44. [PMID: 26100052 DOI: 10.1016/j.jprot.2015.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/14/2015] [Accepted: 06/13/2015] [Indexed: 11/19/2022]
Abstract
UNLABELLED The age of mosquitoes is a crucial determinant of their ability to transmit pathogens and their resistance to insecticides. We investigated changes to the abundance of proteins found in heads and thoraces of the malaria mosquitoes Anopheles gambiae and Anopheles stephensi as they aged. Protein expression changes were assessed using two-dimensional difference gel electrophoresis and the identity of differentially expressed proteins was determined by using either matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry or capillary high-pressure liquid chromatography coupled with a linear ion-trap (LTQ)-Orbitrap XL hybrid mass spectrometer. Protein biomarkers were validated by semi quantitative Western blot analysis. Nineteen and nine age dependent protein spots were identified for A. stephensi and A. gambiae, respectively. Among the proteins down-regulated with age were homologs of ADF/Cofilin, cytochome c1, heat shock protein-70 and eukaryotic translation initiation factor 5A (eIF5a). Proteins up-regulated with age included probable methylmalonate-semialdehyde dehydrogenase, voltage-dependent anion-selective channel and fructose bisphosphate aldolase. Semi quantitative Western blot analysis confirmed expression patterns observed by 2-D DIGE for eIF5a and ADF/Cofilin. Further work is recommended to determine whether these biomarkers are robust to infection, blood feeding and insecticide resistance. Robust biomarkers could then be incorporated into rapid diagnostic assays for ecological and epidemiological studies. BIOLOGICAL SIGNIFICANCE In this study, we have identified several proteins with characteristic changes in abundance in both A. gambiae and A. stephensi during their aging process. These changes may highlight underlying mechanisms beneath the relationship between mosquito age and factors affecting Plasmodium transmission and mosquito control. The similarity of changes in protein abundance between these species and the primary dengue vector Aedes aegypti, has revealed conserved patterns of aging-specific protein regulation.
Collapse
Affiliation(s)
- Maggy T Sikulu
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - James Monkman
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Keyur A Dave
- The Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Marcus L Hastie
- The Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Patricia E Dale
- Environmental Research Institute and Griffith School of Environment, Griffith University, Brisbane, Queensland, Australia.
| | - Roger L Kitching
- Environmental Research Institute and Griffith School of Environment, Griffith University, Brisbane, Queensland, Australia.
| | - Gerry F Killeen
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, Ifakara, United Republic of Tanzania; Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| | - Brian H Kay
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Jeffery J Gorman
- The Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Leon E Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
34
|
Tower J. Mitochondrial maintenance failure in aging and role of sexual dimorphism. Arch Biochem Biophys 2015; 576:17-31. [PMID: 25447815 PMCID: PMC4409928 DOI: 10.1016/j.abb.2014.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/08/2014] [Accepted: 10/18/2014] [Indexed: 12/31/2022]
Abstract
Gene expression changes during aging are partly conserved across species, and suggest that oxidative stress, inflammation and proteotoxicity result from mitochondrial malfunction and abnormal mitochondrial-nuclear signaling. Mitochondrial maintenance failure may result from trade-offs between mitochondrial turnover versus growth and reproduction, sexual antagonistic pleiotropy and genetic conflicts resulting from uni-parental mitochondrial transmission, as well as mitochondrial and nuclear mutations and loss of epigenetic regulation. Aging phenotypes and interventions are often sex-specific, indicating that both male and female sexual differentiation promote mitochondrial failure and aging. Studies in mammals and invertebrates implicate autophagy, apoptosis, AKT, PARP, p53 and FOXO in mediating sex-specific differences in stress resistance and aging. The data support a model where the genes Sxl in Drosophila, sdc-2 in Caenorhabditis elegans, and Xist in mammals regulate mitochondrial maintenance across generations and in aging. Several interventions that increase life span cause a mitochondrial unfolded protein response (UPRmt), and UPRmt is also observed during normal aging, indicating hormesis. The UPRmt may increase life span by stimulating mitochondrial turnover through autophagy, and/or by inhibiting the production of hormones and toxic metabolites. The data suggest that metazoan life span interventions may act through a common hormesis mechanism involving liver UPRmt, mitochondrial maintenance and sexual differentiation.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States.
| |
Collapse
|
35
|
Oxidative Stress and Protein Quality Control Systems in the Aged Canine Brain as a Model for Human Neurodegenerative Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:940131. [PMID: 26078824 PMCID: PMC4442305 DOI: 10.1155/2015/940131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/29/2015] [Indexed: 12/24/2022]
Abstract
Aged dogs are considered the most suitable spontaneous animal model for studying normal aging and neurodegenerative diseases. Elderly canines naturally develop cognitive dysfunction and neuropathological hallmarks similar to those seen in humans, especially Alzheimer's disease-like pathology. Pet dogs also share similar living conditions and diets to humans. Oxidative damage accumulates in the canine brain during aging, making dogs a valid model for translational antioxidant treatment/prevention studies. Evidence suggests the presence of detective protein quality control systems, involving ubiquitin-proteasome system (UPS) and Heat Shock Proteins (HSPs), in the aged canine brain. Further studies on the canine model are needed to clarify the role of age-related changes in UPS activity and HSP expression in neurodegeneration in order to design novel treatment strategies, such as HSP-based therapies, aimed at improving chaperone defences against proteotoxic stress affecting brain during aging.
Collapse
|
36
|
Rózsa L, Apari P, Müller V. The microbiome mutiny hypothesis: can our microbiome turn against us when we are old or seriously ill? Biol Direct 2015; 10:3. [PMID: 25585878 PMCID: PMC4302444 DOI: 10.1186/s13062-014-0034-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/22/2014] [Indexed: 02/08/2023] Open
Abstract
Background The symbiotic organisms of the healthy microbiome tend to be harmless or even beneficial for the host; however, some symbionts are able to adjust their virulence in response to external stimuli. Evolutionary theory suggests that optimal virulence might increase if the mortality of the host (from unrelated causes) increases. Presentation of the hypothesis We hypothesize that microorganisms of the human microbiome may be capable of a coordinated phenotypic switch to higher virulence (“microbiome mutiny”) in old or seriously ill people, to optimize their transmission under the conditions of increased background mortality. This proposed virulence shift might contribute to the death of old or seriously ill people even in the absence of apparent disease. Testing the hypothesis Testable predictions of the hypothesis include increased expression of virulence factors in isolates of the same species of the microbiome obtained from ailing/old versus healthy/young individuals, and the existence of microbial mechanisms to assess the general condition (background mortality) of the host. Such tests are going to be important to distinguish the cases of “microbiome mutiny” from the situation where opportunistic infections or increased effective virulence arise from relaxed immune control in ailing or old individuals in the absence of changes in the symbionts/pathogens. Implications of the hypothesis Elucidating this potential mechanism might open up new possibilities for the clinical management of age related health issues and critical injuries or disease. Targeted prophylaxis against the microbes capable of virulence shifts could break the harmful feedback loop between deteriorating health and the “mutiny” of the microbiome. Reviewers This article was reviewed by Eugene V Koonin, Neil Greenspan and Michael Gilchrist.
Collapse
|
37
|
Purandhar K, Jena PK, Prajapati B, Rajput P, Seshadri S. Understanding the role of heat shock protein isoforms in male fertility, aging and apoptosis. World J Mens Health 2014; 32:123-32. [PMID: 25606560 PMCID: PMC4298814 DOI: 10.5534/wjmh.2014.32.3.123] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/02/2014] [Accepted: 09/17/2014] [Indexed: 11/15/2022] Open
Abstract
Heat shock proteins (HSPs) play a role in the homeostasis, apoptosis regulation and the maintenance of the various other physiological processes. Aging is accompanied by a decrease in the resistance to environmental stress, while mitochondria are primary targets in the process of aging, their expression decreasing with age. Mitochondrion also plays a significant role in the process of spermatogenesis. HSPs have been shown to be involved in apoptosis with some of acting as apoptotic inhibitors and are involved in cytoprotection. In this review we discuss the roles of Hsp 27, 60, 70, and 90 in aging and male infertility and have concluded that these particular HSPs can be used as a molecular markers for mitochondrially- mediated apoptosis, aging and male infertility.
Collapse
Affiliation(s)
| | | | | | - Parth Rajput
- Institute of Science, Nirma University, Gujarat, India
| | | |
Collapse
|
38
|
The effect of mitochondrial complex I inhibitor on longevity of short-lived and long-lived seed beetles and its mitonuclear hybrids. Biogerontology 2014; 15:487-501. [DOI: 10.1007/s10522-014-9520-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/17/2014] [Indexed: 01/25/2023]
|
39
|
Pandey A, Vimal D, Chandra S, Saini S, Narayan G, Kar Chowdhuri D. Long-term dietary exposure to low concentration of dichloroacetic acid promoted longevity and attenuated cellular and functional declines in aged Drosophila melanogaster. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9628. [PMID: 24535708 PMCID: PMC4082589 DOI: 10.1007/s11357-014-9628-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/03/2014] [Indexed: 06/03/2023]
Abstract
Dichloroacetic acid (DCA), a water disinfection by-product, has attained emphasis due to its prospect for clinical use against different diseases including cancer along with negative impact on organisms. However, these reports are based on the toxicological as well clinical data using comparatively higher concentrations of DCA without much of environmental relevance. Here, we evaluate cellular as well as organismal effects of DCA at environmentally and mild clinically relevant concentrations (0.02-20.0 μg/ml) using an established model organism, Drosophila melanogaster. Flies were fed on food mixed with test concentrations of DCA for 12-48 h to examine the induction of reactive oxygen species (ROS) generation, oxidative stress (OS), heat shock genes (hsps) and cell death along with organismal responses. We also examined locomotor performance, ROS generation, glutathione (GSH) depletion, expression of GSH-synthesizing genes (gclc and gclm), and hsps at different days (0, 10, 20, 30, 40, 50) of the age in flies after prolonged DCA exposure. We observed mild OS and induction of antioxidant defense system in 20.0 μg/ml DCA-exposed organism after 24 h. After prolonged exposure to DCA, exposed organism exhibited improved survival, elevated expression of hsp27, gclc, and gclm concomitant with lower ROS generation and GSH depletion and improved locomotor performance. Conversely, hsp27 knockdown flies exhibited reversal of the above end points. The study provides evidence for the attenuation of cellular and functional decline in aged Drosophila after prolonged DCA exposure and the effect of hsp27 modulation which further incites studies towards the therapeutic application of DCA.
Collapse
Affiliation(s)
- Ashutosh Pandey
- />Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001 Uttar Pradesh India
- />Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh India
| | - Divya Vimal
- />Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001 Uttar Pradesh India
| | - Swati Chandra
- />Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001 Uttar Pradesh India
| | - Sanjay Saini
- />Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001 Uttar Pradesh India
| | - Gopeshwar Narayan
- />Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh India
| | - Debapratim Kar Chowdhuri
- />Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001 Uttar Pradesh India
| |
Collapse
|
40
|
Baldon EJ, Marengo EB, de Franco M, Starobinas N, Bueno V, Sant’Anna OA. Mycobacterium leprae Hsp65 administration reduces the lifespan of aged high antibody producer mice. Immun Ageing 2014; 11:6. [PMID: 24669842 PMCID: PMC3986931 DOI: 10.1186/1742-4933-11-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/22/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Aging process may result in immune modifications that lead to disruption of innate and acquired immunity mechanisms that may induce chronic-degenerative events. The heat shock proteins (Hsp), phylogeneticaly conserved among organisms, present as main function the ability of folding and refolding proteins, but they also are associated with chronic-degenerative disorders. Here were evaluated the role of M. leprae native Hsp65 (WT) and its point-mutated (K409A) on survival and anti-DNA and anti-Hsp65 antibody production of aged genetically selected mice for high (HIII) and low (LIII) antibody production; data from 120- and 270-days old mice (named "adult" or "aged", respectively) were compared. RESULTS WT Hsp65 administration induces reduction in the mean survival time of adult and aged female HIII mice, this effect being stronger in aged individuals. Surprisingly, the native protein administration increased the survival of aged female LIII when compared to K409A and control groups. No survival differences were observed in aged male mice after Hsp65 proteins inoculation. We observed increase in IgG1 anti-Hsp65 in WT and K409A aged HIII female mice groups and no marked changes in the anti-DNA (adult and aged HIII) and anti-Hsp65 IgG1 or IgG2a isotypes production in adult HIII female and aged male mice. LIII male mice presented increased anti-DNA and anti-Hsp65 IgG2a isotype production after WT or K409A injection, and LIII female groups showed no alterations. CONCLUSIONS The results revealed that the WT Hsp65 interferes with survival of aged HIII female mice without involvement of a remarkable IgG1 and IgG2a anti-DNA and anti-Hsp65 antibodies production. The deleterious effects of Hsp65 on survival time in aged HIII female mice could be linked to a gender-effect and are in agreement with those previously reported in lupus-prone mice.
Collapse
Affiliation(s)
- Estevam José Baldon
- Laboratório de Imunoquímica, Instituto Butantan, Avenida Vital Brazil 1500, 05530-900 São Paulo, Brasil
| | - Eliana Blini Marengo
- Hospital Israelita Albert Einstein, Avenida Albert Einstein, 627/701, 05652-000 São Paul, Brasil
| | - Marcelo de Franco
- Laboratório de Imunogenética, Instituto Butantan, Avenida Vital Brazil 1500, 05530-900 São Paulo, Brasil
| | - Nancy Starobinas
- Laboratório de Imunogenética, Instituto Butantan, Avenida Vital Brazil 1500, 05530-900 São Paulo, Brasil
| | - Valquiria Bueno
- Departamento de Microbiologia, Imunologia e Parasitologia, UNIFESP, Rua Botucatu 862, 04023-062 São Paulo, Brasil
| | - Osvaldo Augusto Sant’Anna
- Laboratório de Imunoquímica, Instituto Butantan, Avenida Vital Brazil 1500, 05530-900 São Paulo, Brasil
| |
Collapse
|
41
|
Moskalev AA, Aliper AM, Smit-McBride Z, Buzdin A, Zhavoronkov A. Genetics and epigenetics of aging and longevity. Cell Cycle 2014; 13:1063-77. [PMID: 24603410 PMCID: PMC4013158 DOI: 10.4161/cc.28433] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Evolutionary theories of aging predict the existence of certain genes that provide selective advantage early in life with adverse effect on lifespan later in life (antagonistic pleiotropy theory) or longevity insurance genes (disposable soma theory). Indeed, the study of human and animal genetics is gradually identifying new genes that increase lifespan when overexpressed or mutated: gerontogenes. Furthermore, genetic and epigenetic mechanisms are being identified that have a positive effect on longevity. The gerontogenes are classified as lifespan regulators, mediators, effectors, housekeeping genes, genes involved in mitochondrial function, and genes regulating cellular senescence and apoptosis. In this review we demonstrate that the majority of the genes as well as genetic and epigenetic mechanisms that are involved in regulation of longevity are highly interconnected and related to stress response.
Collapse
Affiliation(s)
- Alexey A Moskalev
- Moscow Institute of Physics and Technology; Moscow, Russian Federation; Institute of Biology; Komi Science Center of Russian Academy of Sciences; Syktyvkar, Russian Federation; Syktyvkar State University; Syktyvkar, Russian Federation
| | - Alexander M Aliper
- Moscow Institute of Physics and Technology; Moscow, Russian Federation; Institute of Biology; Komi Science Center of Russian Academy of Sciences; Syktyvkar, Russian Federation
| | - Zeljka Smit-McBride
- Department of Ophthalmology and Vision Science; School of Medicine; University of California at Davis; Davis, CA USA
| | - Anton Buzdin
- Moscow Institute of Physics and Technology; Moscow, Russian Federation; Federal Clinical Research Center of Pediatric Hematology, Oncology, and Immunology; Moscow, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry; Moscow, Russian Federation; First Oncology Research and Advisory Center; Moscow, Russian Federation
| | - Alex Zhavoronkov
- Moscow Institute of Physics and Technology; Moscow, Russian Federation; Federal Clinical Research Center of Pediatric Hematology, Oncology, and Immunology; Moscow, Russian Federation; The Biogerontology Research Foundation; London, UK
| |
Collapse
|
42
|
Landis G, Shen J, Tower J. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster. Aging (Albany NY) 2013; 4:768-89. [PMID: 23211361 PMCID: PMC3560439 DOI: 10.18632/aging.100499] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging.
Collapse
Affiliation(s)
- Gary Landis
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | | | | |
Collapse
|
43
|
Abstract
Senescence is associated with changes in gene expression, including the upregulation of stress response- and innate immune response-related genes. In addition, aging animals exhibit characteristic changes in movement behaviors including decreased gait speed and a deterioration in sleep/wake rhythms. Here, we describe methods for tracking Drosophila melanogaster movements in 3D with simultaneous quantification of fluorescent transgenic reporters. This approach allows for the assessment of correlations between behavior, aging, and gene expression as well as for the quantification of biomarkers of aging.
Collapse
|
44
|
Niitepõld K, Hanski I. A long life in the fast lane: positive association between peak metabolic rate and lifespan in a butterfly. ACTA ACUST UNITED AC 2012; 216:1388-97. [PMID: 23264490 DOI: 10.1242/jeb.080739] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
High peak metabolic rates may provide a performance advantage, but it may also entail a physiological cost. A long-held assumption is that high mass-specific energy expenditure is associated with short lifespan. To examine the relationship between energy expenditure and lifespan we asked two questions. First, do individuals have a consistent rate of metabolism throughout their life? Second, is metabolic rate correlated with lifespan? We analysed the repeatability of measurements of resting (RMR) and peak flight metabolic rate (MR(peak)) throughout the life of the Glanville fritillary butterfly (Melitaea cinxia). Measurements of MR(peak) showed significant repeatability. Senescence occurred only shortly before death. RMR showed a U-shaped relationship with age and very low repeatability. Intraspecific association between metabolic rates and lifespan was tested under three conditions: in the laboratory, under field conditions and in a laboratory experiment with repeated flight treatments. There was a significant correlation between MR(peak) and lifespan in all three experiments, but the correlation was positive, not negative. RMR was not correlated with lifespan. Both MR(peak) and lifespan may reflect physiological condition and therefore be positively correlated. Individuals with a large resource pool may be able to invest in mechanisms that slow down ageing. Individuals with high metabolic capacity may also possess adaptations against ageing. Molecular polymorphism in the gene phosphoglucose isomerase (Pgi) was significantly associated with both MR(peak) and lifespan, and may have coevolved with defence mechanisms against senescence. Generalisations such as 'live fast, die young' may be too simple to explain the complex processes affecting ageing and lifespan.
Collapse
Affiliation(s)
- Kristjan Niitepõld
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland.
| | | |
Collapse
|
45
|
Ardekani R, Huang YM, Sancheti P, Stanciauskas R, Tavaré S, Tower J. Using GFP video to track 3D movement and conditional gene expression in free-moving flies. PLoS One 2012; 7:e40506. [PMID: 22829875 PMCID: PMC3400653 DOI: 10.1371/journal.pone.0040506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 06/12/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In vivo imaging and quantification of fluorescent reporter molecules is increasingly useful in biomedical research. For example, tracking animal movement in 3D with simultaneous quantification of fluorescent transgenic reporters allows for correlations between behavior, aging and gene expression. However implementation has been hindered in the past by the complexity of operating the systems. RESULTS We report significant technical improvements and user-friendly software (called FluoreScore) that enables tracking of 3D movement and the dynamics of gene expression in adult Drosophila, using two cameras and recorded GFP videos. Expression of a transgenic construct encoding eGFP was induced in free-moving adult flies using the Gene-Switch system and RU486 drug feeding. The time course of induction of eGFP expression was readily quantified from internal tissues including central nervous tissue. CONCLUSIONS FluoreScore should facilitate a variety of future studies involving quantification of movement behaviors and fluorescent molecules in free-moving animals.
Collapse
Affiliation(s)
- Reza Ardekani
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Yichuan Michelle Huang
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Prathamesh Sancheti
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Ramunas Stanciauskas
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Simon Tavaré
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - John Tower
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Tower J. Stress and stem cells. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:789-802. [PMID: 23799624 DOI: 10.1002/wdev.56] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The unique properties and functions of stem cells make them particularly susceptible to stresses and also lead to their regulation by stress. Stem cell division must respond to the demand to replenish cells during normal tissue turnover as well as in response to damage. Oxidative stress, mechanical stress, growth factors, and cytokines signal stem cell division and differentiation. Many of the conserved pathways regulating stem cell self-renewal and differentiation are also stress-response pathways. The long life span and division potential of stem cells create a propensity for transformation (cancer) and specific stress responses such as apoptosis and senescence act as antitumor mechanisms. Quiescence regulated by CDK inhibitors and a hypoxic niche regulated by FOXO transcription factor function to reduce stress for several types of stem cells to facilitate long-term maintenance. Aging is a particularly relevant stress for stem cells, because repeated demands on stem cell function over the life span can have cumulative cell-autonomous effects including epigenetic dysregulation, mutations, and telomere erosion. In addition, aging of the organism impairs function of the stem cell niche and systemic signals, including chronic inflammation and oxidative stress.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
47
|
Weisman NY, Evgen’ev MB, Golubovskii MD. Parallelism and paradoxes on viability and the life span of two loss-of-function mutations: Heat shock protein transcriptional regulator hsf 1 and l(2)gl tumor suppressor in Drosophila melanogaster. BIOL BULL+ 2012. [DOI: 10.1134/s1062359012010128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Colinet H, Sciaussat D, Bozzolan F, Bowler K. Rapid decline of cold tolerance at young age is associated with expression of stress genes in Drosophila melanogaster. J Exp Biol 2012; 216:253-9. [DOI: 10.1242/jeb.076216] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Summary
Many endogenous factors influence thermal tolerance of insects. Among these, age contributes an important source of variation. Heat tolerance is typically high in newly-enclosed insects, before declining dramatically. It is not known whether this phenomenon relates to cold tolerance also. In addition, the underlying mechanisms of this variation are unresolved. In this study we tested whether cold tolerance declines in Drosophila melanogaster females aged from 0 to 5 days. We also assessed whether expression (basal and induced) of eight stress genes (hsp22, hsp23, hsp40, hsp68, hsp70Aa, hsp83, Starvin and Frost) varied post-eclosion in correspondence with changes found cold tolerance. We report that cold tolerance was very high at eclosion and then it rapidly declined in young flies. hsp23 and hsp68 showed a dramatic age-related variation of basal expression that was associated with cold tolerance proxies. Significant age-related plasticity of cold-induced expression was also found for hsp22, hsp23, hsp68, hsp70Aa, Frost and Starvin. hsp22 and hsp70Aa induced expression was high in newly-enclosed phenotypes before declining dramatically, whilst opposite age-related patterns were found for hsp23, hsp68, Starvin and Frost. This study shows a marked within-stage variation in cold tolerance. The involvement of the stress genes in setting basal thermal tolerance is discussed.
Collapse
Affiliation(s)
- Hervé Colinet
- Université Catholique de Louvain, Belgium; Université de Rennes, France
| | | | | | | |
Collapse
|
49
|
Shmookler Reis RJ, Ayyadevara S, Crow WA, Lee T, Delongchamp RR. Gene categories differentially expressed in C. elegans age-1 mutants of extraordinary longevity: new insights from novel data-mining procedures. J Gerontol A Biol Sci Med Sci 2011; 67:366-75. [PMID: 22021389 DOI: 10.1093/gerona/glr186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two nonsense mutants of age-1, the Caenorhabditis elegans gene encoding phosphoinositide 3-kinase, live nearly 10-fold longer than wild-type controls and are exceptionally resistant to several stresses. Genome-wide expression analyses implicated downregulation of many more genes than were upregulated in second-generation age-1 homozygotes. Functional-annotation analysis, based on Gene Ontology terms, suggested that novel mechanisms may mediate the stronger phenotypes observed for these worms than with milder age-1 disruption. For the current study, the same microarray data were reanalyzed using novel meta-analytic procedures that we developed recently. First, gene p values were corrected for systematic biases based on the observed distribution for nonexpressed genes; these values were then combined to derive an aggregate p value for each functional-annotation term while adjusting for intergene covariance. This resulted in much better coverage of relevant gene categories, including many that were independently supported by other data. The number of nonredundant GO categories significantly distinguishing age-1 alleles of exceptional longevity increased from sevenfold to greater than ninefold, improving both sensitivity and specificity of selection for altered pathways and implicating previously unsuspected longevity mechanisms. Of 150 genes whose differential expression underlay significant GO terms in both comparisons, over half were up- or down-regulated in accord with longevity, whereas one third showed altered expression uniquely in the longest-lived age-1-null strains, consistent with the activation or suppression of pathways peculiar to strong age-1 mutants.
Collapse
|
50
|
Dock JN, Effros RB. Role of CD8 T Cell Replicative Senescence in Human Aging and in HIV-mediated Immunosenescence. Aging Dis 2011; 2:382-397. [PMID: 22308228 PMCID: PMC3269814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/02/2011] [Accepted: 08/02/2011] [Indexed: 05/31/2023] Open
Abstract
As humans age, their immune systems undergo a process known as immunosenescence. This global aging of the immune system is associated with increased susceptibility to infectious diseases and cancer, reduced effectiveness of vaccination, increased autoimmune phenomena, and tissue damage due to dysregulated inflammation. One hallmark feature of immunosenescence is the accumulation of late-differentiated memory CD8 T cells with features of replicative senescence, such as inability to proliferate, absence of CD28 expression, shortened telomeres, loss of telomerase activity, and enhanced secretion of inflammatory cytokines. The proportion of senescent CD8 T cells increases progressively with age, and often consists of oligoclonal populations that are specific for cytomegalovirus (CMV) antigens. In addition, there is evidence that senescent memory CD8 T cells acquire suppressive functions and may also contribute to carcinogenesis. Chronic HIV disease, even when controlled through antiretroviral therapy (ART), is associated with accelerated immunosenescence, as evidenced by the higher numbers of senescent memory CD8 T cells and increased inflammatory milieu. Interestingly, even in HIV disease, a high proportion of late-differentiated, putatively senescent, memory CD8 T cells are specific for CMV antigens. As in age-related immunosenescence, these HIV-associated changes result in dysregulated immunity, chronic diseases linked to inflammatory damage, and increased morbidity and mortality. This review explores the evidence for CD8 T cell replicative senescence in vitro and in vivo, in the context of both chronological aging and HIV-mediated immunosenescence. We also highlight an important gap in our understanding of human immunosenescence, since all the studies to date have focused on peripheral blood, which contains a minority of the total body lymphocyte population.
Collapse
Affiliation(s)
| | - Rita B. Effros
- Correspondence should be addressed to: Rita B. Effros, Ph.D., Dept. of Pathology & Laboratory Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095-1732, USA.
| |
Collapse
|