1
|
Rai AK, Yadav M, Duary RK, Shukla P. Gut Microbiota Modulation Through Dietary Approaches Targeting Better Health During Metabolic Disorders. Mol Nutr Food Res 2025:e70033. [PMID: 40195821 DOI: 10.1002/mnfr.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 04/09/2025]
Abstract
The impact of gut microbiota is known to play a significant role in an individual's metabolism and health. Many harmful food products or dietary imbalance adversely affect human health and changing lifestyle, environmental factors, and food habits may have their effect on gut microbiota. It has emerged that gut microbiota is regarded as an emerging metabolic organ, which is dependent on individual's diet and its composition. This review discusses the significance of lactic acid bacteria as a prominent inhabitant in the gut microbiota and the role of probiotics, prebiotics, and polyphenols to improve human health and metabolism. The role of fermented foods as an important source of probiotics and bioactive molecules is also discussed along with the role of gut microbiota in metabolic disorders like dyslipidemia, obesity, hypercholesterolemia, cancer, and hypertension. Finally, the review gives insights into the effective therapeutic prospects through gut microbiota alterations to tackle these metabolic disorders.
Collapse
Affiliation(s)
- Amit Kumar Rai
- BRIC-National Agri-Food and Biomanufacturing Institute (BRIC-NABI), SAS Nagar, Mohali, India
| | | | - Raj Kumar Duary
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Liu J, Guo M, Yuan X, Fan X, Wang J, Jiao X. Gut Microbiota and Their Metabolites: The Hidden Driver of Diabetic Nephropathy? Unveiling Gut Microbe's Role in DN. J Diabetes 2025; 17:e70068. [PMID: 40189872 PMCID: PMC11973130 DOI: 10.1111/1753-0407.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/21/2025] [Accepted: 02/17/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a severe microvascular complication of diabetes with a complex pathogenesis. METHODS Recent studies were reviewed to explore the role of gut microbiota and its metabolites in DN development. RESULTS Dysbiosis of gut bacteria contributes to pathological changes such as glomerular sclerosis and renal tubule injury. Microbial metabolites are involved in DN through immune and inflammatory pathways. CONCLUSIONS Understanding the relationship between gut microbiota, its metabolites, and DN may offer potential implications for DN diagnosis, prevention, and treatment. Translating this knowledge into clinical practice presents challenges and opportunities.
Collapse
Affiliation(s)
- Jinzhou Liu
- Department of PhysiologyThe Key Laboratory of Physiology of Shanxi Province, the Key Laboratory of Cellular Physiology of Ministry of Education, Shanxi Medical UniversityTaiyuanChina
| | - Min Guo
- Department of PhysiologyThe Key Laboratory of Physiology of Shanxi Province, the Key Laboratory of Cellular Physiology of Ministry of Education, Shanxi Medical UniversityTaiyuanChina
| | - Xiaobin Yuan
- Department of UrologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Xiao Fan
- Department of UrologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Jin Wang
- Department of PhysiologyThe Key Laboratory of Physiology of Shanxi Province, the Key Laboratory of Cellular Physiology of Ministry of Education, Shanxi Medical UniversityTaiyuanChina
| | - Xiangying Jiao
- Department of PhysiologyThe Key Laboratory of Physiology of Shanxi Province, the Key Laboratory of Cellular Physiology of Ministry of Education, Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
3
|
Yang Y, Jiao L, Huang Y, Shang H, Li E, Chang H, Cui H, Wan Y. Evaluation of FXR Activity in Pollutants Identified in Sewage Sludge and Subsequent in Vitro and in Vivo Characterization of Metabolic Effects of Triphenyl Phosphate. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:47005. [PMID: 40048564 PMCID: PMC12010937 DOI: 10.1289/ehp15435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/03/2025] [Accepted: 01/27/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common liver disease worldwide, and increasing evidence suggests that exposure to environmental pollutants is associated with the increased incidence of MASLD. The farnesoid X receptor (FXR) plays an important role in the development of MASLD by regulating bile acids (BAs) and lipid metabolism. However, whether FXR-active pollutants are the environmental drivers of MASLD remains unclear. OBJECTIVES This study aimed to determine whether FXR-active pollutants exist in the environment and evaluate their ability to trigger MASLD development in mice. METHODS An FXR protein affinity pull-down assay and nontargeted mass spectrometry (MS) analysis were used to identify environmental FXR ligands in sewage sludge. A homogeneous time-resolved fluorescence coactivator recruitment assay and cell-based dual-luciferase reporter assay were used to determine the FXR activities of the identified pollutants. Targeted analysis of BAs, MS imaging, lipidomic analysis, 16S rRNA sequencing, and quantitative polymerase chain reaction were conducted to assess the ability of FXR-active pollutants to induce metabolic disorders of BAs and lipids and to contribute to MASLD development in C57BL/6N mice. RESULTS We identified 19 compounds in the sewage sludge that had FXR-antagonistic activity, and triphenyl phosphate (TPHP) was the FXR antagonist with the highest efficacy. Mice exposed to either 10 or 50 mg / kg TPHP for 30 d had higher levels of conjugated primary BAs in enterohepatic circulation, and the BA pool showed FXR antagonistic activities. The exposed mice also had greater lipogenesis (more Oil Red O staining and high triglyceride levels) in liver. CONCLUSIONS Nineteen FXR-antagonistic pollutants were identified in sewage sludge. FXR inhibition by the strongest antagonist TPHP may have a role in promoting MASLD development in mice by inducing a positive feedback loop between the FXR and BAs. https://doi.org/10.1289/EHP15435.
Collapse
Affiliation(s)
- Yi Yang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Ling Jiao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yixuan Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Hailin Shang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Enrui Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Hong Chang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
4
|
Jiang X, Ren J, Yu G, Wu W, Chen M, Zhao Y, He C. Targeting Bile-Acid Metabolism: Nutritional and Microbial Approaches to Alleviate Ulcerative Colitis. Nutrients 2025; 17:1174. [PMID: 40218932 PMCID: PMC11990178 DOI: 10.3390/nu17071174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease affecting the colorectum, posing a significant global health burden. Recent studies highlight the critical role of gut microbiota and its metabolites, particularly bile acids (BAs), in UC's pathogenesis. The relationship between BAs and gut microbiota is bidirectional: microbiota influence BA composition, while BAs regulate microbiota diversity and activity through receptors like Farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5). Targeting bile-acid metabolism to reshape gut microbiota presents a promising therapeutic strategy for UC. This review examines the classification and synthesis of BAs, their interactions with gut microbiota, and the potential of nutritional and microbial interventions. By focusing on these therapies, we aim to offer innovative approaches for effective UC management.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Canxia He
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Cocci P, Angeletti M, Mosconi G, Olivotto I, Zarantoniello M, Palermo FA. Replacement of fish meal with full fat Hermetia illucens modulates hepatic FXR signaling in juvenile rainbow trout ( Oncorhynchus mykiss): Exploring a potential role of ecdysteroids. Heliyon 2024; 10:e40302. [PMID: 39584117 PMCID: PMC11585762 DOI: 10.1016/j.heliyon.2024.e40302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
The present study was conducted to investigate the effects of fish meal (FM) replacement with full fat Hermetia illucens (HI) on the molecular mechanisms regulating lipid and bile salt (BA) homeostasis in rainbow trout (Oncorhynchus mykiss) juveniles. We thus explore the presence of 20-hydroxyecdysone (20E) in an insect meal-based diet and evaluate its potential involvement in regulating the molecular mechanisms/basis of FXR:RXR axis signaling. Ecdysteroids are a category of steroid hormones which bind a nuclear-receptor complex composed of ecdysone receptor (EcR) and ultraspiracle protein (USP) and regulate insect molting and metamorphosis. In all vertebrates, including fish, EcR-USP homologs are the Farnesoid X receptors (FXR) and the Retinoid X receptors (RXR), which are known to regulate crucial physiological and metabolic aspects, including BA synthesis and cholesterol homeostasis. In silico prediction indicates that 20E binds the heterodimeric complex with a binding affinity constant Kd equals to 610 ± 60 nM and affects positively the dimerization process. Results also demonstrated the coordinated increased expression of FXR and RXR, as well as their downstream target genes (i.e. short heterodimer partner 1 and 2) in rainbow trout fed diets containing HI meal. This latter finding was paralleled by a significant down-regulation of CYP7a1 and CYP8b1 gene expression together with a decrease in hepatic total cholesterol, triglyceride, and BA levels. Overall, our study suggested that FXR is a potential target for 20E content in insect meal and provided preliminary data on the potential role of ecdysteroids in regulating the metabolic status of teleost fish through modulation of FXR signaling in the enterohepatic system.
Collapse
Affiliation(s)
- Paolo Cocci
- University of Camerino, School of Biosciences and Veterinary Medicine, Camerino, 62032, Italy
| | - Mauro Angeletti
- University of Camerino, School of Biosciences and Veterinary Medicine, Camerino, 62032, Italy
| | - Gilberto Mosconi
- University of Camerino, School of Biosciences and Veterinary Medicine, Camerino, 62032, Italy
| | - Ike Olivotto
- Polytechnic University of Marche, Department of Life and Environmental Sciences, Ancona, 60131, Italy
| | - Matteo Zarantoniello
- Polytechnic University of Marche, Department of Life and Environmental Sciences, Ancona, 60131, Italy
| | | |
Collapse
|
6
|
Jiang J, Lu X, Dong L, Tian J, Zhang J, Guo Z, Luo Y, Cui Z, Wen H, Jiang M. Enhancing growth, liver health, and bile acid metabolism of tilapia ( Oreochromis niloticus) through combined cholesterol and bile acid supplementation in plant-based diets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:335-346. [PMID: 38800736 PMCID: PMC11127100 DOI: 10.1016/j.aninu.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 05/29/2024]
Abstract
The present study aimed to compare the nutritional effects of cholesterol, bile acids, and combination of cholesterol with bile acids in plant-based diets on juvenile genetically improved farmed tilapia (GIFT; Oreochromis niloticus). The isonitrogenous (321 g/kg crude protein) and isolipidic (76 g/kg crude fat) diets (Con diet) were based on plant protein sources, which included corn gluten meal, soybean meal, cottonseed meal and rapeseed meal. The Con diet was supplemented with 12 g/kg cholesterol (CHO diet), 0.2 g/kg bile acids (BAs diet), a combination of 12 g/kg cholesterol and 0.2 g/kg bile acids (CHO-BAs diet), respectively. Each diet was fed to three tanks in an indoor recirculating aquaculture system for 9 weeks. Results showed that compared to the Con group, fish had a higher weight gain rate, hepatosomatic index, and a lower feed conversion ratio in the CHO-BAs group. The highest levels of whole-fish fat and ash were found in the Con group. Serum parameters, including activities of alanine aminotransferase (ALT) and aspartate transaminase (AST), along with levels of glucose (GLU) and triglyceride (TG) except for total cholesterol (TCHO), were lower in the CHO, BAs, and CHO-BAs groups than those in the Con group (P < 0.001). Histological examination revealed that fish in the Con group exhibited severe hepatocyte vacuolization and diminished hepatocyte proliferation. Gene expression analysis indicated that the transcriptional levels of bile acid metabolism-related genes (including fxr, fgf19, bsep) were up-regulated in the CHO-BAs group (P < 0.05), whereas cholesterol metabolism-related genes (acly and hmgcr) were down-regulated in both CHO and CHO-BAs groups (P < 0.001). Moreover, UPLC-MS/MS analysis revealed that the higher taurine-conjugated bile acids (T-BAs), followed by free bile acids (Free-BAs) and glycine (G-BAs) were determined in tilapia bile. Among these, taurochenodeoxycholic bile acid was the predominant bile acid. Dietary bile acids supplementation also increased the proportion of T-BAs (tauro β-muricholic acid and taurodehydrocholic acid) while decreasing Free-BAs in the fish bile. In conclusion, the incorporation of cholesterol with bile acids into plant-based diets can effectively reduce cholesterol uptake, suppress bile acids synthesis, enhance bile acids efflux, and promote hepatocyte proliferation, which is helpful for maintaining the normal liver morphology in tilapia, and thus improving its growth performance.
Collapse
Affiliation(s)
- Jiayuan Jiang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xing Lu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lixue Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Juan Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jianmin Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | | | - Yongju Luo
- Guangxi Institute of Fisheries, Nanning, China
| | - Zongbin Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hua Wen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ming Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
7
|
Samson N, Bosoi CR, Roy C, Turcotte L, Tribouillard L, Mouchiroud M, Berthiaume L, Trottier J, Silva HCG, Guerbette T, Plata-Gómez AB, Besse-Patin A, Montoni A, Ilacqua N, Lamothe J, Citron YR, Gélinas Y, Gobeil S, Zoncu R, Caron A, Morissette M, Pellegrini L, Rochette PJ, Estall JL, Efeyan A, Shum M, Audet-Walsh É, Barbier O, Marette A, Laplante M. HSDL2 links nutritional cues to bile acid and cholesterol homeostasis. SCIENCE ADVANCES 2024; 10:eadk9681. [PMID: 38820148 PMCID: PMC11141617 DOI: 10.1126/sciadv.adk9681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
In response to energy and nutrient shortage, the liver triggers several catabolic processes to promote survival. Despite recent progress, the precise molecular mechanisms regulating the hepatic adaptation to fasting remain incompletely characterized. Here, we report the identification of hydroxysteroid dehydrogenase-like 2 (HSDL2) as a mitochondrial protein highly induced by fasting. We show that the activation of PGC1α-PPARα and the inhibition of the PI3K-mTORC1 axis stimulate HSDL2 expression in hepatocytes. We found that HSDL2 depletion decreases cholesterol conversion to bile acids (BAs) and impairs FXR activity. HSDL2 knockdown also reduces mitochondrial respiration, fatty acid oxidation, and TCA cycle activity. Bioinformatics analyses revealed that hepatic Hsdl2 expression positively associates with the postprandial excursion of various BA species in mice. We show that liver-specific HSDL2 depletion affects BA metabolism and decreases circulating cholesterol levels upon refeeding. Overall, our report identifies HSDL2 as a fasting-induced mitochondrial protein that links nutritional signals to BAs and cholesterol homeostasis.
Collapse
Affiliation(s)
- Nolwenn Samson
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
| | - Cristina R. Bosoi
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Christian Roy
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Laurie Turcotte
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Laura Tribouillard
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
| | - Mathilde Mouchiroud
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
| | - Line Berthiaume
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
| | - Jocelyn Trottier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
| | - Heitor C. G. Silva
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Thomas Guerbette
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Ana Belén Plata-Gómez
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Aurèle Besse-Patin
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Alicia Montoni
- Axe Médecine régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Hôpital du Saint-Sacrement, Québec, QC, Canada
| | - Nicolò Ilacqua
- Faculté de médecine, Université Laval, Québec, QC, Canada
- Centre de recherche CERVO, Québec, QC, Canada
| | - Jennifer Lamothe
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Yemima R. Citron
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA, USA
| | - Yves Gélinas
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | | | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA, USA
| | - Alexandre Caron
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Mathieu Morissette
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Luca Pellegrini
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, QC, Canada
| | - Patrick J. Rochette
- Faculté de médecine, Université Laval, Québec, QC, Canada
- Axe Médecine régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Hôpital du Saint-Sacrement, Québec, QC, Canada
- Département d’Ophtalmologie et ORL – chirurgie cervico-faciale, Université Laval, Québec, QC, Canada
| | - Jennifer L. Estall
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
- Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Michael Shum
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Étienne Audet-Walsh
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Olivier Barbier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - André Marette
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Mathieu Laplante
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
8
|
Yun C, Yan S, Liao B, Ding Y, Qi X, Zhao M, Wang K, Zhuo Y, Nie Q, Ye C, Xia P, Ma M, Li R, Jiang C, Qiao J, Pang Y. The microbial metabolite agmatine acts as an FXR agonist to promote polycystic ovary syndrome in female mice. Nat Metab 2024; 6:947-962. [PMID: 38769396 DOI: 10.1038/s42255-024-01041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/02/2024] [Indexed: 05/22/2024]
Abstract
Polycystic ovary syndrome (PCOS), an endocrine disorder afflicting 6-20% of women of reproductive age globally, has been linked to alterations in the gut microbiome. We previously showed that in PCOS, elevation of Bacteroides vulgatus in the gut microbiome was associated with altered bile acid metabolism. Here we show that B. vulgatus also induces a PCOS-like phenotype in female mice via an alternate mechanism independent of bile acids. We find that B. vulgatus contributes to PCOS-like symptoms through its metabolite agmatine, which is derived from arginine by arginine decarboxylase. Mechanistically, agmatine activates the farnesoid X receptor (FXR) pathway to subsequently inhibit glucagon-like peptide-1 (GLP-1) secretion by L cells, which leads to insulin resistance and ovarian dysfunction. Critically, the GLP-1 receptor agonist liraglutide and the arginine decarboxylase inhibitor difluoromethylarginine ameliorate ovarian dysfunction in a PCOS-like mouse model. These findings reveal that agmatine-FXR-GLP-1 signalling contributes to ovarian dysfunction, presenting a potential therapeutic target for PCOS management.
Collapse
Affiliation(s)
- Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Sen Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Baoying Liao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yong Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xinyu Qi
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yingying Zhuo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Qixing Nie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Chuan Ye
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Pengyan Xia
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Rong Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China.
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China.
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China.
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China.
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yanli Pang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China.
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
9
|
Fu J, Zhang P, Sun Z, Lu G, Cao Q, Chen Y, Wu W, Zhang J, Zhuang C, Sheng C, Xu J, Lu Y, Wang P. A combined nanotherapeutic approach targeting farnesoid X receptor, ferroptosis, and fibrosis for nonalcoholic steatohepatitis treatment. Acta Pharm Sin B 2024; 14:2228-2246. [PMID: 38799646 PMCID: PMC11121165 DOI: 10.1016/j.apsb.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 05/29/2024] Open
Abstract
Obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist with favorable effects on fatty and glucose metabolism, has been considered the leading candidate drug for nonalcoholic steatohepatitis (NASH) treatment. However, its limited effectiveness in resolving liver fibrosis and lipotoxicity-induced cell death remains a major drawback. Ferroptosis, a newly recognized form of cell death characterized by uncontrolled lipid peroxidation, is involved in the progression of NASH. Nitric oxide (NO) is a versatile biological molecule that can degrade extracellular matrix. In this study, we developed a PEGylated thiolated hollow mesoporous silica nanoparticles (MSN) loaded with OCA, as well as a ferroptosis inhibitor liproxsatin-1 and a NO donor S-nitrosothiol (ONL@MSN). Biochemical analyses, histology, multiplexed flow cytometry, bulk-tissue RNA sequencing, and fecal 16S ribosomal RNA sequencing were utilized to evaluate the effects of the combined nanoparticle (ONL@MSN) in a mouse NASH model. Compared with the OCA-loaded nanoparticles (O@MSN), ONL@MSN not only protected against hepatic steatosis but also greatly ameliorated fibrosis and ferroptosis. ONL@MSN also displayed enhanced therapeutic actions on the maintenance of intrahepatic macrophages/monocytes homeostasis, inhibition of immune response/lipid peroxidation, and correction of microbiota dysbiosis. These findings present a promising synergistic nanotherapeutic strategy for the treatment of NASH by simultaneously targeting FXR, ferroptosis, and fibrosis.
Collapse
Affiliation(s)
- Jiangtao Fu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Pingping Zhang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Zhiguo Sun
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Guodong Lu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Qi Cao
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yiting Chen
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Wenbin Wu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jiabao Zhang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
- National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Chunlin Zhuang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
- National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
- National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Jiajun Xu
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Ying Lu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
- National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Pei Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
- National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
10
|
Dou X, Huo T, Liu Y, Pang Z, Su L, Zhao X, Peng X, Liu Z, Zhang L, Jiao N. Discovery of novel and selective farnesoid X receptor antagonists through structure-based virtual screening, preliminary structure-activity relationship study, and biological evaluation. Eur J Med Chem 2024; 269:116323. [PMID: 38547735 DOI: 10.1016/j.ejmech.2024.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
Farnesoid X receptor (FXR) is a bile acids receptor and plays a crucial role in regulating bile acids, lipids, and glucose metabolism. Previous research suggests that inhibiting FXR activation can be beneficial in reducing cholesterol and low-density lipoprotein cholesterol (LDL-C) levels, offering potential treatment options for metabolic syndrome with lipid disorders. Herein, we report p-acetylaminobenzene sulfonate derivatives as a novel scaffold of FXR antagonists by multistage screening. Among these derivatives, compound F44-A13 exhibited a half-maximal inhibitory concentration of 1.1 μM. Furthermore, compound F44-A13 demonstrated effective inhibition of FXR activation in cellular assays and exhibited high selectivity over eleven other nuclear receptors. Besides, compound F44-A13 significantly suppressed the regulation of FXR target genes Shp, Besp, and Cyp7a1, while reducing cholesterol levels in human hepatoma HepG2 cells. Pharmacological studies conducted on C57BL/6 mice further confirmed that compound F44-A13 had beneficial effects in reducing cholesterol, triglycerides, and LDL-C levels. These findings highlight that F44-A13 is a highly selective FXR antagonist that might serve as a useful molecule for further FXR studies as well as the development of FXR antagonists for the potential treatment of metabolic diseases with lipid disorders.
Collapse
Affiliation(s)
- Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yameng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China
| | - Zichen Pang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lingyu Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xing Peng
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China.
| |
Collapse
|
11
|
Mohammed OS, Attia HG, Mohamed BMSA, Elbaset MA, Fayed HM. Current investigations for liver fibrosis treatment: between repurposing the FDA-approved drugs and the other emerging approaches. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2023; 26:11808. [PMID: 38022905 PMCID: PMC10662312 DOI: 10.3389/jpps.2023.11808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Long-term liver injuries lead to hepatic fibrosis, often progressing into cirrhosis, liver failure, portal hypertension, and hepatocellular carcinoma. There is currently no effective therapy available for liver fibrosis. Thus, continuous investigations for anti-fibrotic therapy are ongoing. The main theme of anti-fibrotic investigation during recent years is the rationale-based selection of treatment molecules according to the current understanding of the pathology of the disease. The research efforts are mainly toward repurposing current FDA-approved drugs targeting etiological molecular factors involved in developing liver fibrosis. In parallel, investigations also focus on experimental small molecules with evidence to hinder or reverse the fibrosis. Natural compounds, immunological, and genetic approaches have shown significant encouraging effects. This review summarizes the efficacy and safety of current under-investigation antifibrosis medications targeting various molecular targets, as well as the properties of antifibrosis medications, mainly in phase II and III clinical trials.
Collapse
Affiliation(s)
- Omima S. Mohammed
- Department of Microbiology, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Hany G. Attia
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Bassim M. S. A. Mohamed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Marawan A. Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Hany M. Fayed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
12
|
Ji J, Wu L, Wei J, Wu J, Guo C. The Gut Microbiome and Ferroptosis in MAFLD. J Clin Transl Hepatol 2023; 11:174-187. [PMID: 36406312 PMCID: PMC9647110 DOI: 10.14218/jcth.2022.00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 06/12/2022] [Indexed: 12/04/2022] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a new disease definition, and is proposed to replace the previous name, nonalcoholic fatty liver disease (NAFLD). Globally, MAFLD/NAFLD is the most common liver disease, with an incidence rate ranging from 6% to 35% in adult populations. The pathogenesis of MAFLD/NAFLD is closely related to insulin resistance (IR), and the genetic susceptibility to acquired metabolic stress-associated liver injury. Similarly, the gut microbiota in MAFLD/NAFLD is being revaluated by scientists, as the gut and liver influence each other via the gut-liver axis. Ferroptosis is a novel form of programmed cell death caused by iron-dependent lipid peroxidation. Emerging evidence suggests that ferroptosis has a key role in the pathological progression of MAFLD/NAFLD, and inhibition of ferroptosis may become a novel therapeutic strategy for the treatment of NAFLD. This review focuses on the main mechanisms behind the promotion of MAFLD/NAFLD occurrence and development by the intestinal microbiota and ferroptosis. It outlines new strategies to target the intestinal microbiota and ferroptosis to facilitate future MAFLD/NAFLD therapies.
Collapse
Affiliation(s)
- Jie Ji
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University, Shanghai, China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liwei Wu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University, Shanghai, China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jue Wei
- Department of Gastroenterology Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University, Shanghai, China
- Correspondence to: Chuanyong Guo, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai 200072, China. ORCID: https://orcid.org/0000-0002-6527-4673. E-mail: ; Jianye Wu: Department of Gastroenterology, Putuo People’s Hospital, NO. 1291, Jiangning road, Putuo, Shanghai 200060, China. ORCID: https://orcid.org/0000-0003-2675-4241. E-mail:
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University, Shanghai, China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Correspondence to: Chuanyong Guo, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai 200072, China. ORCID: https://orcid.org/0000-0002-6527-4673. E-mail: ; Jianye Wu: Department of Gastroenterology, Putuo People’s Hospital, NO. 1291, Jiangning road, Putuo, Shanghai 200060, China. ORCID: https://orcid.org/0000-0003-2675-4241. E-mail:
| |
Collapse
|
13
|
Xu W, Kong Y, Zhang T, Gong Z, Xiao W. L-Theanine regulates lipid metabolism by modulating gut microbiota and bile acid metabolism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1283-1293. [PMID: 36087337 DOI: 10.1002/jsfa.12222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/25/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND l-Theanine (LTA) is a biologically active ingredient in tea that shows great potential for regulating lipid metabolism. Bile acids (BA), an important end-product of cholesterol catabolism, participate in the regulation of lipid metabolism and gut microbiota. Here, we investigated the effect of LTA on lipid metabolism and the mechanism by which it regulates BA metabolism and gut microbiota. Male BALB/c mice were treated with LTA for 28 days. RESULTS Daily LTA doses of 100 and 300 mg kg-1 d-1 altered the gut microbiota in mice, predominantly by decreasing Lactobacillus, Streptococcus, Bacteroides, Clostridium and Enterorhabdus microbes associated with bile-salt hydrolase (BSH) activity, thereby decreasing the activity of BSH and increasing the levels of ileum conjugated BA (such as glycocholic acid (GCA) and lithocholic acid), thereby inhibiting the intestinal farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) signaling pathway. Inhibition of FXR-FGF15 signaling was accompanied by upregulation of cholesterol 7α-hydroxylase (CYP7A1) mRNA and protein expression and increased hepatic production of cholic acid, deoxycholic acid, GCA, glycine cholic acid and glycine ursodeoxycholic acid. Meanwhile, increasing hepatic unconjugated BA upregulated the mRNA and protein expression of liver 3-hydroxy-3-methylglutaryl-CoA reductase and downregulated the mRNA and protein expression of stearoyl-CoA desaturase-1, liver low-density lipoprotein receptor and type B scavenger receptor. Therefore, the serum levels of cholesterol and triglycerides decreased. CONCLUSION Our findings indicate that LTA regulates lipid metabolism by modulating the gut microbiota and BA metabolism via the FXR-FGF15-CYP7A1 pathway. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Xu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Yingying Kong
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Tuo Zhang
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Zhihua Gong
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Wenjun Xiao
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
| |
Collapse
|
14
|
Chen H, Cao T, Zhang B, Cai H. The regulatory effects of second-generation antipsychotics on lipid metabolism: Potential mechanisms mediated by the gut microbiota and therapeutic implications. Front Pharmacol 2023; 14:1097284. [PMID: 36762113 PMCID: PMC9905135 DOI: 10.3389/fphar.2023.1097284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Second-generation antipsychotics (SGAs) are the mainstay of treatment for schizophrenia and other neuropsychiatric diseases but cause a high risk of disruption to lipid metabolism, which is an intractable therapeutic challenge worldwide. Although the exact mechanisms underlying this lipid disturbance are complex, an increasing body of evidence has suggested the involvement of the gut microbiota in SGA-induced lipid dysregulation since SGA treatment may alter the abundance and composition of the intestinal microflora. The subsequent effects involve the generation of different categories of signaling molecules by gut microbes such as endogenous cannabinoids, cholesterol, short-chain fatty acids (SCFAs), bile acids (BAs), and gut hormones that regulate lipid metabolism. On the one hand, these signaling molecules can directly activate the vagus nerve or be transported into the brain to influence appetite via the gut-brain axis. On the other hand, these molecules can also regulate related lipid metabolism via peripheral signaling pathways. Interestingly, therapeutic strategies directly targeting the gut microbiota and related metabolites seem to have promising efficacy in the treatment of SGA-induced lipid disturbances. Thus, this review provides a comprehensive understanding of how SGAs can induce disturbances in lipid metabolism by altering the gut microbiota.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China,*Correspondence: Bikui Zhang, ; Hualin Cai,
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China,*Correspondence: Bikui Zhang, ; Hualin Cai,
| |
Collapse
|
15
|
Liu S, Li J, Kang W, Li Y, Ge L, Liu D, Liu Y, Huang K. Aflatoxin B1 Induces Intestinal Barrier Dysfunction by Regulating the FXR-Mediated MLCK Signaling Pathway in Mice and in IPEC-J2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:867-876. [PMID: 36579420 DOI: 10.1021/acs.jafc.2c06931] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aflatoxin B1 (AFB1) is a widespread mycotoxin in food and feed. Although the liver is the main target organ of AFB1, the intestine is the first exposure organ to AFB1. However, the mechanism by which AFB1 induced intestinal barrier dysfunction via regulating the farnesoid X receptor (FXR)-mediated myosin light chain kinase (MLCK) signaling pathway has rarely been studied. In vivo, AFB1 exposure significantly decreased the small intestine length and increased the intestinal permeability. Meanwhile, AFB1 exposure markedly suppressed the protein expressions of FXR, ZO-1, occludin, and claudin-1 and enhanced the protein expression of MLCK. In vitro, AFB1 exposure induced intestinal barrier dysfunction by the elevation in the FITC-Dextran 4 kDa flux and inhibition in the transepithelial electrical resistance in a dose-dependent manner. In addition, AFB1 exposure downregulated the mRNA and protein expressions of FXR, ZO-1, occludin, and claudin-1, redistributed the ZO-1 protein, and enhanced the protein expressions of MLCK and p-MLC. However, fexaramine (Fex, FXR agonist) pretreatment markedly reversed the AFB1-induced FXR activity reduction, MLCK protein activation, and intestinal barrier impairment in vitro and in vivo. Moreover, pretreatment with the inhibition of MLCK with ML-7 significantly alleviated the AFB1-induced intestinal barrier dysfunction and tight junction disruption in vitro. In conclusion, AFB1 induced intestinal barrier impairment via regulating the FXR-mediated MLCK signaling pathway in vitro and in vivo and provided novel insights to prevent mycotoxin poisoning in the intestine.
Collapse
Affiliation(s)
- Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Jinyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Weili Kang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| |
Collapse
|
16
|
Hassan HM, Onabote O, Isovic M, Passos DT, Dick FA, Torchia J. Regulation of Chromatin Accessibility by the Farnesoid X Receptor Is Essential for Circadian and Bile Acid Homeostasis In Vivo. Cancers (Basel) 2022; 14:cancers14246191. [PMID: 36551676 PMCID: PMC9777377 DOI: 10.3390/cancers14246191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
The Farnesoid X Receptor (FXR) belongs to the nuclear receptor superfamily and is an essential bile acid (BA) receptor that regulates the expression of genes involved in the metabolism of BAs. FXR protects the liver from BA overload, which is a major etiology of hepatocellular carcinoma. Herein, we investigated the changes in gene expression and chromatin accessibility in hepatocytes by performing RNA-seq in combination with the Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) using a novel FXR knockout mouse model (Fxrex5Δ: Nr1h4ex5Δ/ex5Δ) generated through CRISPR/Cas9. Consistent with previous Fxr knockout models, we found that Fxrex5Δ mice develop late-onset HCC associated with increased serum and hepatic BAs. FXR deletion was associated with a dramatic loss of chromatin accessibility, primarily at promoter-associated transcription factor binding sites. Importantly, several genes involved in BA biosynthesis and circadian rhythm were downregulated following loss of FXR, also displayed reduced chromatin accessibility at their promoter regions. Altogether, these findings suggest that FXR helps to maintain a transcriptionally active state by regulating chromatin accessibility through its binding and recruitment of transcription factors and coactivators.
Collapse
Affiliation(s)
- Haider M. Hassan
- Department of Biochemistry, Western University, London, ON N6A 5C1, Canada
- Department of Oncology, London Regional Cancer Program and the Lawson Health Research Institute, London, ON N6A 5W9, Canada
| | - Oladapo Onabote
- Department of Biochemistry, Western University, London, ON N6A 5C1, Canada
- Department of Oncology, London Regional Cancer Program and the Lawson Health Research Institute, London, ON N6A 5W9, Canada
| | - Majdina Isovic
- Department of Oncology, London Regional Cancer Program and the Lawson Health Research Institute, London, ON N6A 5W9, Canada
| | - Daniel T. Passos
- Department of Oncology, London Regional Cancer Program and the Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada
| | - Frederick A. Dick
- Department of Oncology, London Regional Cancer Program and the Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada
| | - Joseph Torchia
- Department of Biochemistry, Western University, London, ON N6A 5C1, Canada
- Department of Oncology, London Regional Cancer Program and the Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Correspondence: ; Tel.: +519-685-8692
| |
Collapse
|
17
|
Zhao J, Wang Y, Wang Y, Gao J, Yang H, Wu X, Li H. Transcription Factor FXR Activates DHRS9 to Inhibit the Cell Oxidative Phosphorylation and Suppress Colon Cancer Progression. Anal Cell Pathol (Amst) 2022; 2022:8275574. [PMID: 36340269 PMCID: PMC9629925 DOI: 10.1155/2022/8275574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/23/2022] [Accepted: 07/20/2022] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Colon cancer is a common gastrointestinal malignancy. It has been discovered that Farnesoid X receptor (FXR) plays an imperative regulatory role in multitype cancers in recent years. However, its regulatory mechanism in colon cancer has not been clearly explored. This study intended to explore the molecular regulatory mechanism of FXR and its downstream genes on the malignant progression of colon cancer. METHODS The mRNA and protein expression of FXR in colon cancer cells were measured by quantitative real-time polymerase chain reaction and Western blot. The effects of FXR on the biological function of colon cancer cells were measured by Cell Counting Kit-8, colony formation, and transwell assays. The downstream target gene of FXR was predicted by bioinformatics analysis and found to be associated with cellular oxidative phosphorylation. The binding relationship between FXR and its downstream gene dehydrogenase/reductase member 9 (DHRS9) was verified through luciferase reporter assay and chromatin immunoprecipitation assay. The changes of oxidative phosphorylation were detected by Western blot and oxygen consumption rate determination. The effect of FXR/DHRS9 axis on the malignant progression of colon cancer cells was further confirmed by rescue experiments. RESULTS FXR was underexpressed in colon cancer tissues and cells, and overexpressing FXR could repress the malignant behaviors of colon cancer cells. Besides, DHRS9 was a downstream gene of FXR, and FXR/DHRS9 inhibited the deterioration of colon cancer through inhibiting oxidative phosphorylation. Moreover, promoting FXR expression in colon cancer cells could partially reverse the biological function changes caused by silencing DHRS9 expression. CONCLUSION FXR inhibited the oxidative phosphorylation and inhibited the malignant progression of colon cancer cells via targeting DHRS9.
Collapse
Affiliation(s)
- Jinlai Zhao
- Gastrointestinal surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Yigang Wang
- Anus and intestine surgery, Tangshan Central Hospital, Tangshan, 063000 Hebei, China
| | - Yang Wang
- Gastrointestinal surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Jianchao Gao
- Gastrointestinal surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Haichao Yang
- Gastrointestinal surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Xiaotang Wu
- Hebei University of Economics and Business, Shijiazhuang, Hebei 050062, China
| | - Hua Li
- Gastrointestinal surgery, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| |
Collapse
|
18
|
Hong W, Peng X, Zhou X, Li P, Ye Z, Liang W. FXR/ASS1 axis attenuates the TAA-induced liver injury through arginine metabolism. Biochem Biophys Res Commun 2022; 611:31-37. [PMID: 35477090 DOI: 10.1016/j.bbrc.2022.04.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 11/19/2022]
Abstract
Previous studies demonstrated that arginine biosynthesis was frequently impaired in acute liver injury. However, the underlying mechanisms remain elusive. In this study, we found that Argininosuccinate synthetase 1 (ASS1), a rate-limiting enzyme in arginine metabolism, was downregulated in the TAA-induced liver injury model. Single-cell RNA-seq data found that ASS1 was highly enriched in the hepatocytes. The reduction of ASS1 was attributed to the decreased expression of Farnesoid X receptor (FXR), which is a bile acid-activated nuclear hormone receptor with high expression in the liver. Subsequent studies demonstrated that activation of FXR by its agonist obeticholic acid (OCA) directly promoted ASS1 transcription and enhanced arginine synthesis, leading to the alleviation of TAA-mediated liver injury. Further experiments found that OCA, ASS1, and arginine supplement can rescue TAA-mediated hepatocytes apoptosis by decreasing the protein levels of Cyto C, PARP, and Caspase 3. Taken together, our study illustrated a protective role of the FXR/ASS1 axis in TAA-induced liver injury by targeting arginine metabolism, which might shed light on the development of novel therapeutic approaches for acute liver injury.
Collapse
Affiliation(s)
- Weilong Hong
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Xuyun Peng
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Xue Zhou
- Department of Ultrasonic Medicine, Guangzhou Women and Children's Medical Center, Guangzhou, PR China
| | - Panlong Li
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Zhiqiang Ye
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| | - Weicheng Liang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
19
|
Zhang T, Feng S, Li J, Wu Z, Deng Q, Yang W, Li J, Pan G. Farnesoid X receptor (FXR) agonists induce hepatocellular apoptosis and impair hepatic functions via FXR/SHP pathway. Arch Toxicol 2022; 96:1829-1843. [PMID: 35267068 DOI: 10.1007/s00204-022-03266-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
Farnesoid X receptor (FXR) plays an indispensable role in liver homeostasis and has been a promising drug target for hepatic diseases. However, the concerns of undesired biological actions limit the clinical applications of FXR agonists. To reveal the intrinsic mechanism of FXR agonist-induce hepatotoxicity, two typical FXR agonists with different structures (obeticholic acid (OCA) and Px-102) were investigated in the present study. By detecting MMP, ROS, and ATP and analyzing the fate of cells, we found that both OCA and Px-102 reduced the mitochondrial function of hepatocytes and promoted cell apoptosis. Gene ablation or inhibition of FXR or SHP ameliorated the cytotoxicities of OCA and Px-102, which indicated the adverse actions of FXR/SHP activation including down-regulation of phosphorylation of PI3K/AKT and functional hepatic genes. The dose-related injurious effects of OCA (10 mg/kg and 30 mg/kg) and Px-102 (5 mg/kg and 15 mg/kg) on the liver were confirmed on a high-fat diet mouse model. The decrease of hepatocyte-specific genes and augmenter of liver regeneration in the liver caused by OCA or Px-102 suggested an imbalance of liver regeneration and a disruption of hepatic functions. Exploration of intestinally biased FXR agonists or combination of FXR agonist with apoptosis inhibitor may be more beneficial strategies for liver diseases.
Collapse
Affiliation(s)
- Tianwei Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanshan Feng
- Department of Pharmacology and Toxicology, Sunshine Lake Pharma Co., Ltd., Dongguan, 523871, China
| | - Jiahuan Li
- Department of Pharmacology and Toxicology, Sunshine Lake Pharma Co., Ltd., Dongguan, 523871, China
| | - Zhitao Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Qiangqiang Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Wei Yang
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangzhou, 510990, China
| | - Jing Li
- Department of Pharmacology and Toxicology, Sunshine Lake Pharma Co., Ltd., Dongguan, 523871, China.
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Puengel T, Liu H, Guillot A, Heymann F, Tacke F, Peiseler M. Nuclear Receptors Linking Metabolism, Inflammation, and Fibrosis in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23052668. [PMID: 35269812 PMCID: PMC8910763 DOI: 10.3390/ijms23052668] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and its progressive form nonalcoholic steatohepatitis (NASH) comprise a spectrum of chronic liver diseases in the global population that can lead to end-stage liver disease and hepatocellular carcinoma (HCC). NAFLD is closely linked to the metabolic syndrome, and comorbidities such as type 2 diabetes, obesity and insulin resistance aggravate liver disease, while NAFLD promotes cardiovascular risk in affected patients. The pathomechanisms of NAFLD are multifaceted, combining hepatic factors including lipotoxicity, mechanisms of cell death and liver inflammation with extrahepatic factors including metabolic disturbance and dysbiosis. Nuclear receptors (NRs) are a family of ligand-controlled transcription factors that regulate glucose, fat and cholesterol homeostasis and modulate innate immune cell functions, including liver macrophages. In parallel with metabolic derangement in NAFLD, altered NR signaling is frequently observed and might be involved in the pathogenesis. Therapeutically, clinical data indicate that single drug targets thus far have been insufficient for reaching patient-relevant endpoints. Therefore, combinatorial treatment strategies with multiple drug targets or drugs with multiple mechanisms of actions could possibly bring advantages, by providing a more holistic therapeutic approach. In this context, peroxisome proliferator-activated receptors (PPARs) and other NRs are of great interest as they are involved in wide-ranging and multi-organ activities associated with NASH progression or regression. In this review, we summarize recent advances in understanding the pathogenesis of NAFLD, focusing on mechanisms of cell death, immunometabolism and the role of NRs. We outline novel therapeutic strategies and discuss remaining challenges.
Collapse
Affiliation(s)
- Tobias Puengel
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, 13353 Berlin, Germany; (T.P.); (H.L.); (A.G.); (F.H.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Hanyang Liu
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, 13353 Berlin, Germany; (T.P.); (H.L.); (A.G.); (F.H.)
| | - Adrien Guillot
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, 13353 Berlin, Germany; (T.P.); (H.L.); (A.G.); (F.H.)
| | - Felix Heymann
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, 13353 Berlin, Germany; (T.P.); (H.L.); (A.G.); (F.H.)
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, 13353 Berlin, Germany; (T.P.); (H.L.); (A.G.); (F.H.)
- Correspondence: (F.T.); (M.P.)
| | - Moritz Peiseler
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, 13353 Berlin, Germany; (T.P.); (H.L.); (A.G.); (F.H.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- Correspondence: (F.T.); (M.P.)
| |
Collapse
|
21
|
Tao J, Yu XL, Yuan YJ, Shen X, Liu J, Gu PP, Wang Z, Ma YT, Li GQ. DMRT2 Interacts With FXR and Improves Insulin Resistance in Adipocytes and a Mouse Model. Front Endocrinol (Lausanne) 2022; 12:723623. [PMID: 35250844 PMCID: PMC8891600 DOI: 10.3389/fendo.2021.723623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Insulin resistance (IR) plays a critical role in cardiovascular diseases and metabolic diseases. In this study, we identified the downregulation of DMRT2 in adipose tissues from insulin-resistant subjects through bioinformatics analysis and in an insulin-resistant mouse model through experimental analysis. DMRT2 overexpression significantly attenuated HDF-induced insulin resistance and inflammation in mice. Moreover, in control and insulin-resistant differentiated mouse 3T3-L1 adipocytes, DMRT2 overexpression attenuated but DMRT2 knockdown enhanced the insulin resistance of 3T3-L1 adipocytes. DMRT2 interacted with FXR and positively regulated FXR level and transcription activity. In both control and insulin-resistant differentiated mouse 3T3-L1 adipocytes, FXR knockdown enhanced the insulin resistance and attenuated the effects of DMRT2 overexpression upon 3T3-L1 adipocyte insulin resistance. In conclusion, we identify the downregulation of DMRT2 in the insulin-resistant mouse model and cell model. DMRT2 interacts with FXR and improves insulin resistance in adipocytes.
Collapse
Affiliation(s)
- Jing Tao
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiao-Lin Yu
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Graduate School of Xinjiang Medical University, Urumqi, China
| | - Yu-Juan Yuan
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Graduate School of Xinjiang Medical University, Urumqi, China
| | - Xin Shen
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jun Liu
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Pei-Pei Gu
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhao Wang
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yi-Tong Ma
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guo-Qing Li
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
22
|
Little M, Dutta M, Li H, Matson A, Shi X, Mascarinas G, Molla B, Weigel K, Gu H, Mani S, Cui JY. Understanding the physiological functions of the host xenobiotic-sensing nuclear receptors PXR and CAR on the gut microbiome using genetically modified mice. Acta Pharm Sin B 2022; 12:801-820. [PMID: 35256948 PMCID: PMC8897037 DOI: 10.1016/j.apsb.2021.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/29/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Pharmacological activation of the xenobiotic-sensing nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) is well-known to increase drug metabolism and reduce inflammation. Little is known regarding their physiological functions on the gut microbiome. In this study, we discovered bivalent hormetic functions of PXR/CAR modulating the richness of the gut microbiome using genetically engineered mice. The absence of PXR or CAR increased microbial richness, and absence of both receptors synergistically increased microbial richness. PXR and CAR deficiency increased the pro-inflammatory bacteria Helicobacteraceae and Helicobacter. Deficiency in both PXR and CAR increased the relative abundance of Lactobacillus, which has bile salt hydrolase activity, corresponding to decreased primary taurine-conjugated bile acids (BAs) in feces, which may lead to higher internal burden of taurine and unconjugated BAs, both of which are linked to inflammation, oxidative stress, and cytotoxicity. The basal effect of PXR/CAR on the gut microbiome was distinct from pharmacological and toxicological activation of these receptors. Common PXR/CAR-targeted bacteria were identified, the majority of which were suppressed by these receptors. hPXR-TG mice had a distinct microbial profile as compared to wild-type mice. This study is the first to unveil the basal functions of PXR and CAR on the gut microbiome.
Collapse
Key Words
- BA, bile acid
- BSH, bile salt hydrolase
- Bile acids
- CA, cholic acid
- CAR
- CAR, constitutive androstane receptor
- CDCA, chenodeoxycholic acid
- CITCO, 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime
- CV, conventional
- CYP, cytochrome P450
- DCA, deoxycholic acid
- EGF, epidermal growth factor
- Feces
- GF, germ free
- GLP-1, glucagon-like peptide-1
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- Gut microbiome
- HDCA, hyodeoxycholic acid
- IBD, inflammatory bowel disease
- IFNγ, interferon-gamma
- IL, interleukin
- IS, internal standards
- Inflammation
- LCA, lithocholic acid
- LC–MS/MS, liquid chromatography–tandem mass spectrometry
- MCA, muricholic acid
- MCP-1, monocyte chemoattractant protein-1
- Mice
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NSAID, non-steroidal anti-inflammatory drug
- Nuclear receptor
- OH, hydroxylated
- OTUs, operational taxonomy units
- PA, indole-3 propionic acid
- PBDEs, polybrominated diphenyl ethers
- PCBs, polychlorinated biphenyls
- PCoA, Principle Coordinate Analysis
- PXR
- PXR, pregnane X receptor
- PiCRUSt, Phylogenetic Investigation of Communities by Reconstruction of Observed States
- QIIME, Quantitative Insights Into Microbial Ecology
- SCFAs, short-chain fatty acids
- SNP, single-nucleotide polymorphism
- SPF, specific-pathogen-free
- T, wild type
- T-, taurine conjugated
- TCPOBOP, 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene, 3,3′,5,5′-Tetrachloro-1,4-bis(pyridyloxy)benzene
- TGR-5, Takeda G-protein-coupled receptor 5
- TLR4, toll-like receptor 4
- TNF, tumor necrosis factor
- UDCA, ursodeoxycholic acid
- YAP, yes-associated protein
- hPXR-TG, humanized PXR transgenic
Collapse
Affiliation(s)
- Mallory Little
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Hao Li
- Department of Medicine, Molecular Pharmacology and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Adam Matson
- University of Connecticut, Hartford, CT 06106, USA
| | - Xiaojian Shi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Gabby Mascarinas
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Bruk Molla
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Kris Weigel
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Sridhar Mani
- Department of Medicine, Molecular Pharmacology and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
23
|
Guo S, Peng Y, Lou Y, Cao L, Liu J, Lin N, Cai S, Kang Y, Zeng S, Yu L. Downregulation of the farnesoid X receptor promotes colorectal tumorigenesis by facilitating enterotoxigenic Bacteroides fragilis colonization. Pharmacol Res 2022; 177:106101. [DOI: 10.1016/j.phrs.2022.106101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
|
24
|
Fang Y, Hegazy L, Finck BN, Elgendy B. Recent Advances in the Medicinal Chemistry of Farnesoid X Receptor. J Med Chem 2021; 64:17545-17571. [PMID: 34889100 DOI: 10.1021/acs.jmedchem.1c01017] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Farnesoid X receptor (FXR) is an important regulator of bile acid, lipid, amino acid, and glucose homeostasis, hepatic inflammation, regeneration, and fibrosis. FXR has been recognized as a promising drug target for various metabolic diseases such as lipid disorders, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), and chronic kidney disease. A large number of FXR ligands have been developed by pharmaceutical companies and academic institutions, and several candidates have progressed into clinical trials in the past decade. However, it is continually a challenge to discover drugs targeting FXR due to side effects associated with long-term administration. In this perspective, we summarize the research progress on medicinal chemistry of FXR modulators from 2018 to the present by discussing the diverse structures of synthetic FXR modulators including steroidal and non-steroidal ligands, their structure-activity relationships (SARs), and their therapeutic applications.
Collapse
Affiliation(s)
- Yuanying Fang
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States.,Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States
| | - Lamees Hegazy
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States.,Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States
| | - Brian N Finck
- Department of Medicine, Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Bahaa Elgendy
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States.,Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States.,Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
25
|
Wu J, Qiu M, Zhang C, Zhang C, Wang N, Zhao F, Lv L, Li J, Lyu-Bu AGA, Wang T, Zhao B, You S, Wu Y, Wang X. Type 3 resistant starch from Canna edulis modulates obesity and obesity-related low-grade systemic inflammation in mice by regulating gut microbiota composition and metabolism. Food Funct 2021; 12:12098-12114. [PMID: 34784410 DOI: 10.1039/d1fo02208c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Obesity is a most prevalent human health problem. Several studies showed that appropriate modulation of gut microbiota could help reshape the metabolic profile of obese individuals, thereby altering the development of obesity. A nutritional strategy for treating obesity includes prebiotics. Type 3 Resistant Starch from Canna edulis (Ce-RS3) is a dietary fiber that exerts potential effects on the intestinal microbial community; however, the metabolic landscape and anti-obesity mechanism remain unclear. In the present study, obese mice were treated with Ce-RS3, and 16S rRNA gene sequencing and metabolomics were used to measure changes in gut microbiota and fecal metabolic profiles, respectively. At the end of the treatment (13 weeks), we observed slow weight gain in the mice, and pathological damage and inflammation were substantially reduced. Ce-RS3 constructs a healthy gut microbiota structure and can enhance intestinal immunity and reduce metabolic inflammation. Ce-RS3 increased the diversity of gut microbiota with enrichment of Bifidobacterium and Roseburia. Ce-RS3 regulated the systemic metabolic dysbiosis in obese mice and adjusted 26 abnormal metabolites in amino acids and lipids metabolism, many of which are related to the microbiome. More importantly, we found that the anti-obesity effect of Ce-RS3 can be transferred by fecal transplantation. The beneficial effects of Ce-RS3 might derive from gut microbiota changes, which might improve obesity and metabolic inflammation by altering host-microbiota interactions with impacts on the metabolome. In conclusion, Ce-RS3 can be used as a prebiotic with potential value for the treatment of obesity.
Collapse
Affiliation(s)
- Jiahui Wu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| | - Minyi Qiu
- Medicament Department, Peking University People's Hospital, Beijing, 100044, China
| | - Chi Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| | - Caijuan Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Nan Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| | - Fangyuan Zhao
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| | - Liqiao Lv
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| | - Junling Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| | - A G A Lyu-Bu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shaowei You
- The Second Affiliated Hospital of Guizhou University of traditional Chinese Medicine, Guizhou, 550003, China
| | - Yuanhua Wu
- The First Affiliated Hospital of Guizhou University of traditional Chinese Medicine, Gouzhou, 550001, China
| | - Xueyong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
26
|
Chenodeoxycholic Acid Has Non-Thermogenic, Mitodynamic Anti-Obesity Effects in an In Vitro CRISPR/Cas9 Model of Bile Acid Receptor TGR5 Knockdown. Int J Mol Sci 2021; 22:ijms222111738. [PMID: 34769169 PMCID: PMC8584144 DOI: 10.3390/ijms222111738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/14/2023] Open
Abstract
Bile acids (BA) have shown promising effects in animal models of obesity. However, the said effects are thought to rely on a thermogenic effect, which is questionably present in humans. A previous work has shown that the BA chenodeoxycholic acid (CDCA) can revert obesity and accelerate metabolism in animal and cell culture models. Thus, the aim of this study was to understand if this obesity reduction is indeed thermogenically-dependent. A CRISPR/Cas9 model of TGR5 (BA receptor) knockdown in 3T3-L1 adipocytes was developed to diminish thermogenic effects. Various parameters were assessed, including mitochondrial bioenergetics by Seahorse flux analysis, oxidative stress and membrane potential by fluorometry, intermediary metabolism by NMR, protein content assessment by Western Blot, gene expression by qPCR, and confocal microscopy evaluation of mitophagy. CDCA was still capable, for the most part, of reversing the harmful effects of cellular obesity, elevating mitophagy and leading to the reduction of harmed mitochondria within the cells, boosting mitochondrial activity, and thus energy consumption. In summary, CDCA has a non-thermogenic, obesity reducing capacity that hinges on a healthy mitochondrial population, explaining at least some of these effects and opening avenues of human treatment for metabolic diseases.
Collapse
|
27
|
Effect of Gegen Qinlian Decoction on Hepatic Gluconeogenesis in ZDF Rats with Type 2 Diabetes Mellitus Based on the Farnesol X Receptor/Ceramide Signaling Pathway Regulating Mitochondrial Metabolism and Endoplasmic Reticulum Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9922292. [PMID: 34422083 PMCID: PMC8371656 DOI: 10.1155/2021/9922292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
Background Type 2 diabetes mellitus (T2DM) is a kind of disorder of glucose and lipid metabolism with the main clinical manifestation of long‐term higher blood glucose level than the normal value. Farnesol X receptor (FXR)/ceramide signaling pathway plays an important role in regulating cholesterol metabolism, lipid homeostasis, and the absorption of fat and vitamins in diet. Gegen Qinlian Decoction (GQD) is a classical herbal formula, which has a good clinical therapeutic effect on diabetes-related metabolic syndrome. Objective To investigate the effect of Gegen Qinlian Decoction (GQD) on hepatic gluconeogenesis in obese T2DM rats based on the FXR/ceramide signaling pathway regulating mitochondrial metabolism and endoplasmic reticulum stress (ERS). Methods ZDF (fa/fa) rats were fed with high-fat diet to establish the T2DM model; GQD was given to T2DM model rats by gavage; changes of the general state and body weight of rats were recorded; fasting blood glucose was detected; blood insulin, blood ceramide, glycosylated hemoglobin in blood, acetyl CoA in liver mitochondria, and bile salt lyase in intestinal tissue were detected by ELISA. The content of T-β-MCA in blood was detected by LC-MS; the content of glycogen in liver tissue was detected by PAS staining; the expression of FXR, Sptlc2, and Smpd3 in ileum tissue, P-PERK, ATF6α, GRP78 BIP, and P-IRE1 in the liver, and CS and PC protein in liver mitochondria was detected by immunohistochemistry and western blot assay. The mRNA expression levels of FXR, Sptlc2, and Smpd3 in the ileum, PERK, ATF6α, GRP78 BIP, and IRE1 in the liver, and CS and PC in liver mitochondria were detected by qRT-PCR. Results GQD can improve the general state of T2DM rats, slow down their weight gain, reduce the levels of fasting blood glucose, fasting insulin, glycosylated hemoglobin, blood ceramide, bile salt hydrolase in intestinal tissue, and acetyl CoA in liver mitochondria of T2DM rats, and increase the contents of liver glycogen and T-β-MCA in blood of T2DM rats. At the molecular level, GQD can inhibit the expression levels of FXR, Sptlc2, and Smpd3 in the ileum of T2DM rats and the protein and mRNA expression levels of oxidative stress-related factors in the liver. At the same time, GQD can increase the expression of CS and reduce the expression of PC in liver mitochondria of T2DM rats. Conclusion GQD can inhibit the FXR/ceramide signaling pathway, regulate endoplasmic reticulum stress, enhance the CS activity of liver mitochondria, reduce the acetyl CoA level and PC activity of liver mitochondria, inhibit hepatic gluconeogenesis, protect islet β-cells, and control blood glucose.
Collapse
|
28
|
Visekruna A, Luu M. The Role of Short-Chain Fatty Acids and Bile Acids in Intestinal and Liver Function, Inflammation, and Carcinogenesis. Front Cell Dev Biol 2021; 9:703218. [PMID: 34381785 PMCID: PMC8352571 DOI: 10.3389/fcell.2021.703218] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
During the past decade, researchers have investigated the role of microbiota in health and disease. Recent findings support the hypothesis that commensal bacteria and in particular microbiota-derived metabolites have an impact on development of inflammation and carcinogenesis. Major classes of microbial-derived molecules such as short-chain fatty acids (SCFA) and secondary bile acids (BAs) were shown to have immunomodulatory potential in various autoimmune, inflammatory as well as cancerous disease models and are dependent on diet-derived substrates. The versatile mechanisms underlying both beneficial and detrimental effects of bacterial metabolites comprise diverse regulatory pathways in lymphocytes and non-immune cells including changes in the signaling, metabolic and epigenetic status of these. Consequently, SCFAs as strong modulators of immunometabolism and histone deacetylase (HDAC) inhibitors have been investigated as therapeutic agents attenuating inflammatory and autoimmune disorders. Moreover, BAs were shown to modulate the microbial composition, adaptive and innate immune response. In this review, we will discuss the recent findings in the field of microbiota-derived metabolites, especially with respect to the molecular and cellular mechanisms of SCFA and BA biology in the context of intestinal and liver diseases.
Collapse
Affiliation(s)
- Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Maik Luu
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany.,Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|
29
|
Girisa S, Henamayee S, Parama D, Rana V, Dutta U, Kunnumakkara AB. Targeting Farnesoid X receptor (FXR) for developing novel therapeutics against cancer. MOLECULAR BIOMEDICINE 2021; 2:21. [PMID: 35006466 PMCID: PMC8607382 DOI: 10.1186/s43556-021-00035-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the lethal diseases that arise due to the molecular alterations in the cell. One of those alterations associated with cancer corresponds to differential expression of Farnesoid X receptor (FXR), a nuclear receptor regulating bile, cholesterol homeostasis, lipid, and glucose metabolism. FXR is known to regulate several diseases, including cancer and cardiovascular diseases, the two highly reported causes of mortality globally. Recent studies have shown the association of FXR overexpression with cancer development and progression in different types of cancers of breast, lung, pancreas, and oesophagus. It has also been associated with tissue-specific and cell-specific roles in various cancers. It has been shown to modulate several cell-signalling pathways such as EGFR/ERK, NF-κB, p38/MAPK, PI3K/AKT, Wnt/β-catenin, and JAK/STAT along with their targets such as caspases, MMPs, cyclins; tumour suppressor proteins like p53, C/EBPβ, and p-Rb; various cytokines; EMT markers; and many more. Therefore, FXR has high potential as novel biomarkers for the diagnosis, prognosis, and therapy of cancer. Thus, the present review focuses on the diverse role of FXR in different cancers and its agonists and antagonists.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sahu Henamayee
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Dey Parama
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Varsha Rana
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam, 781001, India.
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
30
|
Seidu T, McWhorter P, Myer J, Alamgir R, Eregha N, Bogle D, Lofton T, Ecelbarger C, Andrisse S. DHT causes liver steatosis via transcriptional regulation of SCAP in normal weight female mice. J Endocrinol 2021; 250:49-65. [PMID: 34060475 PMCID: PMC8240729 DOI: 10.1530/joe-21-0040] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Hyperandrogenemia (HA) is a hallmark of polycystic ovary syndrome (PCOS) and is an integral element of non-alcoholic fatty liver disease (NALFD) in females. Administering low-dose dihydrotestosterone (DHT) induced a normal weight PCOS-like female mouse model displaying NAFLD. The molecular mechanism of HA-induced NAFLD has not been fully determined. We hypothesized that DHT would regulate hepatic lipid metabolism via increased SREBP1 expression leading to NAFLD. We extracted liver from control and low-dose DHT female mice; and performed histological and biochemical lipid profiles, Western blot, immunoprecipitation, chromatin immunoprecipitation, and real-time quantitative PCR analyses. DHT lowered the 65 kD form of cytosolic SREBP1 in the liver compared to controls. However, DHT did not alter the levels of SREBP2 in the liver. DHT mice displayed increased SCAP protein expression and SCAP-SREBP1 binding compared to controls. DHT mice exhibited increased AR binding to intron-8 of SCAP leading to increased SCAP mRNA compared to controls. FAS mRNA and protein expression was increased in the liver of DHT mice compared to controls. p-ACC levels were unaltered in the liver. Other lipid metabolism pathways were examined in the liver, but no changes were observed. Our findings support evidence that DHT increased de novo lipogenic proteins resulting in increased hepatic lipid content via regulation of SREBP1 in the liver. We show that in the presence of DHT, the SCAP-SREBP1 interaction was elevated leading to increased nuclear SREBP1 resulting in increased de novo lipogenesis. We propose that the mechanism of action may be increased AR binding to an ARE in SCAP intron-8.
Collapse
Affiliation(s)
- Tina Seidu
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Patrick McWhorter
- Department of Chemistry, Youngstown State University, Youngstown, Ohio, USA
| | - Jessie Myer
- Department of Biology, University of Missouri, Columbia, Missouri, USA
| | - Rabita Alamgir
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Nicole Eregha
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Dilip Bogle
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Taylor Lofton
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Carolyn Ecelbarger
- Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Stanley Andrisse
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Correspondence should be addressed to S Andrisse:
| |
Collapse
|
31
|
Luan Z, Qiao F, Zhao W, Ming W, Yu Z, Liu J, Dai S, Jiang S, Lian C, Sun C, Zhang B, Zheng J, Ma S, Ma X. Discovery of New Iridoids as Farnesoid X Receptor Agonists from
Morinda officinalis
: Agonistic Potentials and Molecular Stimulation. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Zhi‐Lin Luan
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Fei Qiao
- National Institutes for Food and Drug Control Beijing 102629 China
| | - Wen‐Yu Zhao
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Wen‐Hua Ming
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Zhen‐Long Yu
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Jie Liu
- National Institutes for Food and Drug Control Beijing 102629 China
| | - Sheng‐Yun Dai
- National Institutes for Food and Drug Control Beijing 102629 China
| | - Shuang‐Hui Jiang
- National Institutes for Food and Drug Control Beijing 102629 China
| | - Chao‐Jie Lian
- National Institutes for Food and Drug Control Beijing 102629 China
| | - Cheng‐Peng Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Bao‐Jing Zhang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Jian Zheng
- National Institutes for Food and Drug Control Beijing 102629 China
| | - Shuang‐Cheng Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Xiao‐Chi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| |
Collapse
|
32
|
Negi CK, Khan S, Dirven H, Bajard L, Bláha L. Flame Retardants-Mediated Interferon Signaling in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:ijms22084282. [PMID: 33924165 PMCID: PMC8074384 DOI: 10.3390/ijms22084282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing concern worldwide, affecting 25% of the global population. NAFLD is a multifactorial disease with a broad spectrum of pathology includes steatosis, which gradually progresses to a more severe condition such as nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually leads to hepatic cancer. Several risk factors, including exposure to environmental toxicants, are involved in the development and progression of NAFLD. Environmental factors may promote the development and progression of NAFLD by various biological alterations, including mitochondrial dysfunction, reactive oxygen species production, nuclear receptors dysregulation, and interference in inflammatory and immune-mediated signaling. Moreover, environmental contaminants can influence immune responses by impairing the immune system’s components and, ultimately, disease susceptibility. Flame retardants (FRs) are anthropogenic chemicals or mixtures that are being used to inhibit or delay the spread of fire. FRs have been employed in several household and outdoor products; therefore, human exposure is unavoidable. In this review, we summarized the potential mechanisms of FRs-associated immune and inflammatory signaling and their possible contribution to the development and progression of NAFLD, with an emphasis on FRs-mediated interferon signaling. Knowledge gaps are identified, and emerging pharmacotherapeutic molecules targeting the immune and inflammatory signaling for NAFLD are also discussed.
Collapse
Affiliation(s)
- Chander K. Negi
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
- Correspondence: or
| | - Sabbir Khan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| | - Hubert Dirven
- Department of Environmental Health, Section for Toxicology and Risk Assessment, Norwegian Institute of Public Health, 0456 Oslo, Norway;
| | - Lola Bajard
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
| | - Luděk Bláha
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
| |
Collapse
|
33
|
Zeigerer A, Sekar R, Kleinert M, Nason S, Habegger KM, Müller TD. Glucagon's Metabolic Action in Health and Disease. Compr Physiol 2021; 11:1759-1783. [PMID: 33792899 PMCID: PMC8513137 DOI: 10.1002/cphy.c200013] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Discovered almost simultaneously with insulin, glucagon is a pleiotropic hormone with metabolic action that goes far beyond its classical role to increase blood glucose. Albeit best known for its ability to directly act on the liver to increase de novo glucose production and to inhibit glycogen breakdown, glucagon lowers body weight by decreasing food intake and by increasing metabolic rate. Glucagon further promotes lipolysis and lipid oxidation and has positive chronotropic and inotropic effects in the heart. Interestingly, recent decades have witnessed a remarkable renaissance of glucagon's biology with the acknowledgment that glucagon has pharmacological value beyond its classical use as rescue medication to treat severe hypoglycemia. In this article, we summarize the multifaceted nature of glucagon with a special focus on its hepatic action and discuss the pharmacological potential of either agonizing or antagonizing the glucagon receptor for health and disease. © 2021 American Physiological Society. Compr Physiol 11:1759-1783, 2021.
Collapse
Affiliation(s)
- Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Revathi Sekar
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Maximilian Kleinert
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Shelly Nason
- Comprehensive Diabetes Center, Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kirk M. Habegger
- Comprehensive Diabetes Center, Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Timo D. Müller
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
34
|
Shen H, Ding L, Baig M, Tian J, Wang Y, Huang W. Improving glucose and lipids metabolism: drug development based on bile acid related targets. Cell Stress 2021; 5:1-18. [PMID: 33447732 PMCID: PMC7784708 DOI: 10.15698/cst2021.01.239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bariatric surgery is one of the most effective treatment options for severe obesity and its comorbidities. However, it is a major surgery that poses several side effects and risks which impede its clinical use. Therefore, it is urgent to develop alternative safer pharmacological approaches to mimic bariatric surgery. Recent studies suggest that bile acids are key players in mediating the metabolic benefits of bariatric surgery. Bile acids can function as signaling molecules by targeting bile acid nuclear receptors and membrane receptors, like FXR and TGR5 respectively. In addition, the composition of bile acids is regulated by either the hepatic sterol enzymes such as CYP8B1 or the gut microbiome. These bile acid related targets all play important roles in regulating metabolism. Drug development based on these targets could provide new hope for patients without the risks of surgery and at a lower cost. In this review, we summarize the most updated progress on bile acid related targets and development of small molecules as drug candidates based on these targets.
Collapse
Affiliation(s)
- Hanchen Shen
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Department of Diabetes Complications and Metabolism, Institute of Diabetes and Metabolism Research Center, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Mehdi Baig
- Department of Diabetes Complications and Metabolism, Institute of Diabetes and Metabolism Research Center, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Jingyan Tian
- Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Institute of Diabetes and Metabolism Research Center, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
35
|
Zhang C, Wang Z, Feng Q, Chen WD, Wang YD. Farnesoid X receptor: a potential therapeutic target in multiple organs. Histol Histopathol 2021; 35:1403-1414. [PMID: 33393073 DOI: 10.14670/hh-18-301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Farnesoid X receptor (FXR), a member of the nuclear receptor family, is a common receptor found in the intestine and liver, and helps to maintain systemic metabolic homeostasis through regulating bile acid, glucose, lipid metabolism, and energy homeostatsis. In addition, FXR regulates the functions of various organs, such as liver, intestine, kidney, breast, pancreas, cardiovascular system and brain. FXR also plays a key role in regulation of gut-microbiota through mediating the various signaling pathways. Accordingly, FXR has become an attractive therapeutic target in a variety of diseases. This review combines classical and recent research reports to introduce the basic information about FXR and its important roles in various organs of the body.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Zixuan Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Qingqing Feng
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Wei-Dong Chen
- Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China.,Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, the People's Hospital of Hebi, School of Medicine, Henan University, Henan, PR China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China.
| |
Collapse
|
36
|
Ding L, Xu ZJ, Shi HH, Xue CH, Huang QR, Yanagita T, Wang YM, Zhang TT. Sterol sulfate alleviates atherosclerosis via mediating hepatic cholesterol metabolism in ApoE -/- mice. Food Funct 2021; 12:4887-4896. [PMID: 33977967 DOI: 10.1039/d0fo03266b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Compared with terrestrial organisms, the sterols in sea cucumber exhibit a sulfate group at the C-3 position. Our previous study demonstrated that dietary sterol sulfate was superior to phytosterol in alleviating metabolic syndrome by ameliorating inflammation and mediating cholesterol metabolism in high-fat-high-fructose diet mice, which indicated its potential anti-atherosclerosis bioactivity. In the present study, administration with sea cucumber-derived sterol sulfate (SCS) significantly decreased the cholesterol level in oleic acid/palmitic acid-treated HepG2 cells, while no significant changes were observed in the triacylglycerol level. RNA-seq analysis showed that the metabolic changes were mostly attributed to the steroid biosynthesis pathway. ApoE-/- mice were used as an atherosclerosis model to further investigate the regulation of SCS on cholesterol metabolism. The results showed that SCS supplementation dramatically reduced atherosclerotic lesions by 45% and serum low-density lipoprotein cholesterol levels by 59% compared with the model group. Dietary SCS inhibited hepatic cholesterol synthesis via downregulating SREBP-2 and HMGCR. Meanwhile, SCS administration increased cholesterol uptake via enhancing the expression of Vldlr and Ldlr. Noticeably, SCS supplementation altered bile acid profiles in the liver, serum, gallbladder and feces, which might cause the activation of FXR in the liver. These findings provided new evidence about the high bioactivity of sterols with the sulfate group on atherosclerosis.
Collapse
Affiliation(s)
- Lin Ding
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Zhen-Jing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China. and Laboratory of Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, P.R. China
| | - Qing-Rong Huang
- Rutgers, The State University of New Jersey, Department of Food Science, 65 Dudley Road, New Brunswick, New Jersey 08901, USA
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga 8408502, Japan
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China. and Laboratory of Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, P.R. China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| |
Collapse
|
37
|
Role of Farnesoid X Receptor in the Pathogenesis of Respiratory Diseases. Can Respir J 2020; 2020:9137251. [PMID: 33294085 PMCID: PMC7714608 DOI: 10.1155/2020/9137251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Farnesoid X receptor (FXR) is a bile acid receptor encoded by the Nr1h4 gene. FXR plays an important role in maintaining the stability of the internal environment and the integrity of many organs, including the liver and intestines. The expression of FXR in nondigestible tissues other than in the liver and small intestine is known as the expression of “nonclassical” bile acid target organs, such as blood vessels and lungs. In recent years, several studies have shown that FXR is widely involved in the pathogenesis of various respiratory diseases, such as chronic obstructive pulmonary disease, bronchial asthma, and idiopathic pulmonary fibrosis. Moreover, a number of works have confirmed that FXR can regulate the bile acid metabolism in the body and exert its anti-inflammatory and antifibrotic effects in the airways and lungs. In addition, FXR may be used as a potential therapeutic target for some respiratory diseases. For example, FXR can regulate the tumor microenvironment by regulating the balance of inflammatory and immune responses in the body to promote the occurrence and development of non-small-cell lung cancer (NSCLC), thereby being considered a potential target for immunotherapy of NSCLC. In this article, we provide an overview of the internal relationship between FXR and respiratory diseases to track the progress that has been achieved thus far in this direction and suggest potential therapeutic prospects of FXR in respiratory diseases.
Collapse
|
38
|
Wang M, Zhao H, Wen X, Ho CT, Li S. Citrus flavonoids and the intestinal barrier: Interactions and effects. Compr Rev Food Sci Food Saf 2020; 20:225-251. [PMID: 33443802 DOI: 10.1111/1541-4337.12652] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/19/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022]
Abstract
The intestinal barrier plays a central role in sustaining gut homeostasis and, when dysfunctional, may contribute to diseases. Dietary flavonoids derived from Citrus genus represent one of the main naturally occurring phytochemicals with multiple potential benefits for the intestinal barrier function. In the intestine, citrus flavonoids (CFs) undergo ingestion from the lumen, biotransformation in the epithelial cells and/or crosstalk with luminal microbiota to afford various metabolites that may in turn exert protective actions on gut barrier along with their parental compounds. Specifically, the health-promoting properties of CFs and their metabolic bioactives for the intestinal barrier include their capacity to (a) modulate barrier permeability; (b) protect mucus layer; (c) regulate intestinal immune system; (d) fight against oxidative stress; and (e) positively shape microbiome and metabolome. Notably, local effects of CFs can also generate systemic benefits, for instance, improvement of gut microbial dysbiosis helpful to orchestrate gut homeostasis and leading to alleviation of systemic dysmetabolism. Given the important role of the intestinal barrier in overall health, further understanding of underlying action mechanisms and ultimate health effects of CFs as well as their metabolites on the intestine is of great significance to future application of citrus plants and their bioactives as dietary supplements and/or functional ingredients in medical foods.
Collapse
Affiliation(s)
- Meiyan Wang
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Xiang Wen
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.,Hubei Key Laboratory for EFGIR, Huanggang Normal University, Hubei, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey
| | - Shiming Li
- Hubei Key Laboratory for EFGIR, Huanggang Normal University, Hubei, China.,Department of Food Science, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
39
|
Li C, Yang J, Wang Y, Qi Y, Yang W, Li Y. Farnesoid X Receptor Agonists as Therapeutic Target for Cardiometabolic Diseases. Front Pharmacol 2020; 11:1247. [PMID: 32982723 PMCID: PMC7479173 DOI: 10.3389/fphar.2020.01247] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiometabolic diseases are characterized as a combination of multiple risk factors for cardiovascular disease (CVD) and metabolic diseases including diabetes mellitus and dyslipidemia. Cardiometabolic diseases are closely associated with cell glucose and lipid metabolism, inflammatory response and mitochondrial function. Farnesoid X Receptor (FXR), a metabolic nuclear receptor, are found to be activated by primary BAs such as chenodeoxycholic acid (CDCA), cholic acid (CA) and synthetic agonists such as obeticholic acid (OCA). FXR plays crucial roles in regulating cholesterol homeostasis, lipid metabolism, glucose metabolism, and intestinal microorganism. Recently, emerging evidence suggests that FXR agonists are functional for metabolic syndrome and cardiovascular diseases and are considered as a potential therapeutic agent. This review will discuss the pathological mechanism of cardiometabolic disease and reviews the potential mechanisms of FXR agonists in the treatment of cardiometabolic disease.
Collapse
Affiliation(s)
- Chao Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Yang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Wang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingzi Qi
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenqing Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunlun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China.,Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
40
|
An Overview of Lipid Metabolism and Nonalcoholic Fatty Liver Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4020249. [PMID: 32733940 PMCID: PMC7383338 DOI: 10.1155/2020/4020249] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/14/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
The occurrence of nonalcoholic fatty liver disease (NAFLD) is associated with major abnormalities of hepatic lipid metabolism. We propose that lipid abnormalities directly or indirectly contribute to NAFLD, especially fatty acid accumulation, arachidonic acid metabolic disturbance, and ceramide overload. The effects of lipid intake and accumulation on NAFLD and NAFLD treatment are explained with theoretical and experimental details. Overall, these findings provide further understanding of lipid metabolism in NAFLD and may lead to novel therapies.
Collapse
|
41
|
Péan N, Le Lay A, Brial F, Wasserscheid J, Rouch C, Vincent M, Myridakis A, Hedjazi L, Dumas ME, Grundberg E, Lathrop M, Magnan C, Dewar K, Gauguier D. Dominant gut Prevotella copri in gastrectomised non-obese diabetic Goto-Kakizaki rats improves glucose homeostasis through enhanced FXR signalling. Diabetologia 2020; 63:1223-1235. [PMID: 32173762 PMCID: PMC7228998 DOI: 10.1007/s00125-020-05122-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Drug and surgical-based therapies in type 2 diabetes are associated with altered gut microbiota architecture. Here we investigated the role of the gut microbiome in improved glucose homeostasis following bariatric surgery. METHODS We carried out gut microbiome analyses in gastrectomised (by vertical sleeve gastrectomy [VSG]) rats of the Goto-Kakizaki (GK) non-obese model of spontaneously occurring type 2 diabetes, followed by physiological studies in the GK rat. RESULTS VSG in the GK rat led to permanent improvement of glucose tolerance associated with minor changes in the gut microbiome, mostly characterised by significant enrichment of caecal Prevotella copri. Gut microbiota enrichment with P. copri in GK rats through permissive antibiotic treatment, inoculation of gut microbiota isolated from gastrectomised GK rats, and direct inoculation of P. copri, resulted in significant improvement of glucose tolerance, independent of changes in body weight. Plasma bile acids were increased in GK rats following inoculation with P. copri and P. copri-enriched microbiota from VSG-treated rats; the inoculated GK rats then showed increased liver glycogen and upregulated expression of Fxr (also known as Nr1h4), Srebf1c, Chrebp (also known as Mlxipl) and Il10 and downregulated expression of Cyp7a1. CONCLUSIONS Our data underline the impact of intestinal P. copri on improved glucose homeostasis through enhanced bile acid metabolism and farnesoid X receptor (FXR) signalling, which may represent a promising opportunity for novel type 2 diabetes therapeutics.
Collapse
Affiliation(s)
- Noémie Péan
- Inserm UMR 1124, Université de Paris, 45 rue des Saint-Pères, 75006, Paris, France
| | - Aurelie Le Lay
- Inserm UMR 1124, Université de Paris, 45 rue des Saint-Pères, 75006, Paris, France
| | - Francois Brial
- Inserm UMR 1124, Université de Paris, 45 rue des Saint-Pères, 75006, Paris, France
| | - Jessica Wasserscheid
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Claude Rouch
- Unit of Functional and Adaptive Biology, UMR 8251, CNRS, Université de Paris, 4 rue Marie Andrée Lagroua Weill-Halle, Paris, France
| | - Mylène Vincent
- Unit of Functional and Adaptive Biology, UMR 8251, CNRS, Université de Paris, 4 rue Marie Andrée Lagroua Weill-Halle, Paris, France
| | - Antonis Myridakis
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | | | - Marc-Emmanuel Dumas
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Elin Grundberg
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Christophe Magnan
- Unit of Functional and Adaptive Biology, UMR 8251, CNRS, Université de Paris, 4 rue Marie Andrée Lagroua Weill-Halle, Paris, France
| | - Ken Dewar
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada.
| | - Dominique Gauguier
- Inserm UMR 1124, Université de Paris, 45 rue des Saint-Pères, 75006, Paris, France.
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada.
| |
Collapse
|
42
|
Feng X, Zhu C, Lee S, Gao J, Zhu P, Yamauchi J, Pan C, Singh S, Qu S, Miller R, Monga SP, Peng Y, Dong HH. Depletion of hepatic forkhead box O1 does not affect cholelithiasis in male and female mice. J Biol Chem 2020; 295:7003-7017. [PMID: 32273342 DOI: 10.1074/jbc.ra119.012272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/07/2020] [Indexed: 11/06/2022] Open
Abstract
Cholelithiasis is one of the most prevalent gastroenterological diseases and is characterized by the formation of gallstones in the gallbladder. Both clinical and preclinical data indicate that obesity, along with comorbidity insulin resistance, is a predisposing factor for cholelithiasis. Forkhead box O1 (FoxO1) is a key transcription factor that integrates insulin signaling with hepatic metabolism and becomes deregulated in the insulin-resistant liver, contributing to dyslipidemia in obesity. To gain mechanistic insights into how insulin resistance is linked to cholelithiasis, here we determined FoxO1's role in bile acid homeostasis and its contribution to cholelithiasis. We hypothesized that hepatic FoxO1 deregulation links insulin resistance to impaired bile acid metabolism and cholelithiasis. To address this hypothesis, we used the FoxO1LoxP/LoxP-Albumin-Cre system to generate liver-specific FoxO1-knockout mice. FoxO1-knockout mice and age- and sex-matched WT littermates were fed a lithogenic diet, and bile acid metabolism and gallstone formation were assessed in these animals. We showed that FoxO1 affected bile acid homeostasis by regulating hepatic expression of key enzymes in bile acid synthesis and in biliary cholesterol and phospholipid secretion. Furthermore, FoxO1 inhibited hepatic expression of the bile acid receptor farnesoid X receptor and thereby counteracted hepatic farnesoid X receptor signaling. Nonetheless, hepatic FoxO1 depletion neither affected the onset of gallstone disease nor impacted the disease progression, as FoxO1-knockout and control mice of both sexes had similar gallstone weights and incidence rates. These results argue against the notion that FoxO1 is a link between insulin resistance and cholelithiasis.
Collapse
Affiliation(s)
- Xiaoyun Feng
- Division of Endocrinology and Diabetes, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224.,Department of Endocrinology & Metabolism, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Cuiling Zhu
- Division of Endocrinology and Diabetes, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224.,Department of Endocrinology & Metabolism, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Sojin Lee
- Division of Endocrinology and Diabetes, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Jingyang Gao
- Division of Endocrinology and Diabetes, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224.,Department of Endocrinology & Metabolism, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ping Zhu
- Division of Endocrinology and Diabetes, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224.,Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Medical College of Jinan University, Guangzhou 510220, China
| | - Jun Yamauchi
- Division of Endocrinology and Diabetes, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Chenglin Pan
- Division of Endocrinology and Diabetes, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224.,Department of Pediatrics, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Sucha Singh
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224.,Pittsburgh Liver Research Center, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Shen Qu
- Department of Endocrinology & Metabolism, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Rita Miller
- Division of Endocrinology and Diabetes, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224.,Pittsburgh Liver Research Center, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Yongde Peng
- Department of Endocrinology & Metabolism, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - H Henry Dong
- Division of Endocrinology and Diabetes, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224 .,Pittsburgh Liver Research Center, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| |
Collapse
|
43
|
Voronova V, Sokolov V, Al-Khaifi A, Straniero S, Kumar C, Peskov K, Helmlinger G, Rudling M, Angelin B. A Physiology-Based Model of Bile Acid Distribution and Metabolism Under Healthy and Pathologic Conditions in Human Beings. Cell Mol Gastroenterol Hepatol 2020; 10:149-170. [PMID: 32112828 PMCID: PMC7240226 DOI: 10.1016/j.jcmgh.2020.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Disturbances of the enterohepatic circulation of bile acids (BAs) are seen in a number of clinically important conditions, including metabolic disorders, hepatic impairment, diarrhea, and gallstone disease. To facilitate the exploration of underlying pathogenic mechanisms, we developed a mathematical model built on quantitative physiological observations across different organs. METHODS The model consists of a set of kinetic equations describing the syntheses of cholic, chenodeoxycholic, and deoxycholic acids, as well as time-related changes of their respective free and conjugated forms in the systemic circulation, the hepatoportal region, and the gastrointestinal tract. The core structure of the model was adapted from previous modeling research and updated based on recent mechanistic insights, including farnesoid X receptor-mediated autoregulation of BA synthesis and selective transport mechanisms. The model was calibrated against existing data on BA distribution and feedback regulation. RESULTS According to model-based predictions, changes in intestinal motility, BA absorption, and biotransformation rates affected BA composition and distribution differently, as follows: (1) inhibition of transintestinal BA flux (eg, in patients with BA malabsorption) or acceleration of intestinal motility, followed by farnesoid X receptor down-regulation, was associated with colonic BA accumulation; (2) in contrast, modulation of the colonic absorption process was predicted to not affect the BA pool significantly; and (3) activation of ileal deconjugation (eg, in patents with small intestinal bacterial overgrowth) was associated with an increase in the BA pool, owing to higher ileal permeability of unconjugated BA species. CONCLUSIONS This model will be useful in further studying how BA enterohepatic circulation modulation may be exploited for therapeutic benefits.
Collapse
Affiliation(s)
- Veronika Voronova
- Department of Pharmacological Modeling, M&S Decisions, Moscow, Russia,Correspondence Address correspondence to: Veronika Voronova, M&S Decisions 125167, Naryshkinskaya Alley, 5, Building 1, Moscow, Russian Federation. fax: +7(495)7975535.
| | - Victor Sokolov
- Department of Pharmacological Modeling, M&S Decisions, Moscow, Russia
| | - Amani Al-Khaifi
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden,Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden,Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Sara Straniero
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden,Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Chanchal Kumar
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden,Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Kirill Peskov
- Department of Pharmacological Modeling, M&S Decisions, Moscow, Russia,Computational Oncology Group, Sechenov First Moscow State Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Gabriel Helmlinger
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Boston, Massachusetts
| | - Mats Rudling
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden,Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Bo Angelin
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden,Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
44
|
Miele L, Biolato M, Conte C, Mangiola F, Liguori A, Gasbarrini A, Grieco A. Etiopathogenesis of NAFLD: Diet, Gut, and NASH. NON-ALCOHOLIC FATTY LIVER DISEASE 2020:73-95. [DOI: 10.1007/978-3-319-95828-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
45
|
Han CY, Rho HS, Kim A, Kim TH, Jang K, Jun DW, Kim JW, Kim B, Kim SG. FXR Inhibits Endoplasmic Reticulum Stress-Induced NLRP3 Inflammasome in Hepatocytes and Ameliorates Liver Injury. Cell Rep 2019; 24:2985-2999. [PMID: 30208322 DOI: 10.1016/j.celrep.2018.07.068] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is associated with liver injury and fibrosis, and yet the hepatic factors that regulate ER stress-mediated inflammasome activation remain unknown. Here, we report that farnesoid X receptor (FXR) activation inhibits ER stress-induced NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome in hepatocytes. In patients with hepatitis B virus (HBV)-associated hepatic failure or non-alcoholic fatty liver disease, and in mice with liver injury, FXR levels in the liver inversely correlated with the extent of NLRP3 inflammasome activation. Fxr deficiency in mice augmented the ability of ER stress to induce NLRP3 and thioredoxin-interacting protein (TXNIP), whereas FXR ligand activation prevented it, ameliorating liver injury. FXR attenuates CCAAT-enhancer-binding protein homologous protein (CHOP)-dependent NLRP3 overexpression by inhibiting ER stress-mediated protein kinase RNA-like endoplasmic reticulum kinase (PERK) activation. Our findings implicate miR-186 and its target, non-catalytic region of tyrosine kinase adaptor protein 1 (NCK1), in mediating the inhibition of ER stress by FXR. This study provides the insights on how FXR regulation of ER stress ameliorates hepatocyte death and liver injury and on the molecular basis of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Chang Yeob Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; Department of Pharmacology, School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| | - Hyun Soo Rho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Ayoung Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Tae Hyun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University School of Medicine, Seoul 04763, Korea
| | - Dae Won Jun
- Internal Medicine, Hanyang University School of Medicine, Seoul 04763, Korea
| | - Jong Won Kim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Korea
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Korea
| | - Sang Geon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
46
|
Garcia M, Thirouard L, Monrose M, Holota H, De Haze A, Caira F, Beaudoin C, Volle DH. Farnesoid X receptor alpha (FXRα) is a critical actor of the development and pathologies of the male reproductive system. Cell Mol Life Sci 2019; 76:4849-4859. [PMID: 31407019 PMCID: PMC11105758 DOI: 10.1007/s00018-019-03247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/01/2022]
Abstract
The farnesoid-X-receptorα (FXRα; NR1H4) is one of the main bile acid (BA) receptors. During the last decades, through the use of pharmalogical approaches and transgenic mouse models, it has been demonstrated that the nuclear receptor FXRα controls numerous physiological functions such as glucose or energy metabolisms. It is also involved in the etiology or the development of several pathologies. Here, we will review the unexpected roles of FXRα on the male reproductive tract. FXRα has been demonstrated to play functions in the regulation of testicular and prostate homeostasis. Even though additional studies are needed to confirm these findings in humans, the reviewed reports open new field of research to better define the effects of bile acid-FXRα signaling pathways on fertility disorders and cancers.
Collapse
Affiliation(s)
- Manon Garcia
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Laura Thirouard
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Mélusine Monrose
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Hélène Holota
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Angélique De Haze
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Françoise Caira
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France
| | - Claude Beaudoin
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France.
| | - David H Volle
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, 28 Place Henri Dunant, 63001, Clermont-Ferrand, France.
| |
Collapse
|
47
|
Kleinert M, Sachs S, Habegger KM, Hofmann SM, Müller TD. Glucagon Regulation of Energy Expenditure. Int J Mol Sci 2019; 20:ijms20215407. [PMID: 31671603 PMCID: PMC6862306 DOI: 10.3390/ijms20215407] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Glucagon's ability to increase energy expenditure has been known for more than 60 years, yet the mechanisms underlining glucagon's thermogenic effect still remain largely elusive. Over the last years, significant efforts were directed to unravel the physiological and cellular underpinnings of how glucagon regulates energy expenditure. In this review, we summarize the current knowledge on how glucagon regulates systems metabolism with a special emphasis on its acute and chronic thermogenic effects.
Collapse
Affiliation(s)
- Maximilian Kleinert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Centre Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Stephan Sachs
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Centre Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
- Division of Metabolic Diseases, Technische Universität München, 85740 Munich, Germany.
| | - Kirk M Habegger
- Department of Medicine-Endocrinology and Comprehensive Diabetes Center, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35899, USA.
| | - Susanna M Hofmann
- Institute for Diabetes and Regeneration, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
- Medizinische Klinik und Poliklinik IV, Klinikum der LMU, 80336 München, Germany.
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Centre Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, 72076 Tübingen, Germany.
| |
Collapse
|
48
|
Sittipo P, Shim JW, Lee YK. Microbial Metabolites Determine Host Health and the Status of Some Diseases. Int J Mol Sci 2019; 20:ijms20215296. [PMID: 31653062 PMCID: PMC6862038 DOI: 10.3390/ijms20215296] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract is a highly complex organ composed of the intestinal epithelium layer, intestinal microbiota, and local immune system. Intestinal microbiota residing in the GI tract engages in a mutualistic relationship with the host. Different sections of the GI tract contain distinct proportions of the intestinal microbiota, resulting in the presence of unique bacterial products in each GI section. The intestinal microbiota converts ingested nutrients into metabolites that target either the intestinal microbiota population or host cells. Metabolites act as messengers of information between the intestinal microbiota and host cells. The intestinal microbiota composition and resulting metabolites thus impact host development, health, and pathogenesis. Many recent studies have focused on modulation of the gut microbiota and their metabolites to improve host health and prevent or treat diseases. In this review, we focus on the production of microbial metabolites, their biological impact on the intestinal microbiota composition and host cells, and the effect of microbial metabolites that contribute to improvements in inflammatory bowel diseases and metabolic diseases. Understanding the role of microbial metabolites in protection against disease might offer an intriguing approach to regulate disease.
Collapse
Affiliation(s)
- Panida Sittipo
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea.
| | - Jae-Won Shim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea.
| | - Yun Kyung Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea.
| |
Collapse
|
49
|
Cao Y, Xiao Y, Zhou K, Yan J, Wang P, Yan W, Cai W. FXR agonist GW4064 improves liver and intestinal pathology and alters bile acid metabolism in rats undergoing small intestinal resection. Am J Physiol Gastrointest Liver Physiol 2019; 317:G108-G115. [PMID: 30920307 DOI: 10.1152/ajpgi.00356.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mortality associated with liver disease has been observed in patients with short bowel syndrome (SBS); however, its mechanism remains unclear, but bile acid (BA) dysmetabolism has been proposed as a possible cause. The farnesoid X receptor (FXR) is the key regulator of BA synthesis. Here, we showed that, in a rat model of short bowel resection associated with liver disease (SBR-ALD), the BA composition of hepatic tissues reflected a larger proportion of primary and secondary unconjugated BAs, whereas that of the colon contents and serum showed an increased ratio of secondary unconjugated BAs. Both hepatic and intestinal regulation of BA synthesis was characterized by a blunted hepatic FXR activation response. The mRNA expression levels of cholesterol 7a-hydroxylase (CYP7A1), sterol 12a-hydroxylase (CYP8B1), and sterol 27 hydroxylase (CYP27A1), the key enzymes in BA synthesis, were upregulated. After intervention with the FXR agonist GW4064, both the liver histology and serum transaminase activity were improved, which demonstrated the attenuation of SBR-ALD. The BA compositions of hepatic tissue, the colon contents, and serum recovered and were closer to those of the sham group. The expression levels of hepatic FXR increased, and its target genes were activated. Consistent with this, the expression levels of CYP7A1, CYP8B1, and CYP27A1 were downregulated. Ileum tissue FXR and its target genes were slightly elevated. This study showed that the FXR agonist GW4064 could correct BA dysmetabolism to alleviate hepatotoxicity in SBR animals. GW4064 intervention resulted in a decrease in fecal bile excretion and elevated plasma/hepatic conjugated BA levels. GW4064 increased the reabsorption of conjugated BAs by inducing apical sodium-dependent bile salt transporter expression in the ileum. Concomitantly, FXR activation in the presence of GW4064 decreased BA production by repressing the expression of key synthetases, including CYP7A1, CYP8B1, and CYP27A1. These findings provide a clinical research direction for the prevention of liver disease in patients with SBS.NEW & NOTEWORTHY This study assessed the impact of treatment with GW4064, a farnesoid X receptor agonist, on the development of short bowel resection (SBR) associated with liver disease in a rat model of SBR. GW4064 was able to correct bile acid dysmetabolism and alleviate hepatotoxicity in SBR animals.
Collapse
Affiliation(s)
- Yi Cao
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yongtao Xiao
- Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - KeJun Zhou
- Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Junkai Yan
- Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Panliang Wang
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Weihui Yan
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
50
|
Manka P, Zeller A, Syn WK. Fibrosis in Chronic Liver Disease: An Update on Diagnostic and Treatment Modalities. Drugs 2019; 79:903-927. [DOI: 10.1007/s40265-019-01126-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|