1
|
Xu HL, Li XY, Jia MQ, Ma QP, Zhang YH, Liu FH, Qin Y, Chen YH, Li Y, Chen XY, Xu YL, Li DR, Wang DD, Huang DH, Xiao Q, Zhao YH, Gao S, Qin X, Tao T, Gong TT, Wu QJ. AI-Derived Blood Biomarkers for Ovarian Cancer Diagnosis: Systematic Review and Meta-Analysis. J Med Internet Res 2025; 27:e67922. [PMID: 40126546 PMCID: PMC11976184 DOI: 10.2196/67922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Emerging evidence underscores the potential application of artificial intelligence (AI) in discovering noninvasive blood biomarkers. However, the diagnostic value of AI-derived blood biomarkers for ovarian cancer (OC) remains inconsistent. OBJECTIVE We aimed to evaluate the research quality and the validity of AI-based blood biomarkers in OC diagnosis. METHODS A systematic search was performed in the MEDLINE, Embase, IEEE Xplore, PubMed, Web of Science, and the Cochrane Library databases. Studies examining the diagnostic accuracy of AI in discovering OC blood biomarkers were identified. The risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies-AI tool. Pooled sensitivity, specificity, and area under the curve (AUC) were estimated using a bivariate model for the diagnostic meta-analysis. RESULTS A total of 40 studies were ultimately included. Most (n=31, 78%) included studies were evaluated as low risk of bias. Overall, the pooled sensitivity, specificity, and AUC were 85% (95% CI 83%-87%), 91% (95% CI 90%-92%), and 0.95 (95% CI 0.92-0.96), respectively. For contingency tables with the highest accuracy, the pooled sensitivity, specificity, and AUC were 95% (95% CI 90%-97%), 97% (95% CI 95%-98%), and 0.99 (95% CI 0.98-1.00), respectively. Stratification by AI algorithms revealed higher sensitivity and specificity in studies using machine learning (sensitivity=85% and specificity=92%) compared to those using deep learning (sensitivity=77% and specificity=85%). In addition, studies using serum reported substantially higher sensitivity (94%) and specificity (96%) than those using plasma (sensitivity=83% and specificity=91%). Stratification by external validation demonstrated significantly higher specificity in studies with external validation (specificity=94%) compared to those without external validation (specificity=89%), while the reverse was observed for sensitivity (74% vs 90%). No publication bias was detected in this meta-analysis. CONCLUSIONS AI algorithms demonstrate satisfactory performance in the diagnosis of OC using blood biomarkers and are anticipated to become an effective diagnostic modality in the future, potentially avoiding unnecessary surgeries. Future research is warranted to incorporate external validation into AI diagnostic models, as well as to prioritize the adoption of deep learning methodologies. TRIAL REGISTRATION PROSPERO CRD42023481232; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023481232.
Collapse
Affiliation(s)
- He-Li Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, ShenYang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, ShenYang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, ShenYang, China
| | - Xiao-Ying Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, ShenYang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, ShenYang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, ShenYang, China
| | - Ming-Qian Jia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, ShenYang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, ShenYang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, ShenYang, China
- Department of Epidemiology, School of Public Health, China Medical University, ShenYang, China
| | - Qi-Peng Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, ShenYang, China
| | - Ying-Hua Zhang
- Department of Undergraduate, Shengjing Hospital of China Medical University, ShenYang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, ShenYang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, ShenYang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, ShenYang, China
| | - Ying Qin
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, ShenYang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, ShenYang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, ShenYang, China
- Department of Epidemiology, School of Public Health, China Medical University, ShenYang, China
| | - Yu-Han Chen
- Department of Epidemiology, School of Public Health, China Medical University, ShenYang, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, ShenYang, China
| | - Yu Li
- Department of Epidemiology, School of Public Health, China Medical University, ShenYang, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, ShenYang, China
| | - Xi-Yang Chen
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, ShenYang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, ShenYang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, ShenYang, China
- Department of Epidemiology, School of Public Health, China Medical University, ShenYang, China
| | - Yi-Lin Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, ShenYang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, ShenYang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, ShenYang, China
| | - Dong-Run Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, ShenYang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, ShenYang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, ShenYang, China
| | - Dong-Dong Wang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, ShenYang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, ShenYang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, ShenYang, China
- Department of Epidemiology, School of Public Health, China Medical University, ShenYang, China
| | - Dong-Hui Huang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, ShenYang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, ShenYang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, ShenYang, China
| | - Qian Xiao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, ShenYang, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, ShenYang, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, ShenYang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, ShenYang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, ShenYang, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, ShenYang, China
| | - Xue Qin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, ShenYang, China
| | - Tao Tao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, ShenYang, China
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, ShenYang, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, ShenYang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, ShenYang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, ShenYang, China
- Department of Epidemiology, School of Public Health, China Medical University, ShenYang, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, ShenYang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, ShenYang, China
| |
Collapse
|
2
|
Cao Z, Jiang X, He Y, Zheng X. Metabolic landscape in venous thrombosis: insights into molecular biology and therapeutic implications. Ann Med 2024; 56:2401112. [PMID: 39297312 DOI: 10.1080/07853890.2024.2401112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/20/2024] [Accepted: 05/12/2024] [Indexed: 09/21/2024] Open
Abstract
The findings of the last decade suggest a complex link between inflammatory cells, coagulation, and the activation of platelets and their synergistic interaction to promote venous thrombosis. Inflammation is present throughout the process of venous thrombosis, and various metabolic pathways of erythrocytes, endothelial cells, and immune cells involved in venous thrombosis, including glucose metabolism, lipid metabolism, homocysteine metabolism, and oxidative stress, are associated with inflammation. While the metabolic microenvironment has been identified as a marker of malignancy, recent studies have revealed that for cancer thrombosis, alterations in the metabolic microenvironment appear to also be a potential risk. In this review, we discuss how the synergy between metabolism and thrombosis drives thrombotic disease. We also explore the great potential of anti-inflammatory strategies targeting venous thrombosis and the complex link between anti-inflammation and metabolism. Furthermore, we suggest how we can use our existing knowledge to reduce the risk of venous thrombosis.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiyu He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoxin Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Aihemaiti G, Song N, Luo J, Liu F, Toyizibai J, Adili N, Liu C, Ji W, Yang YN, Li X. Targeting lncRNA MALAT1: A Promising Approach to Overcome Metabolic Syndrome. Int J Endocrinol 2024; 2024:1821252. [PMID: 39502508 PMCID: PMC11535177 DOI: 10.1155/2024/1821252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 08/20/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Metabolic syndrome (MetS) is a collection of metabolic abnormalities including insulin resistance, atherogenic dyslipidemia, central obesity, and hypertension. Recently, long noncoding RNAs (lncRNAs) have emerged as pivotal regulators of metabolic balance, influencing the genes associated with MetS. Although the prevalence of insulin resistance is rising, leading to an increased risk of type 2 diabetes mellitus (T2DM) and its vascular complications, there is still a notable gap in understanding the role of lncRNAs in the context of clinical diabetes. Among lncRNAs, lung adenocarcinoma metastasis-associated transcript 1 (MALAT1) has been identified as a significant regulator of metabolism-related disorders, including T2DM and cardiovascular disease (CVD). This review explores the mechanism of lncRNA MALAT1 and suggests that targeting it could offer a promising strategy to combat MetS, thereby enhancing the prognosis of MetS.
Collapse
Affiliation(s)
- Gulandanmu Aihemaiti
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ning Song
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Junyi Luo
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fen Liu
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianaerguli Toyizibai
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Niyaziaili Adili
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chang Liu
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wei Ji
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yi-Ning Yang
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiaomei Li
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
4
|
Li W, Dong H, Niu K, Wang HY, Cheng W, Song H, Ying AK, Zhai X, Li K, Yu H, Guo DS, Wang Y. Analyzing urinary hippuric acid as a metabolic health biomarker through a supramolecular architecture. Talanta 2024; 278:126480. [PMID: 38972275 DOI: 10.1016/j.talanta.2024.126480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
The prevalence of metabolic disorders has been found to increase concomitantly with alternations in habitual diet and lifestyle, indicating the importance of metabolic health monitoring for early warning of high-risk status and suggesting effective intervention strategies. Hippuric acid (HA), as one of the most abundant metabolites from the gut microbiota, holds potential as a regulator of metabolic health. Accordingly, it is imperative to establish an efficient, sensitive, and affordable method for large-scale population monitoring, revealing the association between HA level and metabolic disorders. Upon systematic screening of macrocycle•dye reporter pair, a supramolecular architecture (guanidinomethyl-modified calix[5]arene, GMC5A) was employed to sense urinary HA by employing fluorescein (Fl), whose complexation behavior was demonstrated by theoretical calculations, accomplishing quantification of HA in urine from 249 volunteers in the range of 0.10 mM and 10.93 mM. Excitedly, by restricted cubic spline, urinary HA concentration was found to have a significantly negative correlation with the risk of metabolic disorders when it exceeded 0.76 mM, suggesting the importance of dietary habits, especially the consumption of fruits, coffee, and tea, which was unveiled from a simple questionnaire survey. In this study, we accomplished a high throughput and sensitive detection of urinary HA based on supramolecular sensing with the GMC5A•Fl reporter pair, which sheds light on the rapid quantification of urinary HA as an indicator of metabolic health status and early intervention by balancing the daily diet.
Collapse
Affiliation(s)
- Wenhui Li
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hua Dong
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Kejing Niu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Huan-Yu Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Wenqian Cheng
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hualong Song
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - An-Kang Ying
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Xiaobing Zhai
- Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Kefeng Li
- Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Huijuan Yu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Yuefei Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
5
|
Gu F, Shen X, Wang Z, Xie Z, Ke N. Preoperative metabolic syndrome and prognosis after pancreatectomy for pancreatic cancer: A retrospective study. World J Surg 2024; 48:2224-2234. [PMID: 38973012 DOI: 10.1002/wjs.12263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/24/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND We conducted a retrospective study to investigate the impact of metabolic syndrome (MetS), its individual components, and the number of metabolic risk factors on the prognosis of pancreatic cancer (PC) following pancreatectomy. METHODS MetS was defined as meeting any three of the following criteria: (1) waist circumference ≥85 cm in men or ≥80 cm in women; (2) triglycerides ≥150 mg/dL or receiving drug treatment for elevated triglycerides; (3) high-density lipoprotein cholesterol <40 mg/dL in men or <50 mg/dL in women or receiving drug treatment for reduced HDL-C; (4) systolic blood pressure ≥130 mmHg and/or diastolic blood pressure ≥85 mmHg or receiving drug treatment for hypertension; and (5) fasting glucose, (FG) ≥100 mg/dL or receiving drug treatment for elevated glucose. The hazard ratio (HR) and 95% confidence interval (CI) were calculated by the Cox regression model. RESULTS Six hundred and seven patients who underwent radical resection for PC were enrolled in this study. Among them, 352 patients presented with preoperative MetS. MetS was associated with shorter overall survival (OS) but not with shorter disease-free survival (DFS). The adjusted HR (95% CI) for the poor OS in patients with 3, 4, and 5 metabolic risk components (vs. ≤ 2) were 1.32 (1.03-1.84), 1.64 (1.18-2.29), and 1.96 (1.27-3.04), respectively (p < 0.05). Elevated FG emerged as a significant predictor for poor OS and DFS. CONCLUSIONS This study highlights that preoperative MetS serves as a significant predictor for OS in patients with PC, with its predictive value escalating as the number of metabolic risk components increases.
Collapse
Affiliation(s)
- Fenglin Gu
- Department of General Surgery, Division of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoding Shen
- Department of General Surgery, Division of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziyao Wang
- Department of General Surgery, Division of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zerong Xie
- Department of General Surgery, Division of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of General Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nengwen Ke
- Department of General Surgery, Division of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
7
|
Alwahsh M, Alejel R, Hasan A, Abuzaid H, Al-Qirim T. The Application of Metabolomics in Hyperlipidemia: Insights into Biomarker Discovery and Treatment Efficacy Assessment. Metabolites 2024; 14:438. [PMID: 39195534 DOI: 10.3390/metabo14080438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Hyperlipidemia is a lipid metabolism disorder that refers to increased levels of total triglycerides (TGs), cholesterol (TC), and low-density lipoprotein-cholesterol (LDL-C) and decreased levels of high-density lipoprotein-cholesterol (HDL-C). It is a major public health issue with increased prevalence and incidence worldwide. The ability to identify individuals at risk of this disorder before symptoms manifest will facilitate timely intervention and management to avert potential complications. This can be achieved by employing metabolomics as an early detection method for the diagnostic biomarkers of hyperlipidemia. Metabolomics is an analytical approach used to detect and quantify metabolites. This provides the ability to explain the metabolic processes involved in the development and progression of certain diseases. In recent years, interest in the use of metabolomics to identify disease biomarkers has increased, and several biomarkers have been discovered, such as docosahexaenoic acid, glycocholic acid, citric acid, betaine, and carnitine. This review discusses the primary metabolic alterations in the context of hyperlipidemia. Furthermore, we provide an overview of recent studies on the application of metabolomics to the assessment of the efficacy of traditional herbal products and common lipid-lowering medications.
Collapse
Affiliation(s)
- Mohammad Alwahsh
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 17138, Jordan
| | - Rahaf Alejel
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 17138, Jordan
| | - Aya Hasan
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 17138, Jordan
| | - Haneen Abuzaid
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 17138, Jordan
| | - Tariq Al-Qirim
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 17138, Jordan
| |
Collapse
|
8
|
Zahedi AS, Zarkesh M, Sedaghati-khayat B, Hedayati M, Azizi F, Daneshpour MS. Insulin resistance-related circulating predictive markers in the metabolic syndrome: a systematic review in the Iranian population. J Diabetes Metab Disord 2024; 23:199-213. [PMID: 38932859 PMCID: PMC11196549 DOI: 10.1007/s40200-023-01347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/08/2023] [Indexed: 06/28/2024]
Abstract
Background Specific biomarkers for metabolic syndrome (MetS) may improve diagnostic specificity for clinical information. One of the main pathophysiological mechanisms of MetS is insulin resistance (IR). This systematic review aimed to summarize IR-related biomarkers that predict MetS and have been investigated in Iranian populations. Methods An electronic literature search was done using the PubMed and Scopus databases up to June 2022. The risk of bias was assessed for the selected articles using the instrument suggested by the Joanna Briggs Institute (JBI). This systematic review protocol was registered with PROSPERO (registration number CRD42022372415). Results Among the reviewed articles, 46 studies investigated the association between IR biomarkers and MetS in the Iranian population. The selected studies were published between 2009 and 2022, with the majority being conducted on adults and seven on children and adolescents. The adult treatment panel III (ATP III) was the most commonly used criteria to define MetS. At least four studies were conducted for each IR biomarker, with LDL-C being the most frequently evaluated biomarker. Some studies have assessed the diagnostic potency of markers using the area under the curve (AUC) with sensitivity, specificity, and an optimal cut-off value. Among the reported values, lipid ratios and the difference between non-HDL-C and LDL-C levels showed the highest AUCs (≥ 0.80) for predicting MetS. Conclusions Considering the findings of the reviewed studies, fasting insulin, HOMA-IR, leptin, HbA1c, and visfatin levels were positively associated with MetS, whereas adiponectin and ghrelin levels were negatively correlated with this syndrome. Among the investigated IR biomarkers, the association between adiponectin levels and components of MetS was well established. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01347-6.
Collapse
Affiliation(s)
- Asiyeh Sadat Zahedi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahar Sedaghati-khayat
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Zhang L, Tan D, Zhang Y, Ding Y, Liang H, Zhang G, Xie Z, Sun N, Wang C, Xiao B, Zhang H, Li L, Zhao X, Zeng Y. Ceramides and metabolic profiles of patients with acute coronary disease: a cross-sectional study. Front Physiol 2023; 14:1177765. [PMID: 38146506 PMCID: PMC10749667 DOI: 10.3389/fphys.2023.1177765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/19/2023] [Indexed: 12/27/2023] Open
Abstract
Metabolic Syndrome (MS) is a rapidly growing medical problem worldwide and is characterized by a cluster of age-related metabolic risk factors. The presence of MS increases the likelihood of developing atherosclerosis and significantly raises the morbidity/mortality rate of acute coronary syndrome (ACS) patients. Early detection of MS is crucial, and biomarkers, particularly blood-based, play a vital role in this process. This cross-sectional study focused on the investigation of certain plasma ceramides (Cer14:0, Cer16:0, Cer18:0, Cer20:0, Cer22:0, and Cer24:1) as potential blood biomarkers for MS due to their previously documented dysregulated function in MS patients. A total of 695 ACS patients were enrolled, with 286 diagnosed with MS (ACS-MS) and 409 without MS (ACS-nonMS) serving as the control group. Plasma ceramide concentrations were measured by LC-MS/MS assay and analyzed through various statistical methods. The results revealed that Cer18:0, Cer20:0, Cer22:0, and Cer24:1 were significantly correlated with the presence of MS risk factors. Upon further examination, Cer18:0 emerged as a promising biomarker for early MS detection and risk stratification, as its plasma concentration showed a significant sensitivity to minor changes in MS risk status in participants. This cross-sectional observational study was a secondary analysis of a multicenter prospective observational cohort study (Chinese Clinical Trial Registry, https://www.who.int/clinical-trials-registry-platform/network/primary-registries/chinese-clinical-trial-registry-(chictr), ChiCTR-2200056697), conducted from April 2021 to August 2022.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
- Heart Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Dawei Tan
- Department of Invasive Technology, Emergency General Hospital, Beijing, China
| | - Yang Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Yaodong Ding
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Huiqing Liang
- Department of Cardiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Gong Zhang
- Department of Cardiology, Beijing Daxing District People’s Hospital, Beijing, China
| | - Zhijiang Xie
- Department of Cardiology, Handan First Hospital, Handan, China
| | - Nian Sun
- Beijing Health Biotechnology Co., Ltd., Beijing, China
| | - Chunjing Wang
- Beijing Health Biotechnology Co., Ltd., Beijing, China
| | - Bingxin Xiao
- Beijing Health Biotechnology Co., Ltd., Beijing, China
| | - Hanzhong Zhang
- Beijing 21st Century International School, Beijing, China
| | - Lin Li
- Beijing Health Biotechnology Co., Ltd., Beijing, China
| | - Xiufeng Zhao
- Department of Cardiology, Handan First Hospital, Handan, China
| | - Yong Zeng
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
da Silva PHCM, Santos KDF, da Silva L, da Costa CCP, Santos RDS, Reis AADS. MicroRNAs Associated with the Pathophysiological Mechanisms of Gestational Diabetes Mellitus: A Systematic Review for Building a Panel of miRNAs. J Pers Med 2023; 13:1126. [PMID: 37511739 PMCID: PMC10381583 DOI: 10.3390/jpm13071126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
miRNAs, a class of small non-coding RNAs, play a role in post-transcriptional gene expression. Therefore, this study aimed to conduct a systematic review of miRNAs associated with GDM to build a panel of miRNAs. A bibliographic search was carried out in the PubMed/Medline, Virtual Health Library (VHL), Web of Science, and EMBASE databases, selecting observational studies in English without time restriction. The protocol was registered on the PROSPERO platform (number CRD42021291791). Fifty-five studies were included in this systematic review, and 82 altered miRNAs in GDM were identified. In addition, four miRNAs were most frequently dysregulated in GDM (mir-16-5p, mir-20a-5p, mir-222-3p, and mir-330-3p). The dysregulation of these miRNAs is associated with the mechanisms of cell cycle homeostasis, growth, and proliferation of pancreatic β cells, glucose uptake and metabolism, insulin secretion, and resistance. On the other hand, identifying miRNAs associated with GDM and elucidating its main mechanisms can assist in the characterization and definition of potential biomarkers for the diagnosis and treatment of GDM.
Collapse
Affiliation(s)
- Pedro Henrique Costa Matos da Silva
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
| | - Kamilla de Faria Santos
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
| | - Laura da Silva
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
| | - Caroline Christine Pincela da Costa
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
| | - Rodrigo da Silva Santos
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil
| | - Angela Adamski da Silva Reis
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil
| |
Collapse
|
11
|
Dye CK, Domingo-Relloso A, Kupsco A, Tinkelman NE, Spratlen MJ, Bozack AK, Tellez-Plaza M, Goessler W, Haack K, Umans JG, Baccarelli AA, Cole SA, Navas-Acien A. Maternal DNA methylation signatures of arsenic exposure is associated with adult offspring insulin resistance in the Strong Heart Study. ENVIRONMENT INTERNATIONAL 2023; 173:107774. [PMID: 36805808 PMCID: PMC10166110 DOI: 10.1016/j.envint.2023.107774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/16/2022] [Accepted: 01/20/2023] [Indexed: 05/10/2023]
Abstract
Exposure to low to moderate arsenic (As) levels has been associated with type 2 diabetes (T2D) and other chronic diseases in American Indian communities. Prenatal exposure to As may also increase the risk for T2D in adulthood, and maternal As has been associated with adult offspring metabolic health measurements. We hypothesized that T2D-related outcomes in adult offspring born to women exposed to low to moderate As can be evaluated utilizing a maternally-derived molecular biosignature of As exposure. Herein, we evaluated the association of maternal DNA methylation with incident T2D and insulin resistance (Homeostatic model assessment of insulin resistance [HOMA2-IR]) in adult offspring. For DNA methylation, we used 20 differentially methylated cytosine-guanine dinucleotides (CpG) previously associated with the sum of inorganic and methylated As species (ΣAs) in urine in the Strong Heart Study (SHS). Of these 20 CpGs, we found six CpGs nominally associated (p < 0.05) with HOMA2-IR in a fully adjusted model that included clinically relevant covariates and offspring adiposity measurements; a similar model that adjusted instead for maternal adiposity measurements found three CpGs nominally associated with HOMA2-IR, two of which overlapped the offspring adiposity model. After adjusting for multiple comparisons, cg03036214 remained associated with HOMA2-IR (q < 0.10) in the offspring adiposity model. The odds ratio of incident T2D increased with an increase in maternal DNA methylation at one HOMA2-IR associated CpG in the model adjusting for offspring adiposity, cg12116137, whereas adjusting for maternal adiposity had a minimal effect on the association. Our data suggests offspring adiposity, rather than maternal adiposity, potentially influences the effects of maternal DNAm signatures on offspring metabolic health parameters. Here, we have presented evidence supporting a role for epigenetic biosignatures of maternal As exposure as a potential biomarker for evaluating risk of T2D-related outcomes in offspring later in life.
Collapse
Affiliation(s)
- Christian K Dye
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA.
| | - Arce Domingo-Relloso
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA; Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain
| | - Allison Kupsco
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Naomi E Tinkelman
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Miranda J Spratlen
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Anne K Bozack
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain
| | | | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Jason G Umans
- MedStar Health Research Institute, Washington, DC, USA; Center for Clinical and Translational Sciences, Georgetown-Howard Universities, Washington, DC, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| |
Collapse
|
12
|
Gayathri R, Abirami K, Kalpana N, Manasa VS, Sudha V, Shobana S, Jeevan RG, Kavitha V, Parkavi K, Anjana RM, Unnikrishnan R, Gokulakrishnan K, Beatrice DA, Krishnaswamy K, Pradeepa R, Mattes RD, Salas-Salvadó J, Willett W, Mohan V. Effect of almond consumption on insulin sensitivity and serum lipids among Asian Indian adults with overweight and obesity- A randomized controlled trial. Front Nutr 2023; 9:1055923. [PMID: 36704786 PMCID: PMC9873375 DOI: 10.3389/fnut.2022.1055923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Asian Indians have an increased susceptibility to type 2 diabetes and premature coronary artery disease. Nuts, like almonds, are rich in unsaturated fat and micronutrients with known health benefits. OBJECTIVES This study aimed to assess the efficacy of almonds for reduction of insulin resistance and improving lipid profile in overweight Asian Indian adults. METHODS This parallel-arm, randomized, controlled trial was conducted in Chennai, India on 400 participants aged 25-65 years with a body mass index ≥ 23 kg/m2. The intervention group received 43 g of almonds/day for 12 weeks, while the control group was advised to consume a customary diet but to avoid nuts. Anthropometric, clinical, and dietary data were assessed at periodic intervals. Glucose tolerance, serum insulin, glycated hemoglobin, C-peptide and lipid profile were assessed at baseline and end of the study. Insulin resistance (homeostasis assessment model-HOMA IR) and oral insulin disposition index (DIo) were calculated. RESULTS A total of 352 participants completed the study. Significant improvement was seen in DIo [mean (95% CI) = + 0.7 mmol/L (0.1, 1.3); p = 0.03], HOMA IR (-0.4 (-0.7, -0.04; p = 0.03) and total cholesterol (-5.4 mg/dl (-10.2, -0.6); p = 0.03) in the intervention group compared to the control group. Incremental area under the curve (IAUC) and mean amplitude of glycemic excursion (MAGE) assessed using continuous glucose monitoring systems were also significantly lower in the intervention group. Dietary 24-h recalls showed a higher significant reduction in carbohydrate and increase in mono unsaturated fatty acid (MUFA) and polyunsaturated fatty acids (PUFA) intake in the intervention group compared to the control group. CONCLUSION Daily consumption of almonds increased the intake of MUFA with decrease in carbohydrate calories and decreases insulin resistance, improves insulin sensitivity and lowers serum cholesterol in Asian Indians with overweight/obesity. These effects in the long run could aid in reducing the risk of diabetes and other cardiometabolic disease.
Collapse
Affiliation(s)
- Rajagopal Gayathri
- Department of Foods Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
- Department of Biochemistry, University of Madras, Chennai, Tamil Nadu, India
| | - Kuzhandhaivelu Abirami
- Department of Foods Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Natarajan Kalpana
- Department of Foods Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Valangaiman Sriram Manasa
- Department of Foods Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Vasudevan Sudha
- Department of Foods Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Shanmugam Shobana
- Department of Diabetes Food Technology, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Raman Ganesh Jeevan
- Department of Diabetes Food Technology, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Vasudevan Kavitha
- Department of Foods Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Karthikeyan Parkavi
- Department of Diabetes Food Technology, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Ranjit Mohan Anjana
- Department of Diabetology, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Ranjit Unnikrishnan
- Department of Diabetology, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Kuppan Gokulakrishnan
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - D. Annette Beatrice
- Department of Home Science, Women’s Christian College, Chennai, Tamil Nadu, India
| | - Kamala Krishnaswamy
- Department of Foods Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Rajendra Pradeepa
- Department of Research Operations, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| | - Richard D. Mattes
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Jordi Salas-Salvadó
- Human Nutrition Unit, Department of Biochemistry and Biotechnology, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Walter Willett
- Department of Nutrition, Harvard School of Public Health, Boston, MA, United States
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States
| | - Viswanathan Mohan
- Department of Diabetology, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India
| |
Collapse
|
13
|
Frías-Zepeda ME, Rosales-Castro M, Escalona-Cardoso GN, Paniagua-Castro N. Ethanolic extract of Lippia graveolens stem reduce biochemical markers in a murine model with metabolic syndrome. Saudi J Biol Sci 2022; 29:103422. [PMID: 36117783 PMCID: PMC9474558 DOI: 10.1016/j.sjbs.2022.103422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/09/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic Syndrome (MetS) is a risk to develop metabolic-chronic degenerative disease, it is important to find natural alternatives to help decrease the risk. Mexican oregano has a traditional use in Mexican food, moreover, has pharmacologic effects that can help to reduce risk the metabolic syndrome. The aim of this work was to determine the effect of Mexican oregano ethanolic extract in metabolic syndrome in murine model. Ethanolic extract of Mexican oregano (Lippia graveolens) stem (Ext) had a favorable effect on biochemical markers in a murine model of MetS, induced by injection of monosodium glutamate (MSG). From newborn female mice, two groups were formed: control and the MSG groups, which received a dosage of 2 mg/kg of MSG via subcutaneous injection at the second and fourth postnatal day (PD 2,4), and 4 mg/kg at the PD 6, 8, 10 to induce obesity. On week 13, a part of the MSG group received Ext (group MSG + Ext) at 300 mg/kg, administered orally daily from week 13 to week 18. The results indicated that ethanolic extract of Lippia graveolens stem decreases the percentage of body fat, waist circumference, and body weight gain as well as cholesterol, serum triglyceride concentrations and systolic and diastolic pressure. Insulin and leptin hormone values showed a significant effect with the Ext administration. However, hepatic lipoperoxidation levels of MSG and MSG + Ext groups did not show any statistically significant differences between them, both being higher than the control group. Taking in consideration the results obtained in this study, it is concluded that the administration of Ext had a beneficial effect in the murine model with MetS. This is the first study demonstrating the potential of the polar fraction Lippia graveolens stem in MetS.
Collapse
Affiliation(s)
| | | | | | - Norma Paniagua-Castro
- Instituto Politécnico Nacional-ENCB- Ciudad de México, Physiology Department, Mexico
| |
Collapse
|
14
|
Shabbir R, Hayat Malik MN, Zaib M, Alamgeer, Jahan S, Khan MT. Amino Acid Conjugates of 2-Mercaptobenzimidazole Ameliorates High-Fat Diet-Induced Hyperlipidemia in Rats via Attenuation of HMGCR, APOB, and PCSK9. ACS OMEGA 2022; 7:40502-40511. [PMID: 36385864 PMCID: PMC9647896 DOI: 10.1021/acsomega.2c05735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/19/2022] [Indexed: 07/28/2023]
Abstract
PURPOSE This study was designed to explore the antihyperlipidemic effects of amino acid derivatives of 2-mercaptobenzimidazole (4J and 4K) in high-fat diet (HFD)-fed rats. METHODS Male Sprague-Dawley rats were divided into nine groups which received either standard diet or HFD for 28 days. Blood samples were taken on 27th day from HFD-fed rats to ensure hyperlipidemia. HFD-induced hyperlipidemic rats later received daily dosing of either vehicle or simvastatin (SIM; 20 mg/kg) or 4J/4K compounds (10, 20, and 30 mg/kg) for 12 consecutive days. On 40th day, animals were sacrificed, and blood samples were collected for the determination of serum lipid profile and liver function parameters. Liver samples were harvested for histopathological, antioxidant, and qPCR analyses. Molecular docking of tested compounds with HMGCR was also performed to assess the binding affinities. RESULTS 4J and 4K dose dependently decreased serum total cholesterol, triglycerides, low-density lipoprotein, very low-density lipoproteins, alanine transaminase (ALT), and aspartate aminotransferase (AST) levels while significantly alleviated high-density lipoproteins. However, SIM failed to reduce AST and ALT levels. Moreover, tested compounds displayed antioxidant effects by inducing superoxide dismutase and glutathione levels. Histopathology data also displayed protective effects of 4J and 4K against HFD-induced fatty changes and hepatic damage. In addition, 4J and 4K downregulated transcript levels of HMGCR, APOB, PCSK9, and VCAM1, and molecular docking analysis also supported the experimental data. CONCLUSION It is conceivable from this study that 4J and 4K exert their antihyperlipidemic effects by modulating multiple targets regulating lipid levels.
Collapse
Affiliation(s)
- Ramla Shabbir
- Department
of Pharmacology, Faculty of Pharmacy, The
University of Lahore, Lahore 54590, Pakistan
| | | | - Maryam Zaib
- Department
of Pharmacology, Faculty of Pharmacy, The
University of Lahore, Lahore 54590, Pakistan
| | - Alamgeer
- University
College of Pharmacy, University of the Punjab, Lahore 54590, Pakistan
| | - Shah Jahan
- Department
of Immunology, University of Health Sciences, Lahore 54600, Pakistan
| | - Muhammad Tariq Khan
- Department
of Pharmacy, Capital University of Science
and Technology, Islamabad 44000, Pakistan
| |
Collapse
|
15
|
Dalle C, Tournayre J, Mainka M, Basiak-Rasała A, Pétéra M, Lefèvre-Arbogast S, Dalloux-Chioccioli J, Deschasaux-Tanguy M, Lécuyer L, Kesse-Guyot E, Fezeu LK, Hercberg S, Galan P, Samieri C, Zatońska K, Calder PC, Fiil Hjorth M, Astrup A, Mazur A, Bertrand-Michel J, Schebb NH, Szuba A, Touvier M, Newman JW, Gladine C. The Plasma Oxylipin Signature Provides a Deep Phenotyping of Metabolic Syndrome Complementary to the Clinical Criteria. Int J Mol Sci 2022; 23:ijms231911688. [PMID: 36232991 PMCID: PMC9570185 DOI: 10.3390/ijms231911688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022] Open
Abstract
Metabolic syndrome (MetS) is a complex condition encompassing a constellation of cardiometabolic abnormalities. Oxylipins are a superfamily of lipid mediators regulating many cardiometabolic functions. Plasma oxylipin signature could provide a new clinical tool to enhance the phenotyping of MetS pathophysiology. A high-throughput validated mass spectrometry method, allowing for the quantitative profiling of over 130 oxylipins, was applied to identify and validate the oxylipin signature of MetS in two independent nested case/control studies involving 476 participants. We identified an oxylipin signature of MetS (coined OxyScore), including 23 oxylipins and having high performances in classification and replicability (cross-validated AUCROC of 89%, 95% CI: 85–93% and 78%, 95% CI: 72–85% in the Discovery and Replication studies, respectively). Correlation analysis and comparison with a classification model incorporating the MetS criteria showed that the oxylipin signature brings consistent and complementary information to the clinical criteria. Being linked with the regulation of various biological processes, the candidate oxylipins provide an integrative phenotyping of MetS regarding the activation and/or negative feedback regulation of crucial molecular pathways. This may help identify patients at higher risk of cardiometabolic diseases. The oxylipin signature of patients with metabolic syndrome enhances MetS phenotyping and may ultimately help to better stratify the risk of cardiometabolic diseases.
Collapse
Affiliation(s)
- Céline Dalle
- UNH, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Jérémy Tournayre
- UNH, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Malwina Mainka
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
| | - Alicja Basiak-Rasała
- Department of Social Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Mélanie Pétéra
- Plateforme d’Exploration du Métabolisme, MetaboHUB Clermont, UNH, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Sophie Lefèvre-Arbogast
- Bordeaux Population Health Research Center, Université de Bordeaux, INSERMUMR 1219, 33076 Bordeaux, France
| | - Jessica Dalloux-Chioccioli
- MetaToul, MetaboHUB, Inserm/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, 31400 Toulouse, France
| | - Mélanie Deschasaux-Tanguy
- Nutritional Epidemiology Research Team (EREN), Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, Cnam, Epidemiology and Statistics Research Center, University Paris Cité (CRESS), 93017 Bobigny, France
| | - Lucie Lécuyer
- Nutritional Epidemiology Research Team (EREN), Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, Cnam, Epidemiology and Statistics Research Center, University Paris Cité (CRESS), 93017 Bobigny, France
| | - Emmanuelle Kesse-Guyot
- Nutritional Epidemiology Research Team (EREN), Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, Cnam, Epidemiology and Statistics Research Center, University Paris Cité (CRESS), 93017 Bobigny, France
| | - Léopold K. Fezeu
- Nutritional Epidemiology Research Team (EREN), Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, Cnam, Epidemiology and Statistics Research Center, University Paris Cité (CRESS), 93017 Bobigny, France
| | - Serge Hercberg
- Nutritional Epidemiology Research Team (EREN), Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, Cnam, Epidemiology and Statistics Research Center, University Paris Cité (CRESS), 93017 Bobigny, France
| | - Pilar Galan
- Nutritional Epidemiology Research Team (EREN), Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, Cnam, Epidemiology and Statistics Research Center, University Paris Cité (CRESS), 93017 Bobigny, France
| | - Cécilia Samieri
- Bordeaux Population Health Research Center, Université de Bordeaux, INSERMUMR 1219, 33076 Bordeaux, France
| | - Katarzyna Zatońska
- Department of Social Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Philip C. Calder
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| | - Mads Fiil Hjorth
- Obesity and Nutritional Sciences, Novo Nordisk Foundation, 2900 Hellerup, Denmark
| | - Arne Astrup
- Obesity and Nutritional Sciences, Novo Nordisk Foundation, 2900 Hellerup, Denmark
| | - André Mazur
- UNH, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Justine Bertrand-Michel
- MetaToul, MetaboHUB, Inserm/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, 31400 Toulouse, France
| | - Nils Helge Schebb
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
| | - Andrzej Szuba
- Department of Angiology, Hypertension and Diabetology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Mathilde Touvier
- Nutritional Epidemiology Research Team (EREN), Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, Cnam, Epidemiology and Statistics Research Center, University Paris Cité (CRESS), 93017 Bobigny, France
| | - John W. Newman
- Obesity and Metabolism Research Unit, United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA
- University of California Davis Genome Center, University of California, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Cécile Gladine
- UNH, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- Correspondence: ; Tel.: +33-473-624-230
| |
Collapse
|
16
|
Yang X, Wu N. MicroRNAs and Exosomal microRNAs May Be Possible Targets to Investigate in Gestational Diabetes Mellitus. Diabetes Metab Syndr Obes 2022; 15:321-330. [PMID: 35140490 PMCID: PMC8820256 DOI: 10.2147/dmso.s330323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is defined as glucose intolerance that occurs during the second or third trimester of pregnancy. As the incidence of GDM rises, so does the risk of maternal and fetal complications with short- and long-term consequences. As a result, early diagnosis and treatment of this condition are important to avoiding adverse pregnancy outcomes. Exosomes are tiny vesicles secreted by living cells which contain a variety of bioactive substances. They are released by cells to facilitate cell-to-cell communication and regulate a variety of biological processes such as cellular immune response, inflammatory response, and apoptosis, among others. Many studies have recently confirmed that changes in the expression and secretion of exosomal miRNAs can be used as novel markers for the diagnosis, prognosis, and treatment of GDM. In this review, we summarized the various roles of exosomal miRNAs and circulating miRNAs in GDM. We found that the changes in the expression of certain miRNAs could be used to diagnosing GDM. Exosomal miRNAs target metabolic pathways, resulting in insulin resistance. We also highlighted the potential for miRNAs and exosomal miRNAs to be used as biomarkers for diagnosis or therapeutic agents.
Collapse
Affiliation(s)
- Xiyao Yang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
- Clinical Skills Practice Teaching Center, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
17
|
Mleczko J, Royo F, Samuelson I, Clos‐Garcia M, Williams C, Cabrera D, Azparren‐Angulo M, Gonzalez E, Garcia‐Vallicrosa C, Carobbio S, Rodriguez‐Cuenca S, Azkargorta M, van Liempd S, Elortza F, Vidal‐Puig A, Mora S, Falcon‐Perez J. Extracellular vesicles released by steatotic hepatocytes alter adipocyte metabolism. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e32. [PMID: 38938664 PMCID: PMC11080919 DOI: 10.1002/jex2.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 06/29/2024]
Abstract
The composition of extracellular vesicles (EVs) is altered in many pathological conditions, and their molecular content provides essential information on features of parent cells and mechanisms of crosstalk between cells and organs. Metabolic Syndrome (MetS) is a cluster of clinical manifestations including obesity, insulin resistance, dyslipidemia and hypertension that increases the risk of cardiovascular disease and type 2 diabetes mellitus. Here, we investigated the crosstalk between liver and adipocytes by characterizing EVs secreted by primary hepatocytes isolated from Zucker rat model, and studied the effect they have on 3T3-L1 adipocytes. We found that steatotic hepatocytes secrete EVs with significantly reduced exosomal markers in comparison with their lean counterpart. Moreover, proteomic analysis revealed that those EVs reflect the metabolic state of the parent cell in that the majority of proteins upregulated relate to fat metabolism, fatty acid synthesis, glycolysis, and pentose phosphate pathway. In addition, hepatocytes-secreted EVs influenced lipolysis and insulin sensitivity in recipient 3T3-L1 adipocytes. Untargeted metabolomic analysis detected alterations in different adipocyte metabolic pathways in cells treated with hepatic EVs. In summary, our work showed that steatosis has a significant impact in the amount and composition of EVs secreted by hepatocytes. Moreover, our data point to the involvement of hepatic-EVs in the development of pathologies associated with MetS.
Collapse
Affiliation(s)
- J.E. Mleczko
- Exosomes LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioBizkaiaSpain
- Department of NeurologyAlzheimer's Disease Research CenterIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - F. Royo
- Exosomes LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioBizkaiaSpain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd)Instituto de Salud Carlos IIIMadridSpain
| | - I. Samuelson
- TVP LabWellcome/MRC Institute of Metabolic ScienceMRC Metabolic Diseases Unit – Metabolic Research LaboratoriesUniversity of CambridgeCambridgeUK
| | - M. Clos‐Garcia
- Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR)Faculty of Health and medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - C. Williams
- Exosomes LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioBizkaiaSpain
| | - D. Cabrera
- Metabolomics PlatformCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioBizkaiaSpain
| | - M. Azparren‐Angulo
- Exosomes LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioBizkaiaSpain
| | - E. Gonzalez
- Exosomes LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioBizkaiaSpain
| | - C. Garcia‐Vallicrosa
- Exosomes LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioBizkaiaSpain
| | - S. Carobbio
- TVP LabWellcome/MRC Institute of Metabolic ScienceMRC Metabolic Diseases Unit – Metabolic Research LaboratoriesUniversity of CambridgeCambridgeUK
| | - S. Rodriguez‐Cuenca
- TVP LabWellcome/MRC Institute of Metabolic ScienceMRC Metabolic Diseases Unit – Metabolic Research LaboratoriesUniversity of CambridgeCambridgeUK
| | - M. Azkargorta
- Proteomics PlatformCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioBizkaiaSpain
| | - S. van Liempd
- Metabolomics PlatformCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioBizkaiaSpain
| | - F. Elortza
- Proteomics PlatformCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioBizkaiaSpain
| | - A. Vidal‐Puig
- TVP LabWellcome/MRC Institute of Metabolic ScienceMRC Metabolic Diseases Unit – Metabolic Research LaboratoriesUniversity of CambridgeCambridgeUK
| | - S. Mora
- Department of Biochemistry and Molecular BiomedicineUniversity of BarcelonaBarcelonaSpain
| | - J.M. Falcon‐Perez
- Exosomes LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioBizkaiaSpain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd)Instituto de Salud Carlos IIIMadridSpain
- Metabolomics PlatformCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioBizkaiaSpain
- IKERBASQUEBasque Foundation for ScienceBilbaoBizkaiaSpain
| |
Collapse
|
18
|
Hsiao YT, Shimizu I, Yoshida Y, Minamino T. Role of circulating molecules in age-related cardiovascular and metabolic disorders. Inflamm Regen 2022; 42:2. [PMID: 35012677 PMCID: PMC8744343 DOI: 10.1186/s41232-021-00187-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Studies analyzing heterochronic parabiosis mice models showed that molecules in the blood of young mice rejuvenate aged mice. Therefore, blood-based therapies have become one of the therapeutic approaches to be considered for age-related diseases. Blood includes numerous biologically active molecules such as proteins, metabolites, hormones, miRNAs, etc. and accumulating evidence indicates some of these change their concentration with chronological aging or age-related disorders. The level of some circulating molecules showed a negative or positive correlation with all-cause mortality, cardiovascular events, or metabolic disorders. Through analyses of clinical/translation/basic research, some molecules were focused on as therapeutic targets. One approach is the supplementation of circulating anti-aging molecules. Favorable results in preclinical studies let some molecules to be tested in humans. These showed beneficial or neutral results, and some were inconsistent. Studies with rodents and humans indicate circulating molecules can be recognized as biomarkers or therapeutic targets mediating their pro-aging or anti-aging effects. Characterization of these molecules with aging, testing their biological effects, and finding mimetics of young systemic milieu continue to be an interesting and important research topic to be explored.
Collapse
Affiliation(s)
- Yung Ting Hsiao
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
- Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
- Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
19
|
Niu SR, Hu JM, Lin S, Hong Y. Research progress on exosomes/microRNAs in the treatment of diabetic retinopathy. Front Endocrinol (Lausanne) 2022; 13:935244. [PMID: 36017322 PMCID: PMC9395612 DOI: 10.3389/fendo.2022.935244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic retinopathy (DR) is the leakage and obstruction of retinal microvessels caused by chronic progressive diabetes that leads to a series of fundus lesions. If not treated or controlled, it will affect vision and even cause blindness. DR is caused by a variety of factors, and its pathogenesis is complex. Pericyte-related diseases are considered to be an important factor for DR in many pathogeneses, which can lead to DR development through direct or indirect mechanisms, but the specific mechanism remains unclear. Exosomes are small vesicles of 40-100 nm. Most cells can produce exosomes. They mediate intercellular communication by transporting microRNAs (miRNAs), proteins, mRNAs, DNA, or lipids to target cells. In humans, intermittent hypoxia has been reported to alter circulating excretory carriers, increase endothelial cell permeability, and promote dysfunction in vivo. Therefore, we believe that the changes in circulating exocrine secretion caused by hypoxia in DR may be involved in its progress. This article examines the possible roles of miRNAs, proteins, and DNA in DR occurrence and development and discusses their possible mechanisms and therapy. This may help to provide basic proof for the use of exocrine hormones to cure DR.
Collapse
Affiliation(s)
- Si-ru Niu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jian-min Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, NSW, Australia
- *Correspondence: Shu Lin, ; Yu Hong,
| | - Yu Hong
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- *Correspondence: Shu Lin, ; Yu Hong,
| |
Collapse
|
20
|
Liu G, Luo S, Lei Y, Wu J, Huang Z, Wang K, Yang P, Huang X. A nine-hub-gene signature of metabolic syndrome identified using machine learning algorithms and integrated bioinformatics. Bioengineered 2021; 12:5727-5738. [PMID: 34516309 PMCID: PMC8806918 DOI: 10.1080/21655979.2021.1968249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Early risk assessments and interventions for metabolic syndrome (MetS) are limited because of a lack of effective biomarkers. In the present study, several candidate genes were selected as a blood-based transcriptomic signature for MetS. We collected so far the largest MetS-associated peripheral blood high-throughput transcriptomics data and put forward a novel feature selection strategy by combining weighted gene co-expression network analysis, protein-protein interaction network analysis, LASSO regression and random forest approaches. Two gene modules and 51 hub genes as well as a 9-hub-gene signature associated with metabolic syndrome were identified. Then, based on this 9-hub-gene signature, we performed logistic analysis and subsequently established a web nomogram calculator for metabolic syndrome risk (https://xjtulgz.shinyapps.io/DynNomapp/). This 9-hub-gene signature showed excellent classification and calibration performance (AUC = 0.968 in training set, AUC = 0.883 in internal validation set, AUC = 0.861 in external validation set) as well as ideal potential clinical benefit.
Collapse
Affiliation(s)
- Guanzhi Liu
- Bone and Joint Surgery Center, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Sen Luo
- Bone and Joint Surgery Center, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yutian Lei
- Bone and Joint Surgery Center, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianhua Wu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhuo Huang
- Bone and Joint Surgery Center, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kunzheng Wang
- Bone and Joint Surgery Center, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Pei Yang
- Bone and Joint Surgery Center, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xin Huang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
21
|
Urashima K, Miramontes A, Garcia LA, Coletta DK. Potential evidence for epigenetic biomarkers of metabolic syndrome in human whole blood in Latinos. PLoS One 2021; 16:e0259449. [PMID: 34714849 PMCID: PMC8555810 DOI: 10.1371/journal.pone.0259449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
Metabolic syndrome (MetS) is highly prevalent worldwide. In the United States, estimates show that more than 30% of the adult population has MetS. MetS consists of multiple phenotypes, including obesity, dyslipidemia, and impaired glucose tolerance. Therefore, identifying the molecular mechanisms to explain this complex disease is critical for diagnosing and treating MetS. We previously showed 70 increased genes and 20 decreased genes in whole blood in MetS participants. The present study aimed to identify blood-based DNA methylation biomarkers in non-MetS versus MetS participants. The present study analyzed whole blood DNA samples from 184 adult participants of Latino descent from the Arizona Insulin Resistance (AIR) registry. We used the National Cholesterol Education Program Adult Treatment Panel III (NCEP: ATP III) criteria to identify non-MetS (n = 110) and MetS (n = 74) participants. We performed whole blood methylation analysis on select genes: ATP Synthase, H+ Transporting mitochondrial F1 Complex, Epsilon Subunit (ATP5E), Cytochrome C Oxidase Subunit VIc (COX6C), and Ribosomal Protein L9 (RPL9). The pyrosequencing analysis was a targeted approach focusing on the promoter region of each gene that specifically captured CpG methylation sites. In MetS participants, we showed decreased methylation in two CpG sites in COX6C and three CpG sites in RPL9, all p < 0.05 using the Mann-Whitney U test. There were no ATP5E CpG sites differently methylated in the MetS participants. Furthermore, while adjusting for age, gender, and smoking status, logistic regression analysis reaffirmed the associations between MetS and mean methylation within COX6C and RPL9 (both p < 0.05). In addition, Spearman's correlation revealed a significant inverse relationship between the previously published gene expression data and methylation data for RPL9 (p < 0.05). In summary, these results highlight potential blood DNA methylation biomarkers for the MetS phenotype. However, future validation studies are warranted to strengthen our findings.
Collapse
Affiliation(s)
- Keane Urashima
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Anastasia Miramontes
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, Arizona, United States of America
| | - Luis A. Garcia
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, Arizona, United States of America
- Center for Disparities in Diabetes Obesity, and Metabolism, University of Arizona, Tucson, Arizona, United States of America
| | - Dawn K. Coletta
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, Arizona, United States of America
- Center for Disparities in Diabetes Obesity, and Metabolism, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
22
|
Hsu CH, Chen YL, Hsieh CH, Liang YJ, Liu SH, Pei D. Hemogram-based decision tree for predicting the metabolic syndrome and cardiovascular diseases in the elderly. QJM 2021; 114:363-373. [PMID: 32573729 DOI: 10.1093/qjmed/hcaa205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/17/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND This study aimed to build a hemogram-based decision tree to evaluate the association between current probability of metabolic syndrome (MetS) and prediction of future hypertension, type 2 diabetes and cardiovascular diseases (CVD) risk. METHODS A total of 40 395 elder participants (≥60 years) were enrolled in a standard health examination program in Taiwan from January 1999 to December 2014. A decision tree classification of the presence or absence of MetS at baseline, using age, sex and hemogram (white blood cell, hemoglobin and platelet) as independent variables, was conducted for the randomly assigned training (70%) and validation (30%) groups. Participants without MetS at baseline (n = 25 643) were followed up to observe whether they developed MetS, hypertension, type 2 diabetes or CVD in the future. RESULTS Modest accuracy of the decision tree in the training and validation groups with area under the curves of 0.653 and 0.652, respectively, indicated an acceptable generalizability of results. The predicted probability of baseline MetS was obtained from decision tree analysis. Participants without MetS at baseline were categorized into three equally sized groups according to the predicted probability. Participants in the third tertile had significantly higher risks of future MetS (hazard ratio 1.40, 95% confidence interval 1.25-1.58); type 2 diabetes (1.46, 1.17-1.83); hypertension (1.14, 1.01-1.28); and CVD (1.21, 1.01-1.44), compared with those in the first tertile. CONCLUSIONS Execution of hemogram-based decision tree analysis can assist in early identification and prompt management of elderly patients at a high risk of future hypertension, type 2 diabetes and CVD.
Collapse
Affiliation(s)
- C-H Hsu
- From the Department of Family Medicine
- Department of Geriatric Medicine, Center for Geriatrics and Gerontology, Shin Kong Wu Ho-Su Memorial Hospital, No. 95, Wenchang Rd., Shilin Dist., Taipei City 111, Taiwan
- Department of Family Medicine, Cardinal Tien Hospital, No.362, Zhongzheng Rd., Xindian Dist., New Taipei City 231, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, 510 Zhongzheng Rd., Xinzhuang Dist., New Taipei City 242, Taiwan
| | - Y-L Chen
- School of Medicine, College of Medicine, Fu Jen Catholic University, 510 Zhongzheng Rd., Xinzhuang Dist., New Taipei City 242, Taiwan
- Department of Pathology, Cardinal Tien Hospital, No.362, Zhongzheng Rd., Xindian Dist., New Taipei City 231, Taiwan
| | - C-H Hsieh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu Dist., Taipei City 114, Taiwan
| | - Y-J Liang
- Department of Life Science, Graduate Institute of Applied Science and Engineering, College of Science and Engineering, Fu Jen Catholic University, 510 Zhongzheng Rd., Xinzhuang Dist., New Taipei City 242, Taiwan
| | - S-H Liu
- School of Nursing, College of Nursing, National Taipei University of Nursing and Health Science, No. 365, Mingde Rd., Beitou Dist., Taipei City 112, Taiwan
| | - D Pei
- School of Medicine, College of Medicine, Fu Jen Catholic University, 510 Zhongzheng Rd., Xinzhuang Dist., New Taipei City 242, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Fu Jen Catholic University Hospital, No. 69, Guizi Rd., Taishan Dist., New Taipei City 243, Taiwan
- Department of Internal Medicine, Cardinal Tien Hospital, No.362, Zhongzheng Rd., Xindian Dist., New Taipei City 231, Taiwan
| |
Collapse
|
23
|
González-Ortiz A, Galindo-Hernández O, Hernández-Acevedo GN, Hurtado-Ureta G, García-González V. Impact of cholesterol-pathways on breast cancer development, a metabolic landscape. J Cancer 2021; 12:4307-4321. [PMID: 34093831 PMCID: PMC8176427 DOI: 10.7150/jca.54637] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
ApoB-lipoproteins and their components modulate intracellular metabolism and have been associated with the development of neoplastic phenomena, such as proliferation, anchorage-independent growth, epithelial-mesenchymal transition, and cancer invasion. In cancer cells, the modulation of targets that regulate cholesterol metabolism, such as synthesis de novo, endocytosis, and oxidation, are contributing factors to cancer development. While mechanisms associated with sterol regulatory element-binding protein 2 (SREBP-2)/mevalonate, the low-density lipoprotein receptor (LDL-R) and liver X receptor (LXR) have been linked with tumor growth; metabolites derived from cholesterol-oxidation, such as oxysterols and epoxy-cholesterols, also have been described as tumor processes-inducers. From this notion, we perform an analysis of the role of lipoproteins, their association with intracellular cholesterol metabolism, and the impact of these conditions on breast cancer development, mechanisms that can be shared during atherogenesis promoted mainly by LDL. Pathways connecting plasma dyslipidemias in conjunction with the effect of cholesterol-derived metabolites on intracellular mechanisms and cellular plasticity phenomena could provide new approaches to elucidate the triggering factors of carcinogenesis, conditions that could be considered in the development of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, 21000 Mexicali, México
| |
Collapse
|
24
|
Lischka J, Schanzer A, Hojreh A, Ba-Ssalamah A, de Gier C, Valent I, Item CB, Greber-Platzer S, Zeyda M. Circulating microRNAs 34a, 122, and 192 are linked to obesity-associated inflammation and metabolic disease in pediatric patients. Int J Obes (Lond) 2021; 45:1763-1772. [PMID: 33986456 PMCID: PMC8310785 DOI: 10.1038/s41366-021-00842-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Obesity-associated chronic low-grade inflammation leads to dysregulation of central lipid and glucose metabolism pathways leading to metabolic disorders. MicroRNAs (miRNAs) are known to control regulators of metabolic homeostasis. We aimed to assess the relationship of circulating miRNAs with inflammatory modulators and metabolic disorders in pediatric obesity. METHODS From a pediatric cohort with severe obesity (n = 109), clinically thoroughly characterized including diverse routine blood parameters, oral glucose tolerance test, and liver MRI, a panel of 16 circulating miRNAs was quantified using qRT-PCR. Additionally, markers of inflammation TNFα, IL1 receptor antagonist, procalcitonin, CRP, and IL-6 were measured. RESULTS Markers of obesity-associated inflammation, TNFα, IL-1Ra, and procalcitonin, all significantly correlated with concentrations of miRNAs 122 and 192. Concentrations of these miRNAs negatively correlated with serum adiponectin and were among those strongly linked to parameters of dyslipidemia and liver function. Moreover, miRNA122 concentrations correlated with HOMA-IR. Several miRNA levels including miRNAs 34a, 93, 122, and 192 were statistically significantly differing between individuals with prediabetes, impaired glucose tolerance, metabolic syndrome, or nonalcoholic fatty liver disease compared to the respective controls. Additionally, miRNA 192 was significantly elevated in metabolically unhealthy obesity. CONCLUSIONS A miRNA pattern associated with obesity-associated inflammation and comorbidities may be used to distinguish metabolically healthy from unhealthy pediatric patients with obesity. Moreover, these changes in epigenetic regulation could potentially be involved in the etiology of obesity-linked metabolic disease in children and adolescents.
Collapse
Affiliation(s)
- Julia Lischka
- Clinical Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Andrea Schanzer
- Clinical Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Azadeh Hojreh
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ahmed Ba-Ssalamah
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Charlotte de Gier
- Clinical Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Isabella Valent
- Clinical Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Chike Bellarmine Item
- Clinical Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Susanne Greber-Platzer
- Clinical Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Maximilian Zeyda
- Clinical Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
25
|
Vijayan M, Reddy PH. Non-Coding RNAs Based Molecular Links in Type 2 Diabetes, Ischemic Stroke, and Vascular Dementia. J Alzheimers Dis 2021; 75:353-383. [PMID: 32310177 DOI: 10.3233/jad-200070] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article reviews recent advances in the study of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and their functions in type 2 diabetes mellitus (T2DM), ischemic stroke (IS), and vascular dementia (VaD). miRNAs and lncRNAs are gene regulation markers that both regulate translational aspects of a wide range of proteins and biological processes in healthy and disease states. Recent studies from our laboratory and others have revealed that miRNAs and lncRNAs expressed differently are potential therapeutic targets for neurological diseases, especially T2DM, IS, VaD, and Alzheimer's disease (AD). Currently, the effect of aging in T2DM, IS, and VaD and the cellular and molecular pathways are largely unknown. In this article, we highlight results from the works on the molecular connections between T2DM and IS, and IS and VaD. In each disease, we also summarize the pathophysiology and the differential expressions of miRNAs and lncRNAs. Based on current research findings, we hypothesize that 1) T2DM bi-directionally and age-dependently induces IS and VaD, and 2) these changes are precursors to the onset of dementia in elderly people. Research into these hypotheses is required to examine further whether research efforts on reducing T2DM, IS, and VaD may affect dementia and/or delay the AD disease process in the aged population.
Collapse
Affiliation(s)
- Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
26
|
van Loon SLM, Deneer R, Nienhuijs SW, Wilbik A, Kaymak U, van Riel N, Scharnhorst V, Boer AK. Metabolic Health Index (MHI): Assessment of Comorbidity in Bariatric Patients Based on Biomarkers. Obes Surg 2021; 30:714-724. [PMID: 31724117 DOI: 10.1007/s11695-019-04244-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The focus of bariatric surgery is reduction of weight, reflected in body mass index (BMI). However, the resolution of comorbidity is a second important outcome indicator. The degree of comorbidity is hard to quantify objectively as comorbidities develop gradually and are interdependent. Multiple scoring systems quantifying comorbidity exist but they lack continuity and objectivity. In analogy with BMI as index for weight, the Metabolic Health Index (MHI) is developed as objective quantification of metabolic health status. Laboratory data were used as comorbidities affect biomarkers. Conversely, laboratory data can be used as objectively obtained variables to describe comorbidity. METHODS Laboratory data were collected and crosschecked by national quality registry entries. Machine learning was applied to develop an ordinal logistic regression model, using 4 clinical and 32 laboratory input variables. The output was mathematically transformed into a continuous score for intuitive interpretation, ranging from 1 to 6 (MHI). RESULTS In total, 4778 data records of 1595 patients were used. The degree of comorbidity is best described by age at phlebotomy, estimated Glomerular Filtration Rate (eGFR), and concentrations of glycated hemoglobin (HbA1c), triglycerides, and potassium. The model is independent of day of sampling and type of surgery. Mean MHI was significantly different between patient subgroups with increasing number of comorbidities. CONCLUSION The MHI reflects severity of comorbidity, enabling objective assessment of a bariatric patient's metabolic health state, regardless day of sampling and surgery type. Next to weight-focused outcome measures like %TWL, the MHI can serve as outcome measure for metabolic health.
Collapse
Affiliation(s)
- Saskia L M van Loon
- Department of Clinical Chemistry, Catharina Hospital, P.O. Box 1350, 5602, ZA, Eindhoven, The Netherlands. .,Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven, The Netherlands. .,Expert Center Clinical Chemistry, Eindhoven, The Netherlands.
| | - Ruben Deneer
- Department of Clinical Chemistry, Catharina Hospital, P.O. Box 1350, 5602, ZA, Eindhoven, The Netherlands.,Expert Center Clinical Chemistry, Eindhoven, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Simon W Nienhuijs
- Department of Surgery, Catharina Hospital, Eindhoven, The Netherlands
| | - Anna Wilbik
- Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Uzay Kaymak
- Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Natal van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Volkher Scharnhorst
- Department of Clinical Chemistry, Catharina Hospital, P.O. Box 1350, 5602, ZA, Eindhoven, The Netherlands.,Expert Center Clinical Chemistry, Eindhoven, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Arjen-Kars Boer
- Department of Clinical Chemistry, Catharina Hospital, P.O. Box 1350, 5602, ZA, Eindhoven, The Netherlands.,Expert Center Clinical Chemistry, Eindhoven, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
27
|
Peripheral Blood miRome Identified miR-155 as Potential Biomarker of MetS and Cardiometabolic Risk in Obese Patients. Int J Mol Sci 2021; 22:ijms22031468. [PMID: 33540559 PMCID: PMC7867145 DOI: 10.3390/ijms22031468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
This study explored circulating miRNAs and target genes associated with metabolic syndrome (MetS) and cardiometabolic risk in obese patients. Small-RNA sequencing was used to assess the peripheral blood miRNome of 12 obese subjects (6 MetS and 6 non-MetS). Differentially expressed miRNAs and target genes were further analyzed by qPCR in a larger sample of obese patients (48 MetS and 32 non-MetS). miRNA:mRNA interactions were studied using in silico tools. miRNome analysis identified 10 downregulated miRNAs in MetS compared to non-Met patients (p < 0.05). In silico studies revealed three miRNAs (miR-155, miR-181a, and let-7a) and their predictive targets (CCAAT/enhancer-binding protein beta-CEBPB, KRAS proto-oncogene, GTPase-KRAS and suppressor of cytokine signaling 1-SOCS1) with a potential role in the insulin receptor signaling pathway. miR-155 expression was reduced and CEBPB mRNA levels were increased in MetS patients (p < 0.05), and these effects were correlated with the number of MetS diagnostic criteria (p < 0.05). Increased HOMA-IR (>7.6) was associated with low miR-155 levels, high CEBPB expression, and serum hsCRP (p < 0.05). miR-155 was negatively correlated with CEBPB, HOMA-IR, and plasma fibrinogen, and positively correlated with serum adiponectin (p < 0.05). Downregulation of circulating miR-155 is associated with insulin resistance, poor glycemic control, and increased MetS-related cardiometabolic risk, and these effects are potentially mediated by interaction with CEBPB.
Collapse
|
28
|
Chen A, Wang H, Su Y, Zhang C, Qiu Y, Zhou Y, Wan Y, Hu B, Li Y. Exosomes: Biomarkers and Therapeutic Targets of Diabetic Vascular Complications. Front Endocrinol (Lausanne) 2021; 12:720466. [PMID: 34456875 PMCID: PMC8387814 DOI: 10.3389/fendo.2021.720466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic vascular complications (DVC) including macrovascular and microvascular lesions, have a significant impact on public health, and lead to increased patient mortality. Disordered intercellular cascades play a vital role in diabetic systemic vasculopathy. Exosomes participate in the abnormal signal transduction of local vascular cells and mediate the transmission of metabolic disorder signal molecules in distant organs and cells through the blood circulation. They can store different signaling molecules in the membrane structure and release them into the blood, urine, and tears. In recent years, the carrier value and therapeutic effect of exosomes derived from stem cells have garnered attention. Exosomes are not only a promising biomarker but also a potential target and tool for the treatment of DVC. This review explored changes in the production process of exosomes in the diabetic microenvironment and exosomes' early warning role in DVC from different systems and their pathological processes. On the basis of these findings, we discussed the future direction of exosomes in the treatment of DVC, and the current limitations of exosomes in DVC research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Hu
- *Correspondence: Yanan Li, ; Bo Hu,
| | - Yanan Li
- *Correspondence: Yanan Li, ; Bo Hu,
| |
Collapse
|
29
|
Shinohata R, Shiga Y, Miura SI, Hirohata S, Shibakura M, Ueno-Iio T, Watanabe S, Arao Y, Usui S. Low plasma apolipoprotein E-rich high-density lipoprotein levels in patients with metabolic syndrome. Clin Chim Acta 2020; 510:531-536. [DOI: 10.1016/j.cca.2020.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 11/25/2022]
|
30
|
Badimon L, Suades R, Vilella-Figuerola A, Crespo J, Vilahur G, Escate R, Padro T, Chiva-Blanch G. Liquid Biopsies: Microvesicles in Cardiovascular Disease. Antioxid Redox Signal 2020; 33:645-662. [PMID: 31696726 DOI: 10.1089/ars.2019.7922] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Circulating microvesicles (cMV) are small (0.1-1 μm) phospholipid-rich blebs released by almost all cell types, and their release increases with cell activation and injury, thus reflecting the state of the cell from which they are originated. Microvesicles (MV) are found in the bloodstream, and they affect the phenotype of recipient cells, after local or systemic circulation, by intercellular transfer of their molecular content. Recent Advances: Several studies suggest the use of cell-specific MV subpopulations as predictive biomarkers for cardiovascular diseases (CVDs) at different stages and degrees of severity. In this review, we describe the state of the art of cMV as noninvasive surrogate biomarkers of vascular injury and dysfunction correlated with poor clinical outcomes in CVD. Critical Issues: Despite the growing body of evidence supporting the importance of cMV as hallmarks of CVD and their utility as biomarkers of CVD, the specific roles of each phenotype of cMV in CVD burden and prognosis still remain to be elucidated and validated in large cohorts. In addition, the development of standardized and reproducible techniques is required to be used as biomarkers for disease progression in the clinical setting. Future Directions: A multipanel approach with specific cMV phenotypes, added to current biomarkers and scores, will undoubtedly provide unique prognostic information to stratify patients for appropriate therapy on the basis of their risk of atherothrombotic disease and will open a new research area as therapeutic targets for CVD. MV will add to the implementation of precision medicine by helping the cellular and molecular characterization of CVD patients.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rosa Suades
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,Cardiology Unit, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Alba Vilella-Figuerola
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain
| | - Javier Crespo
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rafael Escate
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Teresa Padro
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Gemma Chiva-Blanch
- Cardiovascular Program ICCC, Institut de Recerca de l'Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain
| |
Collapse
|
31
|
Richter-Stretton GL, Fenning AS, Vella RK. Skeletal muscle - A bystander or influencer of metabolic syndrome? Diabetes Metab Syndr 2020; 14:867-875. [PMID: 32562864 DOI: 10.1016/j.dsx.2020.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS Metabolic syndrome is the concurrent presentation of multiple cardiovascular risk factors, including obesity, insulin resistance, hyperglycemia, dyslipidemia and hypertension. It has been suggested that some of these risk factors can have detrimental effects on the skeletal muscle while others can be a direct result of skeletal muscle abnormalities, showing a two-way directionality in the pathogenesis of the condition. This review aims to explore this bidirectional correlation by discussing the impact of metabolic syndrome on skeletal muscle tissue in general and will also discuss ways in which skeletal muscle alterations may contribute to the pathogenesis of metabolic syndrome. METHODS Literature searches were conducted with key words (e.g. metabolic syndrome, skeletal muscle, hyperglycemia) using PubMed, EBSCOhost, Science Direct and Google Scholar. All article types were included in the search. RESULTS The pathological mechanisms associated with metabolic syndrome, such as hyperglycemia and inflammation, have been associated with changes in skeletal muscle fiber composition, metabolism, insulin sensitivity, mitochondrial function, and strength. Additionally, some skeletal muscle alterations, particularly mitochondrial dysfunction and insulin resistance, are suggested to contribute to the development of metabolic syndrome. For example, the suggested underlying mechanisms of sarcopenia development are also contributors to metabolic syndrome pathogenesis. CONCLUSION Whilst numerous studies have identified a relationship between metabolic syndrome and skeletal muscle abnormalities, further investigation into the underlying mechanisms is needed to elucidate the best prevention and management strategies for these conditions.
Collapse
Affiliation(s)
- Gina L Richter-Stretton
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia, 4702; Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland St Lucia, Brisbane, Queensland, Australia, 4072.
| | - Andrew S Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia, 4702
| | - Rebecca K Vella
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia, 4702; School of Medicine, Griffith University, Sunshine Coast, Queensland, Australia, 4572
| |
Collapse
|
32
|
Zhou T, Zhang Y, Wu C, Shen C, Li J, Liu Z. An Augmented Model with Inferred Blood Features for the Self-diagnosis of Metabolic Syndrome. Methods Inf Med 2020; 59:18-30. [DOI: 10.1055/s-0040-1710382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Background and Objectives The penetration rate of physical examinations in China is substantially lower than that in developed countries. Therefore, an auxiliary approach that does not depend on hospital health checks for the diagnosis of metabolic syndrome (MetS) is needed.
Methods In this study, we proposed an augmented method with inferred blood features that uses self-care inputs available at home for the auxiliary diagnosis of MetS. The dataset used for modeling contained data on 91,420 individuals who had at least 2 consecutive years of health checks. We trained three separate models using a regularized gradient-boosted decision tree. The first model used only home-based features; additional blood test data (including triglyceride [TG] data, fasting blood glucose data, and high-density lipoprotein cholesterol [HDL-C] data) were included in the second model. However, in the augmented approach, the blood test data were manipulated using multivariate imputation by chained equations prior to inclusion in the third model. The performance of the three models for MetS auxiliary diagnosis was then quantitatively compared.
Results The results showed that the third model exhibited the highest classification accuracy for MetS in comparison with the other two models (area under the curve [AUC]: 3rd vs. 2nd vs. 1st = 0.971 vs. 0.950 vs. 0.905, p < 0.001). We further revealed that with full sets of the three measurements from earlier blood test data, the classification accuracy of MetS can be further improved (AUC: without vs. with = 0.971 vs. 0.993). However, the magnitude of improvement was not statistically significant at the 1% level of significance (p = 0.014).
Conclusion Our findings demonstrate the feasibility of the third model for MetS homecare applications and lend novel insights into innovative research on the health management of MetS. Further validation and implementation of our proposed model might improve quality of life and ultimately benefit the general population.
Collapse
Affiliation(s)
- Tianshu Zhou
- Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
- Connected Healthcare Big Data Research Center, Zhejiang Lab, Hangzhou, People's Republic of China
| | - Ying Zhang
- Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
- Connected Healthcare Big Data Research Center, Zhejiang Lab, Hangzhou, People's Republic of China
| | - Chengkai Wu
- Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Chao Shen
- Health Management Center, The First Affiliated Hospital, Medical School of Zhejiang University, Hangzhou, People's Republic of China
| | - Jingsong Li
- Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, People's Republic of China
- Connected Healthcare Big Data Research Center, Zhejiang Lab, Hangzhou, People's Republic of China
| | - Zhong Liu
- Health Management Center, The First Affiliated Hospital, Medical School of Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
33
|
Discovery and comparison of serum biomarkers for diabetes mellitus and metabolic syndrome based on UPLC-Q-TOF/MS. Clin Biochem 2020; 82:40-50. [DOI: 10.1016/j.clinbiochem.2020.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/01/2020] [Accepted: 03/13/2020] [Indexed: 12/28/2022]
|
34
|
Lee KW, Shin D. Prospective Associations of Serum Adiponectin, Leptin, and Leptin-Adiponectin Ratio with Incidence of Metabolic Syndrome: The Korean Genome and Epidemiology Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093287. [PMID: 32397260 PMCID: PMC7246697 DOI: 10.3390/ijerph17093287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022]
Abstract
Although the role of adiponectin and leptin in the etiology of metabolic syndrome (MetS) has been explored in various populations, limited knowledge is available on the prospective association of adiponectin and leptin with the risk of MetS development. The present study aimed to evaluate the associations of adiponectin, leptin, and the leptin-adiponectin (LA) ratio with the future risk of MetS in middle-aged and older Korean adults. Using a prospective, population-based Ansan-Ansung cohort of the Korean Genome and Epidemiology Study (KoGES), 2691 Korean adults (1317 men and 1374 women) were included in the present study. Serum adiponectin and leptin concentrations were measured using commonly available enzyme-linked immunosorbent assay kits. Multivariable Cox proportional hazard models were used to investigate the relationships of the different adiponectin and leptin concentrations and LA ratio with the incident MetS. During a mean follow-up of 6.75 years, a total of 359 (27.26%) men and 385 (28.02%) women were identified as developing new-onset MetS. After controlling for covariates, higher adiponectin levels were associated with lower incidence of MetS (hazard ratio (HR) for third vs. first tertile: 0.53, 95% confidence interval (CI): 0.40–0.70 for men and HR: 0.54, 95% CI: 0.42–0.71 for women), while higher leptin levels (HR for third vs. first tertile: 2.88, 95% CI: 2.01–4.13 for men and HR: 1.55, 95% CI: 1.13–2.13 for women) and LA ratio (HR for third vs. first tertile: 3.07, 95% CI: 2.13–4.44 for men and HR: 1.94, 95% CI: 1.41–2.66 for women) were associated with an increased incidence of MetS. Among men, in the fully adjusted models an increase by one standard deviation (SD) in adiponectin levels was associated with a 10% decrease in MetS risk (HR per SD: 0.90, 95% CI: 0.85–0.95) while leptin and LA ratio was associated with a 5% (HR per SD: 1.05, 95% CI: 1.01–1.08) and 40% (HR per SD: 1.40, 95% CI: 1.22–1.62) increase in MetS risk, respectively. Among women, a significant association with MetS risk was observed only in adiponectin levels (HR per SD: 0.91, 95% CI: 0.88–0.95). We found that higher adiponectin level was associated with a lower risk of MetS, while higher leptin level and LA ratio were associated with elevated MetS incidence, irrespective of body mass index at baseline in both Korean men and women. Adiponectin and leptin levels and LA ratio could play a role as a useful biomarker in the prediction of future MetS development among middle-aged and older Koreans.
Collapse
Affiliation(s)
- Kyung Won Lee
- Department of Food Science and Nutrition, Gwangju University, Gwangju 61743, Korea;
| | - Dayeon Shin
- Department of Food and Nutrition, Inha University, Incheon 22212, Korea
- Correspondence: ; Tel.: +82-32-860-8123
| |
Collapse
|
35
|
Montmorency tart cherry (Prunus cerasus L.) acts as a calorie restriction mimetic that increases intestinal fat and lifespan in Caenorhabditis elegans. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
36
|
Chen R, Shu Y, Zeng Y. Links Between Adiponectin and Dementia: From Risk Factors to Pathophysiology. Front Aging Neurosci 2020; 11:356. [PMID: 31969813 PMCID: PMC6960116 DOI: 10.3389/fnagi.2019.00356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
With the aging population, dementia is becoming one of the most serious and troublesome global public health issues. Numerous studies have been seeking for effective strategies to delay or block its progression, but with little success. In recent years, adiponectin (APN) as one of the most abundant and multifunctional adipocytokines related to anti-inflammation, regulating glycogen metabolism and inhibiting insulin resistance (IR) and anti-atherosclerosis, has attracted widespread attention. In this article, we summarize recent studies that have contributed to a better understanding of the extent to which APN influences the risks of developing dementia as well as its pathophysiological progression. In addition, some controversial results interlinked with its effects on cognitive dysfunction diseases will be critically discussed. Ultimately, we aim to gain a novel insight into the pleiotropic effects of APN levels in circulation and suggest potential therapeutic target and future research strategies.
Collapse
Affiliation(s)
- RuiJuan Chen
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Shu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zeng
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Abstract
Extracellular vesicles (EVs) are submicron-sized lipid envelopes that are produced and released from a parent cell and can be taken up by a recipient cell. EVs are capable of mediating cellular signalling by carrying nucleic acids, proteins, lipids and cellular metabolites between cells and organs. Metabolic dysfunction is associated with changes in plasma concentrations of EVs as well as alterations in their EV cargo. Since EVs can act as messengers between parent and recipient cells, they could be involved in cell-to-cell and organ-to-organ communication in metabolic diseases. Recent literature has shown that EVs are produced by cells within metabolic tissues, such as adipose tissue, pancreas, muscle and liver. These vesicles have therefore been proposed as a novel intercellular communication mode in systemic metabolic regulation. In this review, we will describe and discuss the current literature that investigates the role of adipose-derived EVs in the regulation of obesity-associated metabolic disease. We will particularly focus on the EV-dependent communication between adipocytes, the vasculature and immune cells in type 2 diabetes.
Collapse
Affiliation(s)
- Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Valerio Azzimato
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, NOVUM, Blickagången 6, 141 57, Huddinge, Sweden
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Myriam Aouadi
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, NOVUM, Blickagången 6, 141 57, Huddinge, Sweden.
| |
Collapse
|
38
|
Wittrisch S, Klöting N, Mörl K, Chakaroun R, Blüher M, Beck-Sickinger AG. NPY 1R-targeted peptide-mediated delivery of a dual PPARα/γ agonist to adipocytes enhances adipogenesis and prevents diabetes progression. Mol Metab 2019; 31:163-180. [PMID: 31918918 PMCID: PMC6931124 DOI: 10.1016/j.molmet.2019.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/31/2019] [Accepted: 11/10/2019] [Indexed: 12/12/2022] Open
Abstract
Objective PPARα/γ dual agonists have been in clinical development for the treatment of metabolic diseases including type 2 diabetes and dyslipidemia. However, severe adverse side effects led to complications in clinical trials. As most of the beneficial effects rely on the compound activity in adipocytes, the selective targeting of this cell type is a cutting-edge strategy to develop safe anti-diabetic drugs. The goal of this study was to strengthen the adipocyte-specific uptake of the PPARα/γ agonist tesaglitazar via NPY1R-mediated internalization. Methods NPY1R-preferring peptide tesaglitazar-[F7, P34]-NPY (tesa-NPY) was synthesized by a combination of automated SPPS and manual couplings. Following molecular and functional analyses for proof of concept, cell culture experiments were conducted to monitor the effects on adipogenesis. Mice treated with peptide drug conjugates or vehicle either by gavage or intraperitoneal injection were characterized phenotypically and metabolically. Histological analysis and transcriptional profiling of the adipose tissue were performed. Results In vitro studies revealed that the tesaglitazar-[F7, P34]-NPY conjugate selectively activates PPARγ in NPY1R-expressing cells and enhances adipocyte differentiation and adiponectin expression in adipocyte precursor cells. In vivo studies using db/db mice demonstrated that the anti-diabetic activity of the peptide conjugate is as efficient as that of systemically administered tesaglitazar. Additionally, tesa-NPY induces adipocyte differentiation in vivo. Conclusions The use of the tesaglitazar-[F7, P34]-NPY conjugate is a promising strategy to apply the beneficial PPARα/γ effects in adipocytes while potentially omitting adverse effects in other tissues. Tesaglitazar-NPY targets adipocytes via NPY1R receptor-mediated internalization. Peptide-drug conjugate is specifically delivered to NPY1R-expressing cells. Release of tesaglitazar in adipocytes activates PPARγ. Drug delivery enhances adipocyte differentiation and adiponectin expression. Peptide conjugate exhibits antidiabetic activity in vivo.
Collapse
Affiliation(s)
- Stefanie Wittrisch
- Universität Leipzig, Institute of Biochemistry, Brüderstraße 34, 04103 Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Ph.-Rosenthal-Str. 27, 04103 Leipzig, Germany.
| | - Karin Mörl
- Universität Leipzig, Institute of Biochemistry, Brüderstraße 34, 04103 Leipzig, Germany
| | - Rima Chakaroun
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Ph.-Rosenthal-Str. 27, 04103 Leipzig, Germany; Department of Medicine, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Ph.-Rosenthal-Str. 27, 04103 Leipzig, Germany; Department of Medicine, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany.
| | | |
Collapse
|
39
|
Zhang JY, Jiang YT, Liu YS, Chang Q, Zhao YH, Wu QJ. The association between glycemic index, glycemic load, and metabolic syndrome: a systematic review and dose-response meta-analysis of observational studies. Eur J Nutr 2019; 59:451-463. [PMID: 31680212 DOI: 10.1007/s00394-019-02124-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/21/2019] [Indexed: 01/11/2023]
Abstract
PURPOSE The association of glycemic index (GI) and glycemic load (GL) with metabolic syndrome (MetS) is controversial. Therefore, we conducted this first systematic review and dose-response meta-analysis of observational studies to quantify these associations. METHODS We searched PubMed, EMBASE, Web of Science, and the Cochrane Library for relevant studies up to 1 April 2019. Summary odds ratios (OR) and 95% confidence intervals (CI) were calculated by a random-effects model. This study was registered with PROSPERO (CRD42019131788). RESULTS We included eight high-quality (n = 5) or medium-quality (n = 3) cross-sectional studies in the final meta-analysis, comprising 6058 MetS events and 28,998 participants. The summary ORs of MetS for the highest versus lowest categories were 1.23 (95% CI 1.10-1.38, I2 = 0, tau2 = 0, n = 5) for dietary GI, 1.06 (95% CI 0.89-1.25, I2 = 36.2%, tau2 = 0.0151, n = 6) for dietary GL. The summary OR was 1.12 (95% CI 1.00-1.26, I2 = 0, tau2 = 0, n = 3) per 5 GI units, 0.96 (95% CI 0.83-1.10, I2 = 33.4%, tau2 = 0.0059, n = 2) per 20 GL units. CONCLUSIONS Dietary GI was positively associated with the prevalence of MetS. However, no significant association was found between dietary GL and the prevalence of MetS. Further studies with prospective design are needed to establish potential causal relationship between dietary GI and the MetS.
Collapse
Affiliation(s)
- Jia-Yu Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, 110004, Liaoning, People's Republic of China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Ting Jiang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, 110004, Liaoning, People's Republic of China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Shu Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, 110004, Liaoning, People's Republic of China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, 110004, Liaoning, People's Republic of China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, 110004, Liaoning, People's Republic of China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, 110004, Liaoning, People's Republic of China. .,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
40
|
Sluijter JPG, Davidson SM, Boulanger CM, Buzás EI, de Kleijn DPV, Engel FB, Giricz Z, Hausenloy DJ, Kishore R, Lecour S, Leor J, Madonna R, Perrino C, Prunier F, Sahoo S, Schiffelers RM, Schulz R, Van Laake LW, Ytrehus K, Ferdinandy P. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 2019; 114:19-34. [PMID: 29106545 PMCID: PMC5852624 DOI: 10.1093/cvr/cvx211] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs)—particularly exosomes and microvesicles (MVs)—are attracting considerable interest in the cardiovascular field as the wide range of their functions is recognized. These capabilities include transporting regulatory molecules including different RNA species, lipids, and proteins through the extracellular space including blood and delivering these cargos to recipient cells to modify cellular activity. EVs powerfully stimulate angiogenesis, and can protect the heart against myocardial infarction. They also appear to mediate some of the paracrine effects of cells, and have therefore been proposed as a potential alternative to cell-based regenerative therapies. Moreover, EVs of different sources may be useful biomarkers of cardiovascular disease identities. However, the methods used for the detection and isolation of EVs have several limitations and vary widely between studies, leading to uncertainties regarding the exact population of EVs studied and how to interpret the data. The number of publications in the exosome and MV field has been increasing exponentially in recent years and, therefore, in this ESC Working Group Position Paper, the overall objective is to provide a set of recommendations for the analysis and translational application of EVs focussing on the diagnosis and therapy of the ischaemic heart. This should help to ensure that the data from emerging studies are robust and repeatable, and optimize the pathway towards the diagnostic and therapeutic use of EVs in clinical studies for patient benefit.
Collapse
Affiliation(s)
- Joost Petrus Gerardus Sluijter
- Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, University Utrecht, 3508GA Utrecht, The Netherlands
| | | | | | - Edit Iren Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.,MTA-SE Immunoproteogenomics Research Group, Budapest, Hungary
| | - Dominique Paschalis Victor de Kleijn
- Department of Vascular Surgery, UMC Utrecht, Utrecht University, Utrecht, the Netherlands.,Netherlands Heart Institute, Utrecht, the Netherlands
| | - Felix Benedikt Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore 169857.,National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609.,Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, Singapore 119228.,The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK.,The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, Maple House 1st floor, 149 Tottenham Court Road, London W1T 7DN, UK.,Department of Cardiology, Barts Heart Centre, St Bartholomew's Hospital, W Smithfield, London EC1A 7BE, UK
| | - Raj Kishore
- Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa and Lionel Opie Preclinical Imaging Core Facility, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Jonathan Leor
- Neufeld Cardiac Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Tel Hashomer, Israel; Tamman Cardiovascular Research Institute, Heart Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Rosalinda Madonna
- Center of Aging Science and Regenerative Medicine, CESI-Met and Institute of Cardiology, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy.,Department of Internal Medicine, University of Texas Medical School in Houston, TX, USA.,Texas Heart Institute, Houston, TX, USA
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Fabrice Prunier
- Institut Mitovasc, CHU d'Angers, Université d'Angers, Angers, France
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ray Michel Schiffelers
- Laboratory Clinical Chemistry and Hematology Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University of Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Linda Wilhelmina Van Laake
- Division Heart and Lungs, and Hubrecht Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kirsti Ytrehus
- Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest 1089, Hungary and.,Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
41
|
Byzova NA, Zherdev AV, Pridvorova SM, Dzantiev BB. Development of Rapid Immunochromatographic Assay for D-dimer Detection. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819030062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Dieli-Conwright CM, Sweeney FC, Courneya KS, Tripathy D, Sami N, Lee K, Buchanan TA, Spicer D, Bernstein L, Mortimer JE, Demark-Wahnefried W. Hispanic ethnicity as a moderator of the effects of aerobic and resistance exercise in survivors of breast cancer. Cancer 2018; 125:910-920. [PMID: 30500981 PMCID: PMC7164690 DOI: 10.1002/cncr.31879] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/21/2018] [Accepted: 10/26/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND Metabolic syndrome (MSY) is associated with an increased risk of cardiovascular disease, type 2 diabetes, and recurrence in breast cancer survivors (BCS). MSY is 1.5 times more common in Hispanic women compared with non-Hispanic women. Although exercise mitigates MSY in BCS, to the best of the authors' knowledge, few studies to date have focused on minorities. This secondary analysis examined ethnicity as a moderator of the effects of a 16-week aerobic and resistance exercise intervention on MSY, sarcopenic obesity, and serum biomarkers in BCS. METHODS A total of 100 eligible BCS were randomized to exercise (50 BCS) or usual care (50 BCS). The exercise intervention promoted moderate to vigorous aerobic and resistance exercise 3 times a week for 16 weeks. MSY z scores, sarcopenic obesity, and serum biomarkers were measured at baseline, after the intervention, and at the 28-week follow-up (exercise group only). Linear mixed models adjusted for baseline values of the outcome, age, disease stage, adjuvant treatment, and recent physical activity were used to evaluate effect modification by ethnicity. RESULTS The study sample was 57% Hispanic BCS (HBCS) and 43% non-Hispanic BCS (NHBCS). HBCS were younger, of greater adiposity, and had been diagnosed with more advanced cancers compared with NHBCS (P<.001). Ethnicity was found to moderate the mean differences in exercise training on triglycerides (-36.4 mg/dL; 95% confidence interval [95% CI],-64.1 to -18.8 mg/dL), glucose (-8.6 mg/dL; 95% CI, -19.1 to -3.0 mg/dL), and C-reactive protein (-3.3 mg/L; 95% CI, -7.3 to -0.9 mg/L). CONCLUSIONS HBCS appear to have poorer metabolic profiles and therefore may derive relatively larger metabolic changes from exercise compared with NHBCS. Clinical exercise interventions may attenuate existing health disparities across diverse groups of BCS.
Collapse
Affiliation(s)
- Christina M Dieli-Conwright
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California.,Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Frank C Sweeney
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| | - Kerry S Courneya
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nathalie Sami
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| | - Kyuwan Lee
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| | - Thomas A Buchanan
- Division of Endocrinology and Diabetes, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Darcy Spicer
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Leslie Bernstein
- Division of Biomarkers of Early Detection and Prevention, Beckman Research Institute, City of Hope, Duarte, California
| | - Joanne E Mortimer
- Division of Medical Oncology and Experimental Therapeutics, City of Hope, Duarte, California
| | | |
Collapse
|
43
|
Khalyfa A, Kheirandish-Gozal L, Gozal D. Exosome and Macrophage Crosstalk in Sleep-Disordered Breathing-Induced Metabolic Dysfunction. Int J Mol Sci 2018; 19:ijms19113383. [PMID: 30380647 PMCID: PMC6274857 DOI: 10.3390/ijms19113383] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent worldwide public health problem that is characterized by repetitive upper airway collapse leading to intermittent hypoxia, pronounced negative intrathoracic pressures, and recurrent arousals resulting in sleep fragmentation. Obesity is a major risk factor of OSA and both of these two closely intertwined conditions result in increased sympathetic activity, oxidative stress, and chronic low-grade inflammation, which ultimately contribute, among other morbidities, to metabolic dysfunction, as reflected by visceral white adipose tissue (VWAT) insulin resistance (IR). Circulating extracellular vesicles (EVs), including exosomes, are released by most cell types and their cargos vary greatly and reflect underlying changes in cellular homeostasis. Thus, exosomes can provide insights into how cells and systems cope with physiological perturbations by virtue of the identity and abundance of miRNAs, mRNAs, proteins, and lipids that are packaged in the EVs cargo, and are secreted from the cells into bodily fluids under normal as well as diseased states. Accordingly, exosomes represent a novel pathway via which a cohort of biomolecules can travel long distances and result in the modulation of gene expression in selected and targeted recipient cells. For example, exosomes secreted from macrophages play a critical role in innate immunity and also initiate the adaptive immune response within specific metabolic tissues such as VWAT. Under normal conditions, phagocyte-derived exosomes represent a large portion of circulating EVs in blood, and carry a protective signature against IR that is altered when secreting cells are exposed to altered physiological conditions such as those elicited by OSA, leading to emergence of IR within VWAT compartment. Consequently, increased understanding of exosome biogenesis and biology should lead to development of new diagnostic biomarker assays and personalized therapeutic approaches. Here, the evidence on the major biological functions of macrophages and exosomes as pathophysiological effectors of OSA-induced metabolic dysfunction is discussed.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Sections of Pediatric Sleep Medicine and Pediatric Pulmonology, Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL 60637, USA.
| | - Leila Kheirandish-Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA.
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA.
| |
Collapse
|
44
|
7-Hydroxymatairesinol improves body weight, fat and sugar metabolism in C57BJ/6 mice on a high-fat diet. Br J Nutr 2018; 120:751-762. [DOI: 10.1017/s0007114518001824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract7-Hydroxymatairesinol (7-HMR) is a plant lignan abundant in various concentrations in plant foods. The objective of this study was to test HMRLignan™, a purified form of 7-HMR, and the correspondingPicea abiesextract (total extractP. abies; TEP) as dietary supplements on a background of a high-fat diet (HFD)-induced metabolic syndrome in mice and in the 3T3-L1 adipogenesis model. Mice, 3 weeks old, were fed a HFD for 60 d. Subgroups were treated with 3 mg/kg body weight 7-HMR (HMRLignan™) or 10 mg/kg body weight TEP by oral administration. 7-HMR and TEP limited the increase in body weight (−11 and −13 %) and fat mass (−11 and −18 %) in the HFD-fed mice. Epididymal adipocytes were 19 and −12 % smaller and the liver was less steatotic (−62 and −65 %). Serum lipids decreased in TEP-treated mice (−11 % cholesterol, −23 % LDL and −15 % TAG) and sugar metabolism was ameliorated by both lignan preparations, as shown by a more than 70 % decrease in insulin secretion and insulin resistance. The expression of several metabolic genes was modulated by the HFD with an effect that was reversed by lignan. In 3T3-L1 cells, the 7-HMR metabolites enterolactone (ENL) and enterodiol (END) showed a 40 % inhibition of cell differentiation accompanied by the inhibited expression of the adipogenic genesPPARγ,C/EBPαandaP2. Furthermore, END and ENL caused a 10 % reduction in TAG uptake in HEPA 1–6 hepatoma cells. In conclusion, 7-HMR and TEP reduce metabolic imbalances typical of the metabolic syndrome and obesity in male mice, whereas their metabolites inhibit adipogenesis and lipid uptakein vitro.
Collapse
|
45
|
|
46
|
Maintinguer Norde M, Oki E, Ferreira Carioca AA, Teixeira Damasceno NR, Fisberg RM, Lobo Marchioni DM, Rogero MM. Influence of IL1B , IL6 and IL10 gene variants and plasma fatty acid interaction on metabolic syndrome risk in a cross-sectional population-based study. Clin Nutr 2018; 37:659-666. [DOI: 10.1016/j.clnu.2017.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 11/26/2022]
|
47
|
Wu J, Zhu H, Yang G, He J, Wang Y, Zhao S, Zhang X, Gui L, Zhao M, Peng S. Design and synthesis of nanoscaled IQCA-TAVV as a delivery system capable of antiplatelet activation, targeting arterial thrombus and releasing IQCA. Int J Nanomedicine 2018; 13:1139-1158. [PMID: 29520141 PMCID: PMC5833776 DOI: 10.2147/ijn.s150205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Arterial thrombosis has been associated with a series of pathological conditions, and the discovery of arterial thrombosis inhibitor is of clinical importance. METHODS By analyzing the pharmacophores of anti-platelet agents, thrombus targeting peptide and anti-thrombotic nano-systems 3S-1,2,3,4-tetrahydroisoquino-line-3-carbonyl-Thr-Ala-Arg-Gly-Asp(Val)-Val (IQCA-TAVV) was designed and prepared as a nano-scaled arterial thrombosis inhibitor. RESULTS In vitro the nanoparticles of IQCA-TAVV were able to adhere onto the surface of activated platelets, attenuate activated platelets to extend pseudopodia and inhibit activated platelets to form aggregators. In vivo IQCA-TAVV targeted arterial thrombus, dose dependently inhibited arterial thrombosis with a 1 nmol/kg of minimal effective dose, and the activity waŝ1670 folds of that of aspirin. CONCLUSION IQCA-TAVV represented the design, preparation and application of nanomedicine capable of adhering on the surface of activated platelets, attenuating platelet activation, targeting arterial thrombus and inhibiting arterial thrombosis.
Collapse
Affiliation(s)
- Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
- Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Haimei Zhu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
- Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Guodong Yang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
| | - Jianhong He
- Department of Internal Medicine of TCM, The First Affiliated Hospital of Guanxi University of Chinese Medicine, Nanning, China
| | - Yuji Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
- Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Shurui Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
- Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Xiaoyi Zhang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
- Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Lin Gui
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
- Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Ming Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
- Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shiqi Peng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
- Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
O'Neill S, Larsen MB, Gregersen S, Hermansen K, O'Driscoll L. miR-758-3p: a blood-based biomarker that's influence on the expression of CERP/ABCA1 may contribute to the progression of obesity to metabolic syndrome. Oncotarget 2018; 9:9379-9390. [PMID: 29507696 PMCID: PMC5823618 DOI: 10.18632/oncotarget.24314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/02/2018] [Indexed: 01/22/2023] Open
Abstract
Due to increasing prevalence of obesity, a simple method or methods for the diagnosis of metabolic syndrome are urgently required to reduce the risk of associated cardiovascular disease, diabetes and cancer. This study aimed to identify a miRNA biomarker that may distinguish metabolic syndrome from obesity and to investigate if such a miRNA may have functional relevance for metabolic syndrome. 52 adults with clinical obesity (n=26) or metabolic syndrome (n=26) were recruited. Plasma specimens were procured from all and were randomly designated to discovery and validation cohorts. miRNA discovery profiling was performed, using array technology, on plasma RNA. Validation was performed by quantitative polymerase chain reaction. The functional effect of miR-758-3p on its predicted target, cholesterol efflux regulatory protein/ATP-binding cassette transporter, was investigated using HepG2 liver cells. Custom miRNA profiling of 25 miRNAs in the discovery cohort found miR-758-3p to be detected in the obese cohort but undetected in the metabolic syndrome cohort. miR-758-3p was subsequently validated as a potential biomarker for metabolic syndrome by quantitative polymerase chain reaction. Bioinformatics analysis identified cholesterol efflux regulatory protein/ATP-binding cassette transporter as miR-758-3p’s predicted target. Specifically, mimicking miR-758-3p in HepG2 cells suppressed cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression; conversely, inhibiting miR-758-3p increased cholesterol efflux regulatory protein/ATP-binding cassette transporter protein expression. miR-758-3p holds potential as a blood-based biomarker for distinguishing progression from obesity to metabolic syndrome and as a driver in controlling cholesterol efflux regulatory protein/ATP-binding cassette transporter expression, indicating it potential role in cholesterol control in metabolic syndrome.
Collapse
Affiliation(s)
- Sadhbh O'Neill
- School of Pharmacy & Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Mette Bohl Larsen
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Søren Gregersen
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Kjeld Hermansen
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Lorraine O'Driscoll
- School of Pharmacy & Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
49
|
Samoylova EM, Kalsin VA, Bespalova VA, Devichensky VM, Baklaushev VP. Exosomes: from biology to clinics. GENES & CELLS 2017; 12:7-19. [DOI: 10.23868/201707024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Abstract
Exosomes are extracellular vesicles with the diameter of 30-120 nm, originating from early endosomes. Exosomes have been actively studied in the last decade, and a great amount of data has appeared on their nature and role in the intercellular transport and signaling both in the normal and pathological conditions. A particular interest to exosomes in the clinical practice emerged after the separation of their circulating fraction from the blood and the study of tumor genetic markers in them became possible (so called “liquid biopsy”). The objective of this review is to familiarize clinical specialists with the fundamentals of exosomes' biology and physiology and with the main achievements on their practical application in the medicine, as a natural drug delivery system, as well as for high-precision, early non-invasive differential diagnostics of diseases.
Collapse
|
50
|
Sacchetti B, Fatica A, Sorci M, Sorrentino A, Signore M, Cerio A, Felicetti F, Feo AD, Pelosi E, Caré A, Pescarmona E, Gordeladze JO, Valtieri M. Effect of miR-204&211 and RUNX2 control on the fate of human mesenchymal stromal cells. Regen Med Res 2017; 5:2. [PMID: 29206625 DOI: 10.1051/rmr/170004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
MiR-204 and 211 enforced expression in murine mesenchymal stromal cells (MSCs) has been shown to induce adipogenesis and impair osteogenesis, through RUNX2 down-modulation. This mechanism has been suggested to play a role in osteoporosis associated with obesity. However, two further fundamental MSC functions, chondrogenesis and hematopoietic supporting activity, have not yet been explored. To this end, we transduced, by a lenti-viral vector, miR-204 and 211 in a model primary human MSC line, opportunely chosen among our MSC collection for displaying all properties of canonical bone marrow MSCs, except adipogenesis. Enforced expression of miR-204&211 in these cells, rescued adipogenesis, and inhibited osteogenesis, as previously reported in murine MSCs, but, surprisingly, also damaged cartilage formation and hematopoietic supporting activity, which were never explored before. RUNX2 has been previously indicated as the target of miR-204&211, whose down modulation is responsible for the switch from osteogenesis to adipogenesis. However, the additional disruption of chondrogenesis and hematopoietic supporting activity, which we report here, might depend on diverse miR-204&211 targets. To investigate this hypothesis, permanent RUNX2 knock-down was performed. Sh-RUNX2 fully reproduced the phenotypes induced by miR-204&211, confirming that RUNX2 down modulation is the major event leading to the reported functional modification on our MSCs. It seems thus apparent that RUNX2, a recognized master gene for osteogenesis, might rule all four MSC commitment and differentiation processes. Hence, the formerly reported role of miR204&211 and RUNX2 in osteoporosis and obesity, coupled with our novel observation showing inhibition of cartilage differentiation and hematopoietic support, strikingly resemble the clinical traits of metabolic syndrome, where osteoarthritis, osteoporosis, anaemia and obesity occur together. Our observations, corroborating and extending previous observations, suggest that miR-204&211-RUNX2 axis in human MSCs is possibly involved in the pathogenesis of this rapidly growing disease in industrialized countries, for possible therapeutic intervention to regenerate former homeostasis.
Collapse
Affiliation(s)
| | - Alessandro Fatica
- Department of Biology and Biotechnology Charles Darwin, "La Sapienza" University, Rome, Italy
| | - Melissa Sorci
- Department of Biology and Biotechnology Charles Darwin, "La Sapienza" University, Rome, Italy
| | | | - Michele Signore
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Annamaria Cerio
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Federica Felicetti
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra De Feo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Caré
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Jan Oxholm Gordeladze
- Institute of basic Medical Science, Department for Molecular Medicine, Section for Biochemistry, University of Oslo, Oslo, Norway
| | - Mauro Valtieri
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy - Sbarro Institute for Cancer Research and Molecular Medicine & Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|