1
|
Kumar M, Nigam V, Kumar S, Pathak AK. Regulation of metabolic pathways genes and the effects of very low-calorie diet on insulin resistance and fatty acid profiles in obese patients undergoing bariatric surgery. J Diabetes Metab Disord 2025; 24:114. [PMID: 40342399 PMCID: PMC12055731 DOI: 10.1007/s40200-025-01625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/20/2025] [Indexed: 05/11/2025]
Abstract
Objectives To evaluate the effects of a very-low-calorie diet (VLCD) on insulin resistance (IR), metabolic gene expression, and fatty acid profiles in obese patients (body mass index [BMI] ≥ 30 kg/m2) undergoing bariatric surgery compared to age- and sex-matched nonobese controls (BMI ≤ 25 kg/m2) undergoing elective abdominal surgery. Methods A total of 38 participants (21 obese and 17 nonobese controls) were recruited for this study. Obese patients underwent VLCD (800 kcal/day) for four weeks before surgery. Fasting blood samples and tissue biopsies were collected during surgery. Key parameters included IR (measured using HOMA-IR), metabolic gene expression (quantified via RT-PCR), and fatty acid composition (analyzed by gas chromatography). Data were compared between pre- and post-VLCD groups in the obese cohort. Results GLUT4 expression was reduced (1.57-fold, p = 0.025), whereas PDK4 (3.9-fold, p = 0.002), CPT1 (2.5-fold, p = 0.013), and AMPK (twofold, p = 0.004) expression were Correlation analysis revealed that GLUT4 was negatively correlated with BMI (r = -0.85), glucose (r = -0.94), and IR (r = -0.79), CPT1 was positively correlated with these parameters (BMI: r = 0.84, glucose: r = 0.92, IR: r = 0.82). VLCD significantly reduced monounsaturated fatty acids, including alpha-linolenic acid (p = 0.03) and erucic acid (p = 0.019). Postsurgical improvements included reductions in BMI (Δ = 6.21, p < 0.0001), glucose level (Δ = 6.94, p = 0.0007), and IR (Δ = 10.19, p = 0.0039). Conclusion VLCD modulated metabolic gene expression and fatty acid profiles, enhancing IR and metabolic health both pre- and post-surgery. This represents a critical strategy for optimizing the outcomes of obese patients undergoing bariatric surgery. Supplementary information The online version contains supplementary material available at 10.1007/s40200-025-01625-5.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029 India
- Department of Biochemistry, Integral University, Lucknow, 226026 India
| | - Vibhav Nigam
- Department of Biochemistry, King George’s Medical University, Lucknow, 226003 India
| | - Sandeep Kumar
- Department of Medicine Endocrinology, Oklahoma University Health Science Center, Oklahoma City, OK 73104 USA
| | - Anumesh K. Pathak
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, 226010 India
| |
Collapse
|
2
|
Riley N, Kasza I, Hermsmeyer IDK, Trautman ME, Barrett-Wilt G, Jain R, Simcox JA, Yen CLE, MacDougald OA, Lamming DW, Alexander CM. Dietary lipids are largely deposited in skin and rapidly affect insulating properties. Nat Commun 2025; 16:4570. [PMID: 40379673 PMCID: PMC12084621 DOI: 10.1038/s41467-025-59869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 05/07/2025] [Indexed: 05/19/2025] Open
Abstract
Skin is a regulatory hub for energy expenditure and metabolism, and alteration of lipid metabolism enzymes in skin impacts thermogenesis and obesogenesis in mice. Here we show that thermal properties of skin are highly reactive to diet: within three days, a high fat diet reduces heat transfer through skin. In contrast, a dietary manipulation that prevents obesity accelerates energy loss through skins. We find that skin is the largest target for dietary fat delivery, and that dietary triglyceride is assimilated by epidermis and dermal white adipose tissue, persisting for weeks after feeding. With caloric-restriction, mouse skins thin and assimilation of circulating lipids decreases. Using multi-modal lipid profiling, keratinocytes and sebocytes are implicated in lipid changes, which correlate with thermal function. We propose that skin should be routinely included in physiological studies of lipid metabolism, given the size of the skin lipid reservoir and its adaptable functionality.
Collapse
Affiliation(s)
- Nick Riley
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, USA
| | - Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, USA
| | - Isabel D K Hermsmeyer
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, USA
| | - Michaela E Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, USA
- William S. Middleton Memorial Veterans Hospital, Madison, USA
| | | | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-Madison, Madison, USA
| | - Judith A Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, USA
| | - Chi-Liang E Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, USA
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, USA
- William S. Middleton Memorial Veterans Hospital, Madison, USA
| | - Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, USA.
| |
Collapse
|
3
|
Bertinat R, Holyoak T, Gatica R, Jara N, González-Chavarría I, Westermeier F. The neglected PCK1/glucagon (inter)action in nutrient homeostasis beyond gluconeogenesis: Disease pathogenesis and treatment. Mol Metab 2025; 94:102112. [PMID: 39954782 PMCID: PMC11909762 DOI: 10.1016/j.molmet.2025.102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Glucagon plays a central role in hepatic adaptation during fasting, with the upregulation of hepatic phosphoenolpyruvate carboxykinase 1 (PCK1) traditionally associated with increased gluconeogenesis. However, recent experimental models and clinical studies have challenged this view, suggesting a more complex interplay between PCK1 and glucagon, which extends beyond gluconeogenesis and has broader implications for metabolic regulation in health and disease. SCOPE OF REVIEW This review provides a comprehensive overview of the current evidence on the multifaceted roles of PCK1 in glucagon-dependent hepatic adaptation during fasting, which is crucial for maintaining systemic homeostasis not only of glucose, but also of lipids and amino acids. We explore the relationship between PCK1 deficiency and glucagon resistance in metabolic disorders, including inherited PCK1 deficiency and metabolic dysfunction-associated steatotic liver disease (MASLD), and compare findings from experimental animal models with whole-body or tissue-specific ablation of PCK1 or the glucagon receptor. We propose new research platforms to advance the therapeutic potential of targeting PCK1 in metabolic diseases. MAJOR CONCLUSIONS We propose that hepatic PCK1 deficiency might be an acquired metabolic disorder linking alterations in lipid metabolism with impaired glucagon signaling. Our findings highlight interesting links between glycerol, PCK1 deficiency, elevated plasma alanine levels and glucagon resistance. We conclude that the roles of PCK1 and glucagon in metabolic regulation are more complex than previously assumed. In this (un)expected scenario, hepatic PCK1 deficiency and glucagon resistance appear to exert limited control over glycemia, but have broader metabolic effects related to lipid and amino acid dysregulation. Given the shift in glucagon research from receptor inhibition to activation, we propose that a similar paradigm shift is needed in the study of hepatic PCK1. Understanding PCK1 expression and activity in the glucagon-dependent hepatic adaptation to fasting might provide new perspectives and therapeutic opportunities for metabolic diseases.
Collapse
Affiliation(s)
- Romina Bertinat
- Centro de Microscopía Avanzada, CMA-BIO BIO, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Laboratorio de Lipoproteínas y Cáncer, Departamento de Fisiopatología, Universidad de Concepción, Concepción, Chile.
| | - Todd Holyoak
- Department of Biology, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Rodrigo Gatica
- Escuela de Veterinaria, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Nery Jara
- Departamento de Farmacología, Universidad de Concepción, Concepción, Chile
| | - Iván González-Chavarría
- Laboratorio de Lipoproteínas y Cáncer, Departamento de Fisiopatología, Universidad de Concepción, Concepción, Chile
| | - Francisco Westermeier
- Institute of Biomedical Science, Department of Health Studies, FH JOANNEUM University of Applied Sciences, Graz, Austria; Centro de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
4
|
Li J, Pan J, Wang L, Ji G, Dang Y. Colorectal Cancer: Pathogenesis and Targeted Therapy. MedComm (Beijing) 2025; 6:e70127. [PMID: 40060193 PMCID: PMC11885891 DOI: 10.1002/mco2.70127] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 04/29/2025] Open
Abstract
Colorectal cancer (CRC) ranks among the most prevalent malignant neoplasms globally. A growing body of evidence underscores the pivotal roles of genetic alterations and dysregulated epigenetic modifications in the pathogenesis of CRC. In recent years, the reprogramming of tumor cell metabolism has been increasingly acknowledged as a hallmark of cancer. Substantial evidence suggests a crosstalk between tumor cell metabolic reprogramming and epigenetic modifications, highlighting a complex interplay between metabolism and the epigenetic genome that warrants further investigation. Biomarkers associated with the pathogenesis and metabolic characteristics of CRC hold significant clinical implications. Nevertheless, elucidating the genetic, epigenetic, and metabolic landscapes of CRC continues to pose considerable challenges. Here, we attempt to summarize the key genes driving the onset and progression of CRC and the related epigenetic regulators, clarify the roles of gene expression and signaling pathways in tumor metabolism regulation, and explore the potential crosstalk between epigenetic events and tumor metabolic reprogramming, providing a comprehensive mechanistic explanation for the malignant progression of CRC. Finally, by integrating reliable targets from genetics, epigenetics, and metabolic processes that hold promise for translation into clinical practice, we aim to offer more strategies to overcome the bottlenecks in CRC treatment.
Collapse
Affiliation(s)
- Jingyuan Li
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiashu Pan
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Lisheng Wang
- Department of BiochemistryMicrobiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaOntarioCanada
- China‐Canada Centre of Research for Digestive DiseasesUniversity of OttawaOttawaOntarioCanada
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
5
|
Skowronek AK, Jaskulak M, Zorena K. The Potential of Metabolomics as a Tool for Identifying Biomarkers Associated with Obesity and Its Complications: A Scoping Review. Int J Mol Sci 2024; 26:90. [PMID: 39795949 PMCID: PMC11719496 DOI: 10.3390/ijms26010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Obesity and its related diseases, such as type 2 diabetes (T2DM), cardiovascular disease (CVD), and metabolic fatty liver disease (MAFLD), require new diagnostic markers for earlier detection and intervention. The aim of this study is to demonstrate the potential of metabolomics as a tool for identifying biomarkers associated with obesity and its comorbidities in every age group. The presented systematic review makes an important contribution to the understanding of the potential of metabolomics in identifying biomarkers of obesity and its complications, especially considering the influence of branched-chain amino acids (BCAAs), amino acids (AAs) and adipokines on the development of T2DM, MAFLD, and CVD. The unique element of this study is the combination of research results from the last decade in different age groups and a wide demographic range. The review was based on the PubMed and Science Direct databases, and the inclusion criterion was English-language original studies conducted in humans between 2014 and 2024 and focusing on the influence of BCAAs, AAs or adipokines on the above-mentioned obesity complications. Based on the PRISMA protocol, a total of 21 papers were qualified for the review and then assigned to a specific disease entity. The collected data reveal that elevated levels of BCAAs and some AAs strongly correlate with insulin resistance, leading to T2DM, MAFLD, and CVD and often preceding conventional clinical markers. Valine and tyrosine emerge as potential markers of MAFLD progression, while BCAAs are primarily associated with insulin resistance in various demographic groups. Adipokines, although less studied, offer hope for elucidating the metabolic consequences of obesity. The review showed that in the case of CVDs, there is still a lack of studies in children and adolescents, who are increasingly affected by these diseases. Moreover, despite the knowledge that adipokines play an important role in the pathogenesis of obesity, there are no precise findings regarding the correlation between individual adipokines and T2DM, MAFLD, or CVD. In order to be able to introduce metabolites into the basic diagnostics of obesity-related diseases, it is necessary to develop panels of biochemical tests that will combine them with classical markers of selected diseases.
Collapse
Affiliation(s)
| | | | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Medical University of Gdansk, 80-210 Gdansk, Poland; (A.K.S.); (M.J.)
| |
Collapse
|
6
|
Magaña-Gómez JA, González-Ochoa G, Rosas-Rodríguez JA, Stephens-Camacho NA, Flores-Mendoza LK. Sucralose-Enhanced Adipogenesis on Preadipocyte Human Cell Line During Differentiation Process. Int J Mol Sci 2024; 25:13635. [PMID: 39769396 PMCID: PMC11727828 DOI: 10.3390/ijms252413635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Sucralose, a commonly nonnutritive sweetener used in daily products of habitual diet, is related to impairing the gut microbiome by disrupting inflammatory response, promoting weight gain by increasing adipose tissue and promoting chronic inflammatory processes. Considering the impact of sucralose in the development of metabolic diseases, in this work, we focused on the impact of sucralose on the adipocyte differentiation process to determine if sucralose can promote adipogenesis and increase adipose tissue depots in PCS 210 010 human preadipocytes cell line. Sucralose at 25 (S25) and 100 ng/µL (S100) concentrations were tested against control with no edulcorant (NS) during the adipocyte differentiation process at 48 h and 96 h. The genetic expression of adipogenesis markers such as CEBP-α, PPARγ, EBF-2, UCP-1, and lipogenesis regulator ACC was determined by qPCR. A panel of human cytokines related to inflammatory response was measured by a flow cytometer using the kit Legend Plex Human Cytokine panel of BIOLUMINEX. Our results indicate that sucralose increased the expression of white adipocyte differentiation marker CEBP-α and lipogenesis regulator ACC at 96 h before complete differentiation. Also, sucralose triggers an inflammatory response by synthesizing adiponectin, resistin, IL-6, IL-8, and Il-1B. To summarize, sucralose stimulates the expression of genes related to adipogenesis and negatively affects the secretion of inflammatory cytokines and adipokines during preadipocyte differentiation.
Collapse
Affiliation(s)
- Javier A. Magaña-Gómez
- Posgrado en Ciencias Biomédicas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortiz, CU 80010 Culiacán, Sinaloa, Mexico;
| | - Guadalupe González-Ochoa
- Laboratorio Universitario de Análisis Clínicos e Investigación, Universidad de Sonora (LUACI) Departamento de Ciencias Químico-Biológicas y Agropecuarias, Campus Navojoa. Lázaro Cárdenas del Río #100, CP 85880 Navojoa, Sonora, Mexico; (G.G.-O.); (J.A.R.-R.)
| | - Jesus A. Rosas-Rodríguez
- Laboratorio Universitario de Análisis Clínicos e Investigación, Universidad de Sonora (LUACI) Departamento de Ciencias Químico-Biológicas y Agropecuarias, Campus Navojoa. Lázaro Cárdenas del Río #100, CP 85880 Navojoa, Sonora, Mexico; (G.G.-O.); (J.A.R.-R.)
| | - N. Aurora Stephens-Camacho
- Posgrado en Ciencias Biomédicas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortiz, CU 80010 Culiacán, Sinaloa, Mexico;
- Licenciatura en Nutrición Humana, Universidad Estatal de Sonora, Blvd. Manlio Fabio Beltrones 810, Col. Bugambilias, CP 85875 Navojoa, Sonora, Mexico
| | - Lilian K. Flores-Mendoza
- Laboratorio Universitario de Análisis Clínicos e Investigación, Universidad de Sonora (LUACI) Departamento de Ciencias Químico-Biológicas y Agropecuarias, Campus Navojoa. Lázaro Cárdenas del Río #100, CP 85880 Navojoa, Sonora, Mexico; (G.G.-O.); (J.A.R.-R.)
| |
Collapse
|
7
|
Ryskova L, Pospisilova K, Vavra J, Wolf T, Dvorak A, Vitek L, Polak J. Contribution of glucose and glutamine to hypoxia-induced lipid synthesis decreases, while contribution of acetate increases, during 3T3-L1 differentiation. Sci Rep 2024; 14:28193. [PMID: 39548264 PMCID: PMC11568125 DOI: 10.1038/s41598-024-79458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
The molecular mechanisms linking obstructive sleep apnea syndrome (OSA) to obesity and the development of metabolic diseases are still poorly understood. The role of hypoxia (a characteristic feature of OSA) in excessive fat accumulation has been proposed. The present study investigated the possible effects of hypoxia (4% oxygen) on de novo lipogenesis by tracking the major carbon sources in differentiating 3T3-L1 adipocytes. Gas-permeable cultuware was employed to cultivate 3T3-L1 adipocytes in hypoxia (4%) for 7 or 14 days of differentiation. We investigated the contribution of glutamine, glucose or acetate using 13C or 14C labelled carbons to the newly synthesized lipid pool, changes in intracellular lipid content after inhibiting citrate- or acetate-dependent pathways and gene expression of involved key enzymes. The results demonstrate that, in differentiating adipocytes, hypoxia decreased the synthesis of lipids from glucose (44.1 ± 8.8 to 27.5 ± 3.0 pmol/mg of protein, p < 0.01) and partially decreased the contribution of glutamine metabolized through the reverse tricarboxylic acid cycle (4.6% ± 0.2-4.2% ± 0.1%, p < 0.01). Conversely, the contribution of acetate, a citrate- and mitochondria-independent source of carbons, increased upon hypoxia (356.5 ± 71.4 to 649.8 ± 117.5 pmol/mg of protein, p < 0.01). Further, inhibiting the citrate- or acetate-dependent pathways decreased the intracellular lipid content by 58% and 73%, respectively (p < 0.01) showing the importance of de novo lipogenesis in hypoxia-exposed adipocytes. Altogether, hypoxia modified the utilization of carbon sources, leading to alterations in de novo lipogenesis in differentiating adipocytes and increased intracellular lipid content.
Collapse
Affiliation(s)
- Lucie Ryskova
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Ruska 87, Prague, 100 00, Czech Republic
| | - Katerina Pospisilova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiri Vavra
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Wolf
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Ruska 87, Prague, 100 00, Czech Republic
| | - Ales Dvorak
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Internal Medicine, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Polak
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Ruska 87, Prague, 100 00, Czech Republic.
- Department of Internal Medicine, Thomayer University Hospital, Videnska 800, Prague, 140 59, Czech Republic.
| |
Collapse
|
8
|
Shannon CE, Bakewell T, Fourcaudot MJ, Ayala I, Smelter AA, Hinostroza EA, Romero G, Asmis M, Freitas Lima LC, Wallace M, Norton L. The mitochondrial pyruvate carrier regulates adipose glucose partitioning in female mice. Mol Metab 2024; 88:102005. [PMID: 39137831 PMCID: PMC11382204 DOI: 10.1016/j.molmet.2024.102005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
OBJECTIVE The mitochondrial pyruvate carrier (MPC) occupies a critical node in intermediary metabolism, prompting interest in its utility as a therapeutic target for the treatment of obesity and cardiometabolic disease. Dysregulated nutrient metabolism in adipose tissue is a prominent feature of obesity pathophysiology, yet the functional role of adipose MPC has not been explored. We investigated whether the MPC shapes the adaptation of adipose tissue to dietary stress in female and male mice. METHODS The impact of pharmacological and genetic disruption of the MPC on mitochondrial pathways of triglyceride assembly (lipogenesis and glyceroneogenesis) was assessed in 3T3L1 adipocytes and murine adipose explants, combined with analyses of adipose MPC expression in metabolically compromised humans. Whole-body and adipose-specific glucose metabolism were subsequently investigated in male and female mice lacking adipocyte MPC1 (Mpc1AD-/-) and fed either standard chow, high-fat western style, or high-sucrose lipid restricted diets for 24 weeks, using a combination of radiolabeled tracers and GC/MS metabolomics. RESULTS Treatment with UK5099 or siMPC1 impaired the synthesis of lipids and glycerol-3-phosphate from pyruvate and blunted triglyceride accumulation in 3T3L1 adipocytes, whilst MPC expression in human adipose tissue was negatively correlated with indices of whole-body and adipose tissue metabolic dysfunction. Mature adipose explants from Mpc1AD-/- mice were intrinsically incapable of incorporating pyruvate into triglycerides. In vivo, MPC deletion restricted the incorporation of circulating glucose into adipose triglycerides, but only in female mice fed a zero fat diet, and this associated with sex-specific reductions in tricarboxylic acid cycle pool sizes and compensatory transcriptional changes in lipogenic and glycerol metabolism pathways. However, whole-body adiposity and metabolic health were preserved in Mpc1AD-/- mice regardless of sex, even under conditions of zero dietary fat. CONCLUSIONS These findings highlight the greater capacity for mitochondrially driven triglyceride assembly in adipose from female versus male mice and expose a reliance upon MPC-gated metabolism for glucose partitioning in female adipose under conditions of dietary lipid restriction.
Collapse
Affiliation(s)
- Christopher E Shannon
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland; Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA.
| | - Terry Bakewell
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Marcel J Fourcaudot
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Iriscilla Ayala
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Annie A Smelter
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Edgar A Hinostroza
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Giovanna Romero
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mara Asmis
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Leandro C Freitas Lima
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Martina Wallace
- UCD Conway Institute, School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Luke Norton
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
9
|
Lee LE, Doke T, Mukhi D, Susztak K. The key role of altered tubule cell lipid metabolism in kidney disease development. Kidney Int 2024; 106:24-34. [PMID: 38614389 PMCID: PMC11193624 DOI: 10.1016/j.kint.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 04/15/2024]
Abstract
Kidney epithelial cells have very high energy requirements, which are largely met by fatty acid oxidation. Complex changes in lipid metabolism are observed in patients with kidney disease. Defects in fatty acid oxidation and increased lipid uptake, especially in the context of hyperlipidemia and proteinuria, contribute to this excess lipid build-up and exacerbate kidney disease development. Recent studies have also highlighted the role of increased de novo lipogenesis in kidney fibrosis. The defect in fatty acid oxidation causes energy starvation. Increased lipid uptake, synthesis, and lower fatty acid oxidation can cause toxic lipid build-up, reactive oxygen species generation, and mitochondrial damage. A better understanding of these metabolic processes may open new treatment avenues for kidney diseases by targeting lipid metabolism.
Collapse
Affiliation(s)
- Lauren E Lee
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tomohito Doke
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dhanunjay Mukhi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
10
|
Aldehoff AS, Karkossa I, Goerdeler C, Krieg L, Schor J, Engelmann B, Wabitsch M, Landgraf K, Hackermüller J, Körner A, Rolle-Kampczyk U, Schubert K, von Bergen M. Unveiling the dynamics of acetylation and phosphorylation in SGBS and 3T3-L1 adipogenesis. iScience 2024; 27:109711. [PMID: 38840842 PMCID: PMC11152682 DOI: 10.1016/j.isci.2024.109711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/11/2023] [Accepted: 04/06/2024] [Indexed: 06/07/2024] Open
Abstract
Obesity, characterized by enlarged and dysfunctional adipose tissue, is among today's most pressing global public health challenges with continuously increasing prevalence. Despite the importance of post-translational protein modifications (PTMs) in cellular signaling, knowledge of their impact on adipogenesis remains limited. Here, we studied the temporal dynamics of transcriptome, proteome, central carbon metabolites, and the acetyl- and phosphoproteome during adipogenesis using LC-MS/MS combined with PTM enrichment strategies on human (SGBS) and mouse (3T3-L1) adipocyte models. Both cell lines exhibited unique PTM profiles during adipogenesis, with acetylated proteins being enriched for central energy metabolism, while phosphorylated proteins related to insulin signaling and organization of cellular structures. As candidates with strong correlation to the adipogenesis timeline we identified CD44 and the acetylation sites FASN_K673 and IDH_K272. While results generally aligned between SGBS and 3T3-L1 cells, details appeared cell line specific. Our datasets on SGBS and 3T3-L1 adipogenesis dynamics are accessible for further mining.
Collapse
Affiliation(s)
- Alix Sarah Aldehoff
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Cornelius Goerdeler
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Laura Krieg
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Jana Schor
- Department of Computational Biology and Chemistry, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Beatrice Engelmann
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, University Hospital for Children and Adolescents Ulm, Ulm, Germany
| | - Kathrin Landgraf
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jörg Hackermüller
- Department of Computational Biology and Chemistry, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
- Department of Computer Science, University of Leipzig, Leipzig, Germany
| | - Antje Körner
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG) of the Helmholtz-Centre Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- LIFE–Leipzig Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
11
|
Shannon CE, Bakewell T, Fourcaudot MJ, Ayala I, Romero G, Asmis M, Lima LCF, Wallace M, Norton L. Sex-dependent adipose glucose partitioning by the mitochondrial pyruvate carrier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593540. [PMID: 38798427 PMCID: PMC11118482 DOI: 10.1101/2024.05.11.593540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Objective The mitochondrial pyruvate carrier (MPC) occupies a critical node in intermediary metabolism, prompting interest in its utility as a therapeutic target for the treatment of obesity and cardiometabolic disease. Dysregulated nutrient metabolism in adipose tissue is a prominent feature of obesity pathophysiology, yet the functional role of adipose MPC has not been explored. We investigated whether the MPC shapes the adaptation of adipose tissue to dietary stress in female and male mice. Methods The impact of pharmacological and genetic disruption of the MPC on mitochondrial pathways of triglyceride assembly (lipogenesis and glyceroneogenesis) was assessed in 3T3L1 adipocytes and murine adipose explants, combined with analyses of adipose MPC expression in metabolically compromised humans. Whole-body and adipose-specific glucose metabolism were subsequently investigated in male and female mice lacking adipocyte MPC1 (Mpc1AD-/-) and fed either standard chow, high-fat western style, or high-sucrose lipid restricted diets for 24 weeks, using a combination of radiolabeled tracers and GC/MS metabolomics. Results Treatment with UK5099 or siMPC1 impaired the synthesis of lipids and glycerol-3-phosphate from pyruvate and blunted triglyceride accumulation in 3T3L1 adipocytes, whilst MPC expression in human adipose tissue was negatively correlated with indices of whole-body and adipose tissue metabolic dysfunction. Mature adipose explants from Mpc1AD-/- mice were intrinsically incapable of incorporating pyruvate into triglycerides. In vivo, MPC deletion restricted the incorporation of circulating glucose into adipose triglycerides, but only in female mice fed a zero fat diet, and this associated with sex-specific reductions in tricarboxylic acid cycle pool sizes and compensatory transcriptional changes in lipogenic and glycerol metabolism pathways. However, whole-body adiposity and metabolic health were preserved in Mpc1AD-/- mice regardless of sex, even under conditions of zero dietary fat. Conclusion These findings highlight the greater capacity for mitochondrially driven triglyceride assembly in adipose from female versus male mice and expose a reliance upon MPC-gated metabolism for glucose partitioning in female adipose under conditions of dietary lipid restriction.
Collapse
Affiliation(s)
- Christopher E Shannon
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Terry Bakewell
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Marcel J Fourcaudot
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Iriscilla Ayala
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Giovanna Romero
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mara Asmis
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Leandro C Freitas Lima
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Martina Wallace
- UCD Conway Institute, School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Luke Norton
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
12
|
Granath-Panelo M, Kajimura S. Mitochondrial heterogeneity and adaptations to cellular needs. Nat Cell Biol 2024; 26:674-686. [PMID: 38755301 DOI: 10.1038/s41556-024-01410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
Although it is well described that mitochondria are at the epicentre of the energy demands of a cell, it is becoming important to consider how each cell tailors its mitochondrial composition and functions to suit its particular needs beyond ATP production. Here we provide insight into mitochondrial heterogeneity throughout development as well as in tissues with specific energy demands and discuss how mitochondrial malleability contributes to cell fate determination and tissue remodelling.
Collapse
Affiliation(s)
- Melia Granath-Panelo
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA.
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Shingo Kajimura
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
13
|
Qiao K, Jiang R, Contreras GA, Xie L, Pascottini OB, Opsomer G, Dong Q. The Complex Interplay of Insulin Resistance and Metabolic Inflammation in Transition Dairy Cows. Animals (Basel) 2024; 14:832. [PMID: 38539930 PMCID: PMC10967290 DOI: 10.3390/ani14060832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 11/11/2024] Open
Abstract
During the transition period, dairy cows exhibit heightened energy requirements to sustain fetal growth and lactogenesis. The mammary gland and the growing fetus increase their demand for glucose, leading to the mobilization of lipids to support the function of tissues that can use fatty acids as energy substrates. These physiological adaptations lead to negative energy balance, metabolic inflammation, and transient insulin resistance (IR), processes that are part of the normal homeorhetic adaptations related to parturition and subsequent lactation. Insulin resistance is characterized by a reduced biological response of insulin-sensitive tissues to normal physiological concentrations of insulin. Metabolic inflammation is characterized by a chronic, low-level inflammatory state that is strongly associated with metabolic disorders. The relationship between IR and metabolic inflammation in transitioning cows is intricate and mutually influential. On one hand, IR may play a role in the initiation of metabolic inflammation by promoting lipolysis in adipose tissue and increasing the release of free fatty acids. Metabolic inflammation, conversely, triggers inflammatory signaling pathways by pro-inflammatory cytokines, thereby leading to impaired insulin signaling. The interaction of these factors results in a harmful cycle in which IR and metabolic inflammation mutually reinforce each other. This article offers a comprehensive review of recent advancements in the research on IR, metabolic inflammation, and their intricate interrelationship. The text delves into multiple facets of physiological regulation, pathogenesis, and their consequent impacts.
Collapse
Affiliation(s)
- Kaixi Qiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (K.Q.); (R.J.)
| | - Renjiao Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (K.Q.); (R.J.)
| | - Genaro Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Lei Xie
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (L.X.); (O.B.P.); (G.O.)
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (L.X.); (O.B.P.); (G.O.)
| | - Geert Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (L.X.); (O.B.P.); (G.O.)
| | - Qiang Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (K.Q.); (R.J.)
| |
Collapse
|
14
|
Ramirez Bustamante CE, Agarwal N, Cox AR, Hartig SM, Lake JE, Balasubramanyam A. Adipose Tissue Dysfunction and Energy Balance Paradigms in People Living With HIV. Endocr Rev 2024; 45:190-209. [PMID: 37556371 PMCID: PMC10911955 DOI: 10.1210/endrev/bnad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
Over the past 4 decades, the clinical care of people living with HIV (PLWH) evolved from treatment of acute opportunistic infections to the management of chronic, noncommunicable comorbidities. Concurrently, our understanding of adipose tissue function matured to acknowledge its important endocrine contributions to energy balance. PLWH experience changes in the mass and composition of adipose tissue depots before and after initiating antiretroviral therapy, including regional loss (lipoatrophy), gain (lipohypertrophy), or mixed lipodystrophy. These conditions may coexist with generalized obesity in PLWH and reflect disturbances of energy balance regulation caused by HIV persistence and antiretroviral therapy drugs. Adipocyte hypertrophy characterizes visceral and subcutaneous adipose tissue depot expansion, as well as ectopic lipid deposition that occurs diffusely in the liver, skeletal muscle, and heart. PLWH with excess visceral adipose tissue exhibit adipokine dysregulation coupled with increased insulin resistance, heightening their risk for cardiovascular disease above that of the HIV-negative population. However, conventional therapies are ineffective for the management of cardiometabolic risk in this patient population. Although the knowledge of complex cardiometabolic comorbidities in PLWH continues to expand, significant knowledge gaps remain. Ongoing studies aimed at understanding interorgan communication and energy balance provide insights into metabolic observations in PLWH and reveal potential therapeutic targets. Our review focuses on current knowledge and recent advances in HIV-associated adipose tissue dysfunction, highlights emerging adipokine paradigms, and describes critical mechanistic and clinical insights.
Collapse
Affiliation(s)
- Claudia E Ramirez Bustamante
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neeti Agarwal
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jordan E Lake
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School at UTHealth, Houston, TX 77030, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
15
|
Saprina TV, Bashirova AS, Ivanov VV, Pekov SI, Popov IA, Bashirov SR, Vasilyeva EA, Pavlenko OA, Krinitskii DV, Chen M. Lipidomic markers of obesity and their dynamics after bariatric surgery. BULLETIN OF SIBERIAN MEDICINE 2024; 22:174-187. [DOI: 10.20538/1682-0363-2023-4-174-187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Obesity is considered as a chronic progressive disease, heterogeneous in its etiology and clinical manifestations, and characterized by excess in body fat mass and its deposition in the body. The term “morbid obesity” refers to excessive deposition of adipose tissue with a body mass index (BMI) ≥40 kg / m2 or with a BMI ≥ 35 kg / m2 in the presence of serious complications associated with obesity. Along with obesity, the frequency of type 2 diabetes mellitus and cardiovascular diseases closely associated with it has increased. It results from the progression of metabolic disorders, including insulin resistance, which is inextricably linked with the accumulation of visceral fat and plays a key role in the pathogenesis of obesity-related diseases.The study of lipidomic signatures in obesity and associated conditions is a promising branch of fundamental medicine, which makes it possible to significantly and at a new conceptual level stratify a cohort of obese patients into various phenotypes, including a metabolically healthy and metabolically unhealthy obesity phenotypes. Dynamic changes in the lipidome both in the context of diet, drug treatment, and after various bariatric surgeries are of great interest for developing personalized strategies for the treatment of this disease. Currently available studies and their results suggest that we are only at the very start of studying this promising biomedical field.
Collapse
Affiliation(s)
| | | | | | - S. I. Pekov
- Siberian State Medical University;
Skolkovo Institute of Science and Technology;
Moscow Institute of Physics and Technology
| | - I. A. Popov
- Siberian State Medical University;
Moscow Institute of Physics and Technology
| | | | | | | | | | - M. Chen
- Siberian State Medical University
| |
Collapse
|
16
|
Felix JB, Saha PK, de Groot E, Tan L, Sharp R, Anaya ES, Li Y, Quang H, Saidi N, Abushamat L, Ballantyne CM, Amos CI, Lorenzi PL, Klein S, Gao X, Hartig SM. N-acetylaspartate from fat cells regulates postprandial body temperature. RESEARCH SQUARE 2024:rs.3.rs-3835159. [PMID: 38260478 PMCID: PMC10802732 DOI: 10.21203/rs.3.rs-3835159/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
N-acetylaspartate (NAA), the brain's second most abundant metabolite, provides essential substrates for myelination through its hydrolysis. However, activities and physiological roles of NAA in other tissues remain unknown. Here, we show aspartoacylase (ASPA) expression in white adipose tissue (WAT) governs systemic NAA levels for postprandial body temperature regulation. Proteomics and mass spectrometry revealed NAA accumulation in WAT of Aspa knockout mice stimulated the pentose phosphate pathway and pyrimidine production. Stable isotope tracing confirmed higher incorporation of glucose-derived carbon into pyrimidine metabolites in Aspa knockout cells. Additionally, serum NAA positively correlates with the pyrimidine intermediate orotidine and this relationship predicted lower body mass index in humans. Using whole-body and tissue-specific knockout mouse models, we demonstrate that fat cells provided plasma NAA and suppressed postprandial body temperature elevation. Furthermore, exogenous NAA supplementation reduced body temperature. Our study unveils WAT-derived NAA as an endocrine regulator of postprandial body temperature and physiological homeostasis.
Collapse
Affiliation(s)
- Jessica B. Felix
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Pradip K. Saha
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Evelyn de Groot
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Cancer and Cellular Biology Program, Baylor College of Medicine, Houston, TX
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Robert Sharp
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Elizabeth S. Anaya
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Cancer and Cellular Biology Program, Baylor College of Medicine, Houston, TX
| | - Yafang Li
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Holly Quang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine
| | - Nooshin Saidi
- Data Sciences Program, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD
| | - Layla Abushamat
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Christie M. Ballantyne
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Christopher I. Amos
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Philip L. Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Xia Gao
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine
| | - Sean M. Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
17
|
Ni M, He H, Chen M, Li Z, Cai H, Chen Z, Li M, Xu H. Supplementation of sodium acetate improves the growth performance and intestinal health of rabbits through Wnt/β-catenin signaling pathway. J Anim Sci 2024; 102:skae197. [PMID: 39037212 PMCID: PMC11337008 DOI: 10.1093/jas/skae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/21/2024] [Indexed: 07/23/2024] Open
Abstract
Acetic acid, which is one of the most abundant short-chain fatty acids (SCFA) in rabbits' cecum, has been reported to play an important function during various physiological metabolic processes. The present study was conducted to elucidate the effects of sodium acetate on growth performance and intestinal health by evaluating feed intake and efficiency, diarrhea score, serum and cecum metabolites, cecal pH and SCFA, histological staining, nutritional composition of meat and gene expression profile of cecum in rabbits. As a result of sodium acetate supplement, the feed conversion ratio, diarrhea score, and diameter of muscle fiber were significantly decreased (P < 0.05). Additionally, dietary sodium acetate significantly increased in total area of muscle fibers and content of crude ash (P < 0.05). Dietary sodium acetate significantly increased serum glucose, total bile acid, and total cholesterol levels and decreased amylase, lipase, and tCO2 content (P < 0.05). Further examination suggested that sodium acetate supplementation enhanced the micro-environment of cecum, evidenced by significantly increased levels of total antioxidant capacity, total superoxide dismutase, and glutathione peroxidase, and decreased pH and amylase levels (P < 0.05). According to transcriptome sequencing of cecal tissues, differentially expressed genes were predominantly enriched in cell cycle, ABC transporters, and chemokine signaling pathways. Sodium acetate was further suggested to stimulate the proliferation and migration of rabbits' cecum epithelial cells by activating Wnt/β-catenin pathway both in vivo and in vitro. In conclusion, dietary sodium acetate supplementation improved growth performance and intestinal health in rabbits.
Collapse
Affiliation(s)
- Mengke Ni
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hui He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Mengjuan Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhichao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
18
|
Chae SY, Kim Y, Park CW. Oxidative Stress Induced by Lipotoxicity and Renal Hypoxia in Diabetic Kidney Disease and Possible Therapeutic Interventions: Targeting the Lipid Metabolism and Hypoxia. Antioxidants (Basel) 2023; 12:2083. [PMID: 38136203 PMCID: PMC10740440 DOI: 10.3390/antiox12122083] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Oxidative stress, a hallmark pathophysiological feature in diabetic kidney disease (DKD), arises from the intricate interplay between pro-oxidants and anti-oxidants. While hyperglycemia has been well established as a key contributor, lipotoxicity emerges as a significant instigator of oxidative stress. Lipotoxicity encompasses the accumulation of lipid intermediates, culminating in cellular dysfunction and cell death. However, the mechanisms underlying lipotoxic kidney injury in DKD still require further investigation. The key role of cell metabolism in the maintenance of cell viability and integrity in the kidney is of paramount importance to maintain proper renal function. Recently, dysfunction in energy metabolism, resulting from an imbalance in oxygen levels in the diabetic condition, may be the primary pathophysiologic pathway driving DKD. Therefore, we aim to shed light on the pivotal role of oxidative stress related to lipotoxicity and renal hypoxia in the initiation and progression of DKD. Multifaceted mechanisms underlying lipotoxicity, including oxidative stress with mitochondrial dysfunction, endoplasmic reticulum stress activated by the unfolded protein response pathway, pro-inflammation, and impaired autophagy, are delineated here. Also, we explore potential therapeutic interventions for DKD, targeting lipotoxicity- and hypoxia-induced oxidative stress. These interventions focus on ameliorating the molecular pathways of lipid accumulation within the kidney and enhancing renal metabolism in the face of lipid overload or ameliorating subsequent oxidative stress. This review highlights the significance of lipotoxicity, renal hypoxia-induced oxidative stress, and its potential for therapeutic intervention in DKD.
Collapse
Affiliation(s)
- Seung Yun Chae
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (S.Y.C.); (Y.K.)
| | - Yaeni Kim
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (S.Y.C.); (Y.K.)
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (S.Y.C.); (Y.K.)
- Institute for Aging and Metabolic Disease, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
19
|
Huang Z, Byrd O, Tan S, Hu K, Knight B, Lo G, Taylor L, Wu Y, Berchuck A, Murphy SK. Periostin facilitates ovarian cancer recurrence by enhancing cancer stemness. Sci Rep 2023; 13:21382. [PMID: 38049490 PMCID: PMC10695946 DOI: 10.1038/s41598-023-48485-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
The lethality of epithelial ovarian cancer (OC) is largely due to a high rate of recurrence and development of chemoresistance, which requires synergy between cancer cells and the tumor microenvironment (TME) and is thought to involve cancer stem cells. Our analysis of gene expression microarray data from paired primary and recurrent OC tissues revealed significantly elevated expression of the gene encoding periostin (POSTN) in recurrent OC compared to matched primary tumors (p = 0.015). Secreted POSTN plays a role in the extracellular matrix, facilitating epithelial cell migration and tissue regeneration. We therefore examined how elevated extracellular POSTN, as we found is present in recurrent OC, impacts OC cell functions and phenotypes, including stemness. OC cells cultured with conditioned media with high levels of periostin (CMPOSTNhigh) exhibited faster migration (p = 0.0044), enhanced invasiveness (p = 0.006), increased chemoresistance (p < 0.05), and decreased apoptosis as compared to the same cells cultured with control medium (CMCTL). Further, CMPOSTNhigh-cultured OC cells exhibited an elevated stem cell side population (p = 0.027) along with increased expression of cancer stem cell marker CD133 relative to CMCTL-cultured cells. POSTN-transfected 3T3-L1 cells that were used to generate CMPOSTNhigh had visibly enhanced intracellular and extracellular lipids, which was also linked to increased OC cell expression of fatty acid synthetase (FASN) that functions as a central regulator of lipid metabolism and plays a critical role in the growth and survival of tumors. Additionally, POSTN functions in the TME were linked to AKT pathway activities. The mean tumor volume in mice injected with CMPOSTNhigh-cultured OC cells was larger than that in mice injected with CMCTL-cultured OC cells (p = 0.0023). Taken together, these results show that elevated POSTN in the extracellular environment leads to more aggressive OC cell behavior and an increase in cancer stemness, suggesting that increased levels of stromal POSTN during OC recurrence contribute to more rapid disease progression and may be a novel therapeutic target. Furthermore, they also demonstrate the utility of having matched primary-recurrent OC tissues for analysis and support the need for better understanding of the molecular changes that occur with OC recurrence to develop ways to undermine those processes.
Collapse
Affiliation(s)
- Zhiqing Huang
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA.
- Department of Obstetrics and Gynecology, Duke University Medical Center, 701 West Main Street, Suite 510, Duke, PO Box 90534, Durham, NC, 27701, USA.
| | - Olivia Byrd
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Sarah Tan
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Katrina Hu
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Bailey Knight
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Gaomong Lo
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Lila Taylor
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Yuan Wu
- Biostatistics & Bioinformatics, Division of Biostatistics, Biostatistics & Bioinformatics, Duke University, Durham, USA
| | - Andrew Berchuck
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Susan K Murphy
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| |
Collapse
|
20
|
Tracz-Gaszewska Z, Sowka A, Dobrzyn P. Stearoyl-CoA desaturase 1 inhibition impairs triacylglycerol accumulation and lipid droplet formation in colorectal cancer cells. J Cell Physiol 2023; 238:2888-2903. [PMID: 37814830 DOI: 10.1002/jcp.31137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Increases in fatty acid (FA) biosynthesis meet the higher lipid demand by intensely proliferating cancer cells and promoting their progression. Stearoyl-CoA desaturase 1 (SCD1) is the key enzyme in FA biosynthesis, converting saturated FA (SFA) into monounsaturated FA (MUFA). Increases in the MUFA/SFA ratio and SCD1 expression have been observed in cancers of various origins and correlate with their aggressiveness. However, much is still unknown about the SCD1-dependent molecular mechanisms that promote specific changes in metabolic pathways of cancer cells. The present study investigated the involvement of SCD1 in shaping glucose and lipid metabolism in colorectal cancer (CRC) cells. Excess FAs that derive from de novo lipogenesis are stored in organelles, called lipid droplets (LDs), mainly in the form of triacylglycerol (TAG) and cholesteryl esters. LD accumulation is associated with key features of cancer development and progression. Consistent with our findings, the pharmacological inhibition of SCD1 activity affects CRC cell viability and impairs TAG accumulation and LD formation in these cells through the activation of lipolytic and lipophagic pathways. We showed that SCD1 suppression affects crucial lipogenic processes that promote lipid accumulation in CRC cells but in a sterol regulatory element-binding protein 1-independent manner. We propose that adenosine monophosphate-activated protein kinase contributes to these changes through the activation of lipolysis and inhibition of TAG synthesis. We also provide evidence of the involvement of SCD1 in the regulation of glucose uptake and utilization in CRC cells. These findings underscore the importance of SCD1 in regulating cellular processes that promote cancer development and progression.
Collapse
Affiliation(s)
- Zuzanna Tracz-Gaszewska
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
21
|
Jersin RÅ, Sri Priyanka Tallapragada D, Skartveit L, Bjune MS, Muniandy M, Lee-Ødegård S, Heinonen S, Alvarez M, Birkeland KI, André Drevon C, Pajukanta P, McCann A, Pietiläinen KH, Claussnitzer M, Mellgren G, Dankel SN. Impaired Adipocyte SLC7A10 Promotes Lipid Storage in Association With Insulin Resistance and Altered BCAA Metabolism. J Clin Endocrinol Metab 2023; 108:2217-2229. [PMID: 36916878 PMCID: PMC10438883 DOI: 10.1210/clinem/dgad148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
CONTEXT The neutral amino acid transporter SLC7A10/ASC-1 is an adipocyte-expressed gene with reduced expression in insulin resistance and obesity. Inhibition of SLC7A10 in adipocytes was shown to increase lipid accumulation despite decreasing insulin-stimulated uptake of glucose, a key substrate for de novo lipogenesis. These data imply that alternative lipogenic substrates to glucose fuel continued lipid accumulation during insulin resistance in obesity. OBJECTIVE We examined whether increased lipid accumulation during insulin resistance in adipocytes may involve alter flux of lipogenic amino acids dependent on SLC7A10 expression and activity, and whether this is reflected by extracellular and circulating concentrations of marker metabolites. METHODS In adipocyte cultures with impaired SLC7A10, we performed RNA sequencing and relevant functional assays. By targeted metabolite analyses (GC-MS/MS), flux of all amino acids and selected metabolites were measured in human and mouse adipose cultures. Additionally, SLC7A10 mRNA levels in human subcutaneous adipose tissue (SAT) were correlated to candidate metabolites and adiposity phenotypes in 2 independent cohorts. RESULTS SLC7A10 impairment altered expression of genes related to metabolic processes, including branched-chain amino acid (BCAA) catabolism, lipogenesis, and glyceroneogenesis. In 3T3-L1 adipocytes, SLC7A10 inhibition increased fatty acid uptake and cellular content of glycerol and cholesterol. SLC7A10 impairment in SAT cultures altered uptake of aspartate and glutamate, and increased net uptake of BCAAs, while increasing the net release of the valine catabolite 3- hydroxyisobutyrate (3-HIB). In human cohorts, SLC7A10 mRNA correlated inversely with total fat mass, circulating triacylglycerols, BCAAs, and 3-HIB. CONCLUSION Reduced SLC7A10 activity strongly affects flux of BCAAs in adipocytes, which may fuel continued lipogenesis during insulin resistance, and be reflected in increased circulating levels of the valine-derived catabolite 3-HIB.
Collapse
Affiliation(s)
- Regine Å Jersin
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Divya Sri Priyanka Tallapragada
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Linn Skartveit
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Mona S Bjune
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Maheswary Muniandy
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Sindre Lee-Ødegård
- Department of Transplantation Medicine, The University of Oslo, Institute of Clinical Medicine, and Oslo University Hospital, N-0372 Oslo, Norway
| | - Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Kåre Inge Birkeland
- Department of Transplantation Medicine, The University of Oslo, Institute of Clinical Medicine, and Oslo University Hospital, N-0372 Oslo, Norway
| | - Christian André Drevon
- Department of Nutrition, The University of Oslo, Institute of Basic Medical Sciences, N-0372 Oslo, Norway
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA 90095, USA
- Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Adrian McCann
- Bevital A/S, Laboratoriebygget, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland
- Obesity Center, Endocrinology, Abdominal Center, Helsinki University Hospital and University of Helsinki, FIN-00014 Helsinki, Finland
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Simon N Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, N-5021 Bergen, Norway
| |
Collapse
|
22
|
Tran M, Yang K, Glukhova A, Holinstat M, Holman T. Inhibitory Investigations of Acyl-CoA Derivatives against Human Lipoxygenase Isozymes. Int J Mol Sci 2023; 24:10941. [PMID: 37446119 PMCID: PMC10341549 DOI: 10.3390/ijms241310941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Lipid metabolism is a complex process crucial for energy production resulting in high levels of acyl-coenzyme A (acyl-CoA) molecules in the cell. Acyl-CoAs have also been implicated in inflammation, which could be possibly linked to lipoxygenase (LOX) biochemistry by the observation that an acyl-CoA was bound to human platelet 12-lipoxygenase via cryo-EM. Given that LOX isozymes play a pivotal role in inflammation, a more thorough investigation of the inhibitory effects of acyl-CoAs on lipoxygenase isozymes was judged to be warranted. Subsequently, it was determined that C18 acyl-CoA derivatives were the most potent against h12-LOX, human reticulocyte 15-LOX-1 (h15-LOX-1), and human endothelial 15-LOX-2 (h15-LOX-2), while C16 acyl-CoAs were more potent against human 5-LOX. Specifically, oleoyl-CoA (18:1) was most potent against h12-LOX (IC50 = 32 μM) and h15-LOX-2 (IC50 = 0.62 μM), stearoyl-CoA against h15-LOX-1 (IC50 = 4.2 μM), and palmitoleoyl-CoA against h5-LOX (IC50 = 2.0 μM). The inhibition of h15-LOX-2 by oleoyl-CoA was further determined to be allosteric inhibition with a Ki of 82 +/- 70 nM, an α of 3.2 +/- 1, a β of 0.30 +/- 0.07, and a β/α = 0.09. Interestingly, linoleoyl-CoA (18:2) was a weak inhibitor against h5-LOX, h12-LOX, and h15-LOX-1 but a rapid substrate for h15-LOX-1, with comparable kinetic rates to free linoleic acid (kcat = 7.5 +/- 0.4 s-1, kcat/KM = 0.62 +/- 0.1 µM-1s-1). Additionally, it was determined that methylated fatty acids were not substrates but rather weak inhibitors. These findings imply a greater role for acyl-CoAs in the regulation of LOX activity in the cell, either through inhibition of novel oxylipin species or as a novel source of oxylipin-CoAs.
Collapse
Affiliation(s)
- Michelle Tran
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (M.T.); (K.Y.)
| | - Kevin Yang
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (M.T.); (K.Y.)
| | - Alisa Glukhova
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC 3010, Australia;
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Theodore Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (M.T.); (K.Y.)
| |
Collapse
|
23
|
He W, Li Q, Li X. Acetyl-CoA regulates lipid metabolism and histone acetylation modification in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188837. [PMID: 36403921 DOI: 10.1016/j.bbcan.2022.188837] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
Acetyl-CoA, as an important molecule, not only participates in multiple intracellular metabolic reactions, but also affects the post-translational modification of proteins, playing a key role in the metabolic activity and epigenetic inheritance of cells. Cancer cells require extensive lipid metabolism to fuel for their growth, while also require histone acetylation modifications to increase the expression of cancer-promoting genes. As a raw material for de novo lipid synthesis and histone acetylation, acetyl-CoA has a major impact on lipid metabolism and histone acetylation in cancer. More importantly, in cancer, acetyl-CoA connects lipid metabolism with histone acetylation, forming a more complex regulatory mechanism that influences cancer growth, proliferation, metastasis.
Collapse
Affiliation(s)
- Weijing He
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
24
|
Duan Y, Zhang S, Li Y, Zhao W, Xie P, Zhang X, Du Y. Potential regulatory role of miRNA and mRNA link to metabolism affected by chronic intermittent hypoxia. Front Genet 2022; 13:963184. [PMID: 36147493 PMCID: PMC9485438 DOI: 10.3389/fgene.2022.963184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/09/2022] [Indexed: 12/05/2022] Open
Abstract
Aim: Intermittent hypoxia (IH) is the prominent feature of obstructive sleep apnea (OSA) pathophysiology, which is an in dependent risk factor of cardiovascular complications. The effects of IH on adipocyte metabolism were explored by high-throughput sequencing technology. Methods: Plasma was collected from OSA patients and control group to perform mRNA sequencing. 3T3-L1 cells were differentiated into adipocytes then subjected to a 5%–21% O2 hypoxic environment (IH) for 24 h. High-throughput sequencing method was used to determine differential mRNA and miRNA patterns in fat cells exposed to IH. We then performed Gene Ontology (GO) analysis, identified relevant KEGG pathways and miRNA-target-pathways. Results: Sequencing data showed that OSA affected the expression of 343 mRNAs in the plasma. At the same time, we found that IH affected the expression of 3034 mRNAs in the adipocytes. In addition, 68 differentially expressed mRNAs were overlapped in plasma from OSA patient and IH-induced adipocyte model. We observe that 68 differential genes could be connected to 49 reciprocally expressed miRNAs. We showed that IH significantly reduced the expression of miR-182-5p and miR-30c-2-3p. KEGG predicted that the function of expressed miR-182-5p and miR-30c-2-3p was enriched to AKT signaling pathway. Notably, IH activated PI3K/AKT pathway in fat cells. Conclusion: Our results demonstrated that IH might induce adipocyte metabolism by regulating miR-182-5p and miR-30c-2-3p.
Collapse
Affiliation(s)
- Yanru Duan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shihan Zhang
- Beijing Key Laboratory of Pediatric Hematology Ocology, Key Laboratory of Major Diseases in Children, Pediatric Oncology Center, National Center for Children’s Health, Ministry of Education, Medical Oncology Department, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Yu Li
- Center for Coronary Artery Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wen Zhao
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Pinxue Xie
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yunhui Du
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yunhui Du,
| |
Collapse
|
25
|
Tang Z, Chen H, Chen W, Zhong Q, Zhang M, Chen W, Yun YH. Unraveling the antibacterial mechanism of 3-carene against Pseudomonas fragi by integrated proteomics and metabolomics analyses and its application in pork. Int J Food Microbiol 2022; 379:109846. [PMID: 35908494 DOI: 10.1016/j.ijfoodmicro.2022.109846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/11/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
Pseudomonas fragi is primarily responsible for the spoilage of various foods, especially meat. The aim of this study was to investigate the antibacterial mechanism of 3-carene against P. fragi. 3-Carene treatment decreased the phospholipid content and the fluidity of the cell membrane, induced reactive oxygen species (ROS) generation and affected respiratory chain dehydrogenase, oxoglutarate dehydrogenase and citrate synthase in P. fragi. Metabolomics and proteomics analyses further showed that in the presence of 3-carene, 519 proteins, 136 metabolites in positive ion mode and 100 metabolites in negative ion mode were differentially expressed. These proteins and metabolites were primarily involved in amino acid metabolism, fatty acid degradation, the tricarboxylic acid cycle (TCA cycle) and other processes. Consequently, the stimulation of 3-carene altered cell membrane properties, disturbed important amino acid and energy metabolism, and even caused oxidative stress. Additionally, the results of total viable counts and the total volatile base nitrogen indicated that 3-carene could significantly improve the preservation of refrigerated pork. This study suggested that 3-carene has promising potential to be developed as a food preservative.
Collapse
Affiliation(s)
- Zhiling Tang
- School of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Haiming Chen
- School of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Weijun Chen
- School of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Qiuping Zhong
- School of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Ming Zhang
- School of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Wenxue Chen
- School of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China.
| | - Yong-Huan Yun
- School of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China.
| |
Collapse
|
26
|
Liu X, Tang J, Zhang R, Zhan S, Zhong T, Guo J, Wang Y, Cao J, Li L, Zhang H, Wang L. Cold exposure induces lipid dynamics and thermogenesis in brown adipose tissue of goats. BMC Genomics 2022; 23:528. [PMID: 35864448 PMCID: PMC9306100 DOI: 10.1186/s12864-022-08765-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022] Open
Abstract
Background Adaptive thermogenesis by brown adipose tissue (BAT) is important to the maintenance of temperature in newborn mammals. Cold exposure activates gene expression and lipid metabolism to provide energy for BAT thermogenesis. However, knowledge of BAT metabolism in large animals after cold exposure is still limited. Results In this study, we found that cold exposure induced expression of BAT thermogenesis genes and increased the protein levels of UCP1 and PGC1α. Pathway analysis showed that cold exposure activated BAT metabolism, which involved in cGMP-PKG, TCA cycle, fatty acid elongation, and degradation pathways. These were accompanied by decreased triglyceride (TG) content and increased phosphatidylcholine (PC) and phosphatidylethanolamine (PE) content in BAT. Conclusion These results demonstrate that cold exposure induces metabolites involved in glycerolipids and glycerophospholipids metabolism in BAT. The present study provides evidence for lipid composition associated with adaptive thermogenesis in goat BAT and metabolism pathways regulated by cold exposure. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08765-5.
Collapse
Affiliation(s)
- Xin Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jing Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Runan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jiazhong Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jiaxue Cao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Hongping Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China. .,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China.
| |
Collapse
|
27
|
Abstract
An extensive literature base combined with advances in sequencing technologies demonstrate microRNA levels correlate with various metabolic diseases. Mechanistic studies also establish microRNAs regulate central metabolic pathways and thus play vital roles in maintaining organismal energy balance and metabolic homeostasis. This review highlights research progress on the roles and regulation of microRNAs in the peripheral tissues that confer insulin sensitivity. We discuss sequencing technologies used to comprehensively define the target spectrum of microRNAs in metabolic disease that complement studies reporting physiologic roles for microRNAs in the regulation of glucose and lipid metabolism in animal models. We also discuss the emerging roles of exosomal microRNAs as endocrine signals to regulate lipid and carbohydrate metabolism.
Collapse
Affiliation(s)
- Kang Ho Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: Sean M. Hartig, PhD, Baylor College of Medicine, One Baylor Plaza, BCM185, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Yoon H, Shaw JL, Haigis MC, Greka A. Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity. Mol Cell 2021; 81:3708-3730. [PMID: 34547235 PMCID: PMC8620413 DOI: 10.1016/j.molcel.2021.08.027] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
Lipids play crucial roles in signal transduction, contribute to the structural integrity of cellular membranes, and regulate energy metabolism. Questions remain as to which lipid species maintain metabolic homeostasis and which disrupt essential cellular functions, leading to metabolic disorders. Here, we discuss recent advances in understanding lipid metabolism with a focus on catabolism, synthesis, and signaling. Technical advances, including functional genomics, metabolomics, lipidomics, lipid-protein interaction maps, and advances in mass spectrometry, have uncovered new ways to prioritize molecular mechanisms mediating lipid function. By reviewing what is known about the distinct effects of specific lipid species in physiological pathways, we provide a framework for understanding newly identified targets regulating lipid homeostasis with implications for ameliorating metabolic diseases.
Collapse
Affiliation(s)
- Haejin Yoon
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA
| | - Jillian L Shaw
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA.
| | - Anna Greka
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|