1
|
Wang C, Zhang J, Li K, Yang J, Li L, Wang S, Hou H, Li P. Terpenoids from the Soft Coral Sinularia densa Collected in the South China Sea. Mar Drugs 2024; 22:442. [PMID: 39452850 PMCID: PMC11509852 DOI: 10.3390/md22100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
The chemical investigation of the South China Sea soft coral Sinularia densa has resulted in the isolation of seven new terpenoids, including two new meroterpenoids, namely sinudenoids F-G (1-2), and five new cembranes, namely sinudenoids H-L (3-7). Their structures and absolute configurations were elucidated based on extensive analyses of spectroscopic data, single-crystal X-ray diffraction, comparison with the literature data, and quantum chemical calculations. Among them, sinudenoid F (1) and sinudenoid G (2) are rare meroterpenoids featuring a methyl benzoate core. Sinudenoid H (3) possesses a rare carbon skeleton of 8, 19-bisnorfuranocembrenolide, which is the second reported compound with this skeleton. In a bioassay, sinudenoid H (3) exhibited better anti-inflammatory activity compared to the positive control indomethacin at 20 µM in CuSO4-treated transgenic fluorescent zebrafish. Moreover, sinudenoid J (5) and sinudenoid L (7) exhibited moderate anti-thrombotic activity in arachidonic acid (AA)-induced thrombotic zebrafish at 20 µM.
Collapse
Affiliation(s)
- Cili Wang
- Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China;
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Z.); (K.L.); (J.Y.); (S.W.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Jiarui Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Z.); (K.L.); (J.Y.); (S.W.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Kai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Z.); (K.L.); (J.Y.); (S.W.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Junjie Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Z.); (K.L.); (J.Y.); (S.W.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Lei Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China;
| | - Sen Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Z.); (K.L.); (J.Y.); (S.W.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Hu Hou
- Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China;
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Z.); (K.L.); (J.Y.); (S.W.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Pinglin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.Z.); (K.L.); (J.Y.); (S.W.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
2
|
Marine Terpenic Endoperoxides. Mar Drugs 2021; 19:md19120661. [PMID: 34940660 PMCID: PMC8703521 DOI: 10.3390/md19120661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Organic extracts of marine invertebrates, mainly sponges, from seas all over the world are well known for their high in vitro anticancer and antibiotic activities which make them promising sources of compounds with potential use as pharmaceutical leads. Most of the structures discovered so far have a peculiar structural feature in common: a 1,2-dioxane ring. This is a highly reactive heterocycle that can be considered as an endoperoxide function. Together with other structural features, this group could be responsible for the strong biological activities of the substances present in the extracts. Numerous research programs have focused on their structural elucidation and total synthesis since the seventies. As a consequence, the number of established chiral centres and the similarity between different naturally occurring substances is increasingly higher. Most of these compounds have a terpenoid nature, mainly diterpene and sesterterpene, with several peculiar structural features, such as the loss of one carbon atom. Although there are many reviews dealing with the occurrence of marine peroxides, their activities, or potential pharmaceutical uses, no one has focused on those having a terpene origin and the endoperoxide function. We present here a comprehensive review of these compounds paying special attention to their structural features and their biological activity.
Collapse
|
3
|
Li Y, Liu H, Huang Z, He Y, Xu BH, Wang H, Yu Z. Visible-Light-Driven, Palladium-Catalyzed Heck Reaction of Internal Vinyl Bromides with Styrenes. J Org Chem 2021; 86:8402-8413. [PMID: 34043916 DOI: 10.1021/acs.joc.1c00838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Functionalized 1,3-dienes were efficiently accessed from visible-light-driven, palladium-catalyzed Heck reaction of S,S-functionalized internal vinyl bromides with styrenes under mild conditions. This Heck reaction showcased tolerance of a wide array of functional groups, afforded the target products in moderate to excellent yields through a radical reaction pathway. The resultant diene products could be further transformed to highly functionalized trisubstituted furan derivatives.
Collapse
Affiliation(s)
- Yunlong Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haibo Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Zilong Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuan He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bao-Hua Xu
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hongmei Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
4
|
Izzati F, Warsito MF, Bayu A, Prasetyoputri A, Atikana A, Sukmarini L, Rahmawati SI, Putra MY. Chemical Diversity and Biological Activity of Secondary Metabolites Isolated from Indonesian Marine Invertebrates. Molecules 2021; 26:1898. [PMID: 33801617 PMCID: PMC8037762 DOI: 10.3390/molecules26071898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Marine invertebrates have been reported to be an excellent resource of many novel bioactive compounds. Studies reported that Indonesia has remarkable yet underexplored marine natural products, with a high chemical diversity and a broad spectrum of biological activities. This review discusses recent updates on the exploration of marine natural products from Indonesian marine invertebrates (i.e., sponges, tunicates, and soft corals) throughout 2007-2020. This paper summarizes the structural diversity and biological function of the bioactive compounds isolated from Indonesian marine invertebrates as antimicrobial, antifungal, anticancer, and antiviral, while also presenting the opportunity for further investigation of novel compounds derived from Indonesian marine invertebrates.
Collapse
Affiliation(s)
| | | | - Asep Bayu
- Research Center for Biotechnology, Indonesian Institute of Sciences, Jl. Raya Jakarta-Bogor KM 46 Cibinong, Bogor, West Java 16911, Indonesia or (F.I.); (M.F.W.); (A.P.); (A.A.); (L.S.); (S.I.R.)
| | | | | | | | | | - Masteria Yunovilsa Putra
- Research Center for Biotechnology, Indonesian Institute of Sciences, Jl. Raya Jakarta-Bogor KM 46 Cibinong, Bogor, West Java 16911, Indonesia or (F.I.); (M.F.W.); (A.P.); (A.A.); (L.S.); (S.I.R.)
| |
Collapse
|
5
|
Barboza AA, Neto AC, Rosset IG, Jardim GAM, Ferreira MAB. Synthesis of 3-Carbonyl Trisubstituted Furans via Pd-Catalyzed Aerobic Cycloisomerization Reaction: Development and Mechanistic Studies. J Org Chem 2021; 86:3923-3942. [PMID: 33625861 DOI: 10.1021/acs.joc.0c02777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Herein, we report the synthesis of 3-carbonyl-trisubstituted furans via Pd-catalyzed oxidative cycloisomerization reactions of 2-alkenyl-1,3-dicarbonyl scaffolds, using molecular oxygen as the sole oxidant to regenerate active palladium catalytic species, featuring good functional tolerance and mild reaction conditions. Deep investigation of intermediates and transition states of the reaction mechanism were conducted via experimental and DFT studies, providing a detailed mechanistical profile. The new developed methodology presents a greener alternative to Wacker-type cycloisomerizations and avoids the use of stoichiometric amounts of oxidants and strong acid additives.
Collapse
Affiliation(s)
- Amanda A Barboza
- Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Attilio Chiavegatti Neto
- Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Isac G Rosset
- Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo 13565-905, Brazil.,Universidade Federal do Paraná - Departamento de Engenharias e Exatas, Rua Pioneiro, 2153, Jd. Dallas, Palotina, Paraná 85950-000, Brazil
| | - Guilherme A M Jardim
- Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Marco A B Ferreira
- Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
6
|
Elkhawas YA, Elissawy AM, Elnaggar MS, Mostafa NM, Al-Sayed E, Bishr MM, Singab ANB, Salama OM. Chemical Diversity in Species Belonging to Soft Coral Genus Sacrophyton and Its Impact on Biological Activity: A Review. Mar Drugs 2020; 18:E41. [PMID: 31935862 PMCID: PMC7024209 DOI: 10.3390/md18010041] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
One of the most widely distributed soft coral species, found especially in shallow waters of the Indo-Pacific region, Red Sea, Mediterranean Sea, and also the Arctic, is genus Sacrophyton. The total number of species belonging to it was estimated to be 40. Sarcophyton species are considered to be a reservoir of bioactive natural metabolites. Secondary metabolites isolated from members belonging to this genus show great chemical diversity. They are rich in terpenoids, in particular, cembranoids diterpenes, tetratepenoids, triterpenoids, and ceramide, in addition to steroids, sesquiterpenes, and fatty acids. They showed a broad range of potent biological activities, such as antitumor, neuroprotective, antimicrobial, antiviral, antidiabetic, antifouling, and anti-inflammatory activity. This review presents all isolated secondary metabolites from species of genera Sacrophyton, as well as their reported biological activities covering a period of about two decades (1998-2019). It deals with 481 metabolites, including 323 diterpenes, 39 biscembranoids, 11 sesquiterpenes, 53 polyoxygenated sterols, and 55 miscellaneous and their pharmacological activities.
Collapse
Affiliation(s)
- Yasmin A. Elkhawas
- Department of Pharmacognosy and Medicinal plants, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo 11835, Egypt;
| | - Ahmed M. Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt; (A.M.E.); (M.S.E.); (N.M.M.); (E.A.-S.); (A.N.B.S.)
- Center of Drug Discovery Research and Development, Ain-Shams University, Cairo 11566, Egypt
| | - Mohamed S. Elnaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt; (A.M.E.); (M.S.E.); (N.M.M.); (E.A.-S.); (A.N.B.S.)
- Center of Drug Discovery Research and Development, Ain-Shams University, Cairo 11566, Egypt
| | - Nada M. Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt; (A.M.E.); (M.S.E.); (N.M.M.); (E.A.-S.); (A.N.B.S.)
| | - Eman Al-Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt; (A.M.E.); (M.S.E.); (N.M.M.); (E.A.-S.); (A.N.B.S.)
| | - Mokhtar M. Bishr
- Plant General Manager and Technical Director, Mepaco Co., Sharkeiya 11361, Egypt;
| | - Abdel Nasser B. Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt; (A.M.E.); (M.S.E.); (N.M.M.); (E.A.-S.); (A.N.B.S.)
- Center of Drug Discovery Research and Development, Ain-Shams University, Cairo 11566, Egypt
| | - Osama M. Salama
- Department of Pharmacognosy and Medicinal plants, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo 11835, Egypt;
| |
Collapse
|
7
|
Hanif N, Murni A, Tanaka C, Tanaka J. Marine Natural Products from Indonesian Waters. Mar Drugs 2019; 17:md17060364. [PMID: 31248122 PMCID: PMC6627775 DOI: 10.3390/md17060364] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Natural products are primal and have been a driver in the evolution of organic chemistry and ultimately in science. The chemical structures obtained from marine organisms are diverse, reflecting biodiversity of genes, species and ecosystems. Biodiversity is an extraordinary feature of life and provides benefits to humanity while promoting the importance of environment conservation. This review covers the literature on marine natural products (MNPs) discovered in Indonesian waters published from January 1970 to December 2017, and includes 732 original MNPs, 4 structures isolated for the first time but known to be synthetic entities, 34 structural revisions, 9 artifacts, and 4 proposed MNPs. Indonesian MNPs were found in 270 papers from 94 species, 106 genera, 64 families, 32 orders, 14 classes, 10 phyla, and 5 kingdoms. The emphasis is placed on the structures of organic molecules (original and revised), relevant biological activities, structure elucidation, chemical ecology aspects, biosynthesis, and bioorganic studies. Through the synthesis of past and future data, huge and partly undescribed biodiversity of marine tropical invertebrates and their importance for crucial societal benefits should greatly be appreciated.
Collapse
Affiliation(s)
- Novriyandi Hanif
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia.
| | - Anggia Murni
- Tropical Biopharmaca Research Center, IPB University (Bogor Agricultural University), Bogor 16128, Indonesia.
| | - Chiaki Tanaka
- Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Junichi Tanaka
- Department of Chemistry, Biology, and Marine Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
8
|
Ruengsangtongkul S, Chaisan N, Thongsornkleeb C, Tummatorn J, Ruchirawat S. Rate Enhancement in CAN-Promoted Pd(PPh3)2Cl2-Catalyzed Oxidative Cyclization: Synthesis of 2-Ketofuran-4-carboxylate Esters. Org Lett 2019; 21:2514-2517. [DOI: 10.1021/acs.orglett.9b00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sureeporn Ruengsangtongkul
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Nattawadee Chaisan
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Charnsak Thongsornkleeb
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Jumreang Tummatorn
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| |
Collapse
|
9
|
Marine Diterpenoids as Potential Anti-Inflammatory Agents. Mediators Inflamm 2015; 2015:263543. [PMID: 26538822 PMCID: PMC4619941 DOI: 10.1155/2015/263543] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/06/2015] [Indexed: 02/06/2023] Open
Abstract
The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules.
Collapse
|
10
|
Vasamsetty L, Khan FA, Mehta G. A model approach towards the polycyclic framework present in cembranoid natural products dissectolide A, plumarellide and mandapamate. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.10.141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Liu Z, Cheng W, Liu D, van Ofwegen L, Proksch P, Lin W. Capnosane-type cembranoids from the soft coral Sarcophyton trocheliophorum with antibacterial effects. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.09.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Liang LF, Guo YW. Terpenes from the soft corals of the genus Sarcophyton: chemistry and biological activities. Chem Biodivers 2014; 10:2161-96. [PMID: 24327439 DOI: 10.1002/cbdv.201200122] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Indexed: 11/07/2022]
Abstract
This review covers structural diversity and biological activities of terpenes from soft corals of the genus of Sarcophyton, reported from 1995 to July, 2011. During this period, besides undefined species, 16 species of the genus Sarcophyton, from different geographical areas, had been chemically examined. Two hundred and five terpenes had been isolated from this genus, including eleven sesquiterpenes, 165 diterpenes, 29 biscembranoids, some of which had novel skeletons. They exhibited various biological features, such as antifeedant, anti-inflammatory, antiviral, and antifouling activities.
Collapse
Affiliation(s)
- Lin-Fu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhang Jiang Hi-Tech Park, Shanghai 201203, P. R. China, (phone: +86-21-50805813); Present address: School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | | |
Collapse
|
13
|
Abstract
Covering: 2010. Previous review: Nat. Prod. Rep., 2011, 28, 196. This review covers the literature published in 2010 for marine natural products, with 895 citations (590 for the period January to December 2010) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1003 for 2010), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
14
|
Li Y, Pattenden G. Photochemical isomerisation studies of rubifolide and bipinnatin J. Unravelling some of the biosynthesis interrelationships between macrocyclic and polycyclic cembranoids found in corals. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.04.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Li Y, Pattenden G. Novel macrocyclic and polycyclic norcembranoid diterpenes from Sinularia species of soft coral: Structural relationships and biosynthetic speculations. Nat Prod Rep 2011; 28:429-40. [DOI: 10.1039/c0np00029a] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Li Y, Pattenden G. Perspectives on the structural and biosynthetic interrelationships between oxygenated furanocembranoids and their polycyclic congeners found in corals. Nat Prod Rep 2011; 28:1269-310. [DOI: 10.1039/c1np00023c] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|