1
|
Yu H, Chen Y, Li H, Li Z, Cui Y, Han S, Cui Y, Zeng X, Cheng S, Feng Y. Design, synthesis and evaluation of novel L-tryptophan derivatives as multifunctional agents with cholinesterase inhibition, anti-β-amyloid aggregation, anti-inflammatory, antioxidant and neuroprotection properties against Alzheimer's disease. Bioorg Chem 2025; 161:108478. [PMID: 40318509 DOI: 10.1016/j.bioorg.2025.108478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
In our recent investigation, we conducted a systematic search for novel L-Tryptophan derivatives exhibiting marked inhibitory effects against human serum butyrylcholinesterase (hBuChE), an enzyme intricately implicated in the pathological cascade of Alzheimer's Disease (AD). Two lead compounds among these derivatives, Z165 and Z168 displayed IC50 values of 0.44 μM and 3.23 μM against butyrylcholinesterase, suggesting their promising potential for further structural optimization. Chemical modifications were subsequently undertaken to enhance the inhibitory activities of these leads, culminating in the development of compounds 4d-9, 4d-12, and 4d-13, which demonstrated IC50 values of 0.29 μM, 0.52 μM, and 0.13 μM, respectively. Furthermore, the following investigation revealed that these compounds exhibit exceptional antioxidant properties when juxtaposed with ascorbic acid. They are also proficient in inhibiting the aggregation of amyloid-beta (Aβ) peptides while concurrently displaying minimal cytotoxic effects towards BV-2 cell lines. Meanwhile the good blood-brain barrier permeability of these compounds was confirmed in PAMPA-BBB assay. Remarkably, compound 4d-13, which demonstrated the most potent inhibitory activity against butyrylcholinesterase, also afforded consistent neuroprotective effects compared with Galantamine against the injury induced by NMDA or L-(+)-Sodium glutamate in SH-SY5Y cells. Besides, 4d-13 could reduce the expression of inflammatory factors IL-1β and IL-6 dose-dependently in the LPS induced BV-2 inflammatory model. Morris water maze and step-down testing in vivo confirmed that 4d-13 could ameliorate scopolamine-induced cognitive deficits. These findings suggest that these compounds are promising leads for the development of therapeutic agents against AD.
Collapse
Affiliation(s)
- Haiyang Yu
- Shenyang Pharmaceutical University, School of Traditional Chinese Materia Medica, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Yinfang Chen
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Huizhen Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Zhiqiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Yushun Cui
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Shan Han
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Yaru Cui
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Xianghao Zeng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Shaobing Cheng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| | - Yulin Feng
- Shenyang Pharmaceutical University, School of Traditional Chinese Materia Medica, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| |
Collapse
|
2
|
Zhang ZJ, Golling S, Cattani S, Chen X, Ackermann L. Three-Coordinate Iron(0) Complex-Catalyzed Regioselective C-H Alkylation of Indole Derivatives. J Am Chem Soc 2025; 147:6897-6904. [PMID: 39957411 PMCID: PMC11869306 DOI: 10.1021/jacs.4c17316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
The synthesis of alkylated indoles, which are key intermediates for various drugs and bioactive molecules, is of great importance. However, most reports on the synthesis of functionalized indoles use toxic and expensive 4d or 5d metal catalysts, limiting the further application of these methods. Herein, we disclose a versatile regioselective C-H alkylation of indole derivatives using a well-defined three-coordinate iron(0) complex. Neither Grignard reagents nor additional additives are required, making the reaction sustainable, environmentally friendly, and compatible with a broad variety of functional groups to afford C2-alkylated indoles in high yields. In addition, by variation of the aryl substituent on the alkene substrate to the trisubstituted silyl group, the regioselectivity of the C-H alkylation can be altered from Markovnikov to anti-Markovnikov. Detailed mechanistic studies further revealed the catalytic mode of reaction.
Collapse
Affiliation(s)
| | | | - Silvia Cattani
- Wöhler Research Institute
for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Xinran Chen
- Wöhler Research Institute
for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Wöhler Research Institute
for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Fang X, Chen Y, Hu L, Gu S, Zhu J, Hang Y, Cao X, Xiao Y, Luo H, Zhao C, Xiao L, Zhong Q. Modulation of virulence and metabolic profiles in Klebsiella pneumoniae under indole-mediated stress response. Front Cell Infect Microbiol 2025; 15:1546991. [PMID: 39963410 PMCID: PMC11830697 DOI: 10.3389/fcimb.2025.1546991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Indole, a crucial bacterial signaling molecule, plays a fundamental role in regulating various physiological processes within bacteria, including growth, acid tolerance, biofilm development, motility, and other cellular functions. Its regulatory influence extends beyond indole-producing bacteria, significantly impacting the physiological activities in non-indole-producing species. In this study, we demonstrate that indole enhances the pathogenicity and viability of Klebsiella pneumoniae using the Galleria mellonella infection model and serum killing assay. Concurrently, indole has varying effects on biofilm formation in K. pneumoniae, with some strains showing enhanced biofilm formation ability. To elucidate the underlying molecular mechanisms, transcriptome analysis revealed that indole exposure in K. pneumoniae led to the upregulation of genes associated with pili formation and iron acquisition systems, while simultaneously inducing oxidative stress responses. Additionally, our analysis uncovered extensive metabolic remodeling. Specifically, we observed significant upregulation of genes involved in simple carbohydrate utilization pathways, including those responsible for galactose, mannose, and maltose metabolism, as well as enhanced expression of genes associated with pyrimidine biosynthesis. These findings collectively indicate that indole enhances the intestinal colonization and pathogenicity of K. pneumoniae primarily by modulation of fimbriae expression and metabolic pathway regulation.
Collapse
Affiliation(s)
- Xueyao Fang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yanhui Chen
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Longhua Hu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shumin Gu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Junqi Zhu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yaping Hang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xingwei Cao
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yanping Xiao
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hong Luo
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chuwen Zhao
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Lianhua Xiao
- Department of Marriage and Pregnancy, Ganzhou Zhanggong District Maternal and Child Health Hospital, Ganzhou, Jiangxi, China
| | - Qiaoshi Zhong
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Liu JJ, Liu J, Huang YS, Chen WM, Lin J. Cyclic Diguanylate G-Quadruplex Inducer-Quorum Sensing Inhibitor Hybrids as Bifunctional Anti-biofilm and Anti-virulence Agents Against Pseudomonas aeruginosa. J Med Chem 2024; 67:18911-18929. [PMID: 39441196 DOI: 10.1021/acs.jmedchem.4c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The release of virulence factors and biofilm formation by Pseudomonas aeruginosa are pivotal drivers of its severe pathogenicity and antibiotic resistance. Based on our prior findings, cyclic di-GMP (c-di-GMP) G-quadruplex inducers are promising biofilm inhibitors and that quorum sensing systems are central regulators of virulence, we aimed to design and synthesize c-di-GMP G-quadruplex inducer-quorum sensing inhibitor hybrids. These hybrids were envisioned as bifunctional agents with both antibiofilm and antivirulence capabilities. Hybrids A7 and A11, characterized by their quinoline and 3-indole rings, emerged as potent inhibitors. They achieve this dual action by inducing c-di-GMP G-quadruplex formation and disrupting the las and pqs signaling system. Additionally, hybrids A7 and A11 attenuated virulence factors and inhibited the motility phenotypes of P. aeruginosa. Furthermore, when tested in in vivo Caenorhabditis elegans infection models, these hybrids, in combination with antibiotics such as tetracycline, improved survival rates, all while maintaining a favorable biosafety profile.
Collapse
Affiliation(s)
- Jie-Jiao Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jing Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Ye-Si Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jing Lin
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
5
|
Salama GG, El-Mahdy TS, Moustafa WH, Emara M. Downregulation of Klebsiella pneumoniae RND efflux pump genes following indole signal produced by Escherichia coli. BMC Microbiol 2024; 24:312. [PMID: 39182027 PMCID: PMC11344464 DOI: 10.1186/s12866-024-03443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND More than a century has passed since it was discovered that many bacteria produce indole, but research into the actual biological roles of this molecule is just now beginning. The influence of indole on bacterial virulence was extensively investigated in indole-producing bacteria like Escherichia coli. To gain a deeper comprehension of its functional role, this study investigated how indole at concentrations of 0.5-1.0 mM found in the supernatant of Escherichia coli stationary phase culture was able to alter the virulence of non-indole-producing bacteria, such as Pseudomonas aeruginosa, Proteus mirabilis, and Klebsiella pneumoniae, which are naturally exposed to indole in mixed infections with Escherichia coli. RESULTS Biofilm formation, antimicrobial susceptibility, and efflux pump activity were the three phenotypic tests that were assessed. Indole was found to influence antibiotic susceptibly of Pseudomonas aeruginosa, Proteus mirabilis and Klebsiella pneumoniae to ciprofloxacin, imipenem, ceftriaxone, ceftazidime, and amikacin through significant reduction in MIC with fold change ranged from 4 to 16. Biofilm production was partially abrogated in both 32/45 Pseudomonas aeruginosa and all eight Proteus mirabilis, while induced biofilm production was observed in 30/40 Klebsiella pneumoniae. Moreover, acrAB and oqxAB, which encode four genes responsible for resistance-nodulation-division multidrug efflux pumps in five isolates of Klebsiella pneumoniae were investigated genotypically using quantitative real-time (qRT)-PCR. This revealed that all four genes exhibited reduced expression indicated by 2^-ΔΔCT < 1 in indole-treated isolates compared to control group. CONCLUSION The outcomes of qRT-PCR investigation of efflux pump expression have established a novel clear correlation of the molecular mechanism that lies beneath the influence of indole on bacterial antibiotic tolerance. This research provides novel perspectives on the various mechanisms and diverse biological functions of indole signaling and how it impacts the pathogenicity of non-indole-producing bacteria.
Collapse
Affiliation(s)
- Galila G Salama
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, P.O. Box 11795, Ain-Helwan, Cairo, Egypt
| | - Taghrid S El-Mahdy
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, P.O. Box 11795, Ain-Helwan, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology, and Information (MTI), Cairo, Egypt
| | - Walaa H Moustafa
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, P.O. Box 11795, Ain-Helwan, Cairo, Egypt
| | - Mohamed Emara
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, P.O. Box 11795, Ain-Helwan, Cairo, Egypt.
| |
Collapse
|
6
|
Palma V, González-Pimentel JL, Jimenez-Morillo NT, Sauro F, Gutiérrez-Patricio S, De la Rosa JM, Tomasi I, Massironi M, Onac BP, Tiago I, González-Pérez JA, Laiz L, Caldeira AT, Cubero B, Miller AZ. Connecting molecular biomarkers, mineralogical composition, and microbial diversity from Mars analog lava tubes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169583. [PMID: 38154629 DOI: 10.1016/j.scitotenv.2023.169583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Lanzarote (Canary Islands, Spain) is one of the best terrestrial analogs to Martian volcanology. Particularly, Lanzarote lava tubes may offer access to recognizably preserved chemical and morphological biosignatures valuable for astrobiology. By combining microbiological, mineralogical, and organic geochemistry tools, an in-depth characterization of speleothems and associated microbial communities in lava tubes of Lanzarote is provided. The aim is to untangle the underlying factors influencing microbial colonization in Earth's subsurface to gain insight into the possibility of similar subsurface microbial habitats on Mars and to identify biosignatures preserved in lava tubes unequivocally. The microbial communities with relevant representativeness comprise chemoorganotrophic, halophiles, and/or halotolerant bacteria that have evolved as a result of the surrounding oceanic environmental conditions. Many of these bacteria have a fundamental role in reshaping cave deposits due to their carbonatogenic ability, leaving behind an organic record that can provide evidence of past or present life. Based on functional profiling, we infer that Crossiella is involved in fluorapatite precipitation via urea hydrolysis and propose its Ca-rich precipitates as compelling biosignatures valuable for astrobiology. In this sense, analytical pyrolysis, stable isotope analysis, and chemometrics were conducted to characterize the complex organic fraction preserved in the speleothems and find relationships among organic families, microbial taxa, and precipitated minerals. We relate organic compounds with subsurface microbial taxa, showing that organic families drive the microbiota of Lanzarote lava tubes. Our data indicate that bacterial communities are important contributors to biomarker records in volcanic-hosted speleothems. Within them, the lipid fraction primarily consists of low molecular weight n-alkanes, α-alkenes, and branched-alkenes, providing further evidence that microorganisms serve as the origin of organic matter in these formations. The ongoing research in Lanzarote's lava tubes will help develop protocols, routines, and predictive models that could provide guidance on choosing locations and methodologies for searching potential biosignatures on Mars.
Collapse
Affiliation(s)
- Vera Palma
- HERCULES Laboratory, University of Évora, Évora, Portugal
| | | | | | - Francesco Sauro
- Department of Earth Sciences and Environmental Geology, University of Bologna, Italy
| | | | - José M De la Rosa
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain
| | - Ilaria Tomasi
- Geosciences Department, University of Padova, Padova, Italy
| | | | - Bogdan P Onac
- Karst Research Group, School of Geosciences, University of South Florida, Tampa, FL, USA; Emil G. Racoviță Institute, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Igor Tiago
- CFE-Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - José A González-Pérez
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain
| | - Leonila Laiz
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain
| | - Ana T Caldeira
- HERCULES Laboratory, University of Évora, Évora, Portugal
| | - Beatriz Cubero
- Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain
| | - Ana Z Miller
- HERCULES Laboratory, University of Évora, Évora, Portugal; Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Sevilla, Spain.
| |
Collapse
|
7
|
Enany S, Tartor YH, Kishk RM, Gadallah AM, Ahmed E, Magdeldin S. Proteomics and metabolomics analyses of Streptococcus agalactiae isolates from human and animal sources. Sci Rep 2023; 13:20980. [PMID: 38017083 PMCID: PMC10684508 DOI: 10.1038/s41598-023-47976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
Streptococcus agalactiae (S. agalactiae), group B Streptococcus (GBS), a major cause of infection in a wide variety of diseases, have been compared in different human and animal sources. We aimed to compare the bacterial proteome and metabolome profiles of human and animal S. agalactiae strains to delineate biological interactions relevant to infection. With the innovative advancement in mass spectrometry, a comparative result between both strains provided a solid impression of different responses to the host. For instance, stress-related proteins (Asp23/Gls24 family envelope stress response protein and heat shock protein 70), which play a role in the survival of GBS under extreme environmental conditions or during treatment, are highly expressed in human and animal strains. One human strain contains ꞵ-lactamase (serine hydrolase) and biofilm regulatory protein (lytR), which are important virulence regulators and potential targets for the design of novel antimicrobials. Another human strain contains the aminoglycosides-resistance bifunctional AAC/APH (A0A0U2QMQ5) protein, which confers resistance to almost all clinically used aminoglycosides. Fifteen different metabolites were annotated between the two groups. L-aspartic acid, ureidopropionic acid, adenosine monophosphate, L-tryptophan, and guanosine monophosphate were annotated at higher levels in human strains. Butyric acid, fumaric acid, isoleucine, leucine, and hippuric acid have been found in both human and animal strains. Certain metabolites were uniquely expressed in animal strains, with fold changes greater than 2. For example, putrescine modulates biofilm formation. Overall, this study provides biological insights into the substantial possible bacterial response reflected in its macromolecular production, either at the proteomic or metabolomic level.
Collapse
Affiliation(s)
- Shymaa Enany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.
- Biomedical Research Department, Armed Force College of Medicine, Cairo, Egypt.
| | - Yasmine H Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Rania M Kishk
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Ahmed M Gadallah
- Department of Obstetrics and Gynecology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman Ahmed
- Proteomics and Metabolomics Unit, Department of Basic Research, Children's Cancer Hospital Egypt 57357, Cairo, 11441, Egypt
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Unit, Department of Basic Research, Children's Cancer Hospital Egypt 57357, Cairo, 11441, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
8
|
Zhao J, Wu M, Luo J, Shi L, Li H. N-Heterocyclic carbene-catalyzed enantioselective annulation of 2-amino-1 H-indoles and bromoenals for the synthesis of chiral 2-aryl-2,3-dihydropyrimido[1,2- a]indol-4 (1 H)-ones. Org Biomol Chem 2023; 21:6675-6680. [PMID: 37540068 DOI: 10.1039/d3ob01006f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
An efficient N-heterocyclic carbene (NHC)-catalyzed enantioselective [3 + 3] annulation of 2-bromoenals with 2-amino-1H-indoles has been developed. A series of functionalized 2-aryl-2,3-dihydropyrimido[1,2-a]indol-4(1H)-ones were synthesized using NHCs as the catalyst in good yields with high to excellent enantioselectivities.
Collapse
Affiliation(s)
- Jianbo Zhao
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Min Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jiamin Luo
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Lei Shi
- Döhler Food & Beverage Ingredients (Shanghai) Co., Ltd, 739 Shennan Road, Shanghai 201108, China
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
9
|
Rahman MA, Ashrafudoulla M, Akter S, Park SH, Ha SD. Probiotics and biofilm interaction in aquaculture for sustainable food security: A review and bibliometric analysis. Crit Rev Food Sci Nutr 2023; 64:12319-12335. [PMID: 37599629 DOI: 10.1080/10408398.2023.2249114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Aquaculture is one of the most significant food sources from the prehistoric period. As aquaculture intensifies globally, the prevalence and outbreaks of various pathogenic microorganisms cause fish disease and heavy mortality, leading to a drastic reduction in yield and substantial economic loss. With the modernization of the aquaculture system, a new challenge regarding biofilms or bacterial microenvironments arises worldwide, which facilitates pathogenic microorganisms to survive under unfavorable environmental conditions and withstand various treatments, especially antibiotics and other chemical disinfectants. However, we focus on the mechanistic association between those microbes which mainly form biofilm and probiotics in one of the major food production systems, aquaculture. In recent years, probiotics and their derivatives have attracted much attention in the fisheries sector to combat the survival strategy of pathogenic bacteria. Apart from this, Bibliometric analysis provides a comprehensive overview of the published literature, highlighting key research themes, emerging topics, and areas that require further investigation. This information is valuable for researchers, policymakers, and stakeholders in determining research priorities and allocating resources effectively.
Collapse
Affiliation(s)
- Md Ashikur Rahman
- Food Science and Technology Department, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Shirin Akter
- Food Science and Technology Department, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Si Hong Park
- Food Science and Technology Department, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Anseong-Si, Republic of Korea
| |
Collapse
|
10
|
Xiroudaki S, Sabbatini S, Pecoraro C, Cascioferro S, Diana P, Wauthoz N, Antognelli C, Monari C, Giovagnoli S, Schoubben A. Development of a new indole derivative dry powder for inhalation for the treatment of biofilm-associated lung infections. Int J Pharm 2023; 631:122492. [PMID: 36528190 DOI: 10.1016/j.ijpharm.2022.122492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
The aim of this work was to produce an inhalable dry powder formulation of a new anti-biofilm compound (SC38). For this purpose, chitosan was used as a polymeric carrier and l-leucine as a dispersibility enhancer. SC38 was entrapped by spray-drying into previously optimized chitosan microparticles. The final formulation was fully characterized in vitro in terms of particle morphology, particle size and distribution, flowability, aerodynamic properties, anti-biofilm activity and effects on lung cell viability. The SC38-loaded chitosan microparticles exhibited favorable aerodynamic properties with emitted and respirable fractions higher than 80 % and 45 % respectively. The optimized formulation successfully inhibited biofilm formation at microparticle concentrations starting from 20 μg/mL for methicillin-sensitive and 100 μg/mL for methicillin-resistant Staphylococcus aureus and showed a relatively safe profile in lung cells after 72 h exposure. Future in vivo tolerability and efficacy studies are needed to unravel the potential of this novel formulation for the treatment of difficult-to-treat biofilm-mediated lung infections.
Collapse
Affiliation(s)
- Styliani Xiroudaki
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy.
| | - Camilla Pecoraro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | - Nathalie Wauthoz
- Unit of Pharmaceutics and Biopharmaceutics, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Campus Plaine, 1050 Brussels, Belgium.
| | - Cinzia Antognelli
- Department of Medicine and Surgery, Biosciences and Medical Embryology Section, University of Perugia, 06132 Perugia, Italy.
| | - Claudia Monari
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy.
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Aurélie Schoubben
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| |
Collapse
|
11
|
Yang Z, Tang J, Li C, Chen Z, Wu XF. Rhodium(III)-catalyzed regioselective C2-alkenylation of indoles with CF 3-imidoyl sulfoxonium ylides to give multi-functionalized enamines using a migratable directing group. Chem Commun (Camb) 2023; 59:318-321. [PMID: 36511166 DOI: 10.1039/d2cc06127a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A rhodium(III)-catalyzed regioselective C2-alkenylation of indoles for the construction of α-CF3 substituted enamines has been developed, which utilizes CF3-imidoyl sulfoxonium ylides (TFISYs) as alkenylating agents for the first time. A wide array of indolyl- and trifluoromethyl-decorated enamine derivatives have been assembled in moderate to good yields.
Collapse
Affiliation(s)
- Zuguang Yang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| | - Jianhua Tang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| | - Chen Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| | - Zhengkai Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China. .,Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059, Rostock, Germany.
| |
Collapse
|
12
|
Zhang S, Yang Q, Defoirdt T. Indole analogues decreasing the virulence of Vibrio campbellii towards brine shrimp larvae. Microb Biotechnol 2022; 15:2917-2928. [PMID: 36333944 PMCID: PMC9733641 DOI: 10.1111/1751-7915.14160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Indole signalling has been proposed as a potential target for the development of novel virulence inhibitors to control bacterial infections. However, the major structural features of indole analogues that govern antivirulence activity remain unexplored. Therefore, we investigated the impact of 26 indole analogues on indole-regulated virulence phenotypes in Vibrio campbellii and on the virulence of the bacterium in a gnotobiotic brine shrimp model. The results demonstrated that 10 indole analogues significantly increased the fluorescence of indole reporter strain Vibrio cholerae S9149, 21 of them decreased the swimming motility of V. campbellii, and 13 of them significantly decreased the biofilm formation of V. campbellii. Further, we found that 1-methylindole, indene, 2,3-benzofuran, thianaphthene, indole-3-acetonitrile, methyl indole-3-carboxylate, 3-methylindole, and indole-2-carboxaldehyde exhibited a significant protective effect on brine shrimp larvae against V. campbellii infection, resulting in survival rates of challenged brine shrimp above 80%. The highest survival of shrimp larvae (98%) was obtained with indole-3-acetonitrile, even at a relatively low concentration of 20 μM. Importantly, the indole analogues did not affect bacterial growth, both in vitro and in vivo. These results indicate the potential of indole analogues in applications aiming at the protection of shrimp from vibriosis.
Collapse
Affiliation(s)
- Shanshan Zhang
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityGhentBelgium
| | - Qian Yang
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityGhentBelgium
| | - Tom Defoirdt
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityGhentBelgium
| |
Collapse
|
13
|
Yescas-Galicia D, Restrepo-Osorio RA, García-González AN, Hernández-Benítez RI, Espinoza-Hicks JC, Escalante CH, Barrera E, Santoyo BM, Delgado F, Tamariz J. Divergent Pd-catalyzed Functionalization of 4-Oxazolin-2-ones and 4-Methylene-2-oxazolidinones and Synthesis of Heterocyclic-Fused Indoles. J Org Chem 2022; 87:13034-13052. [PMID: 36153994 DOI: 10.1021/acs.joc.2c01563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Palladium-catalyzed functionalization was presently performed on two building blocks: 4-oxazolin-2-ones and 4-methylene-2-oxazolidinones. Direct Heck arylation of 4-oxazolin-2-ones led to a series of 5-aryl-4-oxazolin-2-ones, including analogues with N-chiral auxiliary, in an almost quantitative yield. The Pd(II)-catalyzed homocoupling reaction of 4-oxazolin-2-ones provided novel heterocyclic across-ring dienes. Meanwhile, the intramolecular cross-coupling of N-aryl-4-methylene-2-oxazolidinones furnished a series of oxazolo[3,4-a]indol-3-ones. Further functionalization of 4-methylene-2-oxazolidinones afforded substituted indoles and heterocyclic-fused indoles with aryl, bromo, carbinol, formyl, and vinyl groups. A computational study was carried out to account for the behavior of the formylated derivatives. The currently developed methodology was applied to a new formal total synthesis of ellipticine.
Collapse
Affiliation(s)
- Daniel Yescas-Galicia
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico
| | - Rodrigo A Restrepo-Osorio
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico
| | - Ailyn N García-González
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico
| | - Roberto I Hernández-Benítez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico
| | - José C Espinoza-Hicks
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, 31000 Chihuahua, Chih., Mexico
| | - Carlos H Escalante
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico
| | - Edson Barrera
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico
| | - Blanca M Santoyo
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico
| | - Francisco Delgado
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico
| | - Joaquín Tamariz
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, 11340 Mexico City, Mexico
| |
Collapse
|
14
|
Gaur SS, Annapure US. Untargeted metabolite profiling of Enterococcus villorum SB2, isolated from the vagina of pregnant women, by HR-LCMS. World J Microbiol Biotechnol 2022; 38:219. [PMID: 36070101 DOI: 10.1007/s11274-022-03404-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022]
Abstract
Enterococcus bacteria are studied in various sectors including fermentation, food and dairy industries,as well as studied for their probiotic properties but have limited use due to their possible pathogenic behavior. The present report talks about the metabolites produced, by the previously isolated Enterococcus strain, E.villorum SB2 (accession number KX830968), from the vaginal source. The growth of the bacteria in three types of media (M17, MRS and LAPTg) was compared, where the M17 media gave better bacterial colonies, also maximum growth rate was observed in M17 media (Td = 1.6 h & k = 0.4 h-1), and thus was selected as the metabolite production media. Further, the studied bacteria did not show any hemolytic activity, making it safe for industrial applications. The HR-LCMS results showed the production of various amino acids, organic acids, peptides, and other metabolites like flavonoids (Quercetin 3-O-Manoglucoside), terpenoids (7',8',Dihydro-8'-hydroxycitraniaxanthin, O-Methylganoderic acid O, Thalicsessine, Austinol, Valdiate), indole derivatives produced by tryptophan metabolism (5-hydroxykynurenamine, 2S,4R)-4-(9H-Pyrido[3,4-b]indol-1-yl)-1,2,4-butanetriol, Indoleacrylic acid), antimicrobial compounds (Fortimicin A) and fatty acids (Stearic acid, Myristic acid), which were earlier unreported form Enterococcus species opening new scope for discovering new industrial applications of the strain. As the studied bacteria has been reported to be a potential probiotic, the detection of these industrially important metabolites can be studied further in future studies to reveal the potential industrial applications of the strain.
Collapse
Affiliation(s)
- Shivani Singh Gaur
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Uday S Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India. .,Institute of Chemical Technology, Marathwada Campus, Jalna, India.
| |
Collapse
|
15
|
Anti-Virulence Activity of 3,3′-Diindolylmethane (DIM): A Bioactive Cruciferous Phytochemical with Accelerated Wound Healing Benefits. Pharmaceutics 2022; 14:pharmaceutics14050967. [PMID: 35631553 PMCID: PMC9144697 DOI: 10.3390/pharmaceutics14050967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Antimicrobial resistance is among the top global health problems with antibacterial resistance currently representing the major threat both in terms of occurrence and complexity. One reason current treatments of bacterial diseases are ineffective is the occurrence of protective and resistant biofilm structures. Phytochemicals are currently being reviewed for newer anti-virulence agents. In the present study, we aimed to investigate the anti-virulence activity of 3,3′-diindolylmethane (DIM), a bioactive cruciferous phytochemical. Using a series of in vitro assays on major Gram-negative pathogens, including transcriptomic analysis, and in vivo porcine wound studies as well as in silico experiments, we show that DIM has anti-biofilm activity. Following DIM treatment, our findings show that biofilm formation of two of the most prioritized bacterial pathogens Acinetobacter baumannii and Pseudomonas aeruginosa was inhibited respectively by 65% and 70%. Combining the antibiotic tobramycin with DIM enabled a high inhibition (94%) of P. aeruginosa biofilm. A DIM-based formulation, evaluated for its wound-healing efficacy on P. aeruginosa-infected wounds, showed a reduction in its bacterial bioburden, and wound size. RNA-seq was used to evaluate the molecular mechanism underlying the bacterial response to DIM. The gene expression profile encompassed shifts in virulence and biofilm-associated genes. A network regulation analysis showed the downregulation of 14 virulence-associated super-regulators. Quantitative real-time PCR verified and supported the transcriptomic results. Molecular docking and interaction profiling indicate that DIM can be accommodated in the autoinducer- or DNA-binding pockets of the virulence regulators making multiple non-covalent interactions with the key residues that are involved in ligand binding. DIM treatment prevented biofilm formation and destroyed existing biofilm without affecting microbial death rates. This study provides evidence for bacterial virulence attenuation by DIM.
Collapse
|
16
|
Rani M, Utreja D, Sharma S. Role of Indole Derivatives in Agrochemistry: Synthesis and Future Insights. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220426103835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Heterocycles constitute a wider class of organic compounds which contribute significantly in every facet of pure and applied chemistry. Indole, one of the bicyclic heterocyclic compounds containing nitrogen atom, witnessed unparalleled biological activity such as antiviral, antibacterial, anticancer, anti-depressant and antifungal activities. Different biological activities exhibited by indole derivatives provide the impulsion to explore its activity against anti-phytopathogenic microbes to save the plants from pests and disease, as food security will once again become a rigid demand. This review mainly focuses on various methods related to the synthesis of indole derivatives and its role in agriculture.
Collapse
Affiliation(s)
- Manisha Rani
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Shivali Sharma
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| |
Collapse
|
17
|
Indole decreases the virulence of the bivalve model pathogens Vibrio tasmaniensis LGP32 and Vibrio crassostreae J2-9. Sci Rep 2022; 12:5749. [PMID: 35388110 PMCID: PMC8986839 DOI: 10.1038/s41598-022-09799-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
Indole signaling plays an important role in bacterial pathogenesis. In this study, the impact of indole on biofilm formation, swimming and swarming motility were explored in Vibrio tasmaniensis LGP32 and Vibrio crassostreae J2-9, two model pathogens of bivalves. The results showed that indole decreased swimming and swarming motility in both strains, and decreased biofilm formation in V. crassostreae J2-9. Furthermore, indole affected a large number of genes at RNA level, including genes related to metabolism, ABC transporters, flagellar assembly, chemotaxis, and response regulators. Finally, the bacterial virulence towards mussel larvae was decreased by pretreatment with indole in both V. tasmaniensis LGP32 and V. crassostreae J2-9. After 5 days, the survival rate of mussel larvae increased 2.4-fold and 2.8-fold in mussel larvae challenged with V. tasmaniensis LGP32 pretreated with 200 µM and 500 µM indole, respectively. The survival rate of mussel larvae increased 1.5-fold and 1.9-fold in mussel larvae challenged with V. crassostreae J2-9 pretreated with 200 µM and 500 µM indole, respectively. These data indicate that indole has a significant impact on the virulence of V. tasmaniensis LGP32 and V. crassostreae J2-9, and indole signaling could be a promising target for antivirulence therapy.
Collapse
|
18
|
Corrieri M, De Crescentini L, Mantellini F, Mari G, Santeusanio S, Favi G. Synthesis of Azacarbolines via PhIO 2-Promoted Intramolecular Oxidative Cyclization of α-Indolylhydrazones. J Org Chem 2021; 86:17918-17929. [PMID: 34871002 PMCID: PMC8689645 DOI: 10.1021/acs.joc.1c02217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
An unprecedented
synthesis of polysubstituted indole-fused pyridazines
(azacarbolines) from α-indolylhydrazones under oxidative conditions
using a combination of iodylbenzene (PhIO2) and trifluoroacetic
acid (TFA) has been developed. This transformation is conducted without
the need for transition metals, harsh conditions, or an inert atmosphere.
Collapse
Affiliation(s)
- Matteo Corrieri
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, Italy
| | - Lucia De Crescentini
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, Italy
| | - Fabio Mantellini
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, Italy
| | - Giacomo Mari
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, Italy
| | - Stefania Santeusanio
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, Italy
| | - Gianfranco Favi
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, Italy
| |
Collapse
|
19
|
Elumalai V, Hansen JH. Synthesis of 5,7-diarylindoles via Suzuki-Miyaura coupling in water. Org Biomol Chem 2021; 19:10343-10347. [PMID: 34812462 DOI: 10.1039/d1ob02058g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of novel 5,7-diaryl and diheteroaryl indoles has been explored via efficient double Suzuki-Miyaura coupling. The method notably employs a low catalyst loading of Pd(PPh3)4 (1.5 mol%/coupling) and water as the reaction solvent to obtain 5,7-diarylated indoles without using N-protecting groups in up to 91% yield. The approach is also suitable for N-protected and 3-substituted indoles and constitutes an important green and convenient arylation strategy for the benzenoid ring of indoles. The synthesized diarylindoles are fluorescent.
Collapse
Affiliation(s)
- Vijayaragavan Elumalai
- Chemical Synthesis and Analysis Division, Department of Chemistry, UiT The Arctic University of Norway, Hansine Hansens veg 54, 9037 Tromsø, Norway.
| | - Jørn H Hansen
- Chemical Synthesis and Analysis Division, Department of Chemistry, UiT The Arctic University of Norway, Hansine Hansens veg 54, 9037 Tromsø, Norway.
| |
Collapse
|
20
|
Huang X, Shi Y, Wang Y, Jiao J, Tang Y, Li J, Xu S, Li Y. Synthesis of Indole-Fused Oxepines via C-H Activation Initiated Diastereoselective [5 + 2] Annulation of Indoles with 1,6-Enynes. Org Lett 2021; 23:8365-8369. [PMID: 34652931 DOI: 10.1021/acs.orglett.1c03106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A rhodium-catalyzed diastereoselective formal [5 + 2] annulation of indoles with cyclohexadienone-containing 1,6-enynes has been established via indole 2,3-difunctionalization. The reaction, probably proceeding through tandem indole C2-H alkenylation and intramolecular Friedel-Crafts alkylation relay, provides rapid construction of indole-fused oxepines in good to excellent yields with a broad substrate scope. This method also features concomitant construction of cis-hydrobenzo[b] oxepine scaffolds, a core unit found in numerous natural products of important biological activities.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yan Shi
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yongzhuang Wang
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jiao Jiao
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuhai Tang
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jing Li
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Silong Xu
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yang Li
- Department of Material Chemistry, School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
21
|
Ankade SB, Samal PP, Soni V, Gonnade RG, Krishnamurty S, Punji B. Ni(II)-Catalyzed Intramolecular C–H/C–H Oxidative Coupling: An Efficient Route to Functionalized Cycloindolones and Indenoindolones. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shidheshwar B. Ankade
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pragnya Paramita Samal
- Physical and Materials Chemistry Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vineeta Soni
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajesh G. Gonnade
- Centre for Material Characterization, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
| | - Sailaja Krishnamurty
- Physical and Materials Chemistry Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
22
|
Xing Q, Zhou C, Jiang S, Chen S, Deng GJ. Acid-catalyzed three-component addition of carbonyl compounds with 1,2,3-triazoles and indoles. Org Biomol Chem 2021; 19:7838-7842. [PMID: 34549239 DOI: 10.1039/d1ob01451j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and efficient acid-catalyzed three-component reaction of indoles, 1-tosyl-1,2,3-triazoles and carbonyl compounds has been developed. The use of TsOH with a small amount of water significantly promoted the reaction yield. This method provided a general and one-pot approach for the synthesis of structurally diverse C3-alkylated indole derivatives. The alkylation exclusively occurred at the N2 position of triazoles. Various functional groups were tolerated under the optimized simple reaction conditions.
Collapse
Affiliation(s)
- Qiaoyan Xing
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Chunlan Zhou
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Shuxin Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Shanping Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
23
|
Chemo‐ and Regioselective Synthesis of Functionalized 1
H
‐imidazo[1,5‐
a
]indol‐3(2
H
)‐ones via a Redox‐Neutral Rhodium(III)‐Catalyzed [4+1] Annulation between Indoles and Alkynes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Zhao F, Qiao J, Lu Y, Zhang X, Dai L, Liu S, Ni H, Jia X, Wu X, Lu S. Redox-Neutral Rhodium(III)-Catalyzed Chemospecific and Regiospecific [4+1] Annulation between Indoles and Alkenes for the Synthesis of Functionalized Imidazo[1,5- a]indoles. J Org Chem 2021; 86:10591-10607. [PMID: 34297561 DOI: 10.1021/acs.joc.1c01256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Exploiting internal alkenes embedded with an oxidizing function/leaving group as a rare and unconventional one-carbon unit, a redox-neutral rhodium(III)-catalyzed chemo- and regiospecific [4+1] annulation between indoles and alkenes for the synthesis of functionalized imidazo[1,5-a]indoles has been achieved. Internal alkenes employed here can fulfill an unusual [4+1] annulation rather than normal [4+2] annulation/C-H alkenylation. This method is characterized by excellent chemo- and regioselectivity, broad substrate scope, good functional group tolerance, good to high yields, and redox-neutral conditions.
Collapse
Affiliation(s)
- Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China.,Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Jin Qiao
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Yangbin Lu
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Xiaoning Zhang
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Long Dai
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Siyu Liu
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Hangcheng Ni
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Xiuwen Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Xiaowei Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.,Zhongshan Institute for Drug Discovery, the Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan 528400, P. R. China
| | - Shiyao Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China.,Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| |
Collapse
|
25
|
Zhang S, Yang Q, Defoirdt T. Indole decreases the virulence of pathogenic vibrios belonging to the Harveyi clade. J Appl Microbiol 2021; 132:167-176. [PMID: 34297464 DOI: 10.1111/jam.15227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/28/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022]
Abstract
AIM Indole is a signaling molecule secreted by over 85 species of bacteria, including several Vibrio species, and it has been reported to affect different bacterial phenotypes such as biofilm formation, motility, and virulence. In this study, we aimed at investigating the inter-strain variability of the effect of indole in 12 different strains belonging to the Harveyi clade of vibrios. METHODS AND RESULTS Indole reduced the virulence of all strains towards gnotobiotic brine shrimp larvae. The survival rate of brine shrimp larvae challenged with vibrios pretreated with indole was increased by 1.3-fold to 1.8-fold. Additionally, indole significantly decreased the biofilm formation in all of the strains, decreased the swimming motility in eight of the strains, and decreased swarming motility in five of the strains. When cultured in the presence of exogenous indole, the mRNA level of the pirA and pirB toxin genes were down-regulated to 65% and 46%, and to 62% and 55% in the AHPND-causing strains Vibrio parahaemolyticus M0904 and Vibrio campbellii S01, respectively. CONCLUSIONS These data indicate that indole has a significant impact on the virulence of different strains belonging to the Harveyi clade of vibrios. SIGNIFICANCE AND IMPACT OF THE STUDY Our results suggest that indole signaling is a valid target for the development of novel therapeutics in order to control infections caused by Harveyi clade vibrios in aquaculture.
Collapse
Affiliation(s)
- Shanshan Zhang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| | - Qian Yang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| | - Tom Defoirdt
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| |
Collapse
|
26
|
Sudan S, Flick R, Nong L, Li J. Potential Probiotic Bacillus subtilis Isolated from a Novel Niche Exhibits Broad Range Antibacterial Activity and Causes Virulence and Metabolic Dysregulation in Enterotoxic E. coli. Microorganisms 2021; 9:1483. [PMID: 34361918 PMCID: PMC8307078 DOI: 10.3390/microorganisms9071483] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Microbial life in extreme environments, such as deserts and deep oceans, is thought to have evolved to overcome constraints of nutrient availability, temperature, and suboptimal hygiene environments. Isolation of probiotic bacteria from such niche may provide a competitive edge over traditional probiotics. Here, we tested the survival, safety, and antimicrobial effect of a recently isolated and potential novel strain of Bacillus subtilis (CP9) from desert camel in vitro. Antimicrobial assays were performed via radial diffusion, agar spot, and co-culture assays. Cytotoxic analysis was performed using pig intestinal epithelial cells (IPEC-J2). Real time-PCR was performed for studying the effect on ETEC virulence genes and metabolomic analysis was performed using LC-MS. The results showed that CP9 cells were viable in varied bile salts and in low pH environments. CP9 showed no apparent cytotoxicity in IPEC-J2 cells. CP9 displayed significant bactericidal effect against Enterotoxic E. coli (ETEC), Salmonella Typhimurium, and Methicillin-resistant Staphylococcus aureus (MRSA) in a contact inhibitory fashion. CP9 reduced the expression of ETEC virulent genes during a 5 h co-culture. Additionally, a unique emergent metabolic signature in co-culture samples was observed by LC-MS analysis. Our findings indicate that CP9 exhibits a strong antibacterial property and reveals potential mechanisms behind.
Collapse
Affiliation(s)
- Sudhanshu Sudan
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Robert Flick
- Biozone, Mass Spectrometry and Metabolomics, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada;
| | - Linda Nong
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
27
|
Regioselective Mercury(I)/Palladium(II)-Catalyzed Single-Step Approach for the Synthesis of Imines and 2-Substituted Indoles. Molecules 2021; 26:molecules26134092. [PMID: 34279432 PMCID: PMC8271454 DOI: 10.3390/molecules26134092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/21/2022] Open
Abstract
An efficient synthesis of ketimines was achieved through a regioselective Hg(I)-catalyzed hydroamination of terminal acetylenes in the presence of anilines. The Pd(II)-catalyzed cyclization of these imines into the 2-substituted indoles was satisfactorily carried out by a C-H activation. In a single-step approach, a variety of 2-substituted indoles were also generated via a Hg(I)/Pd(II)-catalyzed, one-pot, two-step process, starting from anilines and terminal acetylenes. The arylacetylenes proved to be more effective than the alkyl derivatives.
Collapse
|
28
|
Base-promoted relay reaction of heterocyclic ketene aminals with o-difluorobenzene derivatives for the highly site-selective synthesis of functionalized indoles. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Krasulova K, Illes P. Intestinal interplay of quorum sensing molecules and human receptors. Biochimie 2021; 189:108-119. [PMID: 34186126 DOI: 10.1016/j.biochi.2021.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022]
Abstract
Human gut is in permanent contact with microorganisms that play an important role in many physiological processes including metabolism and immunologic activity. These microorganisms communicate and manage themself by the quorum sensing system (QS) that helps to coordinate optimal growth and subsistence by activating signaling pathways that regulate bacterial gene expression. Diverse QS molecules produced by pathogenic as well as resident microbiota have been found throughout the human gut. However, even a host can by affected by these molecules. Intestinal and immune cells possess a range of molecular targets for QS. Our present knowledge on bacteria-cell communication encompasses G-protein-coupled receptors, nuclear receptors and receptors for bacterial cell-wall components. The QS of commensal bacteria has been approved as a protective factor with favourable effects on intestinal homeostasis and immunity. Signaling molecules of QS interacting with above-mentioned receptors thus parcipitate on maintaining of barrier functions, control of inflammation processes and increase of resistance to pathogen colonization in host organisms. Pathogens QS molecules can have a dual function. Host cells are able to detect the ongoing infection by monitoring the presence and changes in concentrations of QS molecules. Such information can help to set the most effective immune defence to prevent or overcome the infection. Contrary, pathogens QS signals can target the host receptors to deceive the immune system to get the best conditions for growth. However, our knowledge about communication mediated by QS is still limited and detailed understanding of molecular mechanisms of QS signaling is desired.
Collapse
Affiliation(s)
- Kristyna Krasulova
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic.
| | - Peter Illes
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
30
|
Jagtap RA, Punji B. Nickel-Catalyzed C-H Bond Functionalization of Azoles and Indoles. CHEM REC 2021; 21:3573-3588. [PMID: 34075686 DOI: 10.1002/tcr.202100113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Direct C-H functionalization of privileged and biologically relevant azoles and indoles represents an important chemical transformation in molecular science. Despite significant progress in the palladium-catalyzed regioselective C-H functionalization of azoles and indoles, the use of abundant and less expensive nickel catalyst is underdeveloped. In the recent past, the nickel-catalyzed regioselective C-H alkylation, arylation, alkenylation and alkynylation of azoles and indoles have been substantially explored, which can be applied to the complex organic molecule synthesis. In this Account, we summarize the developments in nickel-catalyzed regioselective functionalization of azoles and indoles with a considerable focus on the reaction mechanism.
Collapse
Affiliation(s)
- Rahul A Jagtap
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
31
|
Effect of Bromination on the Quorum Sensing-Inhibiting Properties of Indole-3-Carboxaldehydes in Chromobacterium violaceum AHL System. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12020025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Quorum sensing (QS) is a form of bacterial communication involved in the production of virulence factors in many species. As a result, inhibition of quorum sensing may be of use in mitigating pathogenesis. The signaling molecule indole is currently being investigated as a target for quorum sensing inhibition (QSI) and the indole derivative indole-3-carboxaldehyde (ICA) has been shown to inhibit quorum sensing-mediated behaviors in Escherichia coli. In this study, we investigate bromination as a method of increasing the QSI capabilities of indole carboxaldehydes. The IC50 values of three monobrominated indole carboxaldehydes (5-bromoindole-3-carboxaldehyde, 6-bromoindole-3-carboxaldehyde, and 7-bromoindole-3-carboxaldehyde) were determined and compared to the IC50 value of ICA. The bromination of these indole carboxaldehydes reduced the IC50 values between 2- and 13-fold, indicating that bromination significantly increases the potency of these indole carboxaldehydes.
Collapse
|
32
|
Abou-Hatab S, Carnevale V, Matsika S. Modeling solvation effects on absorption and fluorescence spectra of indole in aqueous solution. J Chem Phys 2021; 154:064104. [PMID: 33588532 PMCID: PMC7878019 DOI: 10.1063/5.0038342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/20/2021] [Indexed: 11/14/2022] Open
Abstract
Modeling the optical spectra of molecules in solution presents a challenge, so it is important to understand which of the solvation effects (i.e., electrostatics, mutual polarization, and hydrogen bonding interactions between solute and solvent molecules) are crucial in reproducing the various features of the absorption and fluorescence spectra and to identify a sufficient theoretical model that accurately captures these effects with minimal computational cost. In this study, we use various implicit and explicit solvation models, such as molecular dynamics coupled with non-polarizable and polarizable force fields, as well as Car-Parrinello molecular dynamics, to model the absorption and fluorescence spectra of indole in aqueous solution. The excited states are computed using the equation of motion coupled cluster with single and double excitations combined with the effective fragment potential to represent water molecules, which we found to be a computationally efficient approach for modeling large solute-solvent clusters at a high level of quantum theory. We find that modeling mutual polarization, compared to other solvation effects, is a dominating factor for accurately reproducing the position of the peaks and spectral line shape of the absorption spectrum of indole in solution. We present an in-depth analysis of the influence that different solvation models have on the electronic excited states responsible for the features of the absorption spectra. Modeling fluorescence is more challenging since it is hard to reproduce even the correct emitting state, and force field parameters need to be re-evaluated.
Collapse
Affiliation(s)
- Salsabil Abou-Hatab
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
33
|
Kar A, Chakraborty B, Kundal S, Rana G, Jana U. DDQ/FeCl 3-mediated tandem oxidative carbon-carbon bond formation for the Synthesis of indole-fluorene hybrid molecules. Org Biomol Chem 2021; 19:906-910. [PMID: 33411869 DOI: 10.1039/d0ob00413h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A series of diverse and complex hybrid structures of indole bearing fluorene were obtained in the presence of DDQ with high regioselectivity under mild conditions from biaryl tethered 3-(methylene)indoline in good to excellent yields. The strategy involves tandem allylic Csp3-H oxidation and subsequent intramolecular carbon-carbon bond formation. The yield of the product was dramatically improved in the presence of additives such as FeCl3 and molecular sieves (4 Å). A possible mechanism is proposed for this tandem process.
Collapse
Affiliation(s)
- Abhishek Kar
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Baitan Chakraborty
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Sandip Kundal
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Gopal Rana
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Umasish Jana
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| |
Collapse
|
34
|
Tang J, Tang Y, Wang X, Wang Y, Huang X, Xu S, Li Y. Regioselective cascade annulation of indoles with alkynediones for construction of functionalized tetrahydrocarbazoles triggered by Cp*Rh III-catalyzed C–H activation. Org Chem Front 2021. [DOI: 10.1039/d1qo00616a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An efficient regioselective and stereoselective cascade annulation of indoles with alkynediones has been developed for construction of free (NH) tetrahydrocarbazoles with continuous quaternary carbons via Cp*RhIII-catalyzed indole C2–H activation.
Collapse
Affiliation(s)
- Jiaxu Tang
- Department of Chemistry
- School of Science
- and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Yuhai Tang
- Department of Chemistry
- School of Science
- and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Xiaonan Wang
- Department of Chemistry
- School of Science
- and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Yongzhuang Wang
- Department of Chemistry
- School of Science
- and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Xiaoli Huang
- Department of Chemistry
- School of Science
- and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Silong Xu
- Department of Chemistry
- School of Science
- and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Yang Li
- Department of Chemistry
- School of Science
- and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| |
Collapse
|
35
|
Inaba T, Obana N, Habe H, Nomura N. Biofilm Formation by Streptococcus mutans is Enhanced by Indole via the Quorum Sensing Pathway. Microbes Environ 2020; 35. [PMID: 32350164 PMCID: PMC7308578 DOI: 10.1264/jsme2.me19164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interspecies interactions among oral microorganisms in the pathogenic biofilms causing dental caries have not yet been elucidated in detail. We herein demonstrated that indole and its derivatives induced biofilm formation by Streptococcus mutans. Indole is an intercellular signaling molecule that is produced by oral bacteria other than S. mutans. The amounts of biofilm and extracellular DNA were significantly increased by the addition of indole and 4-hydroxyindole (4-HI). An examination with quorum sensing mutants showed that the induction of biofilm formation by indole and 4-HI required a quorum sensing system. These results suggest that this intercellular signaling molecule plays a role in pathogenic biofilm formation.
Collapse
Affiliation(s)
- Tomohiro Inaba
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Nozomu Obana
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba
| | - Hiroshi Habe
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|
36
|
Experimental investigation into indole production using passaging of E. coli and B. subtilis along with unstructured modeling and parameter estimation using dynamic optimization: An integrated framework. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Melander RJ, Basak AK, Melander C. Natural products as inspiration for the development of bacterial antibiofilm agents. Nat Prod Rep 2020; 37:1454-1477. [PMID: 32608431 PMCID: PMC7677205 DOI: 10.1039/d0np00022a] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural products have historically been a rich source of diverse chemical matter with numerous biological activities, and have played an important role in drug discovery in many areas including infectious disease. Synthetic and medicinal chemistry have been, and continue to be, important tools to realize the potential of natural products as therapeutics and as chemical probes. The formation of biofilms by bacteria in an infection setting is a significant factor in the recalcitrance of many bacterial infections, conferring increased tolerance to many antibiotics and to the host immune response, and as yet there are no approved therapeutics for combatting biofilm-based bacterial infections. Small molecules that interfere with the ability of bacteria to form and maintain biofilms can overcome antibiotic tolerance conferred by the biofilm phenotype, and have the potential to form combination therapies with conventional antibiotics. Many natural products with anti-biofilm activity have been identified from plants, microbes, and marine life, including: elligic acid glycosides, hamamelitannin, carolacton, skyllamycins, promysalin, phenazines, bromoageliferin, flustramine C, meridianin D, and brominated furanones. Total synthesis and medicinal chemistry programs have facilitated structure confirmation, identification of critical structural motifs, better understanding of mechanistic pathways, and the development of more potent, more accessible, or more pharmacologically favorable derivatives of anti-biofilm natural products.
Collapse
Affiliation(s)
- Roberta J Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | |
Collapse
|
38
|
Ciccolini C, De Crescentini L, Mantellini F, Mari G, Santeusanio S, Favi G. Construction of Unusual Indole-Based Heterocycles from Tetrahydro-1 H-pyridazino[3,4- b]indoles. Molecules 2020; 25:molecules25184124. [PMID: 32916997 PMCID: PMC7571100 DOI: 10.3390/molecules25184124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022] Open
Abstract
Herein, we report the successful syntheses of scarcely represented indole-based heterocycles which have a structural connection with biologically active natural-like molecules. The selective oxidation of indoline nucleus to indole, hydrolysis of ester and carbamoyl residues followed by decarboxylation with concomitant aromatization of the pyridazine ring starting from tetrahydro-1H-pyridazino[3,4-b]indole derivatives lead to fused indole-pyridazine compounds. On the other hand, non-fused indole-pyrazol-5-one scaffolds are easily prepared by subjecting the same C2,C3-fused indoline tetrahydropyridazines to treatment with trifluoroacetic acid (TFA). These methods feature mild conditions, easy operation, high yields in most cases avoiding the chromatographic purification, and broad substrate scope. Interestingly, the formation of indole linked pyrazol-5-one system serves as a good example of the application of the umpolung strategy in the synthesis of C3-alkylated indoles.
Collapse
|
39
|
Campana R, Mangiaterra G, Tiboni M, Frangipani E, Biavasco F, Lucarini S, Citterio B. A Fluorinated Analogue of Marine Bisindole Alkaloid 2,2-Bis(6-bromo-1 H-indol-3-yl)ethanamine as Potential Anti-Biofilm Agent and Antibiotic Adjuvant Against Staphylococcus aureus. Pharmaceuticals (Basel) 2020; 13:ph13090210. [PMID: 32859056 PMCID: PMC7557854 DOI: 10.3390/ph13090210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022] Open
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) infections represent a major global healthcare problem. Therapeutic options are often limited by the ability of MRSA strains to grow as biofilms on medical devices, where antibiotic persistence and resistance is positively selected, leading to recurrent and chronic implant-associated infections. One strategy to circumvent these problems is the co-administration of adjuvants, which may prolong the efficacy of antibiotic treatments, by broadening their spectrum and lowering the required dosage. The marine bisindole alkaloid 2,2-bis(6-bromo-1H-indol-3-yl)ethanamine (1) and its fluorinated analogue (2) were tested for their potential use as antibiotic adjuvants and antibiofilm agents against S. aureus CH 10850 (MRSA) and S. aureus ATCC 29213 (MSSA). Both compounds showed antimicrobial activity and bisindole 2 enabled 256-fold reduction (ΣFICs = 0.5) in the minimum inhibitory concentration (MIC) of oxacillin for the clinical MRSA strain. In addition, these molecules inhibited biofilm formation of S. aureus strains, and compound 2 showed greater eradicating activity on preformed biofilm compared to 1. None of the tested molecules exerted a viable but non-culturable cells (VBNC) inducing effect at their MIC values. Moreover, both compounds exhibited no hemolytic activity and a good stability in plasma, indicating a non-toxic profile, hence, in particular compound 2, a potential for in vivo applications to restore antibiotic treatment against MRSA infections.
Collapse
Affiliation(s)
- Raffaella Campana
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (R.C.); (M.T.); (E.F.)
| | - Gianmarco Mangiaterra
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (G.M.); (F.B.)
| | - Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (R.C.); (M.T.); (E.F.)
| | - Emanuela Frangipani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (R.C.); (M.T.); (E.F.)
| | - Francesca Biavasco
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (G.M.); (F.B.)
| | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (R.C.); (M.T.); (E.F.)
- Correspondence: (S.L.); (B.C.); Tel.: +39-0722-303-333 (S.L.); +39-0722-304-962 (B.C.)
| | - Barbara Citterio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (R.C.); (M.T.); (E.F.)
- Correspondence: (S.L.); (B.C.); Tel.: +39-0722-303-333 (S.L.); +39-0722-304-962 (B.C.)
| |
Collapse
|
40
|
Hu J, Ji X, Hao S, Zhao M, Lai M, Ren T, Xi G, Wang E, Wang J, Wu Z. Regioselective C-H sulfenylation of N-sulfonyl protected 7-azaindoles promoted by TBAI: a rapid synthesis of 3-thio-7-azaindoles. RSC Adv 2020; 10:31819-31823. [PMID: 35518137 PMCID: PMC9056539 DOI: 10.1039/d0ra06635d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 01/02/2023] Open
Abstract
This paper describes the regioselective C-3 sulfenylation of N-sulfonyl protected 7-azaindoles with sulfonyl chlorides. In this transformation, dual roles of TBAI serving as both promoter and desulfonylation reagent have been demonstrated. The reaction proceeded smoothly under simple conditions to afford 3-thio-7-azaindoles in moderate to good yields with broad substrate scopes. This protocol refrains from using transition-metal catalysts, strong oxidants or bases, and shows its practical synthetic value in organic synthesis. A novel, practical and highly regioselective TBAI promoted C-3 sulfenylation reaction of N-sulfonyl protected 7-azaindoles with sulfonyl chlorides is presented here.![]()
Collapse
Affiliation(s)
- Jingyan Hu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University Zhengzhou 450002 China
| | - Xiaoming Ji
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University Zhengzhou 450002 China
| | - Shuai Hao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University Zhengzhou 450002 China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University Zhengzhou 450002 China
| | - Miao Lai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University Zhengzhou 450002 China
| | - Tianbao Ren
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University Zhengzhou 450002 China
| | - Gaolei Xi
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou Henan 450000 China
| | - Erbin Wang
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou Henan 450000 China
| | - Juanjuan Wang
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou Henan 450000 China
| | - Zhiyong Wu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University Zhengzhou 450002 China
| |
Collapse
|
41
|
Manoharan RK, Mahalingam S, Gangadaran P, Ahn YH. Antibacterial and photocatalytic activities of 5-nitroindole capped bimetal nanoparticles against multidrug resistant bacteria. Colloids Surf B Biointerfaces 2020; 188:110825. [PMID: 32006909 DOI: 10.1016/j.colsurfb.2020.110825] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 10/25/2022]
Abstract
The emergence of antibiotic resistance to commercially- available antibiotics is becoming a major health crisis worldwide. Non-antibiotic strategies are needed to combat biofilm-associated infectious diseases caused by multidrug resistant (MDR) bacterial pathogens. In this study, MBR1 was isolated from a membrane bioreactor used in wastewater treatment plants, and the resistance profile was explored. 5-Nitroindole (5 N)-capped CuO/ZnO bimetal nanoparticles (5 NNP) were synthesized using a one pot method to improve the antibacterial and antibiofilm activities of 5 N against Gram-negative (Escherichia coli ATCC700376 and Pseudomonas aeruginosa PA01) and positive (Staphylococcus aureus ATCC6538) human pathogens. 5 NNP containing 1 mM of 5 N exhibited strong antibacterial and antibiofilm properties to most MDR bacteria. In addition, the photocatalytic activity of CuO/ZnO reduced bacterial cell growth by 1.8 log CFU/mL maximum when exposed to visible light. Scanning electron microscopy showed that 5 NNP reduced the cell density and biofilm attachment of MBR1 by >90% under static conditions. In addition to the antimicrobial and antibiofilm activities, 5 NNP inhibited the persister cell formation of MDR bacterial strains P. aeruginosa, MBR1, E. coli and S. aureus. Therefore, it is speculated that 5 NNP potentially inhibits biofilm and persister cells; hence, 5 NNP could be an alternative agent to combat MDR infectious diseases using a non-antibiotic therapeutic approach.
Collapse
Affiliation(s)
| | - Shanmugam Mahalingam
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
42
|
Pandey DK, Ankade SB, Ali A, Vinod CP, Punji B. Nickel-catalyzed C-H alkylation of indoles with unactivated alkyl chlorides: evidence of a Ni(i)/Ni(iii) pathway. Chem Sci 2019; 10:9493-9500. [PMID: 32110305 PMCID: PMC7017866 DOI: 10.1039/c9sc01446b] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/17/2019] [Indexed: 11/21/2022] Open
Abstract
A mild and efficient nickel-catalyzed method for the coupling of unactivated primary and secondary alkyl chlorides with the C-H bond of indoles and pyrroles is described which demonstrates a high level of chemo and regioselectivity. The reaction tolerates numerous functionalities, such as halide, alkenyl, alkynyl, ether, thioether, furanyl, pyrrolyl, indolyl and carbazolyl groups including acyclic and cyclic alkyls under the reaction conditions. Mechanistic investigation highlights that the alkylation proceeds through a single-electron transfer (SET) process with Ni(i)-species being the active catalyst. Overall, the alkylation follows a Ni(i)/Ni(iii) pathway involving the rate-influencing two-step single-electron oxidative addition of alkyl chlorides.
Collapse
Affiliation(s)
- Dilip K Pandey
- Organometallic Synthesis and Catalysis Group , Chemical Engineering Division , CSIR-National Chemical Laboratory (CSIR-NCL) , Dr. Homi Bhabha Road , Pune 411 008 , Maharashtra , India .
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-NCL , Dr. Homi Bhabha Road , Pune , India
| | - Shidheshwar B Ankade
- Organometallic Synthesis and Catalysis Group , Chemical Engineering Division , CSIR-National Chemical Laboratory (CSIR-NCL) , Dr. Homi Bhabha Road , Pune 411 008 , Maharashtra , India .
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-NCL , Dr. Homi Bhabha Road , Pune , India
| | - Abad Ali
- Organometallic Synthesis and Catalysis Group , Chemical Engineering Division , CSIR-National Chemical Laboratory (CSIR-NCL) , Dr. Homi Bhabha Road , Pune 411 008 , Maharashtra , India .
| | - C P Vinod
- Catalysis Division , CSIR-NCL , Dr. Homi Bhabha Road , Pune , India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Group , Chemical Engineering Division , CSIR-National Chemical Laboratory (CSIR-NCL) , Dr. Homi Bhabha Road , Pune 411 008 , Maharashtra , India .
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-NCL , Dr. Homi Bhabha Road , Pune , India
| |
Collapse
|
43
|
Abou-Hatab S, Matsika S. Theoretical Investigation of Positional Substitution and Solvent Effects on n-Cyanoindole Fluorescent Probes. J Phys Chem B 2019; 123:7424-7435. [DOI: 10.1021/acs.jpcb.9b05961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Salsabil Abou-Hatab
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
44
|
Defoirdt T. Amino acid-derived quorum sensing molecules controlling the virulence of vibrios (and beyond). PLoS Pathog 2019; 15:e1007815. [PMID: 31295324 PMCID: PMC6622552 DOI: 10.1371/journal.ppat.1007815] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Tom Defoirdt
- Center for Microbial Ecology and Technology (cmet), Ghent University, Gent, Belgium
- * E-mail:
| |
Collapse
|
45
|
Synthesis of 1H-3-{4-[(3-Dimethylaminopropyl)aminomethyl]phenyl}-2-phenylindole and Evaluation of Its Antiprotozoal Activity. MOLBANK 2019. [DOI: 10.3390/m1060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
1H-3-{4-[(3-Dimethylaminopropyl)aminomethyl]phenyl}-2-phenylindole was synthesized via a multi-step pathway starting from 2-iodoaniline. Structure characterization of this new indole compound was achieved by 1H-NMR, 13C-NMR and ESI-MS spectral analysis. The title compound was screened in vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani and Trypanosoma brucei brucei). Biological results showed antiparasitic activity with IC50 values in the μM range.
Collapse
|
46
|
Sudo N. Role of gut microbiota in brain function and stress-related pathology. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2019; 38:75-80. [PMID: 31384518 PMCID: PMC6663509 DOI: 10.12938/bmfh.19-006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022]
Abstract
Gut microbiota are responsible for a variety of metabolic activities including food digestion and production of biologically active substances. Moreover, several recent works, including our own, have also shown that gut microbiota play an important role not only in the development of brain function but also in the pathology of stress-related diseases and neurodevelopmental disorders. In this review, we focus on the interaction between gut microbes and the brain-gut axis and introduce some basic concepts and recent developments in this area of research.
Collapse
Affiliation(s)
- Nobuyuki Sudo
- 1Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
47
|
Cascioferro S, Parrino B, Petri GL, Cusimano MG, Schillaci D, Di Sarno V, Musella S, Giovannetti E, Cirrincione G, Diana P. 2,6-Disubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives as potent staphylococcal biofilm inhibitors. Eur J Med Chem 2019; 167:200-210. [PMID: 30772604 DOI: 10.1016/j.ejmech.2019.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 12/13/2022]
Abstract
A class of 36 new 2-(6-phenylimidazo[2,-1-b][1,3,4]thiadiazol-2-yl)-1H-indoles was efficiently synthesized and evaluated for their anti-biofilm properties against the Gram-positive bacterial reference strains Staphylococcus aureus ATCC 25923, S. aureus ATCC 6538 and Staphylococcus epidermidis ATCC 12228, and the Gram-negative strains Pseudomonas aeruginosa ATCC 15442 and Escherichia coli ATCC 25922. Many of these new compounds, were able to inhibit biofilm formation of the tested staphylococcal strains showing BIC50 lower than 10 μg/ml. In particular, derivatives 9c and 9h showed remarkable anti-biofilm activity against S. aureus ATCC 25923 with BIC50 values of 0.5 and 0.8 μg/ml, respectively, whereas compound 9aa was the most potent against S. aureus ATCC 6538, with a BIC50 of 0.3 μg/ml. Remarkably, these compounds showed effects in the early stages of the biofilm formation without affecting the mature biofilm of the same strains and the viability of the planktonic form. Their ability in counteracting a virulence factor (biofilm formation) without interfering with the bacterial growth in the free life form make them novel valuable anti-virulence agents.
Collapse
Affiliation(s)
- Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Giovanna Li Petri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Maria Grazia Cusimano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Domenico Schillaci
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Veronica Di Sarno
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Simona Musella
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa and Fondazione Pisana per la Scienza, via Via Ferruccio Giovannini 13, 56017, San Giuliano Terme, Pisa, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
48
|
Pi C, Yin X, Cui X, Ma Y, Wu Y. Directed C3-Alkoxymethylation of Indole via Three-Component Cascade Reaction. Org Lett 2019; 21:2081-2084. [DOI: 10.1021/acs.orglett.9b00357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Chao Pi
- College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiaohang Yin
- College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiuling Cui
- College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yuwen Ma
- Zhengzhou Railway Vocational and Technical College, Zhengzhou 450052, P. R. China
| | - Yangjie Wu
- College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
49
|
Qiao J, Jia X, Li P, Liu X, Zhao J, Zhou Y, Wang J, Liu H, Zhao F. Gold‐catalyzed Rapid Construction of Nitrogen‐containing Heterocyclic Compound Library with Scaffold Diversity and Molecular Complexity. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801494] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jin Qiao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Xiuwen Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Pinyi Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Xiaoyan Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Jingwei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Yu Zhou
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 People's Republic of China
| | - Jiang Wang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 People's Republic of China
| | - Hong Liu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences No.19 A Yuquan Road Beijing 100049 People's Republic of China
| | - Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| |
Collapse
|
50
|
Campana R, Favi G, Baffone W, Lucarini S. Marine Alkaloid 2,2-Bis(6-bromo-3-indolyl) Ethylamine and Its Synthetic Derivatives Inhibit Microbial Biofilms Formation and Disaggregate Developed Biofilms. Microorganisms 2019; 7:microorganisms7020028. [PMID: 30678052 PMCID: PMC6406822 DOI: 10.3390/microorganisms7020028] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/14/2019] [Accepted: 01/20/2019] [Indexed: 12/20/2022] Open
Abstract
The antimicrobial activity of the marine bisindole alkaloid 2,2-bis(6-bromo-3-indolyl) ethylamine (1) and related synthetic analogues (compounds 2–8) against target microorganisms was investigated by Minimum Inhibitory Concentration (MIC) determination. Compound 1 showed the greatest antimicrobial activity with the lowest MIC (8 mg/L) against Escherichia coli, Staphylococcus aureus, and Klebsiella pneumoniae, while the derivatives exhibited higher MICs values (from 16 to 128 mg/L). Compounds 1, 3, 4, and 8, the most active ones, were then tested against E. coli, S. aureus, K. pneumoniae, and Candida albicans during biofilms formation as well as on 24 h developed biofilms. The natural alkaloid 1 inhibited the biofilm formation of all the tested microorganisms up to 82.2% and disaggregated biofilms of E. coli, S. aureus, K. pneumoniae, and C. albicans after 30 min of contact, as assessed by viable plate count and crystal violet (CV) staining (optical density at 570 nm). Synthetic derivatives 3, 4, and 8 displayed anti-biofilm activity toward individual bacterial populations. This study highlights the potential of marine bisindole alkaloid 1 as anti-biofilm agent and shows, through a preliminary structure activity relationship (SAR), the importance of halogens and ethylamine side chain for the antimicrobial and antibiofilm activities of this bisindole series.
Collapse
Affiliation(s)
- Raffaella Campana
- Department of Biomolecular Science, Division of Toxicological, Hygiene and Environmental Science, Via S. Chiara 27, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Gianfranco Favi
- Department of Biomolecular Science, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino Carlo Bo, Via I Maggetti 24, 61029 Urbino, Italy.
| | - Wally Baffone
- Department of Biomolecular Science, Division of Toxicological, Hygiene and Environmental Science, Via S. Chiara 27, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Simone Lucarini
- Department of Biomolecular Science, Division of Chemistry, Piazza del Rinascimento 6, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| |
Collapse
|