1
|
Simmons EJ, Ryffel DB, Lopez DA, Boyko YD, Sarlah D. Total Syntheses of Scabrolide B, Ineleganolide, and Related Norcembranoids. J Am Chem Soc 2025; 147:130-135. [PMID: 39704734 DOI: 10.1021/jacs.4c16629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Concise total syntheses of several 5/7/6 norcembranoids, including ineleganolide, scabrolide B, sinuscalide C, and fragilolide A have been achieved through a fragment coupling/ring closure approach. The central seven-membered ring was forged through sequential Mukaiyama-Michael/aldol reactions using norcarvone and a decorated bicyclic lactone incorporating a latent electrophile. Subsequent manipulations installed the reactive enedione motif and delivered scabrolide B in 11 steps from a chiral pool-derived enone. Finally, ineleganolide, sinuscalide C, and fragilolide A were each accessed in one additional step.
Collapse
Affiliation(s)
- Emma J Simmons
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David B Ryffel
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Diego A Lopez
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yaroslav D Boyko
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David Sarlah
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Lin DS, Späth G, Meng Z, Wieske LHE, Farès C, Fürstner A. Total Synthesis of the Norcembranoid Scabrolide B and Its Transformation into Sinuscalide C, Ineleganolide, and Horiolide. J Am Chem Soc 2024; 146:24250-24256. [PMID: 39167047 PMCID: PMC11378282 DOI: 10.1021/jacs.4c09467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
It was recognized only recently that the sister norcembranoids scabrolides A and B have notably different carbotricyclic scaffolds. Therefore, our synthesis route leading to scabrolide A could not be extended to its sibling. Rather, a conceptually new approach had to be devised that relied on a challenging intramolecular alkenylation of a ketone to forge the congested central cycloheptene ring at the bridgehead enone site; the required cyclization precursor was attained by a lanthanide-catalyzed Mukaiyama-Michael addition. The dissonant 1,4-oxygenation pattern was then installed by allylic rearrangement/oxidation of the enone, followed by suprafacial 1,3-transposition. Synthetic scabrolide B was transformed into sinuscalide C by dehydration and into ineleganolide by base-mediated isomerization/oxa-Michael addition, which has potential biosynthetic implications; under basic conditions, the latter compound converts into horiolide by an intricate biomimetic cascade.
Collapse
Affiliation(s)
- Davy S Lin
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Georg Späth
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Zhanchao Meng
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Lianne H E Wieske
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Christophe Farès
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
3
|
Han M, Wang Z, Li Y, Song Y, Wang Z. The application and sustainable development of coral in traditional medicine and its chemical composition, pharmacology, toxicology, and clinical research. Front Pharmacol 2024; 14:1230608. [PMID: 38235111 PMCID: PMC10791799 DOI: 10.3389/fphar.2023.1230608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024] Open
Abstract
This review discusses the variety, chemical composition, pharmacological effects, toxicology, and clinical research of corals used in traditional medicine in the past two decades. At present, several types of medicinal coral resources are identified, which are used in 56 formulas such as traditional Chinese medicine, Tibetan medicine, Mongolian medicine, and Uyghur medicine. A total of 34 families and 99 genera of corals are involved in medical research, with the Alcyoniidae family and Sarcophyton genus being the main research objects. Based on the structural types of compounds and the families and genera of corals, this review summarizes the compounds primarily reported during the period, including terpenoids, steroids, nitrogen-containing compounds, and other terpenoids dominated by sesquiterpene and diterpenes. The biological activities of coral include cytotoxicity (antitumor and anticancer), anti-inflammatory, analgesic, antibacterial, antiviral, immunosuppressive, antioxidant, and neurological properties, and a detailed summary of the mechanisms underlying these activities or related targets is provided. Coral toxicity mostly occurs in the marine ornamental soft coral Zoanthidae family, with palytoxin as the main toxic compound. In addition, nonpeptide neurotoxins are extracted from aquatic corals. The compatibility of coral-related preparations did not show significant acute toxicity, but if used for a long time, it will still cause toxicity to the liver, kidneys, lungs, and other internal organs in a dose-dependent manner. In clinical applications, individual application of coral is often used as a substitute for orthopedic materials to treat diseases such as bone defects and bone hyperplasia. Second, coral is primarily available in the form of compound preparations, such as Ershiwuwei Shanhu pills and Shanhu Qishiwei pills, which are widely used in the treatment of neurological diseases such as migraine, primary headache, epilepsy, cerebral infarction, hypertension, and other cardiovascular and cerebrovascular diseases. It is undeniable that the effectiveness of coral research has exacerbated the endangered status of corals. Therefore, there should be no distinction between the advantages and disadvantages of listed endangered species, and it is imperative to completely prohibit their use and provide equal protection to help them recover to their normal numbers. This article can provide some reference for research on coral chemical composition, biological activity, chemical ecology, and the discovery of marine drug lead compounds. At the same time, it calls for people to protect endangered corals from the perspectives of prohibition, substitution, and synthesis.
Collapse
Affiliation(s)
- Mengtian Han
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyuan Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiye Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinglian Song
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Zeng N, Zhang Q, Yao Q, Fu G, Su W, Wang W, Li B. A Comprehensive Review of the Classification, Sources, Phytochemistry, and Pharmacology of Norditerpenes. Molecules 2023; 29:60. [PMID: 38202643 PMCID: PMC10780140 DOI: 10.3390/molecules29010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Norditerpenes are considered to be a common and widely studied class of bioactive compounds in plants, exhibiting a wide array of complex and diverse structural types and originating from various sources. Based on the number of carbons, norditerpenes can be categorized into C19, C18, C17, and C16 compounds. Up to now, 557 norditerpenes and their derivatives have been found in studies published between 2010 and 2023, distributed in 51 families and 132 species, with the largest number in Lamiaceae, Euphorbiaceae, and Cephalotaxaceae. These norditerpenes display versatile biological activities, including anti-tumor, anti-inflammatory, antimicrobial, and antioxidant properties, as well as inhibitory effects against HIV and α-glucosidase, and can be considered as an important source of treatment for a variety of diseases that had a high commercial value. This review provides a comprehensive summary of the plant sources, chemical structures, and biological activities of norditerpenes derived from natural sources, serving as a valuable reference for further research development and application in this field.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (N.Z.); (Q.Z.); (Q.Y.); (G.F.); (W.S.)
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (N.Z.); (Q.Z.); (Q.Y.); (G.F.); (W.S.)
| |
Collapse
|
5
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
6
|
Truax NJ, Ayinde S, Liu JO, Romo D. Total Synthesis of Rameswaralide Utilizing a Pharmacophore-Directed Retrosynthetic Strategy. J Am Chem Soc 2022; 144:18575-18585. [PMID: 36166374 DOI: 10.1021/jacs.2c08245] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A pharmacophore-directed retrosynthetic strategy was applied to the first total synthesis of the cembranoid rameswaralide in order to simultaneously achieve a total synthesis while also developing a structure-activity relationship profile throughout the synthetic effort. The synthesis utilized a Diels-Alder lactonization process, including a rare kinetic resolution to demonstrate the potential of this strategy for an enantioselective synthesis providing both the 5,5,6- and, through a ring expansion, 5,5,7-tricyclic ring systems present in several Sinularia soft coral cembranoids. A pivotal synthetic intermediate, a tricyclic epoxy α-bromo cycloheptenone, displayed high cytotoxicity with interesting selectivity toward the HCT-116 colon cancer cell line. This intermediate enabled the pursuit of three unique D-ring annulation strategies including a photocatalyzed intramolecular Giese-type radical cyclization and a diastereoselective, intramolecular enamine-mediated Michael addition, with the latter annulation constructing the final D-ring to deliver rameswaralide. The serendipitous discovery of an oxidation state transposition of the tricyclic epoxy cycloheptenone proceeding through a presumed doubly vinylogous, E1-type elimination enabled the facile introduction of the required α-methylene butyrolactone. Preliminary biological tests of rameswaralide and precursors demonstrated weak cytotoxicity; however, the comparable cytotoxicity of a simple 6,7-bicyclic β-keto ester, corresponding to the CD-ring system of rameswaralide, to that of the natural product itself suggests that such bicyclic β-ketoesters may constitute an interesting pharmacophore that warrants further exploration.
Collapse
Affiliation(s)
- Nathanyal J Truax
- Department of Chemistry & Biochemistry, Baylor University, 101 Bagby Avenue, Waco, Texas 76710, United States
| | - Safiat Ayinde
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Daniel Romo
- Department of Chemistry & Biochemistry, Baylor University, 101 Bagby Avenue, Waco, Texas 76710, United States
| |
Collapse
|
7
|
Kelutur FJ, Saptarini NM, Mustarichie R, Kurnia D. Molecular Docking of the Terpenes in Gorgonian Corals to COX-2 and
iNOS Enzymes as Anti-Inflammatory. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666211227162950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Because the inflammatory pathway is triggered by the enzymes cyclooxygenase-
2 (COX-2) and inducible nitric oxide synthase (iNOS), inhibitors, such as nonsteroidal anti-inflammatory
drugs (NSAIDs), are needed, although these have side effects. Therefore, the discovery and development
of natural medicine as a lead compound are needed. The gorgonian corals have been reported to contain
cyclic diterpenes with anti-inflammatory activities. The specific anti-inflammatory inhibitor potential has
not been reported regarding these secondary metabolites, whether in COX-2 or iNOS. Thus, the in silico
method is the right alternative.
Objective:
This study aimed to determine the potency of fifteen terpenes of the various gorgonian corals
to COX-2 and iNOS enzymes as an anti-inflammatory.
Methods:
Molecular docking was performed using ChemDraw Ultra 12.0, Chem3D Pro 12.0, Biovia
Discovery Studio 2016 Client®, Autodock Tools 4.2, prediction pharmacokinetics (Pre-ADMET), and
oral administration (Lipinski rule of five).
Results:
Potential terpenes based on ΔG (kcal/mol) and Ki (nM) to COX-2 were gyrosanol B (-10,32;
27,15), gyrosanol A (-10,20; 33,57), echinolabdane A (-9,81; 64,76). Only nine terpenes were specific to
COX-2 active sites, while for iNOS were palmonine F (-7.76; 2070), briarenol C (-7.55; 2910), and all
test compounds binding to the iNOS active sites. Pre-ADMET prediction obtained that HIA was very
excellent (70–100%), Caco-2 had moderate permeability (4–70 nm sec-1), and PPB had strong binding (>
90%). Eight terpenes qualified for the Lipinski rule of five.
Conclusion:
iNOS was a specific target for terpenes based on the free energy of binding (ΔG).
Collapse
Affiliation(s)
- Faruk Jayanto Kelutur
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran,
West Java, Indonesia
| | - Nyi Mekar Saptarini
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran,
West Java, Indonesia
| | - Resmi Mustarichie
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran,
West Java, Indonesia
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran,
West Java, Indonesia
| |
Collapse
|
8
|
Liu M, Zhang X, Li G. Structural and Biological Insights into the Hot‐spot Marine Natural Products Reported from 2012 to 2021. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao 266235 China
| |
Collapse
|
9
|
Briarane-Related Diterpenoids from Octocoral Briareum stechei. Molecules 2021; 26:molecules26226861. [PMID: 34833953 PMCID: PMC8619598 DOI: 10.3390/molecules26226861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
A known polyoxygenated briarane, briaexcavatolide P (1), was isolated from a Formosan octocoral Briareum stechei. Moreover, the same species B. stechei, collected from Okinawan waters, yielded three chlorine-containing briaranes, including two new compounds, briastecholides B (2) and C (3) as well as a known analogue, briarenol R (4). The structures of 1-4 were established using spectroscopic methods. In addition, briarane 1 demonstrated anti-inflammatory activity in lipo-polysaccharide-induced RAW 264.7 mouse macrophage cells by suppressing the expression of inducible nitric oxide synthase (iNOS) protein.
Collapse
|
10
|
Wu J, Li X, Guo X, Cheng Z, Meng J, Cheng W, Lin W. Briarane-type diterpenoids from a gorgonian coral Ellisella sp. with anti-HBV activities. Bioorg Chem 2020; 105:104423. [PMID: 33160223 DOI: 10.1016/j.bioorg.2020.104423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/08/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022]
Abstract
Chemical investigation of a gorgonian coral Ellisella sp. resulted in the isolation of 12 briarane-type diterpenoids, including eight new congeners namely ellisellolides A-H (1-8). Their structures were determined by extensive spectroscopic analysis, aided the calculated ECD data to support the configurational assignment. All compounds were evaluated for the in vitro anti-HBV activities in HepAD38 cell line, while preliminary analyses of the structure-activity relationship demonstrated that junceellolide C featured an 3E,5(16)-diene and a chlorine-substitution at C-6 is the most active congener. Junceellolide C exhibited efficient reduction against the HBV DNA, HBV RNA and HBeAg production with a dose-dependent manner. It also significantly reduced the HBV cccDNA replenishment and promoted the existed HBV cccDNA degradation. These findings suggest junceellolide C to be a transcription inhibitor of cccDNA and a promising lead for the development of new anti-HBV agent.
Collapse
Affiliation(s)
- Jiru Wu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, PR China
| | - Xiaodan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, PR China
| | - Xingchen Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, PR China
| | - Zhongbin Cheng
- School of Pharmacy, Henan University, Kaifeng 475004, PR China
| | - Junjun Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, PR China
| | - Wei Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, PR China.
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, PR China; Institute of Ocean Research, Peking University, Beijing, PR China.
| |
Collapse
|
11
|
Abstract
Gorgonian corals are considered as a rich source of secondary metabolites with
unique structural features and biological activities. A large number of novel metabolites
with potent pharmacological properties have been isolated from gorgonian corals. Some of
these compounds have exhibited to possess new mechanisms of action, which hold great
promises as potential lead compounds in future marine drug development. This review aims
to provide an overview of chemical constituents and biological activities of gorgonian corals
from 2015 to December, 2019. Some 145 metabolites, including 16 sesquiterpenoids, 62
diterpenoids, 62 steroids and 5 alkaloids were reported during this period and their pharmacological
activities were investigated. Moreover, the peculiar structure and potential medicinal
value of these new compounds are discussed in this review.
Collapse
Affiliation(s)
- Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Peng Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
12
|
Su TP, Kuo TJ, Yang SN, Lee GH, Lee YT, Wang YC, Chen JJ, Wen ZH, Hwang TL, Sung PJ. 11β,20β-Epoxybriaranes from the Gorgonian Coral Junceella fragilis (Ellisellidae). Mar Drugs 2020; 18:md18040183. [PMID: 32244363 PMCID: PMC7231240 DOI: 10.3390/md18040183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 11/28/2022] Open
Abstract
Two 11,20-epoxybriaranes, including a known compound, juncenolide K (1), as well as a new metabolite, fragilide X (2), have been isolated from gorgonian Junceella fragilis collected off the waters of Taiwan. The absolute configuration of juncenolide K (1) was determined by single-crystal X-ray diffraction analysis for the first time in this study and the structure, including the absolute configuration of briarane 2 was established on the basis of spectroscopic analysis and compared with that of model compound 1. One aspect of the stereochemistry of the known compound 1 was revised. Briarane 2 was found to enhance the generation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) release from RAW 264.7 cells.
Collapse
Affiliation(s)
- Tung-Pin Su
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 94450, Taiwan;
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan
| | - Tsu-Jen Kuo
- Department of Stomatology, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan
| | - San-Nan Yang
- Department of Pediatrics, E-DA Hospital, School of Medicine, College of Medicine, I-SHOU University, Kaohsiung 82445, Taiwan;
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan;
| | - Yen-Tung Lee
- Division of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Cosmetic Science, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Department of Chinese Medicine, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Yi-Chen Wang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
| | - Jih-Jung Chen
- Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 11221, Taiwan;
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Correspondence: (T.-L.H.); (P.-J.S.); Tel.: +886-3-211-8800 (ext. 5523) (T.-L.H.); +886-8-882-5037 (P.-J.S.); Fax: +886-3-211-8506 (T.-L.H.); +886-8-882-5087 (P.-J.S.)
| | - Ping-Jyun Sung
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 94450, Taiwan;
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 40447, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (T.-L.H.); (P.-J.S.); Tel.: +886-3-211-8800 (ext. 5523) (T.-L.H.); +886-8-882-5037 (P.-J.S.); Fax: +886-3-211-8506 (T.-L.H.); +886-8-882-5087 (P.-J.S.)
| |
Collapse
|
13
|
Sung PJ, Hwang TL, Wu YC, Chen YH, Chin HK, Peng BR, Chen YY, Hu CC, Zheng LG, Huynh TH, Su TP, Zhang YL, Wen ZH. Survey of Briarane-Type Diterpenoids – Part VII. HETEROCYCLES 2020. [DOI: 10.3987/rev-19-925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Su TP, Yuan CH, Jhu YM, Peng BR, Wen ZH, Wu YJ, Wu TY, Liu HW, Sung PJ. Fragilides U-W: New 11,20-Epoxybriaranes from the Sea Whip Gorgonian Coral Junceella fragilis. Mar Drugs 2019; 17:md17120706. [PMID: 31847481 PMCID: PMC6950706 DOI: 10.3390/md17120706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
Three new 11,20-epoxybriaranes—fragilides U–W (1–3), as well as two known metabolites, junceellonoid D (4) and junceellin (5), were obtained from the octocoral Junceella fragilis. The structures of briaranes 1–3 were elucidated by spectroscopic methods and briaranes 3 and 5 displayed inhibition effects on inducible nitric oxide synthase (iNOS) release from RAW264.7.
Collapse
Affiliation(s)
- Tung-Pin Su
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan;
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan;
| | - Chien-Han Yuan
- Department of Otolaryngology, Kaohsiung Armed General Hospital, Kaohsiung 802, Taiwan; (C.-H.Y.); (Y.-M.J.)
| | - Yi-Ming Jhu
- Department of Otolaryngology, Kaohsiung Armed General Hospital, Kaohsiung 802, Taiwan; (C.-H.Y.); (Y.-M.J.)
| | - Bo-Rong Peng
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan;
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Yu-Jen Wu
- Department of Nursing, Meiho University, Pingtung 912, Taiwan;
| | - Tung-Ying Wu
- Department of Biological Science & Technology, Meiho University, Pingtung 912, Taiwan
- Department of Food Science and Nutrition, Meiho University, Pingtung 912, Taiwan
- Correspondence: (T.-Y.W.); (H.-W.L.); (P.-J.S.); Tel.: +886-8-779-9821 (ext. 8754) (T.-Y.W.); +886-8-882-5037 (P.-J.S.); Fax: +886-8-779-3281 (T.-Y.W.); +886-8-882-5087 (P.-J.S.)
| | - Hong-Wen Liu
- Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung 928, Taiwan
- Correspondence: (T.-Y.W.); (H.-W.L.); (P.-J.S.); Tel.: +886-8-779-9821 (ext. 8754) (T.-Y.W.); +886-8-882-5037 (P.-J.S.); Fax: +886-8-779-3281 (T.-Y.W.); +886-8-882-5087 (P.-J.S.)
| | - Ping-Jyun Sung
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan;
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan;
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (T.-Y.W.); (H.-W.L.); (P.-J.S.); Tel.: +886-8-779-9821 (ext. 8754) (T.-Y.W.); +886-8-882-5037 (P.-J.S.); Fax: +886-8-779-3281 (T.-Y.W.); +886-8-882-5087 (P.-J.S.)
| |
Collapse
|
15
|
Chen YY, Fang LS, Chen YH, Peng BR, Su TP, Huynh TH, Lin FY, Hu CC, Lin NC, Wen ZH, Chen JJ, Lee CY, Wang JW, Sung PJ. New 8-Hydroxybriaranes from the Gorgonian Coral Junceella fragilis (Ellisellidae). Mar Drugs 2019; 17:md17090534. [PMID: 31540107 PMCID: PMC6780648 DOI: 10.3390/md17090534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 01/16/2023] Open
Abstract
Three new 8-hydroxybriaranes—fragilides R–T (1–3) were obtained from a sea whip gorgonian coral Junceella fragilis. The structures of briaranes 1–3 were elucidated by using spectroscopic methods, including 1D (1H and 13C NMR), 2D (COSY, HSQC, HMBC, and NOESY experiments) NMR studies, and (+)-HRESIMS. Fragilides S and T (2 and 3) are the only briaranes known to possess 8α-hydroxy and 17β-methyl groups, respectively. Briarane 2 exerted an inhibition effect on iNOS release from RAW264.7; a macrophage cell line that originated from a mouse monocyte macrophage, stimulated with lipopolysaccharides.
Collapse
Affiliation(s)
- You-Ying Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
| | - Lee-Shing Fang
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan.
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan.
| | - Yu-Hsin Chen
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
| | - Bo-Rong Peng
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 115, Taiwan.
| | - Tung-Pin Su
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan.
| | - Thanh-Hao Huynh
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan.
| | - Feng-Yu Lin
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
- Department of Applied Chemistry, National Pingtung University, Pingtung 900, Taiwan.
| | - Chiung-Chin Hu
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
| | - Nai-Cheng Lin
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Jih-Jung Chen
- Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Chieh-Yu Lee
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan.
| | - Jin-Wei Wang
- Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan.
| | - Ping-Jyun Sung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan.
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan.
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
16
|
Zeng T, Liu Z, Liu H, He W, Tang X, Xie L, Wu R. Exploring Chemical and Biological Space of Terpenoids. J Chem Inf Model 2019; 59:3667-3678. [DOI: 10.1021/acs.jcim.9b00443] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tao Zeng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Zhihong Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, P.R. China
| | - Huawei Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Wengan He
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Xiaowen Tang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, P.R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P.R. China
| |
Collapse
|
17
|
New 11,20-Epoxybriaranes from the Gorgonian Coral Junceella fragilis (Ellisellidae). Molecules 2019; 24:molecules24132487. [PMID: 31284657 PMCID: PMC6659381 DOI: 10.3390/molecules24132487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/29/2019] [Accepted: 07/05/2019] [Indexed: 12/04/2022] Open
Abstract
Two new 11,20-epoxybriaranes, fragilides P (1) and Q (2), as well as two known analogues, robustolide F (3) and juncin Z (4), were obtained from the gorgonian coral Junceella fragilis. The structures, including the absolute configurations of briaranes 1 and 2, were elucidated by using spectroscopic methods and comparing the spectroscopic and rotation data with those of known related analogues. Briarane 4 decreased the generation of superoxide anions by human neutrophils. The propionate group in 1 is rarely found.
Collapse
|
18
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
19
|
Natural Product Chemistry of Gorgonian Corals of Genus Junceella⁻Part III. Mar Drugs 2018; 16:md16090339. [PMID: 30227646 PMCID: PMC6165226 DOI: 10.3390/md16090339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/10/2018] [Accepted: 09/15/2018] [Indexed: 12/26/2022] Open
Abstract
The structures, names, bioactivities, and references of 82 natural products, including 48 new metabolites, purified from the gorgonian corals belonging to the genus Junceella are described in this review. All compounds mentioned in this review were obtained from Junceella fragilis, Junceella gemmacea, Junceella juncea, and Junceella sp., collected from tropical Indo-Pacific Ocean. Some of these compounds exhibited potential biomedical activities.
Collapse
|
20
|
Zheng LG, Chang YC, Hu CC, Wen ZH, Wu YC, Sung PJ. Fragilides K and L, New Briaranes from the Gorgonian Coral Junceella fragilis. Molecules 2018; 23:molecules23071510. [PMID: 29932137 PMCID: PMC6100390 DOI: 10.3390/molecules23071510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022] Open
Abstract
Two new briarane metabolites—fragilides K (1) and L (2)—along with five known analogues—gemmacolide X, praelolide, juncins P and ZI, and gemmacolide V (3–7)—were extracted and purified from Junceella fragilis, a gorgonian coral. Based on data obtained via spectroscopic techniques, the structures of new briaranes 1 and 2 were determined and the cyclohexane rings in 1 and 2 were found to exist in chair and twist boat conformation, respectively. Additionally, anti-inflammatory analysis showed that briaranes 2, 3, and 6 inhibited pro-inflammatory inducible nitric oxide synthase protein expression and briaranes 3 and 7 suppressed the cyclooxygenase-2 level, in LPS-stimulated murine macrophage-like RAW264.7 cells.
Collapse
Affiliation(s)
- Li-Guo Zheng
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 94450, Taiwan.
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan.
| | - Yu-Chia Chang
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan.
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan.
| | - Chiung-Chih Hu
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Yang-Chang Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan.
| | - Ping-Jyun Sung
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 94450, Taiwan.
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 40447, Taiwan.
| |
Collapse
|
21
|
Riveira MJ, Marcarino MO, La-Venia A. Multicomponent Domino Synthesis of Cyclopenta[b]furan-2-ones. Org Lett 2018; 20:4000-4004. [DOI: 10.1021/acs.orglett.8b01567] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Martín J. Riveira
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK Rosario, Argentina
| | - Maribel O. Marcarino
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK Rosario, Argentina
| | - Agustina La-Venia
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK Rosario, Argentina
| |
Collapse
|
22
|
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as macrophilone A from Macrorhynchia philippina.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, UKG12 8QQ.
| | | |
Collapse
|