1
|
Lin C, Hsu JL, Hsu YT, Fan KC, Wu SS, Lin MH, Guh JH, Yu CW. Design and synthesis of novel HDAC6 inhibitor dimer as HDAC6 degrader for cancer treatment by palladium catalysed dimerisation. J Enzyme Inhib Med Chem 2025; 40:2468355. [PMID: 40013582 PMCID: PMC11869342 DOI: 10.1080/14756366.2025.2468355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
The enigmatic histone deacetylase 6 (HDAC6) is one of a kind among its family. Recent reports revealed that HDAC6 CD1 exhibits E3 ligase activity. Inspired by these researches, we attempted to develop drugs targeting HDAC6 via novel mechanism. Herein, we report a palladium catalysed transformation and purification method for hydroxamic acid dimers, and series of HDAC6 inhibitor-based dimer showing outstanding biological activities and capability of inducing auto-degradation. Our proof-of-concept was highlighted with 2-amino benzamide-based HDAC6 inhibitor dimers that exhibit great HDAC6 inhibition activity (3.9-15.4 nM), good HDAC1/6 selectivity (95-577), and excellent cytotoxicity against human hormone-resistant prostate cancer (HRPC) PC-3 and non-small cell lung cancer (NSCLC) A549 cell lines (5.9-11.3 and 6.6-17.9 μM, respectively) while simultaneously inducing HDAC6 degradation. These dimers not only induce apoptosis and autophagy but also interfere with kinetochore attachment by the detection of BUBR1 phosphorylation at S670.
Collapse
Affiliation(s)
- Ching Lin
- School of Pharmacy, National Taiwan University, Taipei, ROC
| | - Jui-Ling Hsu
- School of Pharmacy, National Taiwan University, Taipei, ROC
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan City, ROC
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, ROC
| | - Yu-Tung Hsu
- School of Pharmacy, National Taiwan University, Taipei, ROC
| | - Kuo-Chen Fan
- School of Pharmacy, National Taiwan University, Taipei, ROC
| | - Sian-Siou Wu
- School of Pharmacy, National Taiwan University, Taipei, ROC
| | - Miao-Hsia Lin
- Department and Graduate Institute of Medical Microbiology, College of Medicine, National Taiwan University, Taipei, ROC
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, Taipei, ROC
| | - Chao-Wu Yu
- School of Pharmacy, National Taiwan University, Taipei, ROC
| |
Collapse
|
2
|
Wiethoff M, Lezius L, Studer A. Photocatalytic Generation of a Ground-State Electron Donor Through Water Activation. Angew Chem Int Ed Engl 2025; 64:e202501757. [PMID: 40135576 PMCID: PMC12124444 DOI: 10.1002/anie.202501757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 03/27/2025]
Abstract
Electron donors that can be excited to higher energy states through light absorption can achieve oxidation potentials as low as -3.0 V (vs. SCE). However, ground-state organic electron transfer reagents operating at such potentials remain underdeveloped, often necessitating multi-step syntheses and elevated reaction temperatures for activation. The longer lifetime of ground-state reagents is an advantage compared to most photoexcited single-electron reductants, which typically have relatively short lifetimes. In this study, catalytically generated phosphine oxide radical anions derived from phosphines and water applying redox catalysis are introduced as highly efficient single-electron reductants. The in situ generated radical anions are capable of reducing electron-rich aryl chlorides at potentials as low as -3.3 V (vs. SCE). Cyclic voltammetry studies and DFT calculations provide valuable insights into the behavior of these phosphorus-based ground-state electron donors. These findings do not only expand the chemistry of phosphoranyl radicals but also unlock the potential of in situ generated organic ground state electron donors that reach potentials comparable to elemental potassium.
Collapse
Affiliation(s)
| | - Lena Lezius
- Organisch‐Chemisches InstitutUniversität Münster48149MünsterGermany
| | - Armido Studer
- Organisch‐Chemisches InstitutUniversität Münster48149MünsterGermany
| |
Collapse
|
3
|
Nnamdi FU, Sullivan R, Gorin B, Organ MG. Eliminating Bimolecular Decomposition to Address Sustainability in Cross-Coupling: Supported Pd-PEPPSI-IPent Cl. Org Lett 2025; 27:3865-3870. [PMID: 40178303 DOI: 10.1021/acs.orglett.5c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Fine-chemical manufacturing, with its dismal E-factors, has been known for decades as being one of the worst contributors to the well-being of the environment. Further, mining practices that pursue precious metals used in catalysis lead to considerable destruction of the environment. Further contributing to this is the necessity for high catalyst loads due to the limited mortality of organometallic complexes in solution. Bimolecular decomposition (BD), in particular, is a significant contributor to this problem. Assisting in the sustainability of chemical synthesis is flow chemistry, whose "just-in-time" nature produces chemicals as needed, eliminating vast stockpiles of chemicals associated with batch manufacturing. In this work, Pd-PEPPSI-IPentCl, a high-reactivity, high-selectivity Pd catalyst, has been mounted onto the surface of silica, of which the spacing has eliminated BD. This material has been loaded into packed beds and used in Negishi coupling and Buchwald-Hartwig amination, where the active catalyst has shown tremendous resiliency while producing valuable small-molecule products with deft selectivity and speed with residence time in the order of minutes under mild conditions (e.g., Negishi couplings conducted at room temperature).
Collapse
Affiliation(s)
- Fred U Nnamdi
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ryan Sullivan
- Eurofins CDMO Alphora, Incorporated, 2070 Hadwen Road, Mississauga, Ontario L5K 2C9, Canada
| | - Boris Gorin
- Eurofins CDMO Alphora, Incorporated, 2070 Hadwen Road, Mississauga, Ontario L5K 2C9, Canada
| | - Michael G Organ
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
4
|
Ayuso-Carrillo J, Bonifazi D. Catalyst-Transfer Macrocyclization Protocol: Synthesis of π-Conjugated Azaparacyclophanes Made Easy. JACS AU 2025; 5:1482-1498. [PMID: 40151261 PMCID: PMC11937971 DOI: 10.1021/jacsau.5c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
The present Protocol describes the application of the catalyst-transfer macrocyclization (CTM) reaction, focusing on the synthesis of aza[1n]paracyclophanes (APCs). APCs are fully π-conjugated shape-persistent macrocycles with potential supramolecular chemistry and materials science applications. This method leverages the Pd-catalyzed Buchwald-Hartwig cross-coupling reaction to selectively form π-conjugated cyclic structures, a significant advancement due to its efficiency, versatility, and scalability. Overall, this Article highlights the following attributes of the CTM method: a) Efficiency and Yield: The CTM method works at mild temperatures (40 °C) and short reaction times (≥2 h), producing high yields of APCs (>75% macrocycles). It avoids the typical high-dilution conditions, making it more practical for large-scale applications. b) Versatility: The method allows the synthesis of APCs with diverse endocyclic and exocyclic functionalities and ring sizes (typically from 4- to 9-membered rings), expanding the chemical space for these compounds. This flexibility is crucial for tailoring APC properties for specific applications. c) Scalability and Reproducibility: Unlike many macrocyclization reactions, which require highly dilute conditions, CTM can perform under concentrated regimes (35-350 mM), making it more suitable for large-scale applications. d) Applications in Materials Science: APCs are noted for their potential in optoelectronic applications due to their π-conjugated structures, which are helpful in organic semiconductors, light-harvesting systems, and other advanced materials. This approach addresses the challenge of complicated multistep syntheses that have hindered the widespread integration of APCs into functional devices. A step-by-step guide to preparing exemplary APCs, including troubleshooting, is provided with photographic illustrations.
Collapse
Affiliation(s)
- Josue Ayuso-Carrillo
- Institute of Organic Chemistry, University of Vienna. Währinger Strasse 38, 1090, Vienna, Austria
| | - Davide Bonifazi
- Institute of Organic Chemistry, University of Vienna. Währinger Strasse 38, 1090, Vienna, Austria
| |
Collapse
|
5
|
Scott NW, Chirila P, Horbaczewskyj CS, Slack ED, Whitwood AC, Fairlamb IJS. Catalyst Activation and Speciation Involving DyadPalladate Precatalysts in Suzuki-Miyaura and Buchwald-Hartwig Cross-Couplings. Organometallics 2025; 44:654-664. [PMID: 40083950 PMCID: PMC11898177 DOI: 10.1021/acs.organomet.4c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 03/16/2025]
Abstract
Understanding mechanisms underpinning Pd precatalyst activation and formation of active species is important in maximizing catalyst activity and lifetime. DyadPalladate precatalysts, represented by the general formula [R3PH+]2[Pd2Cl6]2- (R3P = tertiary alkylphosphine/arylphosphines), have recently emerged as sustainable, active Pd precatalysts for cross-couplings (e.g., Suzuki-Miyaura {SMCC} and Buchwald-Hartwig aryl amination {BHA}). This study investigates the activation of the [HXPhos]2[Pd2Cl6] 1, as a model precatalyst from the DyadPalladate class, against BHA and SMCC reactions. It was found that BHA and SMCC reactions reached the same active Pd0 catalyst, [Pd0(XPhos)2]. This species is generated efficiently through a reductive activation step involving a dual base/nucleophile chemical trigger. However, the mechanistic path of each is somewhat different based on the selected nucleophile. The active Pd complex participates in oxidative addition with aryl halides, the first committed step in many cross-coupling reactions. The activation pathway and catalytic efficiency of [HXPhos]2[Pd2Cl6] 1 were compared with those of known PdII precatalysts, possessing the XPhos ligand, through both stoichiometric and catalytic studies. Investigating the activation triggers and characterizing the active Pd0 catalyst, under catalytically relevant conditions, provide valuable insight into future catalyst design, targeting optimal efficiency in specific reactions, i.e., knowing that the precatalyst has been fully activated.
Collapse
Affiliation(s)
- Neil W.
J. Scott
- Department
of Chemistry, University of York, Heslington, York, North Yorkshire YO10 5DD, United Kingdom
| | - Paula Chirila
- Johnson
Matthey PLC, 28 Cambridge Science Park, Milton Road, Cambridge CB4 0FP, United
Kingdom
| | | | - Eric D. Slack
- Johnson
Matthey, 2001 Nolte Drive, West Deptford, New Jersey 08066, United States
| | - Adrian C. Whitwood
- Department
of Chemistry, University of York, Heslington, York, North Yorkshire YO10 5DD, United Kingdom
| | - Ian J. S. Fairlamb
- Department
of Chemistry, University of York, Heslington, York, North Yorkshire YO10 5DD, United Kingdom
| |
Collapse
|
6
|
Shim E, Tewari A, Cernak T, Zimmerman PM. Recommending reaction conditions with label ranking. Chem Sci 2025; 16:4109-4118. [PMID: 39906388 PMCID: PMC11788591 DOI: 10.1039/d4sc06728b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Pinpointing effective reaction conditions can be challenging, even for reactions with significant precedent. Herein, models that rank reaction conditions are introduced as a conceptually new means for prioritizing experiments, distinct from the mainstream approach of yield regression. Specifically, label ranking, which operates using input features only from substrates, will be shown to better generalize to new substrates than prior models. Evaluation on practical reaction condition selection scenarios - choosing from either 4 or 18 conditions and datasets with or without missing reactions - demonstrates label ranking's utility. Ranking aggregation through Borda's method and relative simplicity are key features of label ranking to achieve consistent high performance.
Collapse
Affiliation(s)
- Eunjae Shim
- Department of Chemistry, University of Michigan Ann Arbor MI USA
| | - Ambuj Tewari
- Department of Statistics, University of Michigan Ann Arbor MI USA
- Department of Electrical Engineering and Computer Science, University of Michigan Ann Arbor MI USA
| | - Tim Cernak
- Department of Chemistry, University of Michigan Ann Arbor MI USA
- Department of Medicinal Chemistry, University of Michigan Ann Arbor MI USA
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan Ann Arbor MI USA
| |
Collapse
|
7
|
Hatton J, Stuart DR. Synthesis of N-Aryl Carbamates from Aryl(TMP)iodonium Salts via C-N Coupling. Org Lett 2025; 27:1130-1135. [PMID: 39856027 DOI: 10.1021/acs.orglett.4c04582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Modular C-N coupling is a desirable way to construct N-aryl carbamates, which are privileged scaffolds in active pharmaceutical ingredients. However, there are no broadly applicable metal-free methods for theN-arylation of carbamates. Herein, we describe a metal-free approach that uses aryl(TMP)iodonium salts as arylation reagents for cyclic carbamates by exploiting the metal-like reactivity of iodine(III). The scope includes 25 examples, including 17 different aryl(TMP)iodonium salts and 9 different carbamates, in yields ranging between 55 and 97% (75% avg).
Collapse
Affiliation(s)
- Joseph Hatton
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - David R Stuart
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| |
Collapse
|
8
|
Giannakakis G, Usteri ME, Bugaev A, Ruiz-Ferrando A, Faust Akl D, López N, Fantasia S, Püntener K, Pérez-Ramírez J, Mitchell S. Reactivity and Mechanism of Recoverable Pd 1@C 3N 4 Single-Atom Catalyst in Buchwald-Hartwig Aminations. ACS Catal 2025; 15:284-295. [PMID: 39781335 PMCID: PMC11705219 DOI: 10.1021/acscatal.4c05134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025]
Abstract
Buchwald-Hartwig (BH) aminations are crucial for synthesizing arylamine motifs in numerous bioactive molecules and fine chemicals. While homogeneous palladium complexes can be effective catalysts, their high costs and environmental impact motivate the search for alternative approaches. Heterogeneous palladium single-atom catalysts (SAC) offer promising recoverable alternatives in C-C cross-couplings. Yet their use in C-N couplings remains unexplored, and mechanistic insights into amine coupling with aryl halides over solid surfaces that could guide catalyst design are lacking. Here, we demonstrate that palladium atoms coordinated to well-defined heptazinic cavities of graphitic carbon nitride (Pd1@C3N4) deliver practically relevant yields for BH couplings across various aryl halides and amines, exhibiting persistent activity and negligible leaching over several cycles. Notably, Pd1@C3N4 shows comparable or superior activity with certain aryl chlorides to bromides, alongside high chemoselectivity for amines over amides. In situ X-ray absorption spectroscopy analyses supported by density functional theory simulations identify the concerted role of the ligand and the C3N4 host in determining the performance, with a Pd(II) nominal oxidation state observed under all coupling conditions. Complementary structural and kinetic studies highlight a distinct reaction mechanism than that typically reported for homogeneous catalysts. These findings offer key insights for designing recyclable SAC for BH coupling, setting the basis for extending the scope toward more complex industrial targets.
Collapse
Affiliation(s)
- Georgios Giannakakis
- Institute
of Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg, 1, 8093 Zurich, Switzerland
| | - Marc Eduard Usteri
- Institute
of Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg, 1, 8093 Zurich, Switzerland
| | - Aram Bugaev
- Paul
Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Andrea Ruiz-Ferrando
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Avenue Països Catalans 16, 43007 Tarragona, Spain
| | - Dario Faust Akl
- Institute
of Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg, 1, 8093 Zurich, Switzerland
| | - Núria López
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Avenue Països Catalans 16, 43007 Tarragona, Spain
| | - Serena Fantasia
- Pharmaceutical
Division, Synthetic Molecules Technical Development, Process Chemistry
& Catalysis, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Kurt Püntener
- Pharmaceutical
Division, Synthetic Molecules Technical Development, Process Chemistry
& Catalysis, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Javier Pérez-Ramírez
- Institute
of Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg, 1, 8093 Zurich, Switzerland
| | - Sharon Mitchell
- Institute
of Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg, 1, 8093 Zurich, Switzerland
| |
Collapse
|
9
|
Raguram ER, Dahl JC, Jensen KF, Buchwald SL. Kinetic Modeling Enables Understanding of Off-Cycle Processes in Pd-Catalyzed Amination of Five-Membered Heteroaryl Halides. J Am Chem Soc 2024; 146:33035-33047. [PMID: 39566015 PMCID: PMC11906019 DOI: 10.1021/jacs.4c10488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The mechanism of Pd-catalyzed amination of five-membered heteroaryl halides was investigated by integrating experimental kinetic analysis with kinetic modeling through predictive testing and likelihood ratio analysis, revealing an atypical productive coupling pathway and multiple off-cycle events. The GPhos-supported Pd catalyst, along with the moderate-strength base NaOTMS, was previously found to promote efficient coupling between five-membered heteroaryl halides and secondary amines. However, slight deviations from the optimal concentration, temperature, and/or solvent resulted in significantly lower yields, contrary to typical reaction optimization trends. We found that the coupling of 4-bromothiazole with piperidine proceeds through an uncommon mechanism in which the NaOTMS base, rather than the amine, binds first to the oxidative addition complex; the resulting OTMS-bound Pd species is the resting state. Formation of the Pd-amido complex via base/amine exchange was identified as the turnover-limiting step, unlike other reported catalyst systems for which reductive elimination is turnover-limiting. We determined that the amine-bound Pd complex, usually an on-cycle intermediate, is instead a reversibly generated off-cycle species, and that base-mediated decomposition of 4-bromothiazole is the primary irreversible catalyst deactivation pathway. Predictive testing and kinetic modeling were key to the identification of these off-cycle processes, providing insight into minor mechanistic pathways that are difficult to observe experimentally. Collectively, this report reveals the unique enabling features of the Pd-GPhos/NaOTMS system, implementing mechanistic insights to improve the yields of particularly challenging coupling reactions. Moreover, these findings highlight the utility of applying predictive tests to kinetic models for the rapid evaluation of mechanistic possibilities in small-molecule catalytic systems.
Collapse
Affiliation(s)
- Elaine Reichert Raguram
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Jakob C Dahl
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Klavs F Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Han W, Ryu H, Kang C, Hong S. Chiral Biaryl N-Heterocyclic Carbene-Palladium Catalysts with Anagostic C-H···Pd Interaction for Enantioselective Desymmetric C-N Cross-Coupling. Org Lett 2024. [PMID: 39527761 DOI: 10.1021/acs.orglett.4c03709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Novel chiral biaryl imidazo[1,5-a]pyridine carbene-palladium complexes (ImPy-Pd) featuring an anagostic C-H···Pd interaction and a C5-aryl substituent have been developed and successfully applied to the Pd-catalyzed enantioselective desymmetric C-N cross-coupling of malonamide derivatives, providing chiral 3,4-dihydroquinoline-2-ones with quaternary stereocenters in high yields (≤99%) and enantioselectivities (≤97:3 er). The chiral catalyst exerts stereocontrol by restricting the rotation of substituents around the metal center through anagostic interactions with sterically bulky substituents.
Collapse
Affiliation(s)
- Woosong Han
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro Buk-gu, Gwangju 61005, Republic of Korea
| | - Huijeong Ryu
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro Buk-gu, Gwangju 61005, Republic of Korea
| | - Changmuk Kang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro Buk-gu, Gwangju 61005, Republic of Korea
| | - Sukwon Hong
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
11
|
Samser S, Biswal P, Mamidala R, Meher SK, Venkatasubbaiah K. Pyrazole based palladacycles for the synthesis of β-aminoketones by redox coupling of allyl alcohols and anilines. Org Biomol Chem 2024; 22:8488-8492. [PMID: 39344353 DOI: 10.1039/d4ob01232a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Herein, we report the synthesis of β-aminoketones by oxidative coupling of allyl alcohols at room temperature using a pyrazole based palladacycle and BINOL-phosphoric acid system. This method avoids the use of any base, external oxidant, and additive. The reaction of p-anisidine and 1-penten-3-ol under the optimized conditions using isolated palladacycle-BINOL-phosphoric acid produced the desired product in 24 h, which suggests that the active species involved in this reaction is the palladacycle-BINOL-phosphoric acid.
Collapse
Affiliation(s)
- Shaikh Samser
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, an OCC of Homi Bhabha National Institute, Bhubaneswar 752050, Odisha, India.
| | - Priyabrata Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, an OCC of Homi Bhabha National Institute, Bhubaneswar 752050, Odisha, India.
| | - Ramesh Mamidala
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, an OCC of Homi Bhabha National Institute, Bhubaneswar 752050, Odisha, India.
| | - Sushanta Kumar Meher
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, an OCC of Homi Bhabha National Institute, Bhubaneswar 752050, Odisha, India.
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, an OCC of Homi Bhabha National Institute, Bhubaneswar 752050, Odisha, India.
| |
Collapse
|
12
|
Iyer KS, Dismuke Rodriguez KB, Lammert RM, Yirak JR, Saunders JM, Kavthe RD, Aue DH, Lipshutz BH. Rapid Aminations of Functionalized Aryl Fluorosulfates in Water. Angew Chem Int Ed Engl 2024; 63:e202411295. [PMID: 39034288 DOI: 10.1002/anie.202411295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Aryl fluorosulfates of varying complexities have been used in amination reactions in water using a new Pd oxidative addition complex (OAC-1) developed specifically to match the needs of the fine chemicals industry, not only in terms of functional group tolerance, but also reflecting time considerations associated with these important C-N couplings. Also especially noteworthy is that they replace both PFAS-related triflates and nonaflates, which are today out of favor due to recent government regulations. The new complex based on the BippyPhos ligand is used at low loadings and under aqueous micellar conditions. Moreover, it is easily prepared and stable to long term storage. DFT calculations on the OAC precatalyst compare well with the X-ray structure of the crystals with π-complexation to the aromatic system of the ligand and also confirm the NMR data showing a mixture of conformers in solution that differ from the X-ray structure in rotation of the phenyl and t-butyl ligand substituents. An extensive variety of coupling partners, including pharmaceutically relevant APIs, readily participate under mild and environmentally responsible reaction conditions.
Collapse
Affiliation(s)
- Karthik S Iyer
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | | - Robert M Lammert
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Jordan R Yirak
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - John M Saunders
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Rahul D Kavthe
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Donald H Aue
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Bruce H Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
13
|
Feng K, Raguram ER, Howard JR, Peters E, Liu C, Sigman MS, Buchwald SL. Development of a Deactivation-Resistant Dialkylbiarylphosphine Ligand for Pd-Catalyzed Arylation of Secondary Amines. J Am Chem Soc 2024; 146:26609-26615. [PMID: 39288263 PMCID: PMC11906018 DOI: 10.1021/jacs.4c09667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Despite the prevalence of N-heteroarenes in small-molecule pharmaceuticals, Pd-catalyzed C-N cross-coupling reactions of aryl halides and amines containing these rings remain challenging due to their ability to displace the supporting ligand via coordination to the metal center. To address this limitation, we report the development of a highly robust Pd catalyst supported by a new dialkylbiarylphosphine ligand, FPhos. The FPhos-supported catalyst effectively resists N-heteroarene-mediated catalyst deactivation to readily promote C-N coupling between a wide variety of Lewis-basic aryl halides and secondary amines, including densely functionalized pharmaceuticals. Mechanistic and structural investigations, as well as principal component analysis and density functional theory, elucidated two key design features that enable FPhos to overcome the limitations of previous ligands. First, the ligated Pd complex is stabilized through its conformational preference for the O-bound isomer, which likely resists coordination by N-heteroarenes. Second, 3',5'-disubstitution on the non-phosphorus-containing ring of FPhos creates the ideal steric environment around the Pd center, which facilitates binding by larger secondary amines while mitigating the formation of off-cycle palladacycle species.
Collapse
Affiliation(s)
- Kaibo Feng
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Elaine Reichert Raguram
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - James R Howard
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ellyn Peters
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Cecilia Liu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Ai HJ, Kim ST, Liu C, Buchwald SL. Copper-Catalyzed Amination of Aryl Chlorides under Mild Reaction Conditions. J Am Chem Soc 2024; 146:25949-25955. [PMID: 39283164 PMCID: PMC11917491 DOI: 10.1021/jacs.4c10237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
We report a mild method for the copper-catalyzed amination of aryl chlorides. Key to the success of the method was the use of highly sterically encumbered N1,N2-diaryl diamine ligands which resist catalyst deactivation, allowing reactions to proceed at significantly lower temperatures and with a broader scope than current protocols. A sequence of highly chemoselective C-N and C-O cross-coupling reactions were demonstrated, and mechanistic studies indicate that oxidative addition of the Cu catalyst to the aryl chlorides is rate-limiting. We anticipate that the design principles disclosed herein will help motivate further advances in Cu-catalyzed transformations of aryl chlorides.
Collapse
Affiliation(s)
- Han-Jun Ai
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Seoung-Tae Kim
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Cecilia Liu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Tlahuext-Aca A, Nguyen QD, Gao Y, Sati GC, Zhao J, Valco D. Palladium-Catalyzed Cross-Coupling of Aryl Bromides and Chlorides with Trimethylsilylalkynes under Mild Conditions. J Org Chem 2024; 89:13762-13767. [PMID: 39219445 DOI: 10.1021/acs.joc.4c01499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Herein, we disclose a palladium-catalyzed cross-coupling of aryl bromides and chlorides with trimethylsilylalkynes under mild reaction conditions. This method utilizes commercially available and air stable palladium precatalysts and avoids the use of copper cocatalysts. Moreover, it allows for the synthesis of a wide range of disubstituted alkynes in high yields with excellent functional group tolerance. The utility of the developed method was further demonstrated via the late-stage alkynylation of pharmaceuticals and natural bioactive compounds.
Collapse
Affiliation(s)
- Adrian Tlahuext-Aca
- Corteva Agriscience, Small Molecule Discovery and Development, Indianapolis, Indiana 46268, United States
| | - Quyen D Nguyen
- Corteva Agriscience, Small Molecule Discovery and Development, Indianapolis, Indiana 46268, United States
| | - Yang Gao
- Corteva Agriscience, Small Molecule Discovery and Development, Indianapolis, Indiana 46268, United States
| | - Girish C Sati
- Corteva Agriscience, Small Molecule Discovery and Development, Indianapolis, Indiana 46268, United States
| | - Jinpeng Zhao
- Corteva Agriscience, Small Molecule Discovery and Development, Indianapolis, Indiana 46268, United States
| | - Daniel Valco
- Corteva Agriscience, Reactive Chemicals SME, Indianapolis, Indiana 46268, United States
| |
Collapse
|
16
|
Rodríguez-Franco C, Roldán-Molina E, Aguirre-Medina A, Fernández R, Hornillos V, Lassaletta JM. Catalytic Atroposelective Synthesis of C-N Axially Chiral Aminophosphines via Dynamic Kinetic Resolution. Angew Chem Int Ed Engl 2024; 63:e202409524. [PMID: 38923738 DOI: 10.1002/anie.202409524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
A ruthenium-catalyzed reductive amination via asymmetric transfer hydrogenation (ATH) has been used to perform an efficient dynamic kinetic resolution (DKR) of N-aryl 2-formyl pyrroles decorated with a phosphine moiety positioned at the ortho' position. The strategy relies on the labilization of the stereogenic axis in the substrate facilitated by a transient Lewis acid-base interaction (LABI) between the carbonyl carbon and the phosphorus center. The reaction features broad substrate scope of aliphatic amines and N-aryl pyrrole scaffolds, and proceeds under very mild conditions to afford P,N atropisomers in good to high yields and excellent enantioselectivities (up to 99 % ee) for both diphenyl and dicyclohexylphosphino derivatives.
Collapse
Affiliation(s)
- Carlos Rodríguez-Franco
- Instituto Investigaciones Químicas (CSIC-US), Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Américo Vespucio 49, 41092, Sevilla, Spain
| | - Esther Roldán-Molina
- Instituto Investigaciones Químicas (CSIC-US), Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Américo Vespucio 49, 41092, Sevilla, Spain
| | - Alberto Aguirre-Medina
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González 1, 41012, Sevilla, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González 1, 41012, Sevilla, Spain
| | - Valentín Hornillos
- Instituto Investigaciones Químicas (CSIC-US), Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Américo Vespucio 49, 41092, Sevilla, Spain
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González 1, 41012, Sevilla, Spain
| | - José M Lassaletta
- Instituto Investigaciones Químicas (CSIC-US), Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
17
|
Perry G, Schley ND. Bis(bicyclo[1.1.1]pentyl)chlorophosphine as a Precursor for the Preparation of Bis(bicyclo[1.1.1]pentyl)phosphines. Org Lett 2024; 26:6071-6075. [PMID: 38735051 PMCID: PMC11287751 DOI: 10.1021/acs.orglett.4c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Dialkylchlorophosphines are among the most versatile building blocks for tertiary phosphine ligands, but their synthesis relies on the nucleophilic substitution of PCl3, leaving substituents that require P-H precursors largely inaccessible. The primary phosphine reagent iPr2NPH2·BH3 can serve as a doubly protected PH2Cl proxy, enabling the synthesis of bis(bicyclo[1.1.1]pentyl)chlorophosphine (Bcp2PCl) for the first time. Bcp2PCl serves as a general reagent for the preparation of a family of bis(bicyclo[1.1.1]pentyl) alkyl- and arylphosphines, including new members of privileged phosphine ligand scaffolds.
Collapse
Affiliation(s)
- Griffin
L. Perry
- Department of Chemistry, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Nathan D. Schley
- Department of Chemistry, Vanderbilt
University, Nashville, Tennessee 37235, United States
| |
Collapse
|
18
|
Li MY, Chen P, Pan MX, Hu HL, Jiang YJ. Palladium-catalyzed amidation of carbazole derivatives via hydroamination of isocyanates. Org Biomol Chem 2024. [PMID: 39005158 DOI: 10.1039/d4ob00771a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The first amidation of carbazoles at the N9 position via palladium-catalyzed hydroamination of isocyanates is demonstrated. This simple, general and efficient method could deliver a wide range of carbazole-N-carboxamides in up to 99% yield. The salient features of this transformation include simple conditions with no need for a strong base, high chemo- and regio-selectivities and good functional group tolerance. In particular, this work-up-free and chromatography-free protocol is time-saving, cost-effective and user-friendly.
Collapse
Affiliation(s)
- Meng-Yuan Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Peng Chen
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Ming-Xia Pan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Hao-Lan Hu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Yi-Jun Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
19
|
Ayuso-Carrillo J, Fina F, Galleposo EC, Ferreira RR, Mondal PK, Ward BD, Bonifazi D. One-Step Catalyst-Transfer Macrocyclization: Expanding the Chemical Space of Azaparacyclophanes. J Am Chem Soc 2024; 146:16440-16457. [PMID: 38848549 PMCID: PMC11191698 DOI: 10.1021/jacs.4c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024]
Abstract
In this paper, we report on a one-step catalyst-transfer macrocyclization (CTM) reaction, based on the Pd-catalyzed Buchwald-Hartwig cross-coupling reaction, selectively affording only cyclic structures. This route offers a versatile and efficient approach to synthesize aza[1n]paracyclophanes (APCs) featuring diverse functionalities and lumens. The method operates at mild reaction temperatures (40 °C) and short reaction times (∼2 h), delivering excellent isolated yields (>75% macrocycles) and up to 30% of a 6-membered cyclophane, all under nonhigh-dilution concentrations (35-350 mM). Structural insights into APCs reveal variations in product distribution based on different endocyclic substituents, with steric properties of exocyclic substituents having minimal influence on the macrocyclization. Aryl-type endocyclic substituents predominantly yield 6-membered macrocycles, while polycyclic aromatic units such as fluorene and carbazole favor 4-membered species. Experimental and computational studies support a proposed mechanism of ring-walking catalyst transfer that promotes the macrocycle formation. It has been found that the macrocyclization is driven by the formation of cyclic conformers during the oligomerization step favoring an intramolecular C-N bond formation that, depending on the cycle size, hinges on either preorganization effect or kinetic increase of the reductive elimination step or a combination of the two. The CTM process exhibits a "living" behavior, facilitating sequential synthesis of other macrocycles by introducing relevant monomers, thus providing a practical synthetic platform for chemical libraries. Notably, CTM operates both under diluted and concentrated regimes, offering scalability potential, unlike typical macrocyclization reactions usually operating in the 0.1-1 mM range.
Collapse
Affiliation(s)
- Josue Ayuso-Carrillo
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, Vienna A-1090, Austria
| | - Federica Fina
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, Vienna A-1090, Austria
| | - El Czar Galleposo
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, Vienna A-1090, Austria
| | - Rúben R. Ferreira
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, Vienna A-1090, Austria
| | - Pradip Kumar Mondal
- Elettra
Sincrotrone Trieste S.C.p.A., Strada Statale 14−km 163, 5 in Area Science
Park, Basovizza, Trieste 34149, Italy
| | - Benjamin D. Ward
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Davide Bonifazi
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, Vienna A-1090, Austria
| |
Collapse
|
20
|
Raghavan P, Rago AJ, Verma P, Hassan MM, Goshu GM, Dombrowski AW, Pandey A, Coley CW, Wang Y. Incorporating Synthetic Accessibility in Drug Design: Predicting Reaction Yields of Suzuki Cross-Couplings by Leveraging AbbVie's 15-Year Parallel Library Data Set. J Am Chem Soc 2024; 146:15070-15084. [PMID: 38768950 PMCID: PMC11157529 DOI: 10.1021/jacs.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
Despite the increased use of computational tools to supplement medicinal chemists' expertise and intuition in drug design, predicting synthetic yields in medicinal chemistry endeavors remains an unsolved challenge. Existing design workflows could profoundly benefit from reaction yield prediction, as precious material waste could be reduced, and a greater number of relevant compounds could be delivered to advance the design, make, test, analyze (DMTA) cycle. In this work, we detail the evaluation of AbbVie's medicinal chemistry library data set to build machine learning models for the prediction of Suzuki coupling reaction yields. The combination of density functional theory (DFT)-derived features and Morgan fingerprints was identified to perform better than one-hot encoded baseline modeling, furnishing encouraging results. Overall, we observe modest generalization to unseen reactant structures within the 15-year retrospective library data set. Additionally, we compare predictions made by the model to those made by expert medicinal chemists, finding that the model can often predict both reaction success and reaction yields with greater accuracy. Finally, we demonstrate the application of this approach to suggest structurally and electronically similar building blocks to replace those predicted or observed to be unsuccessful prior to or after synthesis, respectively. The yield prediction model was used to select similar monomers predicted to have higher yields, resulting in greater synthesis efficiency of relevant drug-like molecules.
Collapse
Affiliation(s)
- Priyanka Raghavan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Alexander J. Rago
- Advanced
Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Pritha Verma
- Advanced
Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Majdi M. Hassan
- RAIDERS
Group, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Gashaw M. Goshu
- Advanced
Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Amanda W. Dombrowski
- Advanced
Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Abhishek Pandey
- RAIDERS
Group, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Connor W. Coley
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Ying Wang
- Advanced
Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| |
Collapse
|
21
|
Gao Y, Ke Y, Wang T, Shi Y, Wang C, Ding S, Wang Y, Deng Y, Hu W, Geng Y. An n-Type Conjugated Polymer with Low Crystallinity for High-Performance Organic Thermoelectrics. Angew Chem Int Ed Engl 2024; 63:e202402642. [PMID: 38453641 DOI: 10.1002/anie.202402642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Conjugated polymers (CPs) with low crystallinity are promising candidates for application in organic thermoelectrics (OTEs), particularly in flexible devices, because the disordered structures of these CPs can effectively accommodate dopants and ensure robust resistance to bending. However, n-doped CPs usually exhibit poor thermoelectric performance, which hinders the development of high-performance thermoelectric generators. Herein, we report an n-type CP (ThDPP-CNBTz) comprising two acceptor units: a thiophene-flanked diketopyrrolopyrrole and a cyano-functionalized benzothiadiazole. ThDPP-CNBTz shows a low LUMO energy level of below -4.20 eV and features low crystallinity, enabling high doping efficiency. Moreover, the dual-acceptor design enhances polaron delocalization, resulting in good thermoelectric performance. After n-doping, ThDPP-CNBTz exhibits an average electrical conductivity (σ) of 50.6 S cm-1 and a maximum power factor (PF) of 126.8 μW m-1 K-2, which is among the highest values reported for solution-processed n-type CPs to date. Additionally, a solution-processed flexible OTE device based on doped ThDPP-CNBTz exhibits a maximum PF of 70 μW m-1 K-2; the flexible device also shows remarkable resistance to bending strain, with only a marginal change in σ after 600 bending cycles. The findings presented in this work will advance the development of n-type CPs for OTE devices, and flexible devices in particular.
Collapse
Affiliation(s)
- Yuexin Gao
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yunzhe Ke
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P.R. China
| | - Tianzuo Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yibo Shi
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Shuaishuai Ding
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P.R. China
| | - Yupu Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
22
|
Zhou Y, Wensink NH, Pécharman AF, Miloserdov FM. Synthesis and Reactivity of Ruthenium(BINAP)(PPh 3). Angew Chem Int Ed Engl 2024; 63:e202318684. [PMID: 38334325 DOI: 10.1002/anie.202318684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
Ru(BINAP)(PPh3)HCl cleanly reacts with LiCH2TMS to give Ru(BINAP)(PPh3) (1) that has been fully characterized, including by X-ray diffraction (BINAP and TMS stand for (2,2'-bis(diphenylphosphino)-1,1'-binaphthyl and trimethylsilyl respectively). In sharp contrast with other carbonyl-free phosphine complexes of Ru(0), 1 demonstrates a strikingly high thermal stability and no propensity for intramolecular C-H activation (cyclometalation). Yet 1 coordinates acetonitrile and readily exchanges its PPh3 ligand with alkenes and dienes, thus behaving like a "masked" 16-e Ru(0) species. Electron-poor alkenes coordinate more readily than electron-rich ones, which testifies for the nucleophilic character of the Ru(0)-BINAP fragment. While being thermally stable, 1 is highly reactive and is capable of activating C-H and N-H bonds, and even of cleaving an inert N-Et bond. The combination of high reactivity and stability originates from the P,arene-chelation by the BINAP ligand, i.e., the coordinated π-arene stabilizes Ru(0) to prevent cyclometalation, yet it can slide upon substrate coordination, thereby enabling a variety of inert bond activation reactions to occur under mild conditions.
Collapse
Affiliation(s)
- Yifei Zhou
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Niels H Wensink
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | | | - Fedor M Miloserdov
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| |
Collapse
|
23
|
Aguirre LS, Litwiller LT, Lugo AN, Thomas AA. Design and Synthesis of Dialkylarylphosphine Urea Ligands and their Application in Palladium-Catalyzed Cross-Coupling Reactions. Helv Chim Acta 2024; 107:e202300244. [PMID: 39717368 PMCID: PMC11666254 DOI: 10.1002/hlca.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/09/2024] [Indexed: 12/25/2024]
Abstract
We describe herein the design and synthesis of a new class of dialkylarylphosphine ligands incorporating a Lewis-basic urea subunit. The ligand synthesis consisted of six linear steps and was enabled by the discovery of a new N-to-N alkyl migration reaction. This new series of dialkylarylphosphine urea ligands were applied in common palladium-catalyzed cross-coupling reactions for the formation of carbon-carbon and carbon-nitrogen bonds in moderate to high yields.
Collapse
Affiliation(s)
- Lupita S Aguirre
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, TX 77842-30012, United States
| | - Levi T Litwiller
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, TX 77842-30012, United States
| | - Alexis N Lugo
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, TX 77842-30012, United States
| | - Andy A Thomas
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, TX 77842-30012, United States
| |
Collapse
|
24
|
King-Smith E, Berritt S, Bernier L, Hou X, Klug-McLeod JL, Mustakis J, Sach NW, Tucker JW, Yang Q, Howard RM, Lee AA. Probing the chemical 'reactome' with high-throughput experimentation data. Nat Chem 2024; 16:633-643. [PMID: 38168924 PMCID: PMC10997498 DOI: 10.1038/s41557-023-01393-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
High-throughput experimentation (HTE) has the potential to improve our understanding of organic chemistry by systematically interrogating reactivity across diverse chemical spaces. Notable bottlenecks include few publicly available large-scale datasets and the need for facile interpretation of these data's hidden chemical insights. Here we report the development of a high-throughput experimentation analyser, a robust and statistically rigorous framework, which is applicable to any HTE dataset regardless of size, scope or target reaction outcome, which yields interpretable correlations between starting material(s), reagents and outcomes. We improve the HTE data landscape with the disclosure of 39,000+ previously proprietary HTE reactions that cover a breadth of chemistry, including cross-coupling reactions and chiral salt resolutions. The high-throughput experimentation analyser was validated on cross-coupling and hydrogenation datasets, showcasing the elucidation of statistically significant hidden relationships between reaction components and outcomes, as well as highlighting areas of dataset bias and the specific reaction spaces that necessitate further investigation.
Collapse
Affiliation(s)
- Emma King-Smith
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | | | - Xinjun Hou
- Pfizer Research and Development, Cambridge, MA, USA
| | | | | | - Neal W Sach
- Pfizer Research and Development, La Jolla, CA, USA
| | | | - Qingyi Yang
- Pfizer Research and Development, Cambridge, MA, USA
| | | | - Alpha A Lee
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
25
|
Onnuch P, Ramagonolla K, Liu RY. Aminative Suzuki-Miyaura coupling. Science 2024; 383:1019-1024. [PMID: 38422125 DOI: 10.1126/science.adl5359] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/05/2024] [Indexed: 03/02/2024]
Abstract
The Suzuki-Miyaura and Buchwald-Hartwig coupling reactions are widely used to form carbon-carbon (C-C) and carbon-nitrogen (C-N) bonds, respectively. We report the incorporation of a formal nitrene insertion process into the Suzuki-Miyaura reaction, altering the products from C-C-linked biaryls to C-N-C-linked diaryl amines and thereby joining the Suzuki-Miyaura and Buchwald-Hartwig coupling pathways to the same starting-material classes. A combination of a bulky ancillary phosphine ligand on palladium and a commercially available amination reagent enables efficient reactivity across aryl halides and pseudohalides, boronic acids and esters, and many functional groups and heterocycles. Mechanistic insights reveal flexibility on the order of bond-forming events, suggesting potential for expansion of the aminative cross-coupling concept to encompass diverse nucleophiles and electrophiles as well as four-component variants.
Collapse
Affiliation(s)
- Polpum Onnuch
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Richard Y Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
26
|
Iyer K, Kavthe RD, Lammert RM, Yirak JR, Lipshutz BH. Ligated Pd-Catalyzed Aminations of Aryl/Heteroaryl Halides with Aliphatic Amines under Sustainable Aqueous Micellar Conditions. JACS AU 2024; 4:680-689. [PMID: 38425930 PMCID: PMC10900223 DOI: 10.1021/jacsau.3c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 03/02/2024]
Abstract
Sustainable technology for constructing Pd-catalyzed C-N bonds involving aliphatic amines is reported. A catalytic system that relies on low levels of recyclable precious metal, a known and commercially available ligand, and a recyclable aqueous medium are combined, leading to a newly developed procedure. This new technology can be used in ocean water with equal effectiveness. Applications involving highly challenging reaction partners constituting late-stage functionalization are documented, as is a short but efficient synthesis of the drug naftopidil. Comparisons with existing aminations highlight the many advances being offered.
Collapse
Affiliation(s)
| | | | - Robert M. Lammert
- Department of Chemistry and
Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Jordan R. Yirak
- Department of Chemistry and
Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Bruce H. Lipshutz
- Department of Chemistry and
Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
27
|
Eaton M, Zhang Y, Liu SY. Borataalkenes, boraalkenes, and the η 2-B,C coordination mode in coordination chemistry and catalysis. Chem Soc Rev 2024; 53:1915-1935. [PMID: 38190152 PMCID: PMC10922737 DOI: 10.1039/d3cs00730h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Borataalkenes and boraalkenes are the boron-containing isoelectronic analogues of alkenes and vinyl cations respectively. Compared with alkenes, the borataalkene and boraalkene ligand motifs in transition metal coordination chemistry are relatively underexplored. In this review, the synthesis of borataalkene and boraalkene complexes and other transition metal complexes featuring the η2-B,C coordination mode is described. The diversity of coordination modes and geometry in these complexes, and the spectroscopic and structural evidence supporting their assignments is disclosed as well as computational analysis of bonding. The applications of the borataalkene ligand motif in synthetic organic homogeneous catalysis, especially those involving geminal bis(pinacolatoboronates) and 1,4-azaborines, are discussed.
Collapse
Affiliation(s)
- Maxwell Eaton
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, 02467-3860, USA.
| | - Yuanzhe Zhang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, 02467-3860, USA.
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, 02467-3860, USA.
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 avenue P. Angot, 64053 Pau cedex 09, France
| |
Collapse
|
28
|
Iyer K, Kavthe R, Hu Y, Lipshutz BH. Nanoparticles as Heterogeneous Catalysts for ppm Pd-Catalyzed Aminations in Water. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:1997-2008. [PMID: 38333203 PMCID: PMC10848299 DOI: 10.1021/acssuschemeng.3c06527] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/10/2024]
Abstract
A general protocol employing heterogeneous catalysis has been developed that enables ppm of Pd-catalyzed C-N cross-coupling reactions under aqueous micellar catalysis. A new nanoparticle catalyst containing specifically ligated Pd, in combination with nanoreactors composed of the designer surfactant Savie, a biodegradable amphiphile, catalyzes C-N bond formations in recyclable water. A variety of coupling partners, ranging from highly functionalized pharmaceutically relevant APIs to educts from the Merck Informer Library, readily participate under these environmentally responsible, sustainable reaction conditions. Other key features associated with this report include the low levels of residual Pd found in the products, the recyclability of the aqueous reaction medium, the use of ocean water as an alternative source of reaction medium, options for the use of pseudohalides as alternative reaction partners, and associated low E factors. In addition, an unprecedented 5-step, one-pot sequence is presented, featuring several of the most widely used transformations in the pharmaceutical industry, suggesting potential industrial applications.
Collapse
Affiliation(s)
| | | | - Yuting Hu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Bruce H. Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
29
|
Parra-García S, Ballester-Ibáñez M, García-López JA. Pd-Catalyzed Formal [2 + 2]-Retrocyclization of Cyclobutanols via 2-Fold Csp 3-Csp 3 Bond Cleavage. J Org Chem 2024; 89:882-886. [PMID: 38175808 PMCID: PMC10804411 DOI: 10.1021/acs.joc.3c01750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/14/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
In this work, we describe the unexpected 2-fold Csp3-Csp3 bond cleavage suffered by cyclobutanols in the presence of a catalytic amount of Pd(OAc)2 and promoted by the bulky biaryl JohnPhos ligand. Overall, the sequential cleavage of a strained and an unstrained Csp3-Csp3 bond leads to the formal [2 + 2]-retrocyclization products, namely, styrene and acetophenone derivatives. This procedure might enable the use of cyclobutanols as masked acetyl groups, resisting harsh conditions in organic synthesis.
Collapse
Affiliation(s)
- Sergio Parra-García
- Grupo de Química Organometálica,
Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, E-30100 Murcia, Spain
| | - Marina Ballester-Ibáñez
- Grupo de Química Organometálica,
Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, E-30100 Murcia, Spain
| | - José-Antonio García-López
- Grupo de Química Organometálica,
Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, E-30100 Murcia, Spain
| |
Collapse
|
30
|
Townley C, Branduardi D, Chessari G, Cons BD, Griffiths-Jones C, Hall RJ, Johnson CN, Ochi Y, Whibley S, Grainger R. Enabling synthesis in fragment-based drug discovery (FBDD): microscale high-throughput optimisation of the medicinal chemist's toolbox reactions. RSC Med Chem 2023; 14:2699-2713. [PMID: 38107176 PMCID: PMC10718589 DOI: 10.1039/d3md00495c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 12/19/2023] Open
Abstract
Miniaturised high-throughput experimentation (HTE) is widely employed in industrial and academic laboratories for rapid reaction optimisation using material-limited, multifactorial reaction condition screening. In fragment-based drug discovery (FBDD), common toolbox reactions such as the Suzuki-Miyaura and Buchwald-Hartwig cross couplings can be hampered by the fragment's intrinsic heteroatom-rich pharmacophore which is required for ligand-protein binding. At Astex, we are using microscale HTE to speed up reaction optimisation and prevent target down-prioritisation. By identifying catalyst/base/solvent combinations which tolerate unprotected heteroatoms we can rapidly optimise key cross-couplings and expedite route design by avoiding superfluous protecting group manipulations. However, HTE requires extensive upfront training, and this modern automated synthesis technique largely differs to the way organic chemists are traditionally trained. To make HTE accessible to all our synthetic chemists we have developed a semi-automated workflow enabled by pre-made 96-well screening kits, rapid analytical methods and in-house software development, which is empowering chemists at Astex to run HTE screens independently with minimal training.
Collapse
Affiliation(s)
- Chloe Townley
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - Davide Branduardi
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - Gianni Chessari
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - Benjamin D Cons
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | | | - Richard J Hall
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | | | - Yuji Ochi
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - Stuart Whibley
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - Rachel Grainger
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| |
Collapse
|
31
|
Zielińska A, Trzaska P, Budny M, Bosiak MJ. Kumada-Tamao-Corriu Type Reaction of Aromatic Bromo- and Iodoamines with Grignard Reagents. J Org Chem 2023; 88:16167-16175. [PMID: 37983162 PMCID: PMC10696545 DOI: 10.1021/acs.joc.3c01553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
The first example of the Kumada-Tamao-Corriu type reaction of unprotected bromoanilines with Grignard reagents is described. The method uses a palladium source and a newly designed Buchwald-type ligand as the catalytic system. Secondary and tertiary bromo- and iodoamines were also successfully coupled to alkyl Grignard reagents. The products of the competitive β-hydride elimination reaction were successfully reduced using a highly efficient electron-deficient phosphine ligand (BPhos). Mechanistic considerations allowed us to establish that the less electron-rich phosphine ligands stabilize the transition state much better than the electron-rich ones; hence, they increase the reaction yield and reduce the amount of β-hydride elimination products. The developed method proved to be tolerant of many functional groups and can be applied to many different aromatic bromo- and iodoamines. Multigram synthesis of p-toluidine from 4-bromoaniline was achieved with a palladium catalyst loading of only 0.03 mol%.
Collapse
Affiliation(s)
- Alicja
A. Zielińska
- Doctoral
School of Exact and Natural Sciences “Academia Scientiarum
Thoruniensis”, Nicolaus Copernicus
University in Toruń, 5 Grudziądzka Street, Toruń 87-100, Poland
- Noctiluca
SA, 7/41B Gagarina Street, Toruń 87-100, Poland
| | - Piotr Trzaska
- Department
of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Street, Toruń 87-100, Poland
- Noctiluca
SA, 7/41B Gagarina Street, Toruń 87-100, Poland
| | - Marcin Budny
- Synthex
Technologies Sp. z o.o., 7/134B Gagarina Street, Toruń 87-100, Poland
| | - Mariusz J. Bosiak
- Department
of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Street, Toruń 87-100, Poland
| |
Collapse
|
32
|
Liu HW, He P, Li WT, Sun W, Shi K, Wang YQ, Mo QK, Zhang XY, Zhu SF. Catalyst-Oriented Design Based on Elementary Reactions (CODER) for Triarylamine Synthesis. Angew Chem Int Ed Engl 2023; 62:e202309111. [PMID: 37698233 DOI: 10.1002/anie.202309111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
Recently, the application of computational tools to the rational design of catalysts has received considerable attention, but progress has been limited by the reliance on databases and because mechanistic data have been almost neglected. Herein, we report a new strategy for catalyst design, designated catalyst-oriented design based on elementary reactions (CODER), which fully utilizes mechanistic data, combines the strengths of computational tools and researcher experience. CODER enabled the development of extremely efficient Pd catalysts for C-N coupling, which markedly improved the efficiency of the synthesis of widely used triarylamine optoelectronic materials by enhancing the turnover numbers (up to 340000) to 1-3 orders of magnitude towards literature values.
Collapse
Affiliation(s)
- Hua-Wei Liu
- Frontiers Science Center for New Organic Matters, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94th Weijin Road, Tianjin, 300071, China
| | - Peng He
- Frontiers Science Center for New Organic Matters, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94th Weijin Road, Tianjin, 300071, China
| | - Wen-Tao Li
- Frontiers Science Center for New Organic Matters, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94th Weijin Road, Tianjin, 300071, China
| | - Wei Sun
- Frontiers Science Center for New Organic Matters, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94th Weijin Road, Tianjin, 300071, China
| | - Kai Shi
- Frontiers Science Center for New Organic Matters, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94th Weijin Road, Tianjin, 300071, China
| | - You-Qin Wang
- Frontiers Science Center for New Organic Matters, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94th Weijin Road, Tianjin, 300071, China
| | - Qian-Kun Mo
- Frontiers Science Center for New Organic Matters, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94th Weijin Road, Tianjin, 300071, China
| | - Xin-Yu Zhang
- Frontiers Science Center for New Organic Matters, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94th Weijin Road, Tianjin, 300071, China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matters, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94th Weijin Road, Tianjin, 300071, China
| |
Collapse
|
33
|
Rinehart NI, Saunthwal RK, Wellauer J, Zahrt AF, Schlemper L, Shved AS, Bigler R, Fantasia S, Denmark SE. A machine-learning tool to predict substrate-adaptive conditions for Pd-catalyzed C-N couplings. Science 2023; 381:965-972. [PMID: 37651532 DOI: 10.1126/science.adg2114] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/01/2023] [Indexed: 09/02/2023]
Abstract
Machine-learning methods have great potential to accelerate the identification of reaction conditions for chemical transformations. A tool that gives substrate-adaptive conditions for palladium (Pd)-catalyzed carbon-nitrogen (C-N) couplings is presented. The design and construction of this tool required the generation of an experimental dataset that explores a diverse network of reactant pairings across a set of reaction conditions. A large scope of C-N couplings was actively learned by neural network models by using a systematic process to design experiments. The models showed good performance in experimental validation: Ten products were isolated in more than 85% yield from a range of couplings with out-of-sample reactants designed to challenge the models. Importantly, the developed workflow continually improves the prediction capability of the tool as the corpus of data grows.
Collapse
Affiliation(s)
- N Ian Rinehart
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rakesh K Saunthwal
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joël Wellauer
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry and Catalysis, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Andrew F Zahrt
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lukas Schlemper
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry and Catalysis, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Alexander S Shved
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Raphael Bigler
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry and Catalysis, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Serena Fantasia
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry and Catalysis, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Scott E Denmark
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
34
|
Liu H, Liu T, Qin Q, Li B, Li F, Zhang B, Sun W. The importance of and difficulties involved in creating molecular probes for a carbon monoxide gasotransmitter. Analyst 2023; 148:3952-3970. [PMID: 37522849 DOI: 10.1039/d3an00849e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
As one of the triumvirate of recognized gasotransmitter molecules, namely NO, H2S, and CO, the physiological effects of CO and its potential as a biomarker have been widely investigated, garnering particular attention due to its reported hypotensive, anti-inflammatory, and cytoprotective properties, making it a promising therapeutic agent. However, the development of CO molecular probes has remained relatively stagnant in comparison with the fluorescent probes for NO and H2S, owing to its inert molecular state under physiological conditions. In this review, starting from elucidating the definition and significance of CO as a gasotransmitter, the imperative for the advancement of CO probes, especially fluorescent probes, is expounded. Subsequently, the current state of development of CO probe methodologies is comprehensively reviewed, with an overview of the challenges and prospects in this burgeoning field of research.
Collapse
Affiliation(s)
- Huanying Liu
- School of Mechanical and Power Engineering, Dalian Ocean University, Dalian 116023, China
| | - Ting Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Qian Qin
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| | - Bingyu Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| | - Fasheng Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| | - Boyu Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
35
|
Kim ST, Strauss MJ, Cabré A, Buchwald SL. Room-Temperature Cu-Catalyzed Amination of Aryl Bromides Enabled by DFT-Guided Ligand Design. J Am Chem Soc 2023; 145:6966-6975. [PMID: 36926889 PMCID: PMC10415864 DOI: 10.1021/jacs.3c00500] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Ullmann-type C-N coupling reactions represent an important alternative to well-established Pd-catalyzed approaches due to the differing reactivity and the lower cost of Cu. While the design of anionic Cu ligands, particularly those by Ma, has enabled the coupling of various classes of aryl halides and alkyl amines, most methods require conditions that can limit their utility on complex substrates. Herein, we disclose the development of anionic N1,N2-diarylbenzene-1,2-diamine ligands that promote the Cu-catalyzed amination of aryl bromides under mild conditions. Guided by DFT calculations, these ligands were designed to (1) increase the electron density on Cu, thereby increasing the rate of oxidative addition of aryl bromides, and (2) stabilize the active anionic CuI complex via a π-interaction. Under optimized conditions, structurally diverse aryl and heteroaryl bromides and a broad range of alkyl amine nucleophiles, including pharmaceuticals bearing multiple functional groups, were efficiently coupled at room temperature. Combined computational and experimental studies support a mechanism of C-N bond formation that follows a catalytic cycle akin to the well-explored Pd-catalyzed variants. Modification of the ligand structure to include a naphthyl residue resulted in a lower energy barrier to oxidative addition, providing a 30-fold rate increase relative to what is seen with other ligands. Collectively, these results establish a new class of anionic ligands for Cu-catalyzed C-N couplings, which we anticipate may be extended to other Cu-catalyzed C-heteroatom and C-C bond-forming reactions.
Collapse
Affiliation(s)
- Seoung-Tae Kim
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Michael J Strauss
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Albert Cabré
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
36
|
Seo T, Kubota K, Ito H. Mechanochemistry-Directed Ligand Design: Development of a High-Performance Phosphine Ligand for Palladium-Catalyzed Mechanochemical Organoboron Cross-Coupling. J Am Chem Soc 2023; 145:6823-6837. [PMID: 36892233 DOI: 10.1021/jacs.2c13543] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Mechanochemical synthesis that uses transition-metal catalysts has attracted significant attention due to its numerous advantages, including low solvent waste, short reaction times, and the avoidance of problems associated with the low solubility of starting materials. However, even though the mechanochemical reaction environment is largely different from that of homogeneous solution systems, transition-metal catalysts, which were originally developed for use in solution, have been used directly in mechanochemical reactions without any molecular-level modifications to ensure their suitability for mechanochemistry. Alas, this has limited the development of more efficient mechanochemical cross-coupling processes. Here, we report a conceptually distinct approach, whereby a mechanochemistry-directed design is used to develop ligands for mechanochemical Suzuki-Miyaura cross-coupling reactions. The ligand development was guided by the experimental observation of catalyst deactivation via the aggregation of palladium species, a problem that is particularly prominent in solid-state reactions. By embedding the ligand into a poly(ethylene glycol) (PEG) polymer, we found that phosphine-ligated palladium(0) species could be immobilized in the fluid phase created by the PEG chains, preventing the physical mixing of the catalyst into the crystalline solid phase and thus undesired catalyst deactivation. This catalytic system showed high catalytic activity in reactions of polyaromatic substrates close to room temperature. These substrates usually require elevated temperatures to be reactive in the presence of catalyst systems with conventional ligands such as SPhos. The present study hence provides important insights for the design of high-performance catalysts for solid-state reactions and has the potential to inspire the development of industrially attractive, almost solvent-free mechanochemical cross-coupling technologies.
Collapse
Affiliation(s)
- Tamae Seo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
37
|
Rama RJ, Maya C, Molina F, Nova A, Nicasio MC. Important Role of NH-Carbazole in Aryl Amination Reactions Catalyzed by 2-Aminobiphenyl Palladacycles. ACS Catal 2023; 13:3934-3948. [PMID: 36970467 PMCID: PMC10029719 DOI: 10.1021/acscatal.3c00075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/25/2023] [Indexed: 03/09/2023]
Abstract
2-Aminobiphenyl palladacycles are among the most successful precatalysts for Pd-catalyzed cross-coupling reactions, including aryl amination. However, the role of NH-carbazole, a byproduct of precatalyst activation, remains poorly understood. Herein, the mechanism of the aryl amination reactions catalyzed by a cationic 2-aminobiphenyl palladacycle supported by a terphenyl phosphine ligand, PCyp2ArXyl2 (Cyp = cyclopentyl; ArXyl2 = 2,6-bis(2,6-dimethylphenyl)phenyl), P1, has been thoroughly investigated. Combining computational and experimental studies, we found that the Pd(II) oxidative addition intermediate reacts with NH-carbazole in the presence of the base (NaO t Bu) to yield a stable aryl carbazolyl Pd(II) complex. This species functions as the catalyst resting state, providing the amount of monoligated LPd(0) species required for catalysis and minimizing Pd decomposition. In the case of a reaction with aniline, an equilibrium between the carbazolyl complex and the on-cycle anilido analogue is established, which allows for a fast reaction at room temperature. In contrast, heating is required in a reaction with alkylamines, whose deprotonation involves coordination to the Pd center. A microkinetic model was built combining computational and experimental data to validate the mechanistic proposals. In conclusion, our study shows that despite the rate reduction observed in some reactions by the formation of the aryl carbazolyl Pd(II) complex, this species reduces catalyst decomposition and could be considered an alternative precatalyst in cross-coupling reactions.
Collapse
Affiliation(s)
- Raquel J. Rama
- Departamento de Química Inorgánica, Universidad de Sevilla, Aptdo 1203, 41071 Sevilla, Spain
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences and Centre for Materials Science and Nanotechnology, University of Oslo, N-0315 Oslo, Norway
| | - Celia Maya
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Francisco Molina
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21071 Huelva, Spain
| | - Ainara Nova
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences and Centre for Materials Science and Nanotechnology, University of Oslo, N-0315 Oslo, Norway
| | - M. Carmen Nicasio
- Departamento de Química Inorgánica, Universidad de Sevilla, Aptdo 1203, 41071 Sevilla, Spain
| |
Collapse
|
38
|
Kubota K, Seo T, Ito H. Solid-state cross-coupling reactions of insoluble aryl halides under polymer-assisted grinding conditions. Faraday Discuss 2023; 241:104-113. [PMID: 36254741 DOI: 10.1039/d2fd00121g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, polymer-assisted grinding (POLAG), a ball-milling technique based on the use of polymer additives, was applied to mechanochemical solid-state Suzuki-Miyaura cross-coupling reactions of insoluble aryl halides. We found that the efficiency of this challenging solid-state cross-coupling was improved by the addition of polytetrafluoroethylene (PTFE) as a POLAG additive under high-temperature ball-milling conditions. Our results suggest that POLAG is a promising approach for controlling the reactivity of insoluble substrates that are barely reactive under conventional solution-based conditions.
Collapse
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan. .,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tamae Seo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan. .,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
39
|
Pierce JK, Hiatt LD, Howard JR, Hu H, Qu F, Shaughnessy KH. Amines as Activating Ligands for Phosphine Palladium(II) Precatalysts: Effect of Amine Ligand Identity on the Catalyst Efficiency. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jordan K. Pierce
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Lindsey D. Hiatt
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - James R. Howard
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Huaiyuan Hu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Fengrui Qu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Kevin H. Shaughnessy
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
40
|
Firsan S, Sivakumar V, Colacot TJ. Emerging Trends in Cross-Coupling: Twelve-Electron-Based L 1Pd(0) Catalysts, Their Mechanism of Action, and Selected Applications. Chem Rev 2022; 122:16983-17027. [PMID: 36190916 PMCID: PMC9756297 DOI: 10.1021/acs.chemrev.2c00204] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Indexed: 01/25/2023]
Abstract
Monoligated palladium(0) species, L1Pd(0), have emerged as the most active catalytic species in the cross-coupling cycle. Today, there are methods available to generate the highly active but unstable L1Pd(0) catalysts from stable precatalysts. While the size of the ligand plays an important role in the formation of L1Pd(0) during in situ catalysis, the latter can be precisely generated from the precatalyst by various technologies. Computational, kinetic, and experimental studies indicate that all three steps in the catalytic cycle─oxidative addition, transmetalation, and reductive elimination─contain monoligated Pd. The synthesis of precatalysts, their mode of activation, application studies in model systems, as well as in industry are discussed. Ligand parametrization and AI based data science can potentially help predict the facile formation of L1Pd(0) species.
Collapse
Affiliation(s)
- Sharbil
J. Firsan
- Science
and Lab Solutions−Chemistry, MilliporeSigma, 6000 North Teutonia Avenue, Milwaukee, Wisconsin53209, United States
| | - Vilvanathan Sivakumar
- Merck
Life Science Pvt Ltd, No-12, Bommasandra-Jigani Link Road, Industrial Area, Bangalore560100, India
| | - Thomas J. Colacot
- Science
and Lab Solutions−Chemistry, MilliporeSigma, 6000 North Teutonia Avenue, Milwaukee, Wisconsin53209, United States
| |
Collapse
|
41
|
Rago AJ, Vasilopoulos A, Dombrowski AW, Wang Y. Di(2-picolyl)amines as Modular and Robust Ligands for Nickel-Catalyzed C(sp 2)–C(sp 3) Cross-Electrophile Coupling. Org Lett 2022; 24:8487-8492. [DOI: 10.1021/acs.orglett.2c03346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Alexander J. Rago
- Advanced Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Aristidis Vasilopoulos
- Advanced Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Amanda W. Dombrowski
- Advanced Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ying Wang
- Advanced Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
42
|
Yu H, Wang ZX. Rhodium(I)-Catalyzed P(III)-Directed Aromatic C–H Acylation with Amides. J Org Chem 2022; 87:14384-14393. [DOI: 10.1021/acs.joc.2c01826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hang Yu
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
43
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
44
|
Jeddi N, Scott NWJ, Fairlamb IJS. Well-Defined Pd n Clusters for Cross-Coupling and Hydrogenation Catalysis: New Opportunities for Catalyst Design. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Neda Jeddi
- Department of Chemistry, University of York, Heslington, York, North Yorkshire, U.K. YO10 5DD
| | - Neil W. J. Scott
- Department of Chemistry, University of York, Heslington, York, North Yorkshire, U.K. YO10 5DD
| | - Ian J. S. Fairlamb
- Department of Chemistry, University of York, Heslington, York, North Yorkshire, U.K. YO10 5DD
| |
Collapse
|
45
|
Dimakos V, Canterbury DP, Monfette S, Roosen PC, Newman SG. A Morita–Baylis–Hillman Inspired Cross-Coupling Strategy for the Direct α-Arylation of Cyclic Enones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Victoria Dimakos
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Daniel P. Canterbury
- Pfizer Medicine Design, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Philipp C. Roosen
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Stephen G. Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
46
|
Jakobi M, Zilate B, Sparr C. Synthesis of Diarylaminoacridinium Photocatalysts by Halogen‐Metal Exchange Combined with Directed <i>ortho</i> Metalations. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Kohzadi H, Soleiman‐Beigi M. Immobilization of PdCl
2
on a Natural Asphalt Sulfonic Acid Network for C−N and C−O bonds Formation. ChemistrySelect 2022. [DOI: 10.1002/slct.202200799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Homa Kohzadi
- Department of Chemistry, Faculty of Basic Sciences Ilam University P.O. Box 69315–516 Ilam Iran
| | - Mohammad Soleiman‐Beigi
- Department of Chemistry, Faculty of Basic Sciences Ilam University P.O. Box 69315–516 Ilam Iran
| |
Collapse
|
48
|
Bortolamiol E, Fama F, Zhang Z, Demitri N, Cavallo L, Caligiuri I, Rizzolio F, Scattolin T, Visentin F. Cationic palladium(II)-indenyl complexes bearing phosphines as ancillary ligands: synthesis, and study of indenyl amination and anticancer activity. Dalton Trans 2022; 51:11135-11151. [PMID: 35801510 DOI: 10.1039/d2dt01821g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity of palladium(II) indenyl derivatives and their applications are topics relatively less studied, though in recent times these compounds have been used as pre-catalysts able to promote challenging cross-coupling processes. Herein, we propose the first systematic study concerning the nucleophilic attack on the palladium(II) coordinated indenyl fragment and, for this purpose, we have prepared a library of new Pd-indenyl complexes bearing mono- or bidentate phosphines as spectator ligands, developing specific synthetic strategies. All novel compounds are thoroughly characterized, highlighting that the indenyl ligand presents always a hapticity intermediate between η3 and η5. Secondary amines have been chosen as nucleophiles for the present study and indenyl amination has been monitored by UV-Vis and NMR spectroscopies, deriving a second order rate law, with dependence on both complex and amine concentrations. The rate-determining step of the process is the initial attack of the amine to the coordinated indenyl fragment, and this conclusion has been supported also by DFT calculations. The determination of second order rate constants has allowed us to assess the impact of the phosphine ligands on the kinetics of the process and identify the steric and electronic descriptors most suitable for predicting the reactivity of these systems. Finally, in vitro tests have proven that these organometallic compounds promote antiproliferative activity towards ovarian cancer cells better than cisplatin and possibly by adopting a different mechanism of action.
Collapse
Affiliation(s)
- Enrica Bortolamiol
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| | - Francesco Fama
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| | - Ziyun Zhang
- Department KAUST Catalysis Centre, KCC, King Abdullah University of Science and Technology, Thuwal-23955-6900, Saudi Arabia
| | - Nicola Demitri
- Elettra - Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Luigi Cavallo
- Department KAUST Catalysis Centre, KCC, King Abdullah University of Science and Technology, Thuwal-23955-6900, Saudi Arabia
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy.
| | - Flavio Rizzolio
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy. .,Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy.
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Fabiano Visentin
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| |
Collapse
|
49
|
Dhital R, Sen A, Hu H, Ishii R, Sato T, Yashiroda Y, Kimura H, Boone C, Yoshida M, Futamura Y, Hirano H, Osada H, Hashizume D, Uozumi Y, Yamada YM. Phenylboronic Ester-Activated Aryl Iodide-Selective Buchwald-Hartwig-Type Amination toward Bioactivity Assay. ACS OMEGA 2022; 7:24184-24189. [PMID: 35874269 PMCID: PMC9301730 DOI: 10.1021/acsomega.2c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, a phenylboronic ester-activated aryl iodide-selective Buchwald-Hartwig-type amination was developed. When the reaction of aryl iodides and aryl/aliphatic amines using Ni(acac)2 is carried out in the presence of phenylboronic ester, the Buchwald-Hartwig-type amination proceeds smoothly to afford the corresponding amines in high yields. This reaction does not proceed in the absence of phenylboronic ester. A wide variety of aryl iodides can be applied in the presence of aryl chlorides and bromides, which remain intact during the reaction. The mechanistic studies of this reaction suggest that the phenylboronic ester acts as an activator for the amines to form the ″ate complex″. Chemical kinetics studies show that the reaction of aryl iodides, base, and Ni(acac)2 follows first-order kinetics, while that of amines and phenylboronic ester follows zero-order kinetics. The bioactivity screening of the corresponding products showed that some amination products exhibit antifungal activity.
Collapse
Affiliation(s)
- Raghu
N. Dhital
- Green
Nanocatalysis Research Team, RIKEN Center
for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Abhijit Sen
- Green
Nanocatalysis Research Team, RIKEN Center
for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hao Hu
- Green
Nanocatalysis Research Team, RIKEN Center
for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Rikako Ishii
- Green
Nanocatalysis Research Team, RIKEN Center
for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takuma Sato
- Green
Nanocatalysis Research Team, RIKEN Center
for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yoko Yashiroda
- Molecular
Ligand Target Research Team, RIKEN Center
for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Chemical
Genomics Research Group, RIKEN Center for
Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hiromi Kimura
- Molecular
Ligand Target Research Team, RIKEN Center
for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Charles Boone
- Molecular
Ligand Target Research Team, RIKEN Center
for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Donnelly
Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Minoru Yoshida
- Chemical
Genomics Research Group, RIKEN Center for
Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yushi Futamura
- Chemical
Biology Research Group, RIKEN Center for
Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Hirano
- Chemical
Resource Development Research Unit, RIKEN
Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical
Biology Research Group, RIKEN Center for
Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Chemical
Resource Development Research Unit, RIKEN
Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN
Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | - Yasuhiro Uozumi
- Green
Nanocatalysis Research Team, RIKEN Center
for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Institute
for Molecular Science and Graduate School for Advanced Studies, Okazaki, Aichi 444-8787, Japan
| | - Yoichi M.A. Yamada
- Green
Nanocatalysis Research Team, RIKEN Center
for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
50
|
Shim E, Kammeraad JA, Xu Z, Tewari A, Cernak T, Zimmerman PM. Predicting reaction conditions from limited data through active transfer learning. Chem Sci 2022; 13:6655-6668. [PMID: 35756521 PMCID: PMC9172577 DOI: 10.1039/d1sc06932b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/10/2022] [Indexed: 12/30/2022] Open
Abstract
Transfer and active learning have the potential to accelerate the development of new chemical reactions, using prior data and new experiments to inform models that adapt to the target area of interest. This article shows how specifically tuned machine learning models, based on random forest classifiers, can expand the applicability of Pd-catalyzed cross-coupling reactions to types of nucleophiles unknown to the model. First, model transfer is shown to be effective when reaction mechanisms and substrates are closely related, even when models are trained on relatively small numbers of data points. Then, a model simplification scheme is tested and found to provide comparative predictivity on reactions of new nucleophiles that include unseen reagent combinations. Lastly, for a challenging target where model transfer only provides a modest benefit over random selection, an active transfer learning strategy is introduced to improve model predictions. Simple models, composed of a small number of decision trees with limited depths, are crucial for securing generalizability, interpretability, and performance of active transfer learning.
Collapse
Affiliation(s)
- Eunjae Shim
- Department of Chemistry, University of Michigan Ann Arbor MI USA
| | - Joshua A Kammeraad
- Department of Chemistry, University of Michigan Ann Arbor MI USA
- Department of Statistics, University of Michigan Ann Arbor MI USA
| | - Ziping Xu
- Department of Statistics, University of Michigan Ann Arbor MI USA
| | - Ambuj Tewari
- Department of Statistics, University of Michigan Ann Arbor MI USA
- Department of Electrical Engineering and Computer Science, University of Michigan Ann Arbor MI USA
| | - Tim Cernak
- Department of Chemistry, University of Michigan Ann Arbor MI USA
- Department of Medicinal Chemistry, University of Michigan Ann Arbor MI USA
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan Ann Arbor MI USA
| |
Collapse
|