1
|
Partipilo M, Whittaker JJ, Pontillo N, Coenradij J, Herrmann A, Guskov A, Slotboom DJ. Biochemical and structural insight into the chemical resistance and cofactor specificity of the formate dehydrogenase from Starkeya novella. FEBS J 2023; 290:4238-4255. [PMID: 37213112 DOI: 10.1111/febs.16871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023]
Abstract
Formate dehydrogenases (Fdhs) mediate the oxidation of formate to carbon dioxide and concomitant reduction of nicotinamide adenine dinucleotide (NAD+ ). The low cost of the substrate formate and importance of the product NADH as a cellular source of reducing power make this reaction attractive for biotechnological applications. However, the majority of Fdhs are sensitive to inactivation by thiol-modifying reagents. In this study, we report a chemically resistant Fdh (FdhSNO ) from the soil bacterium Starkeya novella strictly specific for NAD+ . We present its recombinant overproduction, purification and biochemical characterization. The mechanistic basis of chemical resistance was found to be a valine in position 255 (rather than a cysteine as in other Fdhs) preventing the inactivation by thiol-modifying compounds. To further improve the usefulness of FdhSNO as for generating reducing power, we rationally engineered the protein to reduce the coenzyme nicotinamide adenine dinucleotide phosphate (NADP+ ) with better catalytic efficiency than NAD+ . The single mutation D221Q enabled the reduction of NADP+ with a catalytic efficiency kCAT /KM of 0.4 s-1 ·mm-1 at 200 mm formate, while a quadruple mutant (A198G/D221Q/H379K/S380V) resulted in a fivefold increase in catalytic efficiency for NADP+ compared with the single mutant. We determined the cofactor-bound structure of the quadruple mutant to gain mechanistic evidence behind the improved specificity for NADP+ . Our efforts to unravel the key residues for the chemical resistance and cofactor specificity of FdhSNO may lead to wider use of this enzymatic group in a more sustainable (bio)manufacture of value-added chemicals, as for instance the biosynthesis of chiral compounds.
Collapse
Affiliation(s)
- Michele Partipilo
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| | - Jacob J Whittaker
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| | - Nicola Pontillo
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
- Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, Groningen, The Netherlands
| | - Jelmer Coenradij
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| | - Andreas Herrmann
- Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, Groningen, The Netherlands
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Germany
| | - Albert Guskov
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| | - Dirk Jan Slotboom
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| |
Collapse
|
2
|
Ye WJ, Xie JW, Liu Y, Wang YL, Zhang YX, Yang XY, Yang L, Wang HL, Wei DZ. Enhancing the Activity of an Alcohol Dehydrogenase by Using "Aromatic Residue Scanning" at Potential Plasticity Sites. Chemistry 2023; 29:e202203530. [PMID: 36790363 DOI: 10.1002/chem.202203530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
An alcohol dehydrogenase LkADH was successfully engineered to exhibit improved activity and substrate tolerance for the production of (S)-2-chloro-1-(3,4-difluorophenyl)ethanol, an important precursor of ticagrelor. Five potential hotspots were identified for enzyme mutagenesis by using natural residue abundance as an indicator to evaluate their potential plasticity. A semi-rational strategy named "aromatic residue scanning" was applied to randomly mutate these five sites simultaneously by using tyrosine, tryptophan, and phenylalanine as "exploratory residues" to introduce steric hindrance or potential π-π interactions. The best variant Lk-S96Y/L199W identified with 17.2-fold improvement in catalytic efficiency could completely reduce up to 600 g/L (3.1 M) 2-chloro-1-(3,4-difluorophenyl)ethenone in 12 h with >99.5 % ee, giving the highest space-time yield ever reported. This study, therefore, offers a strategy for mutating alcohol dehydrogenase to reduce aromatic substrates and provides an efficient variant for the efficient synthesis of (S)-2-chloro-1-(3,4-difluorophenyl)ethanol.
Collapse
Affiliation(s)
- Wen-Jie Ye
- State Key Laboratory of, Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Jing-Wen Xie
- State Key Laboratory of, Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yan Liu
- State Key Laboratory of, Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yi-Lin Wang
- Georgetown Preparatory School, North Bethesda, Maryland, 20852, USA
| | - Yu-Xin Zhang
- State Key Laboratory of, Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Xiao-Ying Yang
- State Key Laboratory of, Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Lin Yang
- State Key Laboratory of, Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Hua-Lei Wang
- State Key Laboratory of, Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Dong-Zhi Wei
- State Key Laboratory of, Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
3
|
Hou X, Xu H, Yuan Z, Deng Z, Fu K, Gao Y, Liu C, Zhang Y, Rao Y. Structural analysis of an anthrol reductase inspires enantioselective synthesis of enantiopure hydroxycycloketones and β-halohydrins. Nat Commun 2023; 14:353. [PMID: 36681664 PMCID: PMC9867772 DOI: 10.1038/s41467-023-36064-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
Asymmetric reduction of prochiral ketones, particularly, reductive desymmetrization of 2,2-disubstituted prochiral 1,3-cyclodiketones to produce enantiopure chiral alcohols is challenging. Herein, an anthrol reductase CbAR with the ability to accommodate diverse bulky substrates, like emodin, for asymmetric reduction is identified. We firstly solve crystal structures of CbAR and CbAR-Emodin complex. It reveals that Tyr210 is critical for emodin recognition and binding, as it forms a hydrogen-bond interaction with His162 and π-π stacking interactions with emodin. This ensures the correct orientation for the stereoselectivity. Then, through structure-guided engineering, variant CbAR-H162F can convert various 2,2-disubstituted 1,3-cyclodiketones and α-haloacetophenones to optically pure (2S, 3S)-ketols and (R)-β-halohydrins, respectively. More importantly, their stereoselectivity mechanisms are also well explained by the respective crystal structures of CbAR-H162F-substrate complex. Therefore, this study demonstrates that an in-depth understanding of catalytic mechanism is valuable for exploiting the promiscuity of anthrol reductases to prepare diverse enantiopure chiral alcohols.
Collapse
Affiliation(s)
- Xiaodong Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Huibin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Kai Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yue Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Changmei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China.
| |
Collapse
|
4
|
Chen Q, Sun H, Li L, Tian J, Xu Q, Ma N, Li L, Zhang L, Li C. The Ir-Catalyzed Asymmetric Hydrogenation of α-Halogenated Ketones Utilizing Cinchona-Alkaloid-Derived NNP Ligand to Produce ( R)- and ( S)-Halohydrins. J Org Chem 2022; 87:15986-15997. [PMID: 36397210 DOI: 10.1021/acs.joc.2c02109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The asymmetric hydrogenation of α-halogenated ketones with iridium catalyst was developed, utilizing easily accessed cinchona-alkaloid-based NNP ligands. Various α-chloroacetophenones, heterocyclic thienyl and furanyl substrates, and even bromoketones were completely converted to the desired chiral halohydrins by this protocol. Both (R)- and (S)-chiral halohydrins can be prepared by changing the configurations of the chiral ligand NNP with up to 99.6% ee (enantiomeric excess) and 98.8% ee, respectively. Also, a gram-scale experiment was carried out efficiently.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Hao Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Linlin Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Jie Tian
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Qian Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Nana Ma
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Li Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Lin Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| | - Chun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, People's Republic of China
| |
Collapse
|
5
|
Ibn Majdoub Hassani FZ, Amzazi S, Kreit J, Lavandera I. Deep Eutectic Solvents as Media in Alcohol Dehydrogenase‐Catalyzed Reductions of Halogenated Ketones. ChemCatChem 2019. [DOI: 10.1002/cctc.201901582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Fatima Zohra Ibn Majdoub Hassani
- Biochemistry and Immunology LaboratoryFaculty of SciencesMohammed V University BP 1014 Avenue Ibn Batouta Agdal Rabat 10090 Morocco
- Organic and Inorganic Chemistry DepartmentUniversity of Oviedo Avenida Julián Clavería 8 Oviedo 33006 Spain
| | - Saaid Amzazi
- Biochemistry and Immunology LaboratoryFaculty of SciencesMohammed V University BP 1014 Avenue Ibn Batouta Agdal Rabat 10090 Morocco
| | - Joseph Kreit
- Biochemistry and Immunology LaboratoryFaculty of SciencesMohammed V University BP 1014 Avenue Ibn Batouta Agdal Rabat 10090 Morocco
| | - Iván Lavandera
- Organic and Inorganic Chemistry DepartmentUniversity of Oviedo Avenida Julián Clavería 8 Oviedo 33006 Spain
| |
Collapse
|
6
|
Vyas V, Srivastava P, Bhatt P, Shende V, Ghosh P, Bhanage BM. Highly Enantioselective One-Pot Synthesis of Chiral β-Heterosubstituted Alcohols via Ruthenium-Prolinamide-Catalyzed Asymmetric Transfer Hydrogenation. ACS OMEGA 2018; 3:12737-12745. [PMID: 31458000 PMCID: PMC6644779 DOI: 10.1021/acsomega.8b01316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/26/2018] [Indexed: 06/10/2023]
Abstract
The utility of a chiral Ru-prolinamide catalytic system has been demonstrated in one-pot synthesis of optically active β-triazolylethanol and β-hydroxy sulfone derivatives. The said methodology proceeds through asymmetric transfer hydrogenation of in situ formed ketones of the corresponding chiral products. Various chiral prolinamide ligands were screened, and ligand L6 with isopropyl groups substituted at the ortho position has shown excellent activity at 60 °C in aqueous medium producing up to 95% yield and 99.9% enantioselectivity.
Collapse
|
7
|
Wan N, Tian J, Wang H, Tian M, He Q, Ma R, Cui B, Han W, Chen Y. Identification and characterization of a highly S-enantioselective halohydrin dehalogenase from Tsukamurella sp. 1534 for kinetic resolution of halohydrins. Bioorg Chem 2018; 81:529-535. [PMID: 30245234 DOI: 10.1016/j.bioorg.2018.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 02/05/2023]
Abstract
Halohydrin dehalogenases are remarkable enzymes which possess promiscuous catalytic activity and serve as potential biocatalysts for the synthesis of chiral halohydrins, epoxides and β-substituted alcohols. The enzyme HheC exhibits a highly R enantioselectivity in the processes of dehalogenation of vicinal halohydrins and ring-opening of epoxides, which attracts more attentions in organic synthesis. Recently dozens of novel potential halohydrin dehalogenases have been identified by gene mining, however, most of the characterized enzymes showed low stereoselectivity. In this study, a novel halohydrin dehalogenase of HheA10 from Tsukamurella sp. 1534 has been heterologously expressed, purified and characterized. Substrate spectrum and kinetic resolution studies indicated the HheA10 was a highly S enantioselective enzyme toward several halohydrins, which produced the corresponding epoxides with the ee (enantiomeric excess) and E values up to >99% and >200 respectively. Our results revealed the HheA10 was a promising biocatalyst for the synthesis of enantiopure aromatic halohydrins and epoxides via enzymatic kinetic resolution of racemic halohydrins. What's more important, the HheA10 as the first individual halohydrin dehalogenase with the highly S enantioselectivity provides a complementary enantioselectivity to the HheC.
Collapse
Affiliation(s)
- Nanwei Wan
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Jiawei Tian
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Huihui Wang
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Meiting Tian
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Qing He
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Ran Ma
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Baodong Cui
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Wenyong Han
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yongzheng Chen
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
8
|
Immobilized and Free Cells of Geotrichum candidum for Asymmetric Reduction of Ketones: Stability and Recyclability. Molecules 2018; 23:molecules23092144. [PMID: 30150533 PMCID: PMC6225435 DOI: 10.3390/molecules23092144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 01/22/2023] Open
Abstract
Marine-derived fungus Geotrichum candidum AS 2.361 was previously reported by our group as an active strain for the enantioselective reduction of ketones. Although some other Geotrichum strains were also found from the terrestrial sources, information on their stability and reusability is scarce. Herein, the stabilities—in terms of pH tolerance, thermostability, and storage stability, and reusability—of G. candidum AS 2.361 were described for the asymmetric reduction of a series of aromatic ketones. Two differently immobilized cells (agar immobilization and calcium alginate immobilization) as well as free cells were prepared. For three substrates (1-(3-bromophenyl) ethan-1-one (1b), 1-(2-chlorophenyl) ethan-1-one (1d), and acetophenone (1g)) immobilized cells on agar showed a great improvement in the bioreduction activities compared to the free cells, increasing yields up to 97% with ee values of 99%. Cells immobilized on agar/calcium alginate could maintain more than 90% of the original activities within the assayed pH ranges of 3.5–11, while free cells were highly sensitive to alkaline and acidic conditions. Concerning thermostability, immobilized cells on agar kept 99% of their original activities after incubation at 60 °C for 1 h, while almost no activity was detected for the free cells under the same condition. Immobilized cells were stable at 4 °C for 80 days without any activity loss, while free cells started to decrease the activity after storage at 4 °C for six days. The immobilized cells retained almost 99% activity after four reuse cycles, while free cells lost almost all the activities at on the third cycle.
Collapse
|
9
|
Liu H, Chen BS, de Souza FZR, Liu L. A Comparative Study on Asymmetric Reduction of Ketones Using the Growing and Resting Cells of Marine-Derived Fungi. Mar Drugs 2018; 16:E62. [PMID: 29443943 PMCID: PMC5852490 DOI: 10.3390/md16020062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 01/14/2023] Open
Abstract
Whole-cell biocatalysts offer a highly enantioselective, minimally polluting route to optically active alcohols. Currently, most of the whole-cell catalytic performance involves resting cells rather than growing cell biotransformation, which is one-step process that benefits from the simultaneous growth and biotransformation, eliminating the need for catalysts preparation. In this paper, asymmetric reduction of 14 aromatic ketones to the corresponding enantiomerically pure alcohols was successfully conducted using the growing and resting cells of marine-derived fungi under optimized conditions. Good yields and excellent enantioselectivities were achieved with both methods. Although substrate inhibition might be a limiting factor for growing cell biotransformation, the selected strain can still completely convert 10-mM substrates into the desired products. The resting cell biotransformation showed a capacity to be recycled nine times without a significant decrease in the activity. This is the first study to perform asymmetric reduction of ketones by one-step growing cell biotransformation.
Collapse
Affiliation(s)
- Hui Liu
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Bi-Shuang Chen
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China.
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510275, China.
| | | | - Lan Liu
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China.
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
10
|
De Angelis S, De Renzo M, Carlucci C, Degennaro L, Luisi R. A convenient enantioselective CBS-reduction of arylketones in flow-microreactor systems. Org Biomol Chem 2018; 14:4304-11. [PMID: 27086654 DOI: 10.1039/c6ob00336b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient, versatile, and green CBS-asymmetric reduction of aryl and heteroaryl ketones has been developed by using the microreactor technology. The study demonstrates that it is possible to handle borane solution safely within microreactors and that the reaction performs well using 2-MeTHF as a greener solvent.
Collapse
Affiliation(s)
- Sonia De Angelis
- Department of Pharmacy - Drug Sciences, University of Bari "A. Moro"; FLAME-Lab - Flow Chemistry and Microreactor Technology Laboratory, Via E. Orabona 4, I-70125, Italy.
| | - Maddalena De Renzo
- Department of Pharmacy - Drug Sciences, University of Bari "A. Moro"; FLAME-Lab - Flow Chemistry and Microreactor Technology Laboratory, Via E. Orabona 4, I-70125, Italy.
| | - Claudia Carlucci
- Department of Pharmacy - Drug Sciences, University of Bari "A. Moro"; FLAME-Lab - Flow Chemistry and Microreactor Technology Laboratory, Via E. Orabona 4, I-70125, Italy.
| | - Leonardo Degennaro
- Department of Pharmacy - Drug Sciences, University of Bari "A. Moro"; FLAME-Lab - Flow Chemistry and Microreactor Technology Laboratory, Via E. Orabona 4, I-70125, Italy.
| | - Renzo Luisi
- Department of Pharmacy - Drug Sciences, University of Bari "A. Moro"; FLAME-Lab - Flow Chemistry and Microreactor Technology Laboratory, Via E. Orabona 4, I-70125, Italy.
| |
Collapse
|
11
|
Is literature data useful for identifying enzyme catalysts for new substrates? A case study on reduction of 1-aryl-2-alkanoates. Bioorg Chem 2017; 74:260-271. [DOI: 10.1016/j.bioorg.2017.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 01/04/2023]
|
12
|
Preparation of enantiomerically enriched aromatic β-hydroxynitriles and halohydrins by ketone reduction with recombinant ketoreductase KRED1-Pglu. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.05.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Synthesis of enantiopure epoxide by ‘one pot’ chemoenzymatic approach using a highly enantioselective dehydrogenase. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.01.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Soni R, Hall TH, Mitchell BP, Owen MR, Wills M. Asymmetric Reduction of Electron-Rich Ketones with Tethered Ru(II)/TsDPEN Catalysts Using Formic Acid/Triethylamine or Aqueous Sodium Formate. J Org Chem 2015; 80:6784-93. [DOI: 10.1021/acs.joc.5b00990] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rina Soni
- Department
of Chemistry, The University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Thomas H. Hall
- Department
of Chemistry, The University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Benjamin P. Mitchell
- Department
of Chemistry, The University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Matthew R. Owen
- Department
of Chemistry, The University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Martin Wills
- Department
of Chemistry, The University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
15
|
Kaur K, Singh Chimni S, Singh Saini H, Singh Chadha B. Pseudomonas gessardii growing cells as a new biocatalyst for asymmetric synthesis of α-bromohydrins. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2014.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Xu GC, Shang YP, Yu HL, Xu JH. Identification of key residues in Debaryomyces hansenii carbonyl reductase for highly productive preparation of (S)-aryl halohydrins. Chem Commun (Camb) 2015; 51:15728-31. [DOI: 10.1039/c5cc06796k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Key residues were identified through combinatorial mutation of conserved residues with notably improved productivity in asymmetric reduction of α-chloroacetophenone.
Collapse
Affiliation(s)
- Guo-Chao Xu
- State Key Laboratory of Bioreactor Engineering, and Shanghai Collaborative Innovation Center
- East China University of Science and Technology, for Biomanufacturing
- Shanghai 200237
- People's Republic of China
- The Key Laboratory of Industrial Biotechnology
| | - Yue-Peng Shang
- State Key Laboratory of Bioreactor Engineering, and Shanghai Collaborative Innovation Center
- East China University of Science and Technology, for Biomanufacturing
- Shanghai 200237
- People's Republic of China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, and Shanghai Collaborative Innovation Center
- East China University of Science and Technology, for Biomanufacturing
- Shanghai 200237
- People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, and Shanghai Collaborative Innovation Center
- East China University of Science and Technology, for Biomanufacturing
- Shanghai 200237
- People's Republic of China
| |
Collapse
|
17
|
Xu GC, Yu HL, Shang YP, Xu JH. Enantioselective bioreductive preparation of chiral halohydrins employing two newly identified stereocomplementary reductases. RSC Adv 2015. [DOI: 10.1039/c4ra16779a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two robust stereocomplementary carbonyl reductases (DhCR andCgCR) for preparation of hylohydrins were identified through rescreening the carbonyl reductase toolbox.
Collapse
Affiliation(s)
- Guo-Chao Xu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- and Shanghai Collaborative Innovation Center for Biomanufacturing Technology
- Shanghai 200237
- China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- and Shanghai Collaborative Innovation Center for Biomanufacturing Technology
- Shanghai 200237
- China
| | - Yue-Peng Shang
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- and Shanghai Collaborative Innovation Center for Biomanufacturing Technology
- Shanghai 200237
- China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- and Shanghai Collaborative Innovation Center for Biomanufacturing Technology
- Shanghai 200237
- China
| |
Collapse
|
18
|
More GV, Badgujar KC, Bhanage BM. Kinetic resolution of secondary alcohols with Burkholderia cepacia lipase immobilized on a biodegradable ternary blend polymer matrix as a highly efficient and heterogeneous recyclable biocatalyst. RSC Adv 2015. [DOI: 10.1039/c4ra14478c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A greener and superficial protocol for the synthesis of enantiomerically pure alcohols and their enantioriched acetate derivatives using a biodegradable heterogeneous recyclable catalyst with high conversion has been developed.
Collapse
Affiliation(s)
- Ganesh V. More
- Institute of Chemical Technology
- Department of Chemistry
- Mumbai-400019
- India
| | | | | |
Collapse
|
19
|
Highly enantioselective production of (R)-halohydrins with whole cells of Rhodotorula rubra KCh 82 culture. Int J Mol Sci 2014; 15:22392-404. [PMID: 25486054 PMCID: PMC4284715 DOI: 10.3390/ijms151222392] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 11/17/2022] Open
Abstract
Biotransformation of ten α-haloacetophenones in the growing culture of the strain Rhodotorula rubra KCh 82 has been carried out. Nine of the substrates underwent an effective enantioselective reduction to the respective (R)-alcohols according to Prelog's rule, with the exception of 2-chloro-1,2-diphenylethan-1-one that was not transformed by this strain. The expected reduction proceeded without dehalogenation, leading to the respective (R)-halohydrins in high yields. The use of this biocatalyst yielded (R)-2-bromo-1-phenyl-ethan-1-ol (enantiomeric excess (ee) = 97%) and its derivatives: 4'-Bromo- (ee = 99%); 4'-Chloro- (ee > 99%); 4'-Methoxy- (ee = 96%); 3'-Methoxy- (ee = 93%); 2'-Methoxy- (ee = 98%). There were also obtained and characterized 2,4'-dichloro-, 2,2',4'-trichloro- and 2-chloro-4'-fluoro-phenyetan-1-ol with >99% of enantiomeric excesses.
Collapse
|
20
|
Coronel C, Arce G, Iglesias C, Noguera CM, Bonnecarrère PR, Giordano SR, Gonzalez D. Chemoenzymatic synthesis of fluoxetine precursors. Reduction of β-substituted propiophenones. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
You ZY, Liu ZQ, Zheng YG. Chemical and enzymatic approaches to the synthesis of optically pure ethyl (R)-4-cyano-3-hydroxybutanoate. Appl Microbiol Biotechnol 2013; 98:11-21. [DOI: 10.1007/s00253-013-5357-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 11/29/2022]
|
22
|
Rowan AS, Moody TS, Howard RM, Underwood TJ, Miskelly IR, He Y, Wang B. Preparative access to medicinal chemistry related chiral alcohols using carbonyl reductase technology. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.tetasy.2013.09.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Synthesis of (R)-tembamide and (R)-aegeline via asymmetric transfer hydrogenation in water. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.tetasy.2013.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Xu G, Yu H, Xu J. Facile Access to Chiral Alcohols with Pharmaceutical Relevance Using a Ketoreductase Newly Mined fromPichia guilliermondii. CHINESE J CHEM 2013. [DOI: 10.1002/cjoc.201201119] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Xu GC, Yu HL, Zhang XY, Xu JH. Access to Optically Active Aryl Halohydrins Using a Substrate-Tolerant Carbonyl Reductase Discovered from Kluyveromyces thermotolerans. ACS Catal 2012. [DOI: 10.1021/cs300430g] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guo-Chao Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology,
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong
Road, Shanghai 200237, People’s Republic of China
| | - Hui-Lei Yu
- Laboratory of Biocatalysis and Synthetic Biotechnology,
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong
Road, Shanghai 200237, People’s Republic of China
| | - Xiao-Yan Zhang
- Laboratory of Biocatalysis and Synthetic Biotechnology,
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong
Road, Shanghai 200237, People’s Republic of China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology,
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong
Road, Shanghai 200237, People’s Republic of China
| |
Collapse
|
26
|
Madrigal D, Cooksy AL, Somanathan R. Theoretical calculations on rhodium(III)-Cp* catalyzed asymmetric transfer hydrogenation of acetophenone using monosulfonamide ligands derived from (1R,2R)-diaminocyclohexane. COMPUT THEOR CHEM 2012. [DOI: 10.1016/j.comptc.2012.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Synthesis of optically active α-bromohydrins via reduction of α-bromoacetophenone analogues catalyzed by an isolated carbonyl reductase. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.tetasy.2012.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
de Cienfuegos LÁ, Robles R, Miguel D, Justicia J, Cuerva JM. Reduction reactions in green solvents: water, supercritical carbon dioxide, and ionic liquids. CHEMSUSCHEM 2011; 4:1035-1048. [PMID: 21826799 DOI: 10.1002/cssc.201100134] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/29/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Luis Álvarez de Cienfuegos
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain.
| | | | | | | | | |
Collapse
|
29
|
Wang LJ, Li CX, Ni Y, Zhang J, Liu X, Xu JH. Highly efficient synthesis of chiral alcohols with a novel NADH-dependent reductase from Streptomyces coelicolor. BIORESOURCE TECHNOLOGY 2011; 102:7023-7028. [PMID: 21570826 DOI: 10.1016/j.biortech.2011.04.046] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/10/2011] [Accepted: 04/15/2011] [Indexed: 05/30/2023]
Abstract
An NADH-dependent reductase (ScCR) from Streptomyces coelicolor was discovered by genome mining for carbonyl reductases. ScCR was overexpressed in Escherichia coli BL21, purified to homogeneity and its catalytic properties were studied. This enzyme catalyzed the asymmetric reduction of a broad range of prochiral ketones including aryl ketones, α- and β-ketoesters, with high activity and excellent enantioselectivity (>99% ee) towards β-ketoesters. Among them, ethyl 4-chloro-3-oxobutanoate (COBE) was efficiently converted to ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE), an important pharmaceutical intermediate, in water/toluene biphasic system. As much as 600 g/L (3.6M) of COBE was asymmetrically reduced within 22 h using 2-propanol as a co-substrate for NADH regeneration, resulting in a yield of 93%, an enantioselectivity of >99% ee, and a total turnover number (TTN) of 12,100. These results indicate the potential of ScCR for the industrial production of valuable chiral alcohols.
Collapse
Affiliation(s)
- Li-Juan Wang
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | | | | | |
Collapse
|
30
|
Rocha LC, Ferreira HV, Pimenta EF, Berlinck RGS, Rezende MOO, Landgraf MD, Seleghim MHR, Sette LD, Porto ALM. Biotransformation of α-bromoacetophenones by the marine fungus Aspergillus sydowii. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:552-557. [PMID: 19941024 DOI: 10.1007/s10126-009-9241-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 09/28/2009] [Indexed: 05/28/2023]
Abstract
The biotransformation reactions of α-bromoacetophenone (1), p-bromo-α-bromoacetophenone (2), and p-nitro-α-bromoacetophenone (3) by whole cells of the marine fungus Aspergillus sydowii Ce19 have been investigated. Fungal cells that had been grown in artificial sea water medium containing a high concentration of chloride ions (1.20 M) catalysed the biotransformation of 1 to 2-bromo-1-phenylethanol 4 (56%), together with the α-chlorohydrin 7 (9%), 1-phenylethan-1,2-diol 9 (26%), acetophenone 10 (4%) and phenylethanol 11 (5%) identified by GC-MS analysis. In addition, it was observed that the enzymatic reaction was accompanied by the spontaneous debromination of 1 to yield α-chloroacetophenone 5 (9%) and α-hydroxyacetophenone 6 (18%) identified by GC-FID analysis. When 2 and 3 were employed as substrates, various biotransformation products were detected but the formation of halohydrins was not observed. It is concluded that marine fungus A. sydowii Ce19 presents potential for the biotransformations of bromoacetophenone derivatives.
Collapse
Affiliation(s)
- Lenilson Coutinho Rocha
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador, São-carlense, 400, CEP 13560-970, CP 780, São Carlos, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Castillo B, Delgado Y, Barletta G, Griebenow K. Enantioselective Transesterification Catalysis by Nanosized Serine Protease Subtilisin Carlsberg Particles in Tetrahydrofuran. Tetrahedron 2010; 66:2175-2180. [PMID: 20661313 PMCID: PMC2908921 DOI: 10.1016/j.tet.2010.01.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Enzyme catalysis in organic solvents is a powerful tool for stereo-selective synthesis but the enantioselectivity is still hard to predict. To overcome this obstacle, we employed a nanoparticulate formulation of subtilisin Carlsberg (SC) and designed a series of 14 structurally related racemic alcohols. They were employed in the model transesterification reaction with vinyl butyrate and the enantioselectivities were determined. In general, short alcohol side chains led to low enantioselectivties, while larger and bulky side chains caused better discrimination of the enantiomers by the enzyme. With several bulky substrates high enantioselectivities with E>100 were obtained. Computational modeling highlighted that key to high enantioselectivity is the discrimination of the R and S substrates by the sole hydrophobic binding pocket based on their size and bulkiness. While bulky S enantiomer side chains could be accommodated within the binding pocket, bulky R enantiomer side chains could not. However, when also the S enantiomer side chain becomes too large and does not fit into the binding pocket anymore, enantioselectivity accordingly drops.
Collapse
Affiliation(s)
- Betzaida Castillo
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, P.O. Box 23346, San Juan, Puerto Rico 00931-3346
| | | | | | | |
Collapse
|
32
|
Xie Y, Xu JH, Xu Y. Isolation of a Bacillus strain producing ketone reductase with high substrate tolerance. BIORESOURCE TECHNOLOGY 2010; 101:1054-1059. [PMID: 19767205 DOI: 10.1016/j.biortech.2009.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 08/28/2009] [Accepted: 09/01/2009] [Indexed: 05/28/2023]
Abstract
Target reaction-oriented screening from soil samples yielded a ketone reductase-producing Bacillus sp., strain ECU0013, which exhibits excellent stereoselectivity, high substrate tolerance and is capable of regenerating the required cofactor with glucose as a co-substrate. Whole-cells catalyzed the asymmetric reduction of 2-chloro-1-phenylethanone (50mM) to (R)-2-chloro-1-phenylethanol with a 93.3% conversion rate and 99% e.e. (enantiomeric excess). A variety of ketones were enantioselectively reduced by resting cells, giving corresponding chiral alcohols with good to excellent e.e. values. These results suggest the potential of this strain for the industrial production of chiral halogenated aromatic alcohols.
Collapse
Affiliation(s)
- Yan Xie
- Laboratory of Biocatalysis and Bioprocessing, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | | | | |
Collapse
|
33
|
Lin H, Chen YZ, Xu XY, Xia SW, Wang LX. Preparation of key intermediates of adrenergic receptor agonists: Highly enantioselective production of (R)-α-halohydrins with Saccharomyces cerevisiae CGMCC 2.396. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Xie Y, Xu JH, Lu WY, Lin GQ. Adzuki bean: a new resource of biocatalyst for asymmetric reduction of aromatic ketones with high stereoselectivity and substrate tolerance. BIORESOURCE TECHNOLOGY 2009; 100:2463-2468. [PMID: 19153040 DOI: 10.1016/j.biortech.2008.11.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Revised: 11/25/2008] [Accepted: 11/30/2008] [Indexed: 05/27/2023]
Abstract
A new resource of biocatalyst for asymmetric reduction of aromatic ketones has been discovered for the first time from a common plant seed, adzuki bean, i.e. Phaseolus angularis (Willd.) W.F. Wight. The study investigated the best methods to prepare the biocatalyst and its ability to reduce ketones. Our results indicated that the biocatalyst from adzuki bean could reduce various aromatic ketones at relatively high concentrations (e.g. 100mM), exhibiting excellent stereoselectivity (>98% e.e.). In addition, it was found that NADPH acts as the reducing cofactor, which can be regenerated by the crude enzyme system itself using glucose as an auxiliary substrate.
Collapse
Affiliation(s)
- Yan Xie
- Laboratory of Biocatalysis and Bioprocessing, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | |
Collapse
|
35
|
Lentinus strigellus: a new versatile stereoselective biocatalyst for the bioreduction of prochiral ketones. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.tetasy.2009.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Cortez NA, Aguirre G, Parra-Hake M, Somanathan R. New heterogenized C2-symmetric bis(sulfonamide)-cyclohexane-1,2-diamine-RhIIICp∗ complexes and their application in the asymmetric transfer hydrogenation (ATH) of ketones in water. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.02.183] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Zhu D, Hyatt BA, Hua L. Enzymatic hydrogen transfer reduction of α-chloro aromatic ketones catalyzed by a hyperthermophilic alcohol dehydrogenase. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Bisogno FR, Lavandera I, Kroutil W, Gotor V. Tandem Concurrent Processes: One-Pot Single-Catalyst Biohydrogen Transfer for the Simultaneous Preparation of Enantiopure Secondary Alcohols. J Org Chem 2009; 74:1730-2. [DOI: 10.1021/jo802350f] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fabricio R. Bisogno
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain, and Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Iván Lavandera
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain, and Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain, and Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Vicente Gotor
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain, and Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
39
|
Wallner SR, Lavandera I, Mayer SF, Öhrlein R, Hafner A, Edegger K, Faber K, Kroutil W. Stereoselective anti-Prelog reduction of ketones by whole cells of Comamonas testosteroni in a ‘substrate-coupled’ approach. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.molcatb.2008.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Schultheisz HL, Szymczyna BR, Scott LG, Williamson JR. Pathway engineered enzymatic de novo purine nucleotide synthesis. ACS Chem Biol 2008; 3:499-511. [PMID: 18707057 PMCID: PMC2746247 DOI: 10.1021/cb800066p] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general method for isotopic labeling of the purine base moiety of nucleotides and RNA has been developed through biochemical pathway engineering in vitro. A synthetic scheme was designed and implemented utilizing recombinant enzymes from the pentose phosphate and de novo purine synthesis pathways, with regeneration of folate, aspartate, glutamine, ATP, and NADPH cofactors, in a single-pot reaction. Syntheses proceeded quickly and efficiently in comparison to chemical methods with isolated yields up to 66% for 13C-, 15N-enriched ATP and GTP. The scheme is robust and flexible, requiring only serine, NH4+, glucose, and CO2 as stoichiometric precursors in labeled form. Using this approach, U-13C- GTP, U-13C, 15N- GTP, 13C 2,8- ATP, and U-15N- GTP were synthesized on a millimole scale, and the utility of the isotope labeling is illustrated in NMR spectra of HIV-2 transactivation region RNA containing 13C 2,8-adenosine and 15N 1,3,7,9,2-guanosine. Pathway engineering in vitro permits complex synthetic cascades to be effected, expanding the applicability of enzymatic synthesis.
Collapse
Affiliation(s)
- Heather L. Schultheisz
- Departments of Molecular Biology and Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, MB33, La Jolla, CA 92037 USA
| | - Blair R. Szymczyna
- Departments of Molecular Biology and Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, MB33, La Jolla, CA 92037 USA
| | - Lincoln G. Scott
- Cassia, LLC, 4045 Sorrento Valley Boulevard, San Diego, CA 92121 USA
| | - James R. Williamson
- Departments of Molecular Biology and Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, MB33, La Jolla, CA 92037 USA
| |
Collapse
|
41
|
Kosjek B, Nti-Gyabaah J, Telari K, Dunne L, Moore JC. Preparative Asymmetric Synthesis of 4,4-Dimethoxytetrahydro-2H-pyran-3-ol with a Ketone Reductase and in Situ Cofactor Recycling using Glucose Dehydrogenase. Org Process Res Dev 2008. [DOI: 10.1021/op700255b] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Birgit Kosjek
- Department of Process Research, Department of Bioprocess Research and Development, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, U.S.A., and Merck Manufacturing Division, Ballydine Site, Clonmel, Co. Tipperary, Ireland
| | - Joseph Nti-Gyabaah
- Department of Process Research, Department of Bioprocess Research and Development, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, U.S.A., and Merck Manufacturing Division, Ballydine Site, Clonmel, Co. Tipperary, Ireland
| | - Kathleen Telari
- Department of Process Research, Department of Bioprocess Research and Development, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, U.S.A., and Merck Manufacturing Division, Ballydine Site, Clonmel, Co. Tipperary, Ireland
| | - Liam Dunne
- Department of Process Research, Department of Bioprocess Research and Development, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, U.S.A., and Merck Manufacturing Division, Ballydine Site, Clonmel, Co. Tipperary, Ireland
| | - Jeffrey C. Moore
- Department of Process Research, Department of Bioprocess Research and Development, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, U.S.A., and Merck Manufacturing Division, Ballydine Site, Clonmel, Co. Tipperary, Ireland
| |
Collapse
|
42
|
WANG MH, LI YF, LIU YJ, ZHANG SS. Kinetic Resolution of 2-Chloro-1-(3,4-dichlorophenyl)ethanol by Lipase-Catalyzed Transesterification. CHINESE J CHEM 2007. [DOI: 10.1002/cjoc.200790314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
de Gonzalo G, Lavandera I, Durchschein K, Wurm D, Faber K, Kroutil W. Asymmetric biocatalytic reduction of ketones using hydroxy-functionalised water-miscible ionic liquids as solvents. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.tetasy.2007.10.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Cortez NA, Aguirre G, Parra-Hake M, Somanathan R. Water-soluble chiral monosulfonamide-cyclohexane-1,2-diamine-RhCp∗ complex and its application in the asymmetric transfer hydrogenation (ATH) of ketones. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.04.116] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
de Gonzalo G, Lavandera I, Faber K, Kroutil W. Enzymatic Reduction of Ketones in “Micro-aqueous” Media Catalyzed by ADH-A from Rhodococcus ruber. Org Lett 2007; 9:2163-6. [PMID: 17469836 DOI: 10.1021/ol070679c] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mono- and biphasic aqueous-organic solvent systems (50% v v-1) as well as micro-aqueous organic systems (99% v v-1) were successfully employed for the biocatalytic reduction of ketones catalyzed by alcohol dehydrogenase ADH-A from Rhodococcus ruber via hydrogen transfer. A clear correlation between the log P of the organic solvent and the enzyme activity--the higher, the better--was found. The use of organic solvents allowed highly stereoselective enzymatic carbonyl reductions at substrate concentrations close to 2.0 M.
Collapse
Affiliation(s)
- Gonzalo de Gonzalo
- Department of Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
46
|
Cundari TR, Dinescu A, Zhu D, Hua L. A molecular modeling study on the enantioselectivity of aryl alkyl ketone reductions by a NADPH-dependent carbonyl reductase. J Mol Model 2007; 13:685-90. [PMID: 17279371 DOI: 10.1007/s00894-007-0168-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 12/08/2006] [Indexed: 11/25/2022]
Abstract
Automated structural analysis of Sporobolomyces salmonicolor carbonyl reductase (SSCR) indicates that the two largest potential receptor sites are in the vicinity of the nicotinamide reductant. The largest receptor site is a scalene triangle with sides of approximately 8 A by 9 A by 13 A, which is narrow in width; one corner is surrounded by hydrophilic residues that can favorably bond with the ketone oxygen. Docking aryl alkyl ketones shows a distinct preference for binding to the largest receptor site, and for conformations that place the carbonyl oxygen of the substrate in the hydrophilic corner of the largest receptor site. Favorable docking conformations for aryl alkyl ketones fall into two low-energy ensembles. These conformational ensembles are distinguished by the positions of the substituents, presenting either the Si- or Re-face of the ketone to the nicotinamide reductant. For the ketones investigated here, there is a correspondence between the major enantiomer of the alcohol obtained from the reduction of the ketone and the conformer found to have the most stable interaction energy with the receptor site in all cases. The receptor site modeling, docking simulations, molecular dynamics, and enzyme-substrate geometry optimizations lead to a model for understanding the enantioselectivity of this NADPH-dependent carbonyl reductase.
Collapse
Affiliation(s)
- Thomas R Cundari
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling, University of North Texas, Box 305070, Denton, TX 76203-5070, USA
| | | | | | | |
Collapse
|
47
|
Itoh T, Matsushita Y, Abe Y, Han SH, Wada S, Hayase S, Kawatsura M, Takai S, Morimoto M, Hirose Y. Increased Enantioselectivity and Remarkable Acceleration of Lipase-Catalyzed Transesterification by Using an Imidazolium PEG–Alkyl Sulfate Ionic Liquid. Chemistry 2006; 12:9228-37. [PMID: 17029309 DOI: 10.1002/chem.200601043] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several types of imidazolium salt ionic liquids were prepared derived from poly(oxyethylene)alkyl sulfate and used as an additive or coating material for lipase-catalyzed transesterification in an organic solvent. A remarkably increased enantioselectivity was obtained when the salt was added at 3-10 mol % versus substrate in the Burkholderia cepacia lipase (lipase PS-C)-catalyzed transesterification of 1-phenylethanol by using vinyl acetate in diisopropyl ether or a hexane solvent system. In particular, a remarkable acceleration was accomplished by the ionic liquid coating with lipase PS in an iPr(2)O solvent system while maintaining excellent enantioselectivity; it reached approximately 500- to 1000-fold acceleration for some substrates with excellent enantioselectivity. A similar acceleration was also observed for IL 1-coated Candida rugosa lipase. MALDI-TOF mass spectrometry experiments of the ionic-liquid-coated lipase PS suggest that ionic liquid binds with lipase protein.
Collapse
Affiliation(s)
- Toshiyuki Itoh
- Department of Materials Sciences, Faculty of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhu D, Malik HT, Hua L. Asymmetric ketone reduction by a hyperthermophilic alcohol dehydrogenase. The substrate specificity, enantioselectivity and tolerance of organic solvents. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.tetasy.2006.10.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Cortez NA, Rodríguez-Apodaca R, Aguirre G, Parra-Hake M, Cole T, Somanathan R. New C2-symmetric bis(sulfonamide)-cyclohexane-1,2-diamine-RhCp∗ complex and its application in the asymmetric transfer hydrogenation (ATH) of ketones in water. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2006.09.141] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Solvent and in situ catalyst preparation impacts upon Noyori reductions of aryl-chloromethyl ketones: application to syntheses of chiral 2-amino-1-aryl-ethanols. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.tetasy.2006.07.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|