1
|
Speckhart SL, Pollock AB, Alward KJ, Farrell K, Oliver MA, Lee K, Biase FH, Ealy AD. The interleukin-6 signal transducer receptor subunit is required for optimal in vitro bovine embryo development†. Biol Reprod 2025; 112:434-446. [PMID: 39756427 PMCID: PMC11911555 DOI: 10.1093/biolre/ioaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/03/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025] Open
Abstract
This work explored whether bovine embryo development relies on signaling from the interleukin-6 (IL6) cytokine family. This was accomplished by interrupting IL6 signal transducer (IL6ST), the common beta-subunit receptor used by the IL6 family. One series of studies cultured in vitro-produced embryos with SC144, a pharmacological IL6ST inhibitor. Providing the inhibitor at a concentration that partially diminished IL6ST signaling reduced development to the 16-cell and blastocyst stages and reduced inner-cell-mass cell numbers. Inhibitor concentrations that completely blocked IL6ST signaling prevented blastocyst development. Another series of studies used CRISPR-Cas9 to disrupt IL6ST. Two electroporation approaches were used to introduce guide RNAs and Cas9 protein into one-cell in vitro-produced embryos. Editing efficiency was ≥82%. Targeting IL6ST did not affect cleavage but reduced development to the 16-cell and blastocyst stages. A reduction in inner-cell-mass cell numbers was detected, and disorganization of the inner cell mass was observed in approximately one-half of the IL6ST-targeted blastocysts. These observations indicate that embryo-derived IL6 family members that signal through IL6ST are needed to support normal in vitro bovine embryo development. These signals are needed by the 16-cell stage and for inner-cell-mass cell development at the blastocyst stage. There is also evidence that these signals support the overall cellular organization of the blastocyst.
Collapse
Affiliation(s)
| | | | - Kayla J Alward
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX 79016, USA
| | - Kayla Farrell
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mary A Oliver
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Kiho Lee
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Fernando H Biase
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Alan D Ealy
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
2
|
Oliver MA, Alward KJ, Rhoads ML, Ealy AD. Human Recombinant Interleukin-6 and Leukemia Inhibitory Factor Improve Inner Cell Mass Cell Number but Lack Cryoprotective Activities on In Vitro-Produced Bovine Blastocysts. Animals (Basel) 2025; 15:668. [PMID: 40075953 PMCID: PMC11899334 DOI: 10.3390/ani15050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
This work explored whether supplementing recombinant human interleukin-6 (IL6), interleukin-11 (IL11), or leukemia inhibitory factor (LIF) improves IVP bovine embryo development, morphology, and cryosurvivability. Embryos were treated from day 5 to 8 post-fertilization with either the carrier only (control) or 100 ng/mL of IL6, IL11, or LIF. Blastocyst formation and stage were determined on day 7 and 8. A subset of day 8 blastocysts was processed for immunofluorescence to count trophectoderm (TE) and inner cell mass (ICM) cell numbers and another subset was slow frozen and stored in liquid nitrogen until thawing. No differences in the blastocyst rate or blastocyst stage of development were detected. Increases in ICM cell numbers were observed for IL6 and LIF but not the IL11 treatment. None of the cytokine treatments applied before freezing affected post-thaw survival, TE or ICM cell number, or cell death 24 h after thawing. In conclusion, supplementing IL6 and LIF improves ICM cell numbers in non-frozen blastocysts, but there was no evidence that any of these cytokine treatments contain cryoprotective properties in bovine embryos.
Collapse
Affiliation(s)
| | | | | | - Alan D. Ealy
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (M.A.O.); (K.J.A.); (M.L.R.)
| |
Collapse
|
3
|
Men H. Evolution of Media Supporting the Development of Mammalian Preimplantation Embryos In Vitro. BIOLOGY 2024; 13:789. [PMID: 39452098 PMCID: PMC11504863 DOI: 10.3390/biology13100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
Assisted reproductive technology has revolutionized our ability to genetically manipulate, maintain and rederive laboratory animals of biomedical importance; manipulate animal reproduction or genetics to boost production of farm animals; and improve human reproductive health. The media for in vitro manipulation and the culture of embryos play a critical role in the development of assisted reproductive technology. In this review, the evolution of culture media supporting embryo development in vitro from selected animal species, laboratory animals (mice and rats) and farm animals (pigs and cattle), will be discussed with a focus on the development of chemically defined media.
Collapse
Affiliation(s)
- Hongsheng Men
- Mutant Mouse Resource and Research Center, Columbia, MO 65201, USA;
- Rat Resource and Research Center, Columbia, MO 65201, USA
- Department of Veterinary Pathobiology, University of Missouri-Columbia, 4011 Discovery Drive, Columbia, MO 65201, USA
| |
Collapse
|
4
|
Oliver MA, Speckhart SL, Edwards JL, Rhoads ML, Ealy AD. Human recombinant interleukin-6 improves the morphological quality of cryopreserved in vitro produced bovine blastocysts. Theriogenology 2024; 226:173-180. [PMID: 38908059 DOI: 10.1016/j.theriogenology.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
This work explored whether a well-characterized recombinant human interleukin-6 (hIL6) protein will influence in vitro produced (IVP) bovine embryo development and survival after cryopreservation. Cumulus oocyte complexes were collected from abattoir derived ovaries, matured for 24 h, and fertilized using pooled semen from Holstein bulls. Embryos were treated with 0, 25, 50, or 100 ng/mL hIL6 on day 5 post-fertilization. An increase in ICM cell numbers was observed in each hIL6 treatment, with the lowest hIL6 treatment having the same magnitude of response as the middle and highest hIL6 concentration. No effects on TE cell numbers were observed. The second study involved cryopreserving (via slow freezing) of hIL6-treated blastocysts, then examining post-thaw blastocyst survival by incubating for 24 h in the absence of hIL6 treatments. Blastocyst re-expansion and hatching rates were unaffected by any of the IL6 treatments, however, increases in both ICM and TE cell numbers were detected at 24 h post-thawing in blastocysts exposed to 100 ng/mL hIL6 but not lower concentrations before freezing. A reduction in the percentage of TUNEL-positive TE cells was observed after thawing in blastocysts exposed to 25, 50 and 100 ng/mL hIL6 before cryopreservation. No treatment-dependent changes in TUNEL-positive ICM cells were observed. In summary, hIL6 supplementation improves ICM cell numbers in bovine blastocysts to a degree that is commensurate with what has been observed when using bovine recombinant IL6. This positive effect of hIL6 on ICM cell numbers is maintained after freezing and thawing, and a novel improvement in post-thaw TE cell numbers occur in hIL6 treated embryos. This positive effect on TE cell numbers is attributed, at least in part, to an hIL6-dependent reduction in TE cell apoptosis.
Collapse
Affiliation(s)
- Mary A Oliver
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Savannah L Speckhart
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Current Address: Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| | - J Lannett Edwards
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Michelle L Rhoads
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alan D Ealy
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
5
|
Gačnikar J, Mrkun J, Babič J, Sterniša M, Zakošek Pipan M. Impact of Mycotoxin Metabolites Deepoxy-Deoxynivalenol and Beta-Zearalenol on Bovine Preimplantation Embryo Development in the Presence of Acetonitrile. Vet Sci 2024; 11:267. [PMID: 38922014 PMCID: PMC11209286 DOI: 10.3390/vetsci11060267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
The quality of animal feed is increasingly affected by weather conditions, high humidity, and damage to grains, which have led to various mycotoxin-producing moulds. The aim of this study was to determine the effects of the combination of deepoxy-deoxynivalenol and beta-zearalenol on the development of preimplantation bovine embryos, the extent to which the presence of both mycotoxin metabolites affects the development of in vitro cultured bovine embryos, or whether the effect of both toxins enhances embryotoxicity. Ovaries were transported from the abattoir to the laboratory and, after maturation and fertilisation, zygotes were placed in an embryo culture medium (IVC) with different mycotoxin metabolite concentrations diluted in acetonitrile. It was found that the blastocyst rate of cleaved embryos was affected by 1 μL acetonitrile in 400 μL medium (0.25%) compared to the group without acetonitrile. For this reason, it was decided to use acetonitrile as a control group, and the desired mycotoxin metabolite concentrations were diluted in the lowest possible amount of acetonitrile (0.5 μL) that could be accurately added to the study groups. There was no statistical difference when the higher mycotoxin metabolite concentrations were added.
Collapse
Affiliation(s)
- J. Gačnikar
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.M.); (M.Z.P.)
| | - J. Mrkun
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.M.); (M.Z.P.)
| | - J. Babič
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - M. Sterniša
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - M. Zakošek Pipan
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.M.); (M.Z.P.)
| |
Collapse
|
6
|
Hosseinzadeh S, Masoudi AA. Investigating the expression of fertility-regulating LncRNAs in multiparous and uniparous Shal ewe's ovaries. Genome 2024; 67:78-89. [PMID: 37983732 DOI: 10.1139/gen-2023-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Sheep is the primary source of animal protein in Iran. Birth type is one of the significant features that determine total meat output. Little is known about how long non-coding RNAs (LncRNAs) affect litter size. The purpose of this research is to investigate the DE-LncRNAs in ovarian tissue between multiparous and uniparous Shal ewes. Through bioinformatics analyses, LncRNAs with variable expression levels between ewes were discovered. Target genes were annotated using the DAVID database, and STRING and Cytoscape software were used to evaluate their interactions. The expression levels of 148 LncRNAs were different in the multiparous and uniparous ewe groups (false discovery rate (FDR) < 0.05). Eight biological process terms, nine cellular component terms, 10 molecular function terms, and 38 KEGG pathways were significant (FDR < 0.05) in the GO analysis. One of the most significant processes impacting fertility is mitogen-activated protein kinase (MAPK) signaling pathway, followed by oocyte meiosis, gonadotropin-releasing hormone signaling pathway, progesterone-mediated oocyte maturation, oxytocin signaling pathway, and cAMP signaling pathway. ENSOARG00000025710, ENSOARG00000025667, ENSOARG00000026034, and ENSOARG00000026632 are LncRNAs that may affect litter size and fertility. The most crucial hub genes include MAPK1, BRD2, GAK, RAP1B, FGF2, RAP1B, and RAP1B. We hope that this study will encourage researchers to further investigate the effect of LncRNAs on fertility.
Collapse
Affiliation(s)
- Shahram Hosseinzadeh
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Valente RS, Marsico TV, Maiollo BAP, Lopes NJ, Tannura JH, Sudano MJ. Can the addition of Interleukin-13 affect the cryosurvival of bovine embryos? Theriogenology 2024; 215:138-143. [PMID: 38070212 DOI: 10.1016/j.theriogenology.2023.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/14/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
In this study, we investigated the impact of incorporating Interleukin-13 (IL-13) into the embryonic culture medium and its influence on cryotolerance and cellular viability of vitrified bovine embryos. Two distinct time points for IL-13 supplementation were explored: during the final hours of culture prior to cryopreservation and during the period of recultivation following cryopreservation and warming. Cryosurvival rates, total cell count, and cell viability were assessed using the TUNEL technique to determine the apoptotic percentage. Re-expansion and hatching rates did not show differences among all groups (P > 0.05), and the total cell number was comparable between the treated and control groups (P > 0.05). However, the group that received IL-13 before vitrification exhibited a higher apoptotic percentage (P < 0.05). This suggests that the anti-inflammatory effect of IL-13 may have impacted the embryo's defense capacity against the stress induced by cryopreservation, leading to an increased percentage of apoptosis, although it did not influence the developmental resumption capability.
Collapse
Affiliation(s)
| | | | | | | | | | - Mateus José Sudano
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre, SP, Brazil; Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
8
|
Uju CN, Unniappan S. Growth factors and female reproduction in vertebrates. Mol Cell Endocrinol 2024; 579:112091. [PMID: 37863469 DOI: 10.1016/j.mce.2023.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Female reproductive efficiency is influenced by the outcomes of various processes, including folliculogenesis, apoptosis, response to gonadotropin signaling, oocyte maturation, and ovulation. The role of hormones in regulating these processes and other reproductive activities has been well established. It is becoming increasingly evident that in addition to well-characterized hormones, growth factors play vital roles in regulating some of these reproductive activities. Growth factors and their receptors are widely distributed in vertebrate ovaries at different stages of ovarian development, indicating their involvement in intraovarian reproductive functions. In the ovary, cell surface receptors allow growth factors to regulate intraovarian reproductive activities. Understanding these actions in the reproductive axis would provide a tool to target growth factors and/or their receptors to yield desirable reproductive outcomes. These include enrichment of in vitro maturation and fertilization culture media, and management of infertility. This review discusses some widely characterized growth factors belonging to the TGF, EGF, IGF, FGF, and BDNF family of peptides and their role in female reproduction in vertebrates, with a focus on mammals.
Collapse
Affiliation(s)
- Chinelo N Uju
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
9
|
McKinley E, Speckhart SL, Keane JA, Oliver MA, Rhoads ML, Edwards JL, Biase FH, Ealy AD. Influences of Supplementing Selective Members of the Interleukin-6 Cytokine Family on Bovine Oocyte Competency. Animals (Basel) 2023; 14:44. [PMID: 38200775 PMCID: PMC10778514 DOI: 10.3390/ani14010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
This work explored whether supplementing selective members of the interleukin-6 (IL6) cytokine family during in vitro bovine oocyte maturation affects maturation success, cumulus-oocyte complex (COC) gene expression, fertilization success, and embryo development potential. Human recombinant proteins for IL6, IL11, and leukemia inhibitory factor (LIF) were supplemented to COCs during the maturation period, then fertilization and embryo culture commenced without further cytokine supplementation. The first study determined that none of these cytokines influenced the rate that oocytes achieved arrest at meiosis II. The second study identified that LIF and IL11 supplementation increases AREG transcript abundance. Supplementation with IL6 supplementation did not affect AREG abundance but reduced HAS2 transcript abundance. Several other transcriptional markers of oocyte competency were not affected by any of the cytokines. The third study determined that supplementing these cytokines during maturation did not influence fertilization success, but either LIF or IL11 supplementation increased blastocyst development. No effect of IL6 supplementation on subsequent blastocyst development was detected. The fourth experiment explored whether each cytokine treatment affects the post-thaw survivability of cryopreserved IVP blastocysts. None of the cytokines supplemented during oocyte maturation produced any positive effects on post-thaw blastocyst re-expansion and hatching. In conclusion, these outcomes implicate IL11 and LIF as potentially useful supplements for improving bovine oocyte competency.
Collapse
Affiliation(s)
- Endya McKinley
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (E.M.); (S.L.S.); (J.A.K.); (M.A.O.); (M.L.R.); (F.H.B.)
| | - Savannah L. Speckhart
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (E.M.); (S.L.S.); (J.A.K.); (M.A.O.); (M.L.R.); (F.H.B.)
| | - Jessica A. Keane
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (E.M.); (S.L.S.); (J.A.K.); (M.A.O.); (M.L.R.); (F.H.B.)
| | - Mary A. Oliver
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (E.M.); (S.L.S.); (J.A.K.); (M.A.O.); (M.L.R.); (F.H.B.)
| | - Michelle L. Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (E.M.); (S.L.S.); (J.A.K.); (M.A.O.); (M.L.R.); (F.H.B.)
| | - J. Lannett Edwards
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA;
| | - Fernando H. Biase
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (E.M.); (S.L.S.); (J.A.K.); (M.A.O.); (M.L.R.); (F.H.B.)
| | - Alan D. Ealy
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (E.M.); (S.L.S.); (J.A.K.); (M.A.O.); (M.L.R.); (F.H.B.)
| |
Collapse
|
10
|
Hoorn QA, Rabaglino MB, Maia TS, Sagheer M, Fuego D, Jiang Z, Hansen PJ. Transcriptomic profiling of the bovine endosalpinx and endometrium to identify putative embryokines. Physiol Genomics 2023; 55:557-564. [PMID: 37720990 PMCID: PMC11918271 DOI: 10.1152/physiolgenomics.00064.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023] Open
Abstract
The objectives of the present study were to characterize the expression of genes encoding for cell signaling ligands in the bovine endosalpinx and endometrium and analyze spatial changes in gene expression. RNA sequencing was performed for the endosalpinx from the ampulla of the oviduct and endometrium from the upper and middle uterine horn and uterine body at day 2 after ovulation from ipsilateral and contralateral sides relative to the ovulatory ovary. Of the 17,827 unique mRNA transcripts mapped, 2,072 were affected by cranial-caudal position in the reproductive tract and 818 were affected by side (false discovery rate < 0.05). There were 334 genes encoding for cell signaling ligands, with 128 genes having greater than two transcripts per million on average. A total of 81 cell signaling ligand genes were affected by position and 24 were affected by side. A data set of the transcriptome of two to four cell embryos was used to identify cell signaling ligand genes that were highly expressed in the ampulla for which there was high expression of the receptor in the embryo. The most expressed ligand-receptor pairs were PSAP/SORT1, MIF/CXCR4, GPI/AMFR, and KITLG/KIT. These cell signaling ligands, as well as others whose gene is expressed in the endosalpinx and endometrium, may influence early embryonic development. Spatial changes throughout the reproductive tract highlight the distinctive expression profile of the oviduct versus the endometrium, including a set of the identified genes encoding for cell signaling ligands, and highlight the local influence of the ovary. The results also show the continuity of expression for large numbers of genes in the reproductive tract.NEW & NOTEWORTHY Examination of the transcriptome of the endosalpinx and endometrium revealed the degree to which gene expression in the reproductive tract varies spatially. The expression of genes encoding cell signaling molecules that could potentially regulate embryonic development was also identified.
Collapse
Affiliation(s)
- Quinn A Hoorn
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville, Florida, United States
| | | | - Tatiane S Maia
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville, Florida, United States
| | - Masroor Sagheer
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville, Florida, United States
| | - Dailin Fuego
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville, Florida, United States
| | - Zongliang Jiang
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville, Florida, United States
| | - Peter J Hansen
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
11
|
Denicol AC, Siqueira LGB. Maternal contributions to pregnancy success: from gamete quality to uterine environment. Anim Reprod 2023; 20:e20230085. [PMID: 37720724 PMCID: PMC10503891 DOI: 10.1590/1984-3143-ar2023-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/21/2023] [Indexed: 09/19/2023] Open
Abstract
The establishment and maintenance of a pregnancy that goes to term is sine qua non for the long-term sustainability of dairy and beef cattle operations. The oocyte plays a critical role in providing the factors necessary for preimplantation embryonic development. Furthermore, the female, or maternal, environment where oocytes and embryos develop is crucial for the establishment and maintenance of a pregnancy to term. During folliculogenesis, the oocyte must sequentially acquire meiotic and developmental competence, which are the results of a series of molecular events preparing the highly specialized gamete to return to totipotency after fertilization. Given that folliculogenesis is a lengthy process in the cow, the occurrence of disease, metabolic imbalances, heat stress, or other adverse events can make it challenging to maintain oocyte quality. Following fertilization, the newly formed embryo must execute a tightly planned program that includes global DNA remodeling, activation of the embryonic genome, and cell fate decisions to form a blastocyst within a few days and cell divisions. The increasing use of assisted reproductive technologies creates an additional layer of complexity to ensure the highest oocyte and embryo quality given that in vitro systems do not faithfully recreate the physiological maternal environment. In this review, we discuss cellular and molecular factors and events known to be crucial for proper oocyte development and maturation, as well as adverse events that may negatively affect the oocyte; and the importance of the uterine environment, including signaling proteins in the maternal-embryonic interactions that ensure proper embryo development. We also discuss the impact of assisted reproductive technologies in oocyte and embryo quality and developmental potential, and considerations when looking into the prospects for developing systems that allow for in vitro gametogenesis as a tool for assisted reproduction in cattle.
Collapse
Affiliation(s)
- Anna Carolina Denicol
- Department of Animal Science, University of California, Davis, CA, United States of America
| | | |
Collapse
|
12
|
Arias ME, Vargas T, Gallardo V, Aguila L, Felmer R. Simple and Efficient Chemically Defined In Vitro Maturation and Embryo Culture System for Bovine Embryos. Animals (Basel) 2022; 12:3057. [PMID: 36359181 PMCID: PMC9654503 DOI: 10.3390/ani12213057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 09/19/2023] Open
Abstract
Supplementation of the culture media for in vitro production (IVP) of bovine embryos with fetal bovine serum (FBS) is associated with inconsistent outcomes. The present study sought to replace FBS and BSA by insulin-like growth factor 1 (IGF1), fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF). In Experiment 1, absence of FBS from maturation medium (MM) did not affect the rate of in vitro maturation, as assessed by the extrusion of the first polar body. However, when gonadotropins and FBS were removed from the MM, the maturation rate was significantly reduced even in the presence of growth factors. Therefore, gonadotropin-supplemented MM medium was established as the base medium for the defined maturation condition. In Experiment 2, the addition of growth factors to gonadotropin-supplemented MM medium supported similar maturation (~90%) compared to the undefined condition (FBS-carrying). In Experiment 3, the addition of growth factors to embryo culture medium showed similar in vitro competence compared to the undefined (FBS) control. In Experiment 4, completely defined conditions (absence of FBS and BSA during in vitro maturation and embryo culture) were tested. A higher cleavage was observed with FGF2 (86%) compared to EGF (77%) and the FBS control (77%), but similar blastocyst rates were observed for FGF2 (24%), EGF (19%) and the FBS control (25%). Embryo quality was similar among groups. Finally, post-thawing survival was higher for FGF2 (94%) compared to the FBS control (77%). Thus, we report a simple defined IVP system for bovine species that generates developmental outcomes and embryos of similar quality than those produced under conditions containing FBS.
Collapse
Affiliation(s)
- María Elena Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile
- Department of Agricultural Production, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco 4811322, Chile
| | - Tamara Vargas
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile
| | - Victor Gallardo
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile
| | - Luis Aguila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco 4811322, Chile
| |
Collapse
|
13
|
Wooldridge LK, Keane JA, Rhoads ML, Ealy AD. Bioactive supplements influencing bovine in vitro embryo development. J Anim Sci 2022; 100:6620796. [PMID: 35772761 DOI: 10.1093/jas/skac091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Ovum pickup and in vitro production (IVP) of bovine embryos are replacing traditional multiple ovulation embryo transfer (MOET) as the primary means for generating transferable embryos from genetically elite sires and dams. However, inefficiencies in the IVP process limit the opportunities to produce large numbers of transferable embryos. Also, the post-transfer competency of IVP embryos is inferior to embryos produced by artificial insemination or MOET. Numerous maternal, paternal, embryonic, and culture-related factors can have adverse effects on IVP success. This review will explore the various efforts made on describing how IVP embryo development and post-transfer competency may be improved by supplementing hormones, growth factors, cytokines, steroids and other bioactive factors found in the oviduct and uterus during early pregnancy. More than 40 of these factors, collectively termed as embryokines, are reviewed here. Several embryokines contain abilities to promote embryo development, including improving embryo survivability, improving blastomere cell numbers, and altering the distribution of blastomere cell types in blastocysts. A select few embryokines also can benefit pregnancy retention after IVP embryo transfer and improve neonatal calf health and performance, although very few embryokine-supplemented embryo transfer studies have been completed. Also, supplementing several embryokines at the same time holds promise for improving IVP embryo development and competency. However, more work is needed to explore the post-transfer consequences of adding these putative embryokines for any adverse outcomes, such as large offspring syndrome and poor postnatal health, and to specify the specific embryokine combinations that will best represent the ideal conditions found in the oviduct and uterus.
Collapse
Affiliation(s)
- Lydia K Wooldridge
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jessica A Keane
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Michelle L Rhoads
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
14
|
Liu Y, Jones C, Coward K. An investigation of mechanisms underlying mouse blastocyst hatching: a ribonucleic acid sequencing study. F&S SCIENCE 2022; 3:35-48. [PMID: 35559994 DOI: 10.1016/j.xfss.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate the regulatory mechanisms and signaling molecules underlying hatching in mouse embryos. DESIGN Experimental laboratory study using a mouse embryo model. SETTING University-based basic scientific research laboratory. ANIMALS A total of 40 B6C3F1 × B6D2F1 mouse embryos were used in this study. INTERVENTION(S) Frozen/thawed mouse embryos, at the 8-cell stage, were cultured in vitro for 2 days. The resulting hatching and prehatching blastocysts were then used for complementary deoxyribonucleic acid (cDNA) library preparation and ribonucleic acid (RNA) sequencing analysis (n = 8 for each group). Differentially expressed genes were then used for downstream functional analysis. In addition, a list of genes related to developmental progression in humans was used to identify genes that were potentially related to the hatching of human embryos. MAIN OUTCOME MEASURE(S) Differentially expressed genes, enriched Gene Ontology terms and canonical pathways, clustered gene networks, activated upstream regulators, and common genes between a gene list of hatching-related genes in mice and a gene list associated with developmental progression in humans. RESULT(S) A total 275 differentially expressed genes were identified between hatching and prehatching blastocysts: 230 up-regulated and 45 down-regulated genes. Functional enrichment analysis suggested that blastocyst hatching in vitro is an adenosine triphosphate (ATP)-dependent process that involves protein biosynthesis and organization of the cytoskeleton. Furthermore, by regulating cell motility, the RhoA signaling pathway (including Arpc2, Cfl1, Gsn, Pfn1, Tpi1, Grb2, Tmsb10, Enah, and Rnd3 genes) may be a crucial signaling pathway during hatching. We also identified a cluster of genes (Krt8, Krt7, Cldn4, and Aqp3) that exerted functional roles in cell-cell junctions and water homeostasis during hatching. Moreover, some growth factors (angiotensinogen and fibroblast growth factor 2) and endocrine factors (estrogen receptor and prolactin) were predicted to be involved in the regulation of embryo hatching. In addition, we identified 81 potential genes that are potentially involved in the hatching process in human embryos. CONCLUSION(S) Our analysis identified potential genes and molecular regulatory pathways involved in the blastocyst hatching process in mice; we also identified genes that may potentially regulate hatching in human embryos. Our findings enhance our knowledge of embryo development and provide useful information for further exploring the mechanisms underlying embryo hatching.
Collapse
Affiliation(s)
- Yaqiong Liu
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| |
Collapse
|
15
|
Kubota K, Miwa M, Hayashi KG, Hosoe M, Sakatani M. Steroidal but not embryonic regulation of mucin 1 expression in bovine endometrium. J Reprod Dev 2021; 67:386-391. [PMID: 34645736 PMCID: PMC8668378 DOI: 10.1262/jrd.2021-087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In cow herd management, inadequate embryo implantation leads to pregnancy loss and causes severe economic losses. Thus, it is crucial to understand the molecular mechanisms underlying
endometrial receptivity and subsequent embryo implantation. Transmembrane glycocalyx mucin 1 (MUC1) has a large and highly glycosylated extracellular domain known to inhibit embryo
implantation via steric hindrance. The role of MUC1 in the bovine endometrium remains to be explored. Herein, we used simple but reliable in vivo and in
vitro experiments to investigate the expression and regulation of MUC1 in the bovine endometrium. MUC1 gene expression was analyzed in endometrial epithelial
cells collected by the cytobrush technique using reverse transcription-quantitative polymerase chain reaction. MUC1 protein expression was evaluated by immunohistochemical analysis of
endometrial samples collected from slaughtered cows. We used an in vitro cell culture model to study the regulation of MUC1 expression by treating cells with sex steroidal
hormones or co-culturing cells with a blastocyst. The results revealed that MUC1 was expressed and localized to the apical surface of luminal epithelial cells in the bovine endometrium. MUC1
expression disappeared during the luteal phase of the estrous cycle and during pregnancy. 17β-estradiol induced MUC1 expression, whereas progesterone inhibited its increase
and co-culturing with blastocysts did not affect the expression. A long postpartum interval is a known risk factor for reduced fertility, and MUC1 expression was higher in this compromised
condition. Our results demonstrated the MUC1 regulation by steroid hormones in bovine endometrium for embryo implantation, and we observed a negative correlation between MUC1 expression and
fertility.
Collapse
Affiliation(s)
- Kaiyu Kubota
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tochigi 329-2793, Japan
| | - Masafumi Miwa
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tochigi 329-2793, Japan
| | - Ken-Go Hayashi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0901, Japan
| | - Misa Hosoe
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0901, Japan
| | - Miki Sakatani
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tochigi 329-2793, Japan
| |
Collapse
|
16
|
Moorey SE, Monnig JM, Smith MF, Ortega MS, Green JA, Pohler KG, Bridges GA, Behura SK, Geary TW. Differential Transcript Profiles in Cumulus-Oocyte Complexes Originating from Pre-Ovulatory Follicles of Varied Physiological Maturity in Beef Cows. Genes (Basel) 2021; 12:genes12060893. [PMID: 34200628 PMCID: PMC8227736 DOI: 10.3390/genes12060893] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
Small dominant follicle diameter at induced ovulation, but not at spontaneous ovulation, decreased pregnancy rate, fertilization rate, and day seven embryo quality in beef cows. We hypothesized that the physiological status of the follicle at GnRH-induced ovulation has a direct effect on the transcriptome of the Cumulus-Oocyte complex, thereby affecting oocyte competence and subsequent embryo development. The objective of this study was to determine if the transcriptome of oocytes and associated cumulus cells (CC) differed among small (≤11.7 mm) and large follicles (≥12.7 mm) exposed to a GnRH-induced gonadotropin surge and follicles (11.7–14.0 mm) exposed to an endogenous gonadotropin surge (spontaneous follicles). RNA sequencing data, from pools of four oocytes or their corresponding CC, revealed 69, 94, and 83 differentially expressed gene transcripts (DEG) among oocyte pools from small versus large, small versus spontaneous, and large versus spontaneous follicle classifications, respectively. An additional 128, 98, and 80 DEG were identified among small versus large, small versus spontaneous, and large versus spontaneous follicle CC pools, respectively. The biological pathway “oxidative phosphorylation” was significantly enriched with DEG from small versus spontaneous follicle oocyte pools (FDR < 0.01); whereas the glycolytic pathway was significantly enriched with DEG from CC pools obtained from large versus small follicles (FDR < 0.01). These findings collectively suggest that altered carbohydrate metabolism within the Cumulus-Oocyte complex likely contributes to the decreased competency of oocytes from small pre-ovulatory follicles exposed to an exogenous GnRH-induced gonadotropin surge.
Collapse
Affiliation(s)
- Sarah E. Moorey
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
- Correspondence:
| | - Jenna M. Monnig
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (J.M.M.); (M.F.S.); (M.S.O.); (J.A.G.); (S.K.B.)
| | - Michael F. Smith
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (J.M.M.); (M.F.S.); (M.S.O.); (J.A.G.); (S.K.B.)
| | - M. Sofia Ortega
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (J.M.M.); (M.F.S.); (M.S.O.); (J.A.G.); (S.K.B.)
| | - Jonathan A. Green
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (J.M.M.); (M.F.S.); (M.S.O.); (J.A.G.); (S.K.B.)
| | - Ky G. Pohler
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA;
| | - G. Alan Bridges
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA;
| | - Susanta K. Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (J.M.M.); (M.F.S.); (M.S.O.); (J.A.G.); (S.K.B.)
| | - Thomas W. Geary
- USDA-ARS Fort Keogh Livestock and Range Research Lab, Miles City, MT 59301, USA;
| |
Collapse
|
17
|
Physical parameters of bovine activated oocytes and zygotes as predictors of development success. ZYGOTE 2021; 29:358-364. [PMID: 33736736 DOI: 10.1017/s0967199421000058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The worldwide production of in vitro-produced embryos in livestock species continues to grow. The current gold standard for selecting quality oocytes and embryos is morphologic assessment, yet this method is subjective and varies based on experience. There is a need for a non-invasive, objective method of selecting viable oocytes and embryos. The aim of this study was to determine if ooplasm area, diameter including zona pellucida (ZP), and ZP thickness of artificially activated oocytes and in vitro fertilized (IVF) zygotes are indicative of development success in vitro and correlated with embryo quality, as assessed by total blastomere number. Diameter affected the probability of development to the blastocyst stage in activated oocytes on day 7 (P < 0.01) and day 8 (P < 0.001), and had a tendency to affect IVF zygotes on day 8 (P = 0.08). Zona pellucida thickness affected the probability of development on day 7 (P < 0.01) and day 8 (P < 0.001) in activated oocytes, and day 8 for IVF zygotes (P < 0.05). An interaction between ZP thickness and diameter was observed on days 7 and 8 (P < 0.05) in IVF zygotes. Area did not significantly affect the probability of development, but was positively correlated with blastomere number on day 8 for IVF zygotes (P = 0.01, conditional R2 = 0.09). Physical parameters of bovine zygotes have the potential for use as a non-invasive, objective selection method. Upon further development, methods used in this study could be integrated into embryo production systems to improve IVF success.
Collapse
|
18
|
Stoecklein KS, Ortega MS, Spate LD, Murphy CN, Prather RS. Improved cryopreservation of in vitro produced bovine embryos using FGF2, LIF, and IGF1. PLoS One 2021; 16:e0243727. [PMID: 33534866 PMCID: PMC7857633 DOI: 10.1371/journal.pone.0243727] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022] Open
Abstract
In vitro embryo production systems are limited by their inability to consistently produce embryos with the competency to develop to the blastocyst stage, survive cryopreservation, and establish a pregnancy. Previous work identified a combination of three cytokines [fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF), and insulin-like growth factor 1 (IGF1)], called FLI, that we hypothesize improve preimplantation development of bovine embryos in vitro. To test this hypothesis, FLI was supplemented into oocyte maturation or embryo culture medium. Embryos were produced in vitro using abattoir-derived oocytes and fertilized with sperm from a single bull known to have high fertility. After an 18-20 h fertilization period, putative zygotes were cultured in synthetic oviductal fluid (SOF) for 8 days. The addition of FLI to the oocyte maturation medium increased (P < 0.05) the dissociation of transzonal projections at 12, 18, and 24 h of maturation, as well as, the proportion of oocytes that reached the metaphase II stage of meiosis. Additionally, lipid content was decreased (P < 0.05) in the blastocyst stage embryo. The addition of FLI during the culture period increased development to the blastocyst stage, cytoskeleton integrity, and survival following slow freezing, as well as, decreased post thaw cell apoptosis (P < 0.05). In conclusion, the supplementation of these cytokines in vitro has the potential to alleviate some of the challenges associated with the cryo-survival of in vitro produced bovine embryos through improving embryo development and embryo quality.
Collapse
Affiliation(s)
- Katy S. Stoecklein
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - M. Sofia Ortega
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Lee D. Spate
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Clifton N. Murphy
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Randall S. Prather
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
19
|
Interleukin-6 promotes primitive endoderm development in bovine blastocysts. BMC DEVELOPMENTAL BIOLOGY 2021; 21:3. [PMID: 33430761 PMCID: PMC7802221 DOI: 10.1186/s12861-020-00235-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022]
Abstract
Background Interleukin-6 (IL6) was recently identified as an embryotrophic factor in bovine embryos, where it acts primarily to mediate inner cell mass (ICM) size. This work explored whether IL6 affects epiblast (EPI) and primitive endoderm (PE) development, the two embryonic lineages generated from the ICM after its formation. Nuclear markers for EPI (NANOG) and PE (GATA6) were used to differentiate the two cell types. Results Increases (P < 0.05) in total ICM cell numbers and PE cell numbers were detected in bovine blastocysts at day 8 and 9 post-fertilization after exposure to 100 ng/ml recombinant bovine IL6. Also, IL6 increased (P < 0.05) the number of undifferentiated ICM cells (cells containing both PE and EPI markers). The effects of IL6 on EPI cell numbers were inconsistent. Studies were also completed to explore the importance of Janus kinase 2 (JAK2)-dependent signaling in bovine PE cells. Definitive activation of STAT3, a downstream target for JAK2, was observed in PE cells. Also, pharmacological inhibition of JAK2 decreased (P < 0.05) PE cell numbers. Conclusions To conclude, IL6 manipulates ICM development after EPI/PE cell fates are established. The PE cells are the target for IL6, where a JAK-dependent signal is used to regulate PE numbers. Supplementary Information The online version contains supplementary material available at 10.1186/s12861-020-00235-z.
Collapse
|
20
|
Smith MK, Clark CC, McCoski SR. Technical note: improving the efficiency of generating bovine extraembryonic endoderm cells. J Anim Sci 2020; 98:5871434. [PMID: 32663851 DOI: 10.1093/jas/skaa222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/10/2020] [Indexed: 11/12/2022] Open
Abstract
The formation of extraembryonic endoderm (XEN) occurs early in embryonic development. The cell types that develop from the XEN remain poorly studied in ruminant species because of the lack of suitable cell culture model systems. The goal of this work was to establish a protocol for producing XEN cell cultures from bovine blastocysts. Previous work identified fibroblast growth factor 2 (FGF2) as a facilitator of bovine XEN development. Further refinements in culture conditions studied here included exposure to 20% fetal bovine serum and FGF2 replenishment. These modifications yielded an endoderm outgrowth formation incidence of 81.6% ± 5.5% compared with 33.3% ± 5.5% in bovine serum albumin (BSA)-supplemented controls. These cells resembled XEN when examined morphologically and contained XEN transcripts (GATA binding protein 4 [GATA4] and GATA binding protein 6 [GATA6]) as well as transcripts present in visceral (BCL2 interacting protein 1 [BNIP1] and vascular endothelial growth factor A [VEGFA]) and parietal (C-X-C motif chemokine receptor 4 [CXCR4], thrombomodulin [THBD], and hematopoietically expressed homeobox [HHEX]) XEN. Two XEN cell lines were maintained for prolonged culture. Both lines continued to proliferate for approximately 6 wk before becoming senescent. These cultures maintained an XEN-like state and continued to express GATA4 and GATA6 until senescence. An increase in the abundance of visceral and parietal XEN transcripts was observed with continued culture, suggesting that these cells either undergo spontaneous differentiation or retain the ability to form various XEN cell types. Stocks of cultured cells exposed to a freeze-thaw procedure possessed similar phenotypic and genotypic behaviors as nonfrozen cells. To conclude, a procedure for efficient production of primary bovine XEN cell cultures was developed. This new protocol may assist researchers in exploring this overlooked cell type for its roles in nutrient supply during embryogenesis.
Collapse
Affiliation(s)
- Mary K Smith
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Catherine C Clark
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Sarah R McCoski
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT
| |
Collapse
|
21
|
Sang L, Ortiz W, Xiao Y, Estrada-Cortes E, Jannaman EA, Hansen PJ. Actions of putative embryokines on development of the preimplantation bovine embryo to the blastocyst stage. J Dairy Sci 2020; 103:11930-11944. [PMID: 33041033 DOI: 10.3168/jds.2020-19068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
Once it enters the uterus at d 4 to 5 after ovulation, the preimplantation bovine embryo is controlled in its development by regulatory signaling molecules from the mother called embryokines. Here, several cell-signaling molecules whose genes are expressed in the endometrium during d 5 to 7 after estrus were tested for the ability to affect the competence of the embryo for further development and the characteristics of the resultant blastocysts. Molecules tested were C-natriuretic peptide (CNP), IL-8, bovine morphogenetic protein 4 (BMP-4), IL-6, and leukemia inhibitory factor (LIF). None of the cell-signaling molecules tested improved the competence of the embryo to become a blastocyst; in fact, BMP-4 decreased development. All molecules modified attributes of the blastocyst formed in culture. In particular, CNP increased the number of cells in the ICM, whereas IL-8 decreased inner cell mass cell numbers and tended to increase the proportion of blastocysts that were hatching or hatched. In addition, BMP-4 decreased the proportion of blastocysts that were hatching. Interleukin-6 and, to a lesser extent, LIF activated the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in the inner cell mass, and LIF increased the percent of cells in the blastocyst that were positive for both NANOG and phosphorylated (activated) STAT3. In conclusion, our results indicate that CNP, IL-8, IL-6, LIF, and BMP-4 can modify embryonic development of the cow in a manner that affects characteristics of the resultant blastocyst. Further research is required to understand how these changes in characteristics of the blastocyst would affect competence of the embryo to establish and maintain pregnancy.
Collapse
Affiliation(s)
- Lei Sang
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910; Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China
| | - W Ortiz
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910
| | - Y Xiao
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910
| | - E Estrada-Cortes
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910; Campo Experimental Centro Altos de Jalisco, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos, Jalisco, México 47600
| | - E A Jannaman
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910
| | - P J Hansen
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910.
| |
Collapse
|
22
|
Kumar S, Singla SK, Manik R, Palta P, Chauhan MS. Effect of basic fibroblast growth factor (FGF2) on cumulus cell expansion, in vitro embryo production and gene expression in buffalo (Bubalus bubalis). Reprod Biol 2020; 20:501-511. [PMID: 32921625 DOI: 10.1016/j.repbio.2020.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/14/2020] [Accepted: 08/09/2020] [Indexed: 01/24/2023]
Abstract
The present study was undertaken to evaluate the effect of different concentration of FGF2 viz. 5 ng (T1), 10 ng (T2), and 20 ng/mL (T3) on cumulus cell expansion, oocyte maturation, in vitro embryo production, total cell number (TCN) of the blastocyst, and expression of the FGF2 and FGFR2 transcripts in buffalo oocytes and the embryos. Results showed that the effect of FGF2 on the diameter of buffalo COC was significantly higher (P < 0.05) in the T1 group than the other groups at 24h of maturation. The maturation and cleavage rate of oocytes was significantly higher (P < 0.05) in the T3 group than the control, however, the values did not different (P> 0.05) from other groups. The effect of FGF2 on morula and blastocyst yield did not different (P > 0.05) between treatment groups. However, the TCN of the blastocyst was slightly higher (P > 0.05) in the T3 group than the control and other groups. In subsequent trials, the expression of the FGF2 transcript was higher (P < 0.05) in A-grade of oocytes than the C- and D-grade of oocytes, but the expression was not different (P> 0.05) from the B-grade of oocytes. While the FGFR2 expression was higher (P < 0.05) in cumulus cells than any grades of oocytes. The relative abundance of FGF2 and FGFR2 transcripts was significantly higher (P < 0.05) in the 2-cell stage of the embryo than the other stages of embryos. This study was further extended to characterize the FGF2 ligand-binding site in the D3 domain of the buffalo FGF2 receptor. Bioinformatics analysis showed that the bovine FGF2 ligand-binding site in the D3 domain of buffalo was different from the D3 domain of the cattle.
Collapse
Affiliation(s)
- Satish Kumar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | - Suresh Kumar Singla
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Radheysham Manik
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Prabhat Palta
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Manmohan Singh Chauhan
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
23
|
Siqueira LG, Silva MVG, Panetto JC, Viana JH. Consequences of assisted reproductive technologies for offspring function in cattle. Reprod Fertil Dev 2020; 32:82-97. [PMID: 32188560 DOI: 10.1071/rd19278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abnormal fetuses, neonates and adult offspring derived by assisted reproductive technologies (ART) have been reported in humans, rodents and domestic animals. The use of ART has also been associated with an increased likelihood of certain adult diseases. These abnormalities may arise as a result of an excess of or missing maternally derived molecules during invitro culture, because the invitro environment is artificial and suboptimal for embryo development. Nonetheless, the success of ART in overcoming infertility or improving livestock genetics is undeniable. Limitations of invitro embryo production (IVEP) in cattle include lower rates of the establishment and maintenance of pregnancy and an increased incidence of neonatal morbidity and mortality. Moreover, recent studies demonstrated long-term effects of IVEP in cattle, including increased postnatal mortality, altered growth and a slight reduction in the performance of adult dairy cows. This review addresses the effects of an altered preimplantation environment on embryo and fetal programming and offspring development. We discuss cellular and molecular responses of the embryo to the maternal environment, how ART may disturb programming, the possible role of epigenetic effects as a mechanism for altered phenotypes and long-term effects of ART that manifest in postnatal life.
Collapse
Affiliation(s)
- Luiz G Siqueira
- Embrapa Gado de Leite, Juiz de Fora, MG, Brazil 36038-330; and Corresponding author.
| | | | - João C Panetto
- Embrapa Gado de Leite, Juiz de Fora, MG, Brazil 36038-330
| | - João H Viana
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil 70770-917
| |
Collapse
|
24
|
Idrees M, Oh SH, Muhammad T, El-Sheikh M, Song SH, Lee KL, Kong IK. Growth Factors, and Cytokines; Understanding the Role of Tyrosine Phosphatase SHP2 in Gametogenesis and Early Embryo Development. Cells 2020; 9:cells9081798. [PMID: 32751109 PMCID: PMC7465981 DOI: 10.3390/cells9081798] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Growth factors and cytokines have vital roles in germ cell development, gamete maturation, and early embryo development. Cell surface receptors are present for growth factors and cytokines to integrate with and trigger protein signaling in the germ and embryo intracellular milieu. Src-homology-2-containing phosphotyrosine phosphatase (SHP2) is a ubiquitously expressed, multifunctional protein that plays a central role in the signaling pathways involved in growth factor receptors, cytokine receptors, integrins, and G protein-coupled receptors. Over recent decades, researchers have recapitulated the protein signaling networks that influence gamete progenitor specification as well as gamete differentiation and maturation. SHP2 plays an indispensable role in cellular growth, survival, proliferation, differentiation, and migration, as well as the basic events in gametogenesis and early embryo development. SHP2, a classic cytosolic protein and a key regulator of signal transduction, displays unconventional nuclear expression in the genital organs. Several observations provided shreds of evidence that this behavior is essential for fertility. The growth factor and cytokine-dependent roles of SHP2 and its nuclear/cytoplasmic presence during gamete maturation, early embryonic development and embryo implantation are fascinating and complex subjects. This review is intended to summarize the previous and recent knowledge about the SHP2 functions in gametogenesis and early embryo development.
Collapse
Affiliation(s)
- Muhammad Idrees
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
| | - Seon-Hwa Oh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
| | - Tahir Muhammad
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Marwa El-Sheikh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Seok-Hwan Song
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
| | - Kyeong-Lim Lee
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea
- Correspondence: ; Tel.: +82-55-772-1942
| |
Collapse
|
25
|
Wooldridge LK, Nardi ME, Ealy AD. Zinc supplementation during in vitro embryo culture increases inner cell mass and total cell numbers in bovine blastocysts1. J Anim Sci 2020; 97:4946-4950. [PMID: 31712807 DOI: 10.1093/jas/skz351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023] Open
Abstract
Deficiencies in current embryo culture media likely contribute to the poor blastocyst development rates and pregnancy retention rates for in vitro produced (IVP) bovine embryos. Of special concern is the lack of micronutrients in these media formulations. One micronutrient of interest is zinc, an essential trace element involved with various enzyme and transcription factor activities. The objective of this work was to describe whether zinc sulfate supplementation during in vitro embryo culture affects bovine embryo development and blastomere numbers. Either 0, 2, 20, or 40 µM zinc sulfate was supplemented to presumptive zygotes cultured in synthetic oviductal fluid containing AAs and bovine serum albumin for 8 d. None of the treatments affected cleavage rates. Percentage of blastocysts on days 7 and 8 postfertilization was not affected by supplementing 2 or 20 µM zinc but were reduced (P < 0.05) with 40 µM zinc. In blastocysts harvested on day 8, inner cell mass (ICM) and total cell number were increased (P < 0.05) with 2 µM zinc supplementation but not with the other zinc concentrations. Numbers of trophectoderm cells were not affected by zinc treatment. In conclusion, supplementing zinc during bovine embryo culture did not impact blastocyst development but improved ICM cell numbers. This improvement in ICM cell number may have implications for improved pregnancy retention rates after IVP embryo transfer as smaller ICM sizes are associated with poor pregnancy success in cattle.
Collapse
Affiliation(s)
- Lydia K Wooldridge
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Madison E Nardi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
26
|
Idrees M, Xu L, Song SH, Joo MD, Lee KL, Muhammad T, El Sheikh M, Sidrat T, Kong IK. PTPN11 (SHP2) Is Indispensable for Growth Factors and Cytokine Signal Transduction During Bovine Oocyte Maturation and Blastocyst Development. Cells 2019; 8:cells8101272. [PMID: 31635340 PMCID: PMC6830097 DOI: 10.3390/cells8101272] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/05/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
This study was aimed to investigate the role of SHP2 (Src-homology-2-containing phosphotyrosine phosphatase) in intricate signaling networks invoked by bovine oocyte to achieve maturation and blastocyst development. PTPN11 (Protein Tyrosine Phosphatase, non-receptor type 11) encoding protein SHP2, a positive transducer of RTKs (Receptor Tyrosine Kinases) and cytokine receptors, can play a significant role in bovine oocyte maturation and embryo development, but this phenomenon has not yet been explored. Here, we used different growth factors, cytokines, selective activator, and a specific inhibitor of SHP2 to ascertain its role in bovine oocyte developmental stages in vitro. We found that SHP2 became activated by growth factors and cytokines treatment and was highly involved in the activation of oocyte maturation and embryo development pathways. Activation of SHP2 triggered MAPK (mitogen-activated protein kinases) and PI3K/AKT (Phosphoinositide 3-kinase/Protein kinase B) signaling cascades, which is not only important for GVBD (germinal vesical breakdown) induction but also for maternal mRNA translation. Inhibition of phosphatase activity of SHP2 with PHPS1 (Phenylhydrazonopyrazolone sulfonate 1) reduced oocytes maturation as well as bovine blastocyst ICM (inner cell mass) volume. Supplementation of LIF (Leukemia Inhibitory Factor) to embryos showed an unconventional direct relation between p-SHP2 and p-STAT3 (Signal transducer and activator of transcription 3) for blastocyst ICM development. Other than growth factors and cytokines, cisplatin was used to activate SHP2. Cisplatin activated SHP2 modulate growth factors effect and combine treatment significantly enhanced quality and rate of developed blastocysts.
Collapse
Affiliation(s)
- Muhammad Idrees
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Lianguang Xu
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Seok-Hwan Song
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | | | - Tahir Muhammad
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Marwa El Sheikh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Tabinda Sidrat
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
- The King Kong Ltd., Daegu 43017, Korea.
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| |
Collapse
|
27
|
Wooldridge LK, Ealy AD. Interleukin-6 increases inner cell mass numbers in bovine embryos. BMC DEVELOPMENTAL BIOLOGY 2019; 19:2. [PMID: 30709330 PMCID: PMC6359871 DOI: 10.1186/s12861-019-0182-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/25/2019] [Indexed: 12/17/2022]
Abstract
Background Work in other species suggests that interleukin-6 (IL6) promotes early embryo development. It was unclear whether IL6 serves as an embryokine in cultured bovine embryos. This work was undertaken to elucidate the role of IL6 during in vitro bovine embryo production. Results Transcripts for IL6 and its two cognate receptor subunits (IL6R, IL6ST) were confirmed in bovine embryos from the 1-cell to blastocyst stages. Supplementing 100 ng/ml recombinant bovine IL6 to in vitro-produced bovine embryos at day 1, 3 or 5 increased (P < 0.05) inner cell mass (ICM) cell number and the ICM:trophectoderm (TE) ratio but not TE cell number. No increase in ICM or TE cell number was observed after supplementation of 1 or 10 ng/ml IL6 beginning at either day 1 or 5. Sequential supplementation with 100 ng/ml IL6 at both day 1 and 5 (for a total of 200 ng/ml IL6) increased (P < 0.05) ICM cell number to a greater extent than supplementing IL6 at a single time period in one study but not a second study. Additionally, providing 200 ng/ml IL6 beginning at day 1 or 5 yielded no further increase on ICM cell numbers when compared to supplementing with 100 ng/ml IL6. IL6 treatment had no effect on cleavage or blastocyst formation in group culture. However, IL6 supplementation increased cleavage and day 8 blastocyst formation when bovine embryos were cultured individually. Conclusions These results implicate IL6 as an embryokine that specifically increases ICM cell numbers in bovine embryos and facilitates bovine blastocyst development in embryos cultured individually.
Collapse
Affiliation(s)
- Lydia K Wooldridge
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 3430 Litton-Reaves Hall (0306), Blacksburg, VA, 24060, USA
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 3430 Litton-Reaves Hall (0306), Blacksburg, VA, 24060, USA.
| |
Collapse
|
28
|
Vailes MT, McCoski SR, Wooldridge LK, Reese ST, Pohler KG, Roper DA, Mercadante VR, Ealy AD. Post-transfer outcomes in cultured bovine embryos supplemented with epidermal growth factor, fibroblast growth factor 2, and insulin-like growth factor 1. Theriogenology 2018; 124:1-8. [PMID: 30317067 DOI: 10.1016/j.theriogenology.2018.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/28/2018] [Accepted: 09/23/2018] [Indexed: 01/24/2023]
Abstract
This work examined the downstream fetal and placental outcomes of introducing a cocktail of uterine-derived growth factors during bovine embryo culture. Abattoir-derived bovine oocytes were matured and fertilized in vitro. On day 4 post-fertilization, ≥ 8-cell embryos were harvested, pooled and exposed to an embryokine mix, termed EFI, which contained recombinant human epidermal growth factor (10 ng/ml), bovine fibroblast growth factor-2 (10 ng/ml) and human insulin-like growth factor 1 (50 ng/ml) or to a carrier-only control treatment (CON). On day 7, individual, transfer-quality embryos were transferred to recipients. Timed ovulation was completed in mature, non-suckled commercial beef cows. Cows either were artificial inseminated (AI) or received an embryo (ET) on day 7 post-estrus (n = 23-31 cows/treatment over 4 replicate studies). The percentage of grade 1 and 2 morulae and blastocysts was greater (P < 0.05) for EFI-treated embryos than CON. The percentage of pregnant cows diagnosed by transrectal ultrasonography did not differ among the AI and ET groups on days 28, 42 and 56 post-estrus. There also were no differences in the ratio of male to female fetuses determined on day 60 post-estrus by transrectal ultrasonography. On day 21 post-estrus, the relative abundance of three interferon-stimulated gene (ISG) transcripts in peripheral leukocytes were not different based on AI/ET group or the sex of the conceptus. Circulating pregnancy-associated glycoprotein (PAG) concentrations differed (P < 0.05) among days. Also, a difference in PAG concentrations (P < 0.05) were detected between male and female pregnancies in the CON-ET group but not in the AI or EFI-ET groups. Crown-rump length was not affected by AI/ET group on day 42 but were less (P < 0.05) in the CON and EFI-ET groups than the AI group on day 56. These findings implicate EFI supplementation as a means for improving transferable embryo production in a bovine IVP system, but it is not clear if this treatment improves embryo competency after ET.
Collapse
Affiliation(s)
- McCauley T Vailes
- Department of Animal & Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sarah R McCoski
- Department of Animal & Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Lydia K Wooldridge
- Department of Animal & Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sydney T Reese
- Department of Animal Sciences, Texas A&M University, College Station, TX, USA
| | - Ky G Pohler
- Department of Animal Sciences, Texas A&M University, College Station, TX, USA
| | - David A Roper
- Department of Animal Sciences & Veterinary Technology, Tarleton State University, Stephenville, TX, USA
| | - Vitor R Mercadante
- Department of Animal & Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Alan D Ealy
- Department of Animal & Poultry Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
29
|
Negrón-Pérez VM, Vargas-Franco D, Hansen PJ. Role of chemokine (C-C motif) ligand 24 in spatial arrangement of the inner cell mass of the bovine embryo. Biol Reprod 2018; 96:948-959. [PMID: 28449095 DOI: 10.1093/biolre/iox037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/22/2017] [Indexed: 12/18/2022] Open
Abstract
The process of spatial rearrangement of cells of the inner cell mass (ICM) that are destined to become hypoblast is not well understood. The observation that the chemokine (C-C motif) ligand 24 (CCL24) and several other genes involved in chemokine signaling are expressed more in the ICM than in the trophectoderm of the bovine embryo resulted in the hypothesis that CCL24 participates in spatial organization of the ICM. Temporally, expression of CCL24 in the bovine embryo occurs coincidently with blastocyst formation: transcript abundance was low until the late morula stage, peaked in the blastocyst at Day 7 of development and declined by Day 9. Treatment of embryos with two separate antagonists of C-C motif chemokine receptor 3 (the prototypical receptor for CCL24) decreased the percent of GATA6+ cells (hypoblast precursors) that were located in the outside of the ICM. Similarly, injection of zygotes with a CCL24-specific morpholino decreased the percent of GATA6+ cells in the outside of the ICM. In conclusion, CCL24 assists in spatial arrangement of the ICM in the bovine embryo. This experiment points to new functions of chemokine signaling in the bovine embryo and is consistent with the idea that cell migration is involved in the spatial organization of hypoblast cells in the blastocyst.
Collapse
Affiliation(s)
- Verónica M Negrón-Pérez
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Dorianmarie Vargas-Franco
- Department of Molecular Genetics and Microbiology, Center for Epigenetics and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Peter J Hansen
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
30
|
Goodale LF, Hayrabedyan S, Todorova K, Roussev R, Ramu S, Stamatkin C, Coulam CB, Barnea ER, Gilbert RO. PreImplantation factor (PIF) protects cultured embryos against oxidative stress: relevance for recurrent pregnancy loss (RPL) therapy. Oncotarget 2018; 8:32419-32432. [PMID: 28423690 PMCID: PMC5464799 DOI: 10.18632/oncotarget.16028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/22/2017] [Indexed: 11/25/2022] Open
Abstract
Recurrent pregnancy loss (RPL) affects 2-3% of couples. Despite a detailed work-up, the etiology is frequently undefined, leading to non-targeted therapy. Viable embryos and placentae express PreImplantation Factor (PIF). Maternal circulating PIF regulates systemic immunity and reduces circulating natural killer cells cytotoxicity in RPL patients. PIF promotes singly cultured embryos' development while anti-PIF antibody abrogates it. RPL serum induced embryo toxicity is negated by PIF. We report that PIF rescues delayed embryo development caused by <3 kDa RPL serum fraction likely by reducing reactive oxygen species (ROS). We reveal that protein disulfide isomerase/thioredoxin (PDI/TRX) is a prime PIF target in the embryo, rendering it an important ROS scavenger. The 16F16-PDI/TRX inhibitor drastically reduced blastocyst development while exogenous PIF increased >2 fold the number of embryos reaching the blastocyst stage. Mechanistically, PDI-inhibitor preferentially binds covalently to oxidized PDI over its reduced form where PIF avidly binds. PIF by targeting PDI/TRX at a distinct site limits the inhibitor's pro-oxidative effects. The >3kDa RPL serum increased embryo demise by three-fold, an effect negated by PIF. However, embryo toxicity was not associated with the presence of putative anti-PIF antibodies. Collectively, PIF protects cultured embryos both against ROS, and higher molecular weight toxins. Using PIF for optimizing in vitro fertilization embryos development and reducing RPL is warranted.
Collapse
Affiliation(s)
- Lindsay F Goodale
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Soren Hayrabedyan
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Krassimira Todorova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Sivakumar Ramu
- CARI Reproductive Institute, Chicago, IL, USA.,Promigen Life Sciences, Downers Grove, IL, USA
| | - Christopher Stamatkin
- CARI Reproductive Institute, Chicago, IL, USA.,Therapeutic Validation Core, Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Eytan R Barnea
- BioIncept, LLC, Cherry Hill, NJ, USA.,Society for the Investigation of Early Pregnancy (SIEP), Cherry Hill, NJ, USA
| | - Robert O Gilbert
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.,Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| |
Collapse
|
31
|
Abstract
During the first days following fertilization, cells of mammalian embryo gradually lose totipotency, acquiring distinct identity. The first three lineages specified in the mammalian embryo are pluripotent epiblast, which later gives rise to the embryo proper, and two extraembryonic lineages, hypoblast (also known as primitive endoderm) and trophectoderm, which form tissues supporting development of the fetus in utero. Most of our knowledge regarding the mechanisms of early lineage specification in mammals comes from studies in the mouse. However, the growing body of evidence points to both similarities and species-specific differences. Understanding molecular and cellular mechanisms of early embryonic development in nonrodent mammals expands our understanding of basic mechanisms of differentiation and is essential for the development of effective protocols for assisted reproduction in agriculture, veterinary medicine, and for biomedical research. This review summarizes the current state of knowledge on key events in epiblast, hypoblast, and trophoblast differentiation in domestic mammals.
Collapse
Affiliation(s)
- Anna Piliszek
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland.
| | - Zofia E Madeja
- Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
32
|
Tríbulo P, Siqueira L, Oliveira L, Scheffler T, Hansen P. Identification of potential embryokines in the bovine reproductive tract. J Dairy Sci 2018; 101:690-704. [DOI: 10.3168/jds.2017-13221] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022]
|
33
|
Mesalam A, Kong R, Khan I, Chowdhury MMR, Choi BH, Kim SW, Cho KW, Jin JI, Kong IK. Effect of charcoal:dextran stripped fetal bovine serum on in vitro development of bovine embryos. Reprod Biol 2017; 17:312-319. [DOI: 10.1016/j.repbio.2017.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
|
34
|
Diógenes MN, Guimarães ALS, Leme LO, Maurício MF, Dode MAN. Effect of prematuration and maturation with fibroblast growth factor 10 (FGF10) on in vitro development of bovine oocytes. Theriogenology 2017; 102:190-198. [DOI: 10.1016/j.theriogenology.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/02/2017] [Accepted: 06/04/2017] [Indexed: 01/10/2023]
|
35
|
Xiong XR, Lan DL, Li J, Lin YQ, Li MY. Supplementation of cilostazol during in vitro maturation enhances the meiosis and developmental competence of yak oocytes by influencing cAMP content and mRNA expression. Anim Reprod Sci 2017; 186:21-30. [PMID: 28935242 DOI: 10.1016/j.anireprosci.2017.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/24/2017] [Indexed: 01/11/2023]
Abstract
The efficiency of in vitro embryo production remains low compared with that observed in vivo. Recent studies have independently shown that cyclic adenosine monophosphate (cAMP) modulation prior to in vitro maturation (IVM) supplementation improves oocyte developmental competence. In this context, special cAMP modulators have been applied during IVM as promising alternatives to improve this biotechnology. Accordingly, this study was conducted to evaluate the effects of treatment with cilostazol, a PDE3 inhibitor, during pre-IVM culture on oocyte meiotic maturation in yak. Immature yak cumulus-oocyte complexes (COCs) were treated in vitro without (control) or with 5μM cilostazol for 0, 2, or 4h prior to IVM. Results showed that the presence of cilostazol in pre-IVM medium significantly increased the percentages of oocytes at metaphase II stage compared with that in the control groups (P<0.05). Moreover, pre-IVM with cilostazol significantly enhanced intraoocyte cAMP and glutathione (GSH) levels at the pre-IVM or IVM phase relative to the no pre-IVM groups (P<0.05). After in vitro fertilization (IVF) and parthenogenetic activation (PA), the developmental competences of oocytes and embryo quality were improved significantly after pre-IVM with cilostazol compared with the control groups (P<0.05), given that the cleavage and blastocyst formation rates and the total number of blastocyst cells were increased. The presence of cilostazol also increased the levels of mRNA expression for adenylate cyclase 3 (ADCY3) and protein kinase 1 (PKA1), as well as decreased the abundance of phosphodiesterase 3A (PDE3A) in COCs and IVF blastocysts, compared with their control counterparts (P<0.05). The results demonstrated that the meiotic progression of immature yak oocytes could be reversibly affected by cAMP modulators. By contrast, treatment with cilostazol during pre-IVM positively affected the developmental competence of yak oocytes, probably by improving intraoocyte cAMP and GSH levels and regulating mRNA expression patterns. We concluded that appropriate treatment with cilostazol during pre-IVM would be beneficial for oocyte maturation in vitro.
Collapse
Affiliation(s)
- Xian-Rong Xiong
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; College of Life Science and Technology, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Dao-Liang Lan
- College of Life Science and Technology, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Jian Li
- College of Life Science and Technology, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Ya-Qiu Lin
- College of Life Science and Technology, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Ming-Yang Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China.
| |
Collapse
|
36
|
Zhang J, Qu P, Zhou C, Liu X, Ma X, Wang M, Wang Y, Su J, Liu J, Zhang Y. MicroRNA-125b is a key epigenetic regulatory factor that promotes nuclear transfer reprogramming. J Biol Chem 2017; 292:15916-15926. [PMID: 28794155 PMCID: PMC5612121 DOI: 10.1074/jbc.m117.796771] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/14/2017] [Indexed: 12/21/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT)-mediated reprogramming is a rapid, efficient, and sophisticated process that reprograms differentiated somatic cells to a pluripotent state. However, many factors in this elaborate reprogramming process remain largely unknown. Here, we report that the microRNA (miR) miR-125b is an important component of SCNT-mediated reprogramming. Luciferase reporter assay, quantitative PCR, and Western blotting demonstrated that miR-125b directly binds the 3'-untranslated region of SUV39H1, encoding the histone-lysine N-methyltransferase SUV39H1, to down-regulate histone H3 lysine-9 tri-methylation (H3K9me3) in SCNT embryos. Furthermore, the miR-125b/SUV39H1 interaction induced loss of SUV39H1-mediated H3K9me3, caused heterochromatin relaxation, and promoted the development of SCNT embryos. Transcriptome analyses of SCNT blastomeres indicated that HNF1 homeobox B (HNF1B), a gene encoding a transcription factor downstream of and controlled by the miR-125b/SUV39H1 axis, is important for conferring developmental competence on preimplantation embryos. We conclude that miR-125b promotes SCNT-mediated nuclear reprogramming by targeting SUV39H1 to decrease the deposition of repressive H3K9me3 modifications.
Collapse
Affiliation(s)
- Jingcheng Zhang
- From the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pengxiang Qu
- From the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chuan Zhou
- From the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Liu
- From the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaonan Ma
- From the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengyun Wang
- From the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yongsheng Wang
- From the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianmin Su
- From the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun Liu
- From the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yong Zhang
- From the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
37
|
Gómez E, Carrocera S, Martin D, Sánchez-Calabuig MJ, Gutiérrez-Adán A, Murillo A, Muñoz M. Hepatoma-derived growth factor: Protein quantification in uterine fluid, gene expression in endometrial-cell culture and effects on in vitro embryo development, pregnancy and birth. Theriogenology 2017; 96:118-125. [PMID: 28532827 DOI: 10.1016/j.theriogenology.2017.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/20/2017] [Accepted: 04/04/2017] [Indexed: 02/07/2023]
Abstract
Hepatoma-derived growth factor (HDGF) is present in the endometrium of cows and other mammals. Recombinant HDGF (rHDGF) improves bovine blastocyst development in vitro. However, specific culture conditions and essential aspects of HDGF uterine physiology are yet unknown. In this work we quantified total HDGF protein in uterine fluid (UF) by multiple reaction monitoring (MRM), and analyzed effects of rHDGF on specific embryonic stages with Day-6 bovine embryos cultured in vitro with and without BSA, and on pregnancy viability and calf phenotypes after embryo transfer to recipients. In addition, mRNA abundance of HDGF in endometrial cells co-cultured with one male or one female embryo was quantified. In the presence of BSA, rHDGF had no effect on blastocyst development; however, in BSA-free culture rHDGF mainly promoted development of early blastocysts in contrast with morulae. As the presence of HDGF contained in commercial BSA replacements was suspected, western blot confirmed HDGF identification in BSA both with and without fatty acids. Total HDGF quantified by MRM tended to increase in UF without vs. UF with embryos (P = 0.083). Pregnancy and birth rates, birth weight and calf measurements did not differ between embryos cultured with rHDGF and controls without rHDGF. However, HDGF abundance in cultured epithelial, endometrial cells tended to increase (P < 0.08) in culture with one male embryo. rHDGF acts selectively on specific embryonic stages, but care should be taken with specific macromolecular supplements in culture. The endometrial expression of HDGF can be regulated by the embryonic sex. The use of rHDGF is compatible with pregnancy and birth of normal calves.
Collapse
Affiliation(s)
- E Gómez
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco, 1225, 33394 Gijón, Spain.
| | - S Carrocera
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco, 1225, 33394 Gijón, Spain
| | - D Martin
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco, 1225, 33394 Gijón, Spain
| | - M J Sánchez-Calabuig
- Facultad de Veterinaria, Departamento de Medicina y Cirugía Animal, Universidad Complutense, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - A Gutiérrez-Adán
- Departamento de Reproducción Animal, INIA Avda. Puerta de Hierro, nº12, local 10, 28040 Madrid, Spain
| | - A Murillo
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco, 1225, 33394 Gijón, Spain
| | - M Muñoz
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco, 1225, 33394 Gijón, Spain
| |
Collapse
|
38
|
Bhardwaj R, Ansari MM, Parmar MS, Chandra V, Sharma GT. Stem Cell Conditioned Media Contains Important Growth Factors and Improves In Vitro Buffalo Embryo Production. Anim Biotechnol 2016; 27:118-25. [PMID: 26913553 DOI: 10.1080/10495398.2015.1118383] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The present study was designed to investigate the effect of MSCs-conditioned media (CM) on quality buffalo embryo production in vitro. MSCs were harvested from Wharton's jelly of 2-3 month old fetus and MSCs CM was collected. Immunocytochemistry and western blot assay revealed that MSCs secrete several important growth factors viz. FGF-2, IGF-1, LIF, TGF-β, and VEGF. Slaughterhouse derived culture grade cumulus oocyte complexes (COCs) were matured and fertilized in vitro. Presumptive zygotes were divided in four groups and cultured in vitro in respective media viz. group I (100% mSOF), Group II (100% Knockout Media DMEM+SR), Group III (50% CM + 50% mSOF), and group IV (100% CM). It was found that though the cleavage rate did not changed significantly (p < 0.05), but blastocyst rate was increased significantly (p < 0.05) in Group III and IV (24.24 ± 1.34 and 23.29 ± 1.25, respectively) compared to group I and II (16.04 ± 1.46 and 17.72 ± 0.94, respectively). Similarly, TCN was significantly (p < 0.05) higher in 50% CM and 100% CM replacement group (93.33 ± 1.91 and 92.13 ± 1.04, respectively) than the other two groups. It can be concluded from the study that MSCs secrete several important growth factors and MSCs-CM can be effectively used for enhancement of quality buffalo embryo production in vitro.
Collapse
Affiliation(s)
- Rahul Bhardwaj
- a Reproductive Physiology Laboratory, Division of Physiology and Climatology , ICAR-Indian Veterinary Research Institute , Izatnagar , India
| | - Matin M Ansari
- a Reproductive Physiology Laboratory, Division of Physiology and Climatology , ICAR-Indian Veterinary Research Institute , Izatnagar , India
| | - Mehtab S Parmar
- a Reproductive Physiology Laboratory, Division of Physiology and Climatology , ICAR-Indian Veterinary Research Institute , Izatnagar , India
| | - Vikash Chandra
- a Reproductive Physiology Laboratory, Division of Physiology and Climatology , ICAR-Indian Veterinary Research Institute , Izatnagar , India
| | - G Taru Sharma
- a Reproductive Physiology Laboratory, Division of Physiology and Climatology , ICAR-Indian Veterinary Research Institute , Izatnagar , India
| |
Collapse
|
39
|
Gómez E, Martin D, Carrocera S, Sánchez-Calabuig MJ, Gutierrez-Adán A, Alonso-Guervos M, Peynot N, Giraud-Delville C, Sandra O, Duranthon V, Muñoz M. Expression and localization of ARTEMIN in the bovine uterus and embryos. Theriogenology 2016; 90:153-162. [PMID: 28166962 DOI: 10.1016/j.theriogenology.2016.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/29/2016] [Accepted: 12/03/2016] [Indexed: 12/28/2022]
Abstract
Artemin a member of the glial cell line-derived neurotrophic factor (GDNF) family is present in mice and human preimplantation embryos, and reproductive tract, during early pregnancy promoting embryo development in vitro. The presence of artemin in cattle embryos and reproductive tract, however, is unknown. In the present work we identified for first time artemin in bovine uterine fluid (UF) (Western blot), endometrium (RT-PCR, Western blot and immunohistochemistry) and embryos (RT-PCR and immunohistochemistry) during early preimplantation development. In addition, GFRalpha3, a component of the artemin receptor was localized in blastocysts produced in vitro. Individually developing embryos released ARTEMIN in culture medium and triggered ARTEMIN mRNA down-regulation in epithelial cells from endometrial cell cultures. Our results suggest that ARTEMIN derived from early embryos and maternal reproductive tract may exert important roles during early development in cattle.
Collapse
Affiliation(s)
- E Gómez
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - D Martin
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - S Carrocera
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - M J Sánchez-Calabuig
- INIA Departamento de Reproducción Animal y Conservación de Recursos Zoogenéticos, Cra de La Coruña Km 5600, 28040, Madrid, Spain
| | - A Gutierrez-Adán
- INIA Departamento de Reproducción Animal y Conservación de Recursos Zoogenéticos, Cra de La Coruña Km 5600, 28040, Madrid, Spain
| | - M Alonso-Guervos
- Unidad de Microscopía Fotónica y Proceso de Imágenes, Servicios Científico Técnicos, Universidad de Oviedo, Instituto Universitario de Oncología de Asturias (IUOPA), 33006, Oviedo, Spain
| | - N Peynot
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350, Jouy-en-Josas, France
| | - C Giraud-Delville
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350, Jouy-en-Josas, France
| | - O Sandra
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350, Jouy-en-Josas, France
| | - V Duranthon
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350, Jouy-en-Josas, France
| | - M Muñoz
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394, Gijón, Spain.
| |
Collapse
|
40
|
Derivation of Induced Trophoblast Cell Lines in Cattle by Doxycycline-Inducible piggyBac Vectors. PLoS One 2016; 11:e0167550. [PMID: 27907214 PMCID: PMC5132304 DOI: 10.1371/journal.pone.0167550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/16/2016] [Indexed: 01/24/2023] Open
Abstract
Trophectoderm lineage specification is one of the earliest differentiation events in mammalian development. The trophoblast lineage, which is derived from the trophectoderm, mediates implantation and placental formation. However, the processes involved in trophoblastic differentiation and placental formation in cattle remain unclear due to interspecies differences when compared with other model systems and the small repertoire of available trophoblast cell lines. Here, we describe the generation of trophoblast cell lines (biTBCs) from bovine amnion-derived cells (bADCs) using an induced pluripotent stem cell technique. bADCs were introduced with piggyBac vectors containing doxycycline (Dox)-inducible transcription factors (Oct3⁄4(POU5F1), Sox2, Klf4, and c-Myc). Colonies that appeared showed a flattened epithelial-like morphology similar to cobblestones, had a more definite cell boundary between cells, and frequently formed balloon-like spheroids similar to trophoblastic vesicles (TVs). biTBCs were propagated for over 60 passages and expressed trophoblast-related (CDX2, ELF5, ERRβ, and IFN-τ) and pluripotency-related genes (endogenous OCT3/4, SOX2, KLF4, and c-MYC). Furthermore, when biTBCs were induced to differentiate by removing Dox from culture, they formed binucleate cells and began to express pregnancy-related genes (PL, PRP1, and PAG1). This is the first report demonstrating that the induction of pluripotency in bovine amniotic cells allows the generation of trophoblastic cell lines that possess trophoblast stem cell-like characteristics and have the potential to differentiate into the extra-embryonic cell lineage. These cell lines can be a new cell source as a model for studying trophoblast cell lineages and implantation processes in cattle.
Collapse
|
41
|
Yang J, Zhang D, Yu Y, Zhang RJ, Hu XL, Huang HF, Lu YC. Binding of FGF2 to FGFR2 in an autocrine mode in trophectoderm cells is indispensable for mouse blastocyst formation through PKC-p38 pathway. Cell Cycle 2016; 14:3318-30. [PMID: 26378412 DOI: 10.1080/15384101.2015.1087622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fibroblast growth factors (FGF1, FGF2 and FGF4) and fibroblast growth factor receptors (FGFR1, FGFR2, FGFR3 and FGFR4) have been reported to be expressed in preimplantation embryos and be required for their development. However, the functions of these molecules in trophectoderm cells (TEs) that lead to the formation of the blastocyst as well as the underlying mechanism have not been elucidated. The present study has demonstrated for the first time that endogenous FGF2 secreted by TEs can regulate protein expression and distribution in TEs via the FGFR2-mediated activation of PKC and p38, which are important for the development of expanded blastocysts. This finding provides the first explanation for the long-observed phenomenon that only high concentrations of exogenous FGFs have effects on embryonic development, but in vivo the amount of endogenous FGFs are trace. Besides, the present results suggest that FGF2/FGFR2 may act in an autocrine fashion and activate the downstream PKC/p38 pathway in TEs during expanded blastocyst formation.
Collapse
Affiliation(s)
- Jing Yang
- a Department of Reproductive Endocrinology ; Women's Hospital, Zhejiang University School of Medicine ; Hangzhou, Zhejiang , China.,b The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University ; Hangzhou, Zhejiang , China.,d Department of Assisted Reproduction ; Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine ; Shanghai , China
| | - Dan Zhang
- a Department of Reproductive Endocrinology ; Women's Hospital, Zhejiang University School of Medicine ; Hangzhou, Zhejiang , China.,b The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University ; Hangzhou, Zhejiang , China
| | - Ying Yu
- a Department of Reproductive Endocrinology ; Women's Hospital, Zhejiang University School of Medicine ; Hangzhou, Zhejiang , China.,b The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University ; Hangzhou, Zhejiang , China
| | - Run-Ju Zhang
- a Department of Reproductive Endocrinology ; Women's Hospital, Zhejiang University School of Medicine ; Hangzhou, Zhejiang , China.,b The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University ; Hangzhou, Zhejiang , China
| | - Xiao-Ling Hu
- a Department of Reproductive Endocrinology ; Women's Hospital, Zhejiang University School of Medicine ; Hangzhou, Zhejiang , China.,b The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University ; Hangzhou, Zhejiang , China
| | - He-Feng Huang
- b The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University ; Hangzhou, Zhejiang , China.,c The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University ; Shanghai , China
| | - Yong-Chao Lu
- a Department of Reproductive Endocrinology ; Women's Hospital, Zhejiang University School of Medicine ; Hangzhou, Zhejiang , China.,b The Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University ; Hangzhou, Zhejiang , China
| |
Collapse
|
42
|
Ozawa M, Sakatani M, Dobbs KB, Kannampuzha-Francis J, Hansen PJ. Regulation of gene expression in the bovine blastocyst by colony stimulating factor 2. BMC Res Notes 2016; 9:250. [PMID: 27130208 PMCID: PMC4850677 DOI: 10.1186/s13104-016-2038-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/12/2016] [Indexed: 01/02/2023] Open
Abstract
Background Colony stimulating factor 2 can have multiple effects on the function of the preimplantation embryo that include increased potential to develop to the blastocyst stage, reduced apoptosis, and enhanced ability of inner cell mass (ICM) to remain pluripotent after culture. The objective of the current experiment was to identify genes regulated by CSF2 in the ICM and trophectoderm (TE) of the bovine blastocyst with the goal of identifying possible molecular pathways by which CSF2 increases developmental competence for survival. Embryos were produced in vitro and cultured from Day 6 to 8 in serum-free medium containing 10 ng/ml recombinant bovine CSF2 or vehicle. Blastocysts were harvested at Day 8 and ICM separated from TE by magnetic-activated cell sorting. RNA was purified and used to prepare amplified cDNA, which was then subjected to high-throughput sequencing using the SOLiD 4.0 system. Three pools of amplified cDNA were analyzed per treatment. Results The number of genes whose expression was regulated by CSF2, using P < 0.05 and >1.5-fold difference as cut-offs, was 945 in the ICM (242 upregulated by CSF2 and 703 downregulated) and 886 in the TE (401 upregulated by CSF2 and 485 downregulated). Only 49 genes were regulated in a similar manner by CSF2 in both cell types. The three significant annotation clusters in which genes regulated by ICM were overrepresented were related to membrane signaling. Genes downregulated by CSF2 in ICM were overrepresented in several pathways including those for ERK and AKT signaling. The only significant annotation cluster containing an overrepresentation of genes regulated by CSF2 in TE was for secreted or extracellular proteins. In addition, genes downregulated in TE were overrepresented in TGFβ and Nanog pathways. Conclusions Differentiation of the blastocyst is such that, by Day 8 after fertilization, the ICM and TE respond differently to CSF2. Analysis of the genes regulated by CSF2 in ICM and TE are suggestive that CSF2 reinforces developmental fate and function of both cell lineages. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-2038-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manabu Ozawa
- Dept. of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA.,Laboratory of Developmental Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Miki Sakatani
- Kyushu-Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Kumamoto, Japan
| | - Kyle B Dobbs
- Dept. of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA.,Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA, 92083, USA
| | - Jasmine Kannampuzha-Francis
- Dept. of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA
| | - Peter J Hansen
- Dept. of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA.
| |
Collapse
|
43
|
Sudano MJ, Rascado TDS, Tata A, Belaz KRA, Santos VG, Valente RS, Mesquita FS, Ferreira CR, Araújo JP, Eberlin MN, Landim-Alvarenga FDC. Lipidome signatures in early bovine embryo development. Theriogenology 2016; 86:472-484.e1. [PMID: 27107972 DOI: 10.1016/j.theriogenology.2016.03.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mammalian preimplantation embryonic development is a complex, conserved, and well-orchestrated process involving dynamic molecular and structural changes. Understanding membrane lipid profile fluctuation during this crucial period is fundamental to address mechanisms governing embryogenesis. Therefore, the aim of the present work was to perform a comprehensive assessment of stage-specific lipid profiles during early bovine embryonic development and associate with the mRNA abundance of lipid metabolism-related genes (ACSL3, ELOVL5, and ELOVL6) and with the amount of cytoplasmic lipid droplets. Immature oocytes were recovered from slaughterhouse-derived ovaries, two-cell embryos, and eight- to 16-cell embryos, morula, and blastocysts that were in vitro produced under different environmental conditions. Lipid droplets content and mRNA transcript levels for ACSL3, ELOVL5, and ELOVL6, monitored by lipid staining and quantitative polymerase chain reaction, respectively, increased at morula followed by a decrease at blastocyst stage. Relative mRNA abundance changes of ACSL3 were closely related to cytoplasmic lipid droplet accumulation. Characteristic dynamic changes of phospholipid profiles were observed during early embryo development and related to unsaturation level, acyl chain length, and class composition. ELOVL5 and ELOVL6 mRNA levels were suggestive of overexpression of membrane phospholipids containing elongated fatty acids with 16, 18, and 20 carbons. In addition, putative biomarkers of key events of embryogenesis, embryo lipid accumulation, and elongation were identified. This study provides a comprehensive description of stage-specific lipidome signatures and proposes a mechanism to explain its potential relationship with the fluctuation of both cytoplasmic lipid droplets content and mRNA levels of lipid metabolism-related genes during early bovine embryo development.
Collapse
Affiliation(s)
- Mateus J Sudano
- School of Veterinary Medicine, Federal University of Pampa, Uruguaiana, RS, Brazil.
| | - Tatiana D S Rascado
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, SP, Brazil
| | - Alessandra Tata
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | - Katia R A Belaz
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | - Vanessa G Santos
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | - Roniele S Valente
- School of Veterinary Medicine, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Fernando S Mesquita
- School of Veterinary Medicine, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Christina R Ferreira
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | - João P Araújo
- Department of Microbiology and Immunology, Biosciences Institute, São Paulo State University, Botucatu, SP, Brazil
| | - Marcos N Eberlin
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | - Fernanda D C Landim-Alvarenga
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, SP, Brazil
| |
Collapse
|
44
|
In vitro bovine embryo production in a synthetic medium: Embryo development, cryosurvival, and establishment of pregnancy. Theriogenology 2015; 84:1053-60. [DOI: 10.1016/j.theriogenology.2015.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 03/12/2015] [Accepted: 04/15/2015] [Indexed: 11/20/2022]
|
45
|
Denicol AC, Leão BCS, Dobbs KB, Mingoti GZ, Hansen PJ. Influence of Sex on Basal and Dickkopf-1 Regulated Gene Expression in the Bovine Morula. PLoS One 2015. [PMID: 26196299 PMCID: PMC4510475 DOI: 10.1371/journal.pone.0133587] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Sex affects function of the developing mammalian embryo as early as the preimplantation period. There were two goals of the current objective. The first was to determine the degree and nature of differences in gene expression between female and male embryos in the cow at the morula stage of development. The second objective was to determine whether DKK1, a molecule known to alter differentiation of the blastocyst, would affect gene expression differently for female and male morulae. In Experiment 1, female and male embryos were treated with DKK1 at Day 5 after insemination. Morulae were harvested 24 h after treatment, pooled in groups of 20 for microarray analysis and RNA subjected to analysis of gene expression by microarray hybridization. There were 662 differentially expressed genes between females and males and 128 of these genes had a fold change ≥ 1.5 between the two sexes. Of the genes upregulated in females, 49.5% were located in the X chromosome. Functional analysis predicted that cell survival was greater in female embryos. Experiment 2 involved a similar design except that transcripts for 12 genes previously reported to be affected by sex, DKK1 or the interaction were quantified by quantitative polymerase chain reaction. Expression of all genes tested that were affected by sex in experiment 1 was affected in a similar manner in Experiment 2. In contrast, effects of DKK1 on gene expression were largely not repeatable in Experiment 2. The exception was for the Hippo signaling gene AMOT, which was inhibited by DKK1. In Experiment 3, embryos produced by fertilization with unsorted sperm were treated with DKK1 at Day 5 and abundance of transcripts for CDX2, GATA6, and NANOG determined at Days 5, 6 and 7 after insemination. There was no effect of DKK1 on expression of any of the three genes. In conclusion, female and male bovine embryos have a different pattern of gene expression as early as the morula stage, and this is due to a large extent to expression of genes in the X chromosomes in females. Differential gene expression between female and male embryos is likely the basis for increased resistance to cell death signals in female embryos and disparity in responses of female and male embryos to changes in the maternal environment.
Collapse
Affiliation(s)
- Anna C Denicol
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Beatriz C S Leão
- Laboratory of Physiology of Reproduction, School of Veterinary Medicine, Universidade Estadual Paulista-UNESP, Araçatuba, SP, Brazil
| | - Kyle B Dobbs
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Gisele Z Mingoti
- Laboratory of Physiology of Reproduction, School of Veterinary Medicine, Universidade Estadual Paulista-UNESP, Araçatuba, SP, Brazil
| | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
46
|
Abazari-Kia AH, Dehghani-Mohammadabadi M, Mohammadi-Sangcheshmeh A, Zhandi M, Salehi M. Regulation of embryonic development and apoptotic-related gene expression by brain-derived neurotrophic factor in two different culture conditions in ovine. Theriogenology 2015; 84:62-9. [DOI: 10.1016/j.theriogenology.2015.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/15/2015] [Accepted: 02/09/2015] [Indexed: 02/04/2023]
|
47
|
Mori M, Hayashi T, Isozaki Y, Takenouchi N, Sakatani M. Heat shock decreases the embryonic quality of frozen-thawed bovine blastocysts produced in vitro. J Reprod Dev 2015; 61:423-9. [PMID: 26096768 PMCID: PMC4623148 DOI: 10.1262/jrd.2015-003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/23/2015] [Indexed: 01/30/2023] Open
Abstract
In this study, the effect of heat shock on frozen-thawed blastocysts was evaluated using in vitro-produced (IVP) bovine embryos. In experiment 1, the effects of 6 h of heat shock at 41.0 C on fresh blastocysts were evaluated. HSPA1A expression as a reflection of stress was increased by heat shock (P < 0.05), but the expressions of the quality markers IFNT and POU5F1 were not affected. In experiment 2, frozen-thawed blastocysts were incubated at 38.5 C for 6 h (cryo-con) or exposed to heat shock at 41.0 C for 6 h (cryo-HS). Then, blastocysts were cultured at 38.5 C until 48 h after thawing (both conditions). Cryo-HS blastocysts exhibited a decreased recovery rate: HSPA1A expression was dramatically increased compared with that in fresh or cryo-con blastocysts at 6 h, and IFNT expression was decreased compared with that in cryo-con blastocysts at 6 h (both P < 0.05). Cryo-con blastocysts at 6 h also exhibited higher HSPA1A expression than fresh blastocysts (P < 0.05). At 48 h after thawing, the number of hatched blastocysts and blastocyst diameter were lower in cryo-HS blastocysts (P < 0.05). Cryo-con blastocysts showed lower POU5F1 levels at 48 h than fresh, cryo-con or cryo-HS blastocysts at 6 h (P < 0.05), but their POU5F1 levels were not different from those of cryo-HS blastocysts at 48 h. These results indicated that application of heat shock to frozen-thawed blastocysts was highly damaging. The increase in damage by the interaction of freezing-thawing and heat shock might be one reason for the low conception rate in frozen-thawed embryo transfer in summer.
Collapse
Affiliation(s)
- Miyuki Mori
- Fukuoka Agriculture and Forestry Research Center, Fukuoka 818-8549, Japan
| | | | | | | | | |
Collapse
|
48
|
Moradi M, Riasi A, Ostadhosseini S, Hajian M, Hosseini M, Hosseinnia P, Nasr-Esfahani MH. Expression profile of FGF receptors in preimplantation ovine embryos and the effect of FGF2 and PD173074. Growth Factors 2015; 33:393-400. [PMID: 26768755 DOI: 10.3109/08977194.2015.1102138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) are increasingly recognized as important regulators of embryo development in mammals. This study investigated the importance of FGF signaling during in vitro development of ovine embryo. The mRNAs of four FGFR subtypes were detected throughout preimplantation development of in vitro fertilized (IVF) embryos, peaked in abundance at the morula stage, and decreased significantly at the blastocyst stage. To gain insight into the role of these mRNAs in embryo development, IVF embryos were cultured in the presence of FGF2 (100 or 500 ng/ml: beginning from days 1 or 4 to 7) or PD173074 (1 µM: beginning from days 1 to 7) as usual treatments for activation or inhibition of FGFRs, respectively. FGF2-supplementation did not affect the percentage of embryos that developed to the blastocyst, blastocyst cell count and the proportion of cells allocated in inner cell mass (ICM) and trophectoderm (TE) compared to control (p > 0.05). Also, increasing the dosage or duration of FGF2 treatment did not significantly alter blastocyst yield or differential cell count (p > 0.05). PD173074-mediated inhibition of FGFRs did not significantly affect blastocyst yield (p > 0.05). Assessment of expression profiles of lineage-associated markers revealed that FGF2 (500 ng/ml) supplementation: (i) significantly increased expression of putative hypoblast marker (GATA4), (ii) significantly decreased expression of putative epiblast (EPI) marker (NANOG) and (iii) did not change TE markers (CDX2 and IFNT) and pluripotency makers (OCT4, SOX2 and REX1). In summary, FGF2-mediated activation of FGFRs may promote a switch in transcriptional profile of ovine ICM from EPI- to hypoblast-associated gene expression.
Collapse
MESH Headings
- Animals
- Blastocyst/metabolism
- Embryonic Development/drug effects
- Female
- Fibroblast Growth Factor 2/pharmacology
- GATA4 Transcription Factor/biosynthesis
- Gene Expression Regulation, Developmental/physiology
- Homeodomain Proteins/biosynthesis
- Male
- Pyrimidines/pharmacology
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 2/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 3/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 4/biosynthesis
- Sheep
Collapse
Affiliation(s)
- Mehdi Moradi
- a Department of Reproductive Biotechnology , Reproductive Biomedicine Research Center, Royan Institute for Biotechnology , ACECR , Isfahan , Iran
- b Department of Animal Science , College of Agriculture, Isfahan University of Technology , Isfahan , Iran , and
| | - Ahmad Riasi
- b Department of Animal Science , College of Agriculture, Isfahan University of Technology , Isfahan , Iran , and
| | - Somayyeh Ostadhosseini
- a Department of Reproductive Biotechnology , Reproductive Biomedicine Research Center, Royan Institute for Biotechnology , ACECR , Isfahan , Iran
| | - Mehdi Hajian
- a Department of Reproductive Biotechnology , Reproductive Biomedicine Research Center, Royan Institute for Biotechnology , ACECR , Isfahan , Iran
| | - Morteza Hosseini
- a Department of Reproductive Biotechnology , Reproductive Biomedicine Research Center, Royan Institute for Biotechnology , ACECR , Isfahan , Iran
| | - Pouria Hosseinnia
- a Department of Reproductive Biotechnology , Reproductive Biomedicine Research Center, Royan Institute for Biotechnology , ACECR , Isfahan , Iran
| | - Mohammad Hossein Nasr-Esfahani
- a Department of Reproductive Biotechnology , Reproductive Biomedicine Research Center, Royan Institute for Biotechnology , ACECR , Isfahan , Iran
- c Department of Embryology , Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine , ACECR , Tehran , Iran
| |
Collapse
|
49
|
Coble DJ, Fleming D, Persia ME, Ashwell CM, Rothschild MF, Schmidt CJ, Lamont SJ. RNA-seq analysis of broiler liver transcriptome reveals novel responses to high ambient temperature. BMC Genomics 2014; 15:1084. [PMID: 25494716 PMCID: PMC4299486 DOI: 10.1186/1471-2164-15-1084] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/02/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In broilers, high ambient temperature can result in reduced feed consumption, digestive inefficiency, impaired metabolism, and even death. The broiler sector of the U.S. poultry industry incurs approximately $52 million in heat-related losses annually. The objective of this study is to characterize the effects of cyclic high ambient temperature on the transcriptome of a metabolically active organ, the liver. This study provides novel insight into the effects of high ambient temperature on metabolism in broilers, because it is the first reported RNA-seq study to characterize the effect of heat on the transcriptome of a metabolic-related tissue. This information provides a platform for future investigations to further elucidate physiologic responses to high ambient temperature and seek methods to ameliorate the negative impacts of heat. RESULTS Transcriptome sequencing of the livers of 8 broiler males using Illumina HiSeq 2000 technology resulted in 138 million, 100-base pair single end reads, yielding a total of 13.8 gigabases of sequence. Forty genes were differentially expressed at a significance level of P-value < 0.05 and a fold-change ≥ 2 in response to a week of cyclic high ambient temperature with 27 down-regulated and 13 up-regulated genes. Two gene networks were created from the function-based Ingenuity Pathway Analysis (IPA) of the differentially expressed genes: "Cell Signaling" and "Endocrine System Development and Function". The gene expression differences in the liver transcriptome of the heat-exposed broilers reflected physiological responses to decrease internal temperature, reduce hyperthermia-induced apoptosis, and promote tissue repair. Additionally, the differential gene expression revealed a physiological response to regulate the perturbed cellular calcium levels that can result from high ambient temperature exposure. CONCLUSIONS Exposure to cyclic high ambient temperature results in changes at the metabolic, physiologic, and cellular level that can be characterized through RNA-seq analysis of the liver transcriptome of broilers. The findings highlight specific physiologic mechanisms by which broilers reduce the effects of exposure to high ambient temperature. This information provides a foundation for future investigations into the gene networks involved in the broiler stress response and for development of strategies to ameliorate the negative impacts of heat on animal production and welfare.
Collapse
Affiliation(s)
- Derrick J Coble
- />Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| | - Damarius Fleming
- />Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| | - Michael E Persia
- />Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| | - Chris M Ashwell
- />Department of Poultry Science, North Carolina State University, Raleigh, NC 27695 USA
| | - Max F Rothschild
- />Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| | - Carl J Schmidt
- />Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716 USA
| | - Susan J Lamont
- />Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
50
|
Angelman syndrome imprinting center encodes a transcriptional promoter. Proc Natl Acad Sci U S A 2014; 112:6871-5. [PMID: 25378697 DOI: 10.1073/pnas.1411261111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clusters of imprinted genes are often controlled by an imprinting center that is necessary for allele-specific gene expression and to reprogram parent-of-origin information between generations. An imprinted domain at 15q11-q13 is responsible for both Angelman syndrome (AS) and Prader-Willi syndrome (PWS), two clinically distinct neurodevelopmental disorders. Angelman syndrome arises from the lack of maternal contribution from the locus, whereas Prader-Willi syndrome results from the absence of paternally expressed genes. In some rare cases of PWS and AS, small deletions may lead to incorrect parent-of-origin allele identity. DNA sequences common to these deletions define a bipartite imprinting center for the AS-PWS locus. The PWS-smallest region of deletion overlap (SRO) element of the imprinting center activates expression of genes from the paternal allele. The AS-SRO element generates maternal allele identity by epigenetically inactivating the PWS-SRO in oocytes so that paternal genes are silenced on the future maternal allele. Here we have investigated functional activities of the AS-SRO, the element necessary for maternal allele identity. We find that, in humans, the AS-SRO is an oocyte-specific promoter that generates transcripts that transit the PWS-SRO. Similar upstream promoters were detected in bovine oocytes. This result is consistent with a model in which imprinting centers become DNA methylated and acquire maternal allele identity in oocytes in response to transiting transcription.
Collapse
|