1
|
Almawash S. Revolutionary Cancer Therapy for Personalization and Improved Efficacy: Strategies to Overcome Resistance to Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2025; 17:880. [PMID: 40075727 PMCID: PMC11899125 DOI: 10.3390/cancers17050880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a significant public health issue worldwide, standing as a primary contributor to global mortality, accounting for approximately 10 million fatalities in 2020 [...].
Collapse
Affiliation(s)
- Saud Almawash
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
2
|
Brose L, Schäfer A, Franzke K, Cammann C, Seifert U, Pei G, Blome S, Knittler MR, Blohm U. Virulent African swine fever virus infection of porcine monocytes causes SLA I subversion due to loss of proper ER structure/function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae063. [PMID: 40073098 DOI: 10.1093/jimmun/vkae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/10/2024] [Indexed: 03/14/2025]
Abstract
African swine fever virus (ASFV) is a large DNA virus of the Asfarviridae family that causes a fatal hemorrhagic disease in domestic swine and wild boar. Infections with moderately virulent strains predominantly result in a milder clinical course and lower lethality. As target cells of ASFV, monocytes play a crucial role in triggering T-cell-mediated immune defense and ASF pathogenesis. We compared the effect of the highly virulent "Armenia2008" (ASFV-A) virus strain with that of the naturally attenuated "Estonia2014" (ASFV-E) on cellular immune activation in vivo and on primary monocytes ex vivo. Specifically, we asked whether antigen presentation of porcine monocytes is impaired upon ASFV-A infection. ASFV-A-infected monocytes are characterized by lower levels of swine leukocyte antigen (SLA) class I on the cell surface than ASFV-E-infected and uninfected monocytes. Despite stable steady-state SLA I mRNA/protein levels and expression of critical components of the antigen processing machinery, a marked decrease in maturation and reduced surface transport of SLA I were observed in ASFV-A-infected monocytes. The intracellular maturation block of SLA I was accompanied by a loss of functional rough ER structures and a pronounced formation of ER-associated aggresomes. This unsolved cellular stress resulted in a shutdown of overall host cell protein translation, mitochondrial dysfunction, and caspase-3-mediated apoptosis. In contrast, no such cellular subversion phenomenon was found in ASFV-E-infected monocytes. Our findings suggest that in domestic pigs infected with highly virulent ASFV-A, sequential subversion events occur in infected monocytes, likely leading to compromised T-cell activation and impaired downstream responses against ASFV.
Collapse
Affiliation(s)
- Luise Brose
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Immunology, Greifswald-Isle of Riems, Germany
| | - Alexander Schäfer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Greifswald-Isle of Riems, Germany
| | - Kati Franzke
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Greifswald-Isle of Riems, Germany
| | - Clemens Cammann
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
| | - Gang Pei
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Immunology, Greifswald-Isle of Riems, Germany
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Greifswald-Isle of Riems, Germany
| | - Michael R Knittler
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Immunology, Greifswald-Isle of Riems, Germany
| | - Ulrike Blohm
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Immunology, Greifswald-Isle of Riems, Germany
| |
Collapse
|
3
|
Zielińska MK, Ciążyńska M, Sulejczak D, Rutkowski P, Czarnecka AM. Mechanisms of Resistance to Anti-PD-1 Immunotherapy in Melanoma and Strategies to Overcome It. Biomolecules 2025; 15:269. [PMID: 40001572 PMCID: PMC11853485 DOI: 10.3390/biom15020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 02/27/2025] Open
Abstract
Resistance to anti-PD-1 therapy in melanoma remains a major obstacle in achieving effective and durable treatment outcomes, highlighting the need to understand and address the underlying mechanisms. The first key factor is innate anti-PD-1 resistance signature (IPRES), an expression of a group of genes associated with tumor plasticity and immune evasion. IPRES promotes epithelial-to-mesenchymal transition (EMT), increasing melanoma cells' invasiveness and survival. Overexpressed AXL, TWIST2, and WNT5a induce phenotypic changes. The upregulation of pro-inflammatory cytokines frequently coincides with EMT-related changes, further promoting a resistant and aggressive tumor phenotype. Inflamed tumor microenvironment may also drive the expression of resistance. The complexity of immune resistance development suggests that combination therapies are necessary to overcome it. Furthermore, targeting epigenetic regulation and exploring novel approaches such as miR-146a modulation may provide new strategies to counter resistance in melanoma.
Collapse
Affiliation(s)
- Magdalena K. Zielińska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
- Faculty of Medicine, Warsaw Medical University, 02-091 Warsaw, Poland
| | - Magdalena Ciążyńska
- Chemotherapy Unit and Day Chemotherapy Ward, Specialised Oncology Hospital, 97-200 Tomaszów Mazowiecki, Poland;
- Department of Dermatology, Paediatric Dermatology and Oncology Clinic, Medical University of Lodz, 91-347 Łódź, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| |
Collapse
|
4
|
Mei T, Ye T, Huang D, Xie Y, Xue Y, Zhou D, Wang W, Chen J. Triggering immunogenic death of cancer cells by nanoparticles overcomes immunotherapy resistance. Cell Oncol (Dordr) 2024; 47:2049-2071. [PMID: 39565509 DOI: 10.1007/s13402-024-01009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
Immunotherapy resistance poses a significant challenge in oncology, necessitating novel strategies to enhance the therapeutic efficacy. Immunogenic cell death (ICD), including necroptosis, pyroptosis and ferroptosis, triggers the release of tumor-associated antigens and numerous bioactive molecules. This release can potentiate a host immune response, thereby overcoming resistance to immunotherapy. Nanoparticles (NPs) with their biocompatible and immunomodulatory properties, are emerging as promising vehicles for the delivery of ICD-inducing agents and immune-stimulatory adjuvants to enhance immune cells tumoral infiltration and augment immunotherapy efficacy. This review explores the mechanisms underlying immunotherapy resistance, and offers an in-depth examination of ICD, including its principles and diverse modalities of cell death that contribute to it. We also provide a thorough overview of how NPs are being utilized to trigger ICD and bolster antitumor immunity. Lastly, we highlight the potential of NPs in combination with immunotherapy to revolutionize cancer treatment.
Collapse
Affiliation(s)
- Ting Mei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ting Ye
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dingkun Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Yuxiu Xie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Ying Xue
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dongfang Zhou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weimin Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, 430022, China.
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
5
|
Cascio P. PA28γ, the ring that makes tumors invisible to the immune system? Biochimie 2024; 226:136-147. [PMID: 38631454 DOI: 10.1016/j.biochi.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
PA28γ is a proteasomal interactor whose main and most known function is to stimulate the hydrolytic activity of the 20 S proteasome independently of ubiquitin and ATP. Unlike its two paralogues, PA28α and PA28β, PA28γ is largely present in the nuclear compartment and plays pivotal functions in important pathways such as cellular division, apoptosis, neoplastic transformation, chromatin structure and organization, fertility, lipid metabolism, and DNA repair mechanisms. Although it is known that a substantial fraction of PA28γ is found in the cell in a free form (i.e. not associated with 20 S), almost all of the studies so far have focused on its ability to modulate proteasomal enzymatic activities. In this respect, the ability of PA28γ to strongly stimulate degradation of proteins, especially if intrinsically disordered and therefore devoid of three-dimensional tightly folded structure, appears to be the main molecular mechanism underlying its multiple biological effects. Initial studies, conducted more than 20 years ago, came to the conclusion that among the many biological functions of PA28γ, the immunological ones were rather limited and circumscribed. In this review, we focus on recent evidence showing that PA28γ fulfills significant functions in cell-mediated acquired immunity, with a particular role in attenuating MHC class I antigen presentation, especially in relation to neoplastic transformation and autoimmune diseases.
Collapse
Affiliation(s)
- Paolo Cascio
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, Turin, Italy.
| |
Collapse
|
6
|
Hu J, Wang S, Zhang X, Yan W, Liu H, Chen X, Nie Y, Liu F, Zheng Y, Lu Y, Jin H. A genetic variant in the TAPBP gene enhances cervical cancer susceptibility by increasing m 6A modification. Arch Toxicol 2024; 98:3425-3438. [PMID: 38992170 DOI: 10.1007/s00204-024-03820-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
Genetic variants can affect gene expression by altering the level of N6-methyladenosine (m6A) modifications. A better understanding of the association of these genetic variants with susceptibility to cervical cancer (CC) can promote advances in disease screening and treatment. Genome-wide identification of m6A-associated functional SNPs for CC was performed using the TCGA and JENGER databases, incorporating the data from RNA-seq and MeRIP-seq. The screened risk-associated SNP rs1059288 (A>G), which is located in the 3' UTR of TAPBP, was further validated in a case-control study involving 921 cases and 1077 controls. The results revealed a significant association between rs1059288 and the risk of CC (OR 1.48, 95% CI 1.13-1.92). Mechanistically, the presence of the risk G allele of rs1059288 was associated with increased m6A modification of TAPBP compared with the A allele. This modification was facilitated by the m6A methyltransferase METTL14 and the reading protein YTHDF2. Immunohistochemical staining of tissue microarrays containing 61 CC and 45 normal tissues showed an overexpression of TAPBP in CC. Furthermore, the upregulation of TAPBP promoted the growth and migration of CC cells as well as tumor-forming ability, inhibited apoptosis, and conferred increased resistance to commonly used chemotherapeutic drugs such as bleomycin, cisplatin, and doxorubicin. Knockdown of TAPBP inhibited the JAK/STAT/MICB signaling pathway in CC cells and upregulated certain immune genes including ISG15, IRF3, PTPN6, and HLA-A. These findings offer insights into the involvement of genetic variations in TAPBP in the development and progression of CC.
Collapse
Affiliation(s)
- Jing Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China.
| | - Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Haohan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Xue Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Yamei Nie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Fengying Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Yun Zheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Yiran Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Hua Jin
- Clinical Laboratory, Affiliated Tumor Hospital of Nantong University (Nantong Tumor Hospital), No. 30, North Tongyang Road, Tongzhou District, Nantong, 226361, China.
| |
Collapse
|
7
|
Ju R, Gao X, Zhang C, Tang W, Tian W, He M. Exogenous MSC based tissue regeneration: a review of immuno-protection strategies from biomaterial scaffolds. J Mater Chem B 2024; 12:8868-8882. [PMID: 39171946 DOI: 10.1039/d4tb00778f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Mesenchymal stem cell (MSC)-based tissue engineering holds great potential for regenerative medicine as a means of replacing damaged or lost tissues to restore their structure and function. However, the efficacy of MSC-based regeneration is frequently limited by the low survival rate and limited survival time of transplanted MSCs. Despite the inherent immune privileges of MSCs, such as low expression of major histocompatibility complex antigens, tolerogenic properties, local immunosuppressive microenvironment creation, and induction of immune tolerance, immune rejection remains a major obstacle to their survival and regenerative potential. Evidence suggests that immune protection strategies can enhance MSC therapeutic efficacy by prolonging their survival and maintaining their biological functions. Among various immune protection strategies, biomaterial-based scaffolds or cell encapsulation systems that mediate the interaction between transplanted MSCs and the host immune system or spatially isolate MSCs from the immune system for a specific time period have shown great promise. In this review, we provide a comprehensive overview of these biomaterial-based immune protection strategies employed for exogenous MSCs, highlighting the crucial role of modulating the immune microenvironment. Each strategy is critically examined, discussing its strengths, limitations, and potential applications in MSC-based tissue engineering. By elucidating the mechanisms behind immune rejection and exploring immune protection strategies, we aim to address the challenges faced by MSC-based tissue engineering and pave the way for enhancing the therapeutic outcomes of MSC therapies. The insights gained from this review will contribute to the development of more effective strategies to protect transplanted MSCs from immune rejection and enable their successful application in regenerative medicine.
Collapse
Affiliation(s)
- Rongbai Ju
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinhui Gao
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chi Zhang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min He
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
8
|
Kronborg L, Hansen EO, Bertelsen T, Rittig AH, Emmanuel T, Jørgensen S, Hjuler KF, Iversen L, Johansen C. ERAP1 and ERAP2 gene variants as potential clinical biomarkers of anti-interleukin-17A response in psoriasis vulgaris. Clin Exp Dermatol 2024; 49:1171-1178. [PMID: 38616723 DOI: 10.1093/ced/llae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/01/2023] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Interleukin (IL)-17A is a proinflammatory cytokine that plays an essential role in the development of psoriasis. Although treatment with anti-IL-17A monoclonal antibodies has demonstrated high efficacy in patients with psoriasis, not all patients respond equally well, highlighting the need for biomarkers to predict treatment response. Specific single-nucleotide polymorphisms (SNPs) in the genes encoding endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2) have been associated with psoriasis and other immune-mediated diseases. OBJECTIVES To investigate the association between the ERAP1 and ERAP2 genotypes and response to secukinumab treatment in patients with psoriasis. METHODS In total, 75 patients with plaque psoriasis were included. All patients were genotyped for the ERAP1 rs27524, rs27044, rs30187, rs2287987 and rs26653 SNPs, the ERAP2 rs2248374 SNP, and the status of the human leucocyte antigen HLA-C*06:02 gene. RESULTS Our results demonstrated that individuals with specific ERAP1 and ERAP2 genotypes had a considerably lower response rate to secukinumab treatment. Patients with the ERAP2 rs2248374 GG genotype had a more than sixfold increased risk of treatment failure compared with patients with the rs2248374 AG or AA genotypes. Stratifying for HLA-C*06:02 status, the ERAP2 GG genotype pointed towards an increased risk of treatment failure among HLA-C*06:02-positive patients, although this was not statistically significant. CONCLUSIONS Taken together, this unique study breaks new ground by identifying distinct ERAP1 and ERAP2 gene variants that may serve as potential biomarkers for predicting the treatment response to secukinumab in patients with psoriasis. Notably, our data extend existing knowledge by linking specific ERAP1 and ERAP2 gene variants to treatment outcome.
Collapse
Affiliation(s)
- Lasse Kronborg
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Emma Oxlund Hansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Trine Bertelsen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Hald Rittig
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Emmanuel
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Sofie Jørgensen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Kasper Fjellhaugen Hjuler
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Yao H, Huang C, Zou J, Liang W, Zhao Y, Yang K, Zhong Z, Zhou S, Li J, Li Y, Xu L, Huang K, Lian G. Extracellular vesicle-packaged lncRNA from cancer-associated fibroblasts promotes immune evasion by downregulating HLA-A in pancreatic cancer. J Extracell Vesicles 2024; 13:e12484. [PMID: 39041344 PMCID: PMC11263977 DOI: 10.1002/jev2.12484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/02/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterised by immune evasion that contribute to poor prognosis. Cancer-associated fibroblasts (CAFs) play a pivotal role in orchestrating the PDAC tumour microenvironment. We investigated the role of CAF-derived extracellular vesicle (EV)-packaged long non-coding RNAs (lncRNAs) in immune evasion and explored gene therapy using engineered EVs loading small interfering RNAs (siRNAs) as a potential therapeutic strategy. Our findings highlight the significance of EV-packaged lncRNA RP11-161H23.5 from CAF in promoting PDAC immune evasion by downregulating HLA-A expression, a key component of antigen presentation. Mechanistically, RP11-161H23.5 forms a complex with CNOT4, a subunit of the mRNA deadenylase CCR4-NOT complex, enhancing the degradation of HLA-A mRNA by shortening its poly(A) tail. This immune evasion mechanism compromises the anti-tumour immune response. To combat this, we propose an innovative approach utilising engineered EVs as natural and biocompatible nanocarriers for siRNA-based gene therapy and this strategy holds promise for enhancing the effectiveness of immunotherapy in PDAC. Overall, our study sheds light on the critical role of CAF-derived EV-packaged lncRNA RP11-161H23.5/CNOT4/HLA-A axis in PDAC immune evasion and presents a novel avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Hanming Yao
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesSouthern Medical UniversityGuangzhouChina
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Chengzhi Huang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's HospitalGuangdong Academy of Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Jinmao Zou
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Weiling Liang
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Yue Zhao
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Kege Yang
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Ziyi Zhong
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Shurui Zhou
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Jiajia Li
- Department of NephrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Yaqing Li
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Lishu Xu
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Kaihong Huang
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Guoda Lian
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
10
|
Gerke C, Bauersfeld L, Schirmeister I, Mireisz CNM, Oberhardt V, Mery L, Wu D, Jürges CS, Spaapen RM, Mussolino C, Le-Trilling VTK, Trilling M, Dölken L, Paster W, Erhard F, Hofmann M, Schlosser A, Hengel H, Momburg F, Halenius A. Multimodal HLA-I genotype regulation by human cytomegalovirus US10 and resulting surface patterning. eLife 2024; 13:e85560. [PMID: 38900146 PMCID: PMC11189632 DOI: 10.7554/elife.85560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Human leucocyte antigen class I (HLA-I) molecules play a central role for both NK and T-cell responses that prevent serious human cytomegalovirus (HCMV) disease. To create opportunities for viral spread, several HCMV-encoded immunoevasins employ diverse strategies to target HLA-I. Among these, the glycoprotein US10 is so far insufficiently studied. While it was reported that US10 interferes with HLA-G expression, its ability to manipulate classical HLA-I antigen presentation remains unknown. In this study, we demonstrate that US10 recognizes and binds to all HLA-I (HLA-A, -B, -C, -E, -G) heavy chains. Additionally, impaired recruitment of HLA-I to the peptide loading complex was observed. Notably, the associated effects varied significantly dependending on HLA-I genotype and allotype: (i) HLA-A molecules evaded downregulation by US10, (ii) tapasin-dependent HLA-B molecules showed impaired maturation and cell surface expression, and (iii) β2m-assembled HLA-C, in particular HLA-C*05:01 and -C*12:03, and HLA-G were strongly retained in complex with US10 in the endoplasmic reticulum. These genotype-specific effects on HLA-I were confirmed through unbiased HLA-I ligandome analyses. Furthermore, in HCMV-infected fibroblasts inhibition of overlapping US10 and US11 transcription had little effect on HLA-A, but induced HLA-B antigen presentation. Thus, the US10-mediated impact on HLA-I results in multiple geno- and allotypic effects in a so far unparalleled and multimodal manner.
Collapse
Affiliation(s)
- Carolin Gerke
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
- Spemann Graduate School of Biology and Medicine (SGBM), University of FreiburgFreiburgGermany
- Faculty of Biology, University of FreiburgFreiburgGermany
| | - Liane Bauersfeld
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Ivo Schirmeister
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Chiara Noemi-Marie Mireisz
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of WürzburgWürzburgGermany
| | - Valerie Oberhardt
- Faculty of Medicine, University of FreiburgFreiburgGermany
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center University of FreiburgFreiburgGermany
| | - Lea Mery
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Di Wu
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | | | - Robbert M Spaapen
- Department of Immunopathology, Sanquin ResearchAmsterdamNetherlands
- Landsteiner Laboratory, Amsterdam UMC, University of AmsterdamAmsterdamNetherlands
| | - Claudio Mussolino
- Faculty of Medicine, University of FreiburgFreiburgGermany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center University of FreiburgFreiburgGermany
- Center for Chronic Immunodeficiency, Medical Center University of FreiburgFreiburgGermany
| | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-EssenEssenGermany
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital EssenEssenGermany
| | - Lars Dölken
- Institute for Virology and Immunobiology, University of WürzburgWürzburgGermany
- Institute of Virology, Hannover Medical SchoolHannoverGermany
| | - Wolfgang Paster
- St. Anna Children’s Cancer Research Institute (CCRI)ViennaAustria
| | - Florian Erhard
- Institute for Virology and Immunobiology, University of WürzburgWürzburgGermany
| | - Maike Hofmann
- Faculty of Medicine, University of FreiburgFreiburgGermany
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center University of FreiburgFreiburgGermany
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of WürzburgWürzburgGermany
| | - Hartmut Hengel
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Frank Momburg
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center, National Center for Tumor Diseases (NCT), Heidelberg University HospitalHeidelbergGermany
| | - Anne Halenius
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| |
Collapse
|
11
|
Zhang Y, Liu S, Guo F, Qin S, Zhou N, Liu Z, Fan X, Chen PR. Bioorthogonal Quinone Methide Decaging Enables Live-Cell Quantification of Tumor-Specific Immune Interactions. J Am Chem Soc 2024; 146:15186-15197. [PMID: 38789930 DOI: 10.1021/jacs.4c02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Effective antitumor immunity hinges on the specific engagement between tumor and cytotoxic immune cells, especially cytotoxic T cells. Although investigating these intercellular interactions is crucial for characterizing immune responses and guiding immunotherapeutic applications, direct and quantitative detection of tumor-T cell interactions within a live-cell context remains challenging. We herein report a photocatalytic live-cell interaction labeling strategy (CAT-Cell) relying on the bioorthogonal decaging of quinone methide moieties for sensitive and selective investigation and quantification of tumor-T cell interactions. By developing quinone methide-derived probes optimized for capturing cell-cell interactions (CCIs), we demonstrated the capacity of CAT-Cell for detecting CCIs directed by various types of receptor-ligand pairs (e.g., CD40-CD40L, TCR-pMHC) and further quantified the strengths of tumor-T cell interactions that are crucial for evaluating the antitumor immune responses. We further applied CAT-Cell for ex vivo quantification of tumor-specific T cell interactions on splenocyte and solid tumor samples from mouse models. Finally, the broad compatibility and utility of CAT-Cell were demonstrated by integrating it with the antigen-specific targeting system as well as for tumor-natural killer cell interaction detection. By leveraging the bioorthogonal photocatalytic decaging chemistry on quinone methide, CAT-Cell provides a sensitive, tunable, universal, and noninvasive toolbox for unraveling and quantifying the crucial but delicate tumor-immune interactions under live-cell settings.
Collapse
Affiliation(s)
- Yan Zhang
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shibo Liu
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fuhu Guo
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shan Qin
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Nan Zhou
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ziqi Liu
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinyuan Fan
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peng R Chen
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Chariou PL, Minnar CM, Tandon M, Guest MR, Chari R, Schlom J, Gameiro SR. Generation of murine tumor models refractory to αPD-1/-L1 therapies due to defects in antigen processing/presentation or IFNγ signaling using CRISPR/Cas9. PLoS One 2024; 19:e0287733. [PMID: 38427670 PMCID: PMC10906908 DOI: 10.1371/journal.pone.0287733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/12/2023] [Indexed: 03/03/2024] Open
Abstract
Immune checkpoint blockade (ICB) targeting the programmed cell death protein 1 (PD-1) and its ligand 1 (PD-L1) fails to provide clinical benefit for most cancer patients due to primary or acquired resistance. Drivers of ICB resistance include tumor antigen processing/presentation machinery (APM) and IFNγ signaling mutations. Thus, there is an unmet clinical need to develop alternative therapies for these patients. To this end, we have developed a CRISPR/Cas9 approach to generate murine tumor models refractory to PD-1/-L1 inhibition due to APM/IFNγ signaling mutations. Guide RNAs were employed to delete B2m, Jak1, or Psmb9 genes in ICB-responsive EMT6 murine tumor cells. B2m was deleted in ICB-responsive MC38 murine colon cancer cells. We report a detailed development and validation workflow including whole exome and Sanger sequencing, western blotting, and flow cytometry to assess target gene deletion. Tumor response to ICB and immune effects of gene deletion were assessed in syngeneic mice. This workflow can help accelerate the discovery and development of alternative therapies and a deeper understanding of the immune consequences of tumor mutations, with potential clinical implications.
Collapse
Affiliation(s)
- Paul L. Chariou
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Christine M. Minnar
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Mayank Tandon
- National Cancer Institute, CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Institutes of Health, Bethesda, MD, United States of America
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Mary R. Guest
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Raj Chari
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Sofia R. Gameiro
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
13
|
Versluis JM, Hoefsmit EP, Shehwana H, Dimitriadis P, Sanders J, Broeks A, Blank CU. Tumor characteristics of dissociated response to immune checkpoint inhibition in advanced melanoma. Cancer Immunol Immunother 2024; 73:28. [PMID: 38280045 PMCID: PMC10821835 DOI: 10.1007/s00262-023-03581-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/14/2023] [Indexed: 01/29/2024]
Abstract
INTRODUCTION Immune checkpoint inhibition (ICI) has improved patients' outcomes in advanced melanoma, often resulting in durable response. However, not all patients have durable responses and the patients with dissociated response are a valuable subgroup to identify mechanisms of ICI resistance. METHODS Stage IV melanoma patients treated with ICI and dissociated response were retrospectively screened for available samples containing sufficient tumor at least at two time-points. Included were one patient with metachronous regressive and progressive lesions at the same site, two patients with regressive and novel lesion at different sites, and three patients with regressive and progressive lesions at different sites. In addition, four patients with acquired resistant tumor samples without a matched second sample were included. RESULTS In the majority of patients, the progressive tumor lesion contained higher CD8+ T cell counts/mm2 and interferon-gamma (IFNγ) signature level, but similar tumor PD-L1 expression. The tumor mutational burden levels were in 2 out 3 lesions higher compared to the corresponding regressive tumors lesion. In the acquired tumor lesions, high CD8+/mm2 and relatively high IFNγ signature levels were observed. In one patient in both the B2M and PTEN gene a stop gaining mutation and in another patient a pathogenic POLE mutation were found. CONCLUSION Intrapatient comparison of progressive versus regressive lesions indicates no defect in tumor T cell infiltration, and in general no tumor immune exclusion were observed.
Collapse
Affiliation(s)
- J M Versluis
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - E P Hoefsmit
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - H Shehwana
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - P Dimitriadis
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J Sanders
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - A Broeks
- Core Facility Molecular Pathology and Biobanking, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C U Blank
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
14
|
Sammarco E, Manfredi F, Nuzzo A, Ferrari M, Bonato A, Salfi A, Serafin D, Zatteri L, Antonuzzo A, Galli L. Immune Checkpoint Inhibitor Rechallenge in Renal Cell Carcinoma: Current Evidence and Future Directions. Cancers (Basel) 2023; 15:3172. [PMID: 37370782 DOI: 10.3390/cancers15123172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Immune checkpoint inhibitor-based therapies represent the current standard of care in the first-line treatment of advanced renal cell carcinoma. Despite a clear benefit in survival outcomes, a considerable proportion of patients experience disease progression; prospective data about second-line therapy after first-line treatment with immune checkpoint inhibitors are limited to small phase II studies. As with other solid tumors (such as melanoma and non-small cell lung cancer), preliminary data about the clinical efficacy of rechallenge of immunotherapy (alone or in combination with other drugs) in renal cell carcinoma are beginning to emerge. Nevertheless, the role of rechallenge in immunotherapy in this setting of disease remains unclear and cannot be considered a standard of care; currently some randomized trials are exploring this approach in patients with metastatic renal cell carcinoma. The aim of our review is to summarize main evidence available in the literature concerning immunotherapy rechallenge in renal carcinoma, especially focusing on biological rationale of resistance to immune checkpoint inhibitors, on the published data of clinical efficacy and on future perspectives.
Collapse
Affiliation(s)
- Enrico Sammarco
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Fiorella Manfredi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Amedeo Nuzzo
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Marco Ferrari
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Adele Bonato
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Alessia Salfi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Debora Serafin
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Luca Zatteri
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Andrea Antonuzzo
- Unit of Medical Oncology 1, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Luca Galli
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| |
Collapse
|
15
|
Du F, Yang LH, Liu J, Wang J, Fan L, Duangmano S, Liu H, Liu M, Wang J, Zhong X, Zhang Z, Wang F. The role of mitochondria in the resistance of melanoma to PD-1 inhibitors. J Transl Med 2023; 21:345. [PMID: 37221594 DOI: 10.1186/s12967-023-04200-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
Malignant melanoma is one of the most common tumours and has the highest mortality rate of all types of skin cancers worldwide. Traditional and novel therapeutic approaches, including surgery, targeted therapy and immunotherapy, have shown good efficacy in the treatment of melanoma. At present, the mainstay of treatment for melanoma is immunotherapy combined with other treatment strategies. However, immune checkpoint inhibitors, such as PD-1 inhibitors, are not particularly effective in the clinical treatment of patients with melanoma. Changes in mitochondrial function may affect the development of melanoma and the efficacy of PD-1 inhibitors. To elucidate the role of mitochondria in the resistance of melanoma to PD-1 inhibitors, this review comprehensively summarises the role of mitochondria in the occurrence and development of melanoma, targets related to the function of mitochondria in melanoma cells and changes in mitochondrial function in different cells in melanoma resistant to PD-1 inhibitors. This review may help to develop therapeutic strategies for improving the clinical response rate of PD-1 inhibitors and prolonging the survival of patients by activating mitochondrial function in tumour and T cells.
Collapse
Affiliation(s)
- Fei Du
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lu-Han Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jian Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lianpeng Fan
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiaolin Zhong
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
16
|
Wang Y, Jasinski-Bergner S, Wickenhauser C, Seliger B. Cancer Immunology: Immune Escape of Tumors-Expression and Regulation of HLA Class I Molecules and Its Role in Immunotherapies. Adv Anat Pathol 2023; 30:148-159. [PMID: 36517481 DOI: 10.1097/pap.0000000000000389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The addition of "avoiding immune destruction" to the hallmarks of cancer demonstrated the importance of cancer immunology and in particular the role of immune surveillance and escape from malignancies. However, the underlying mechanisms contributing to immune impairment and immune responses are diverse. Loss or reduced expression of the HLA class I molecules are major characteristics of human cancers resulting in an impaired recognition of tumor cells by CD8 + cytotoxic T lymphocytes. This is of clinical relevance and associated with worse patients outcome and limited efficacy of T-cell-based immunotherapies. Here, we summarize the role of HLA class I antigens in cancers by focusing on the underlying molecular mechanisms responsible for HLA class I defects, which are caused by either structural alterations or deregulation at the transcriptional, posttranscriptional, and posttranslational levels. In addition, the influence of HLA class I abnormalities to adaptive and acquired immunotherapy resistances will be described. The in-depth knowledge of the different strategies of malignancies leading to HLA class I defects can be applied to design more effective cancer immunotherapies.
Collapse
Affiliation(s)
| | - Simon Jasinski-Bergner
- Institute of Medical Immunology
- Institute for Translational Immunology, Medical School "Theodor Fontane", Brandenburg, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale)
| | - Barbara Seliger
- Institute of Medical Immunology
- Department of Good Manufacturing Practice (GMP) Development & Advanced Therapy Medicinal Products (ATMP) Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, GermanyLeipzig, Germany
- Institute for Translational Immunology, Medical School "Theodor Fontane", Brandenburg, Germany
| |
Collapse
|
17
|
Liu S, Sun Q, Ren X. Novel strategies for cancer immunotherapy: counter-immunoediting therapy. J Hematol Oncol 2023; 16:38. [PMID: 37055849 PMCID: PMC10099030 DOI: 10.1186/s13045-023-01430-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
The advent of immunotherapy has made an indelible mark on the field of cancer therapy, especially the application of immune checkpoint inhibitors in clinical practice. Although immunotherapy has proven its efficacy and safety in some tumors, many patients still have innate or acquired resistance to immunotherapy. The emergence of this phenomenon is closely related to the highly heterogeneous immune microenvironment formed by tumor cells after undergoing cancer immunoediting. The process of cancer immunoediting refers to the cooperative interaction between tumor cells and the immune system that involves three phases: elimination, equilibrium, and escape. During these phases, conflicting interactions between the immune system and tumor cells result in the formation of a complex immune microenvironment, which contributes to the acquisition of different levels of immunotherapy resistance in tumor cells. In this review, we summarize the characteristics of different phases of cancer immunoediting and the corresponding therapeutic tools, and we propose normalized therapeutic strategies based on immunophenotyping. The process of cancer immunoediting is retrograded through targeted interventions in different phases of cancer immunoediting, making immunotherapy in the context of precision therapy the most promising therapy to cure cancer.
Collapse
Affiliation(s)
- Shaochuan Liu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, 300060, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, 300060, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, 300060, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, 300060, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
| |
Collapse
|
18
|
Marei HE, Hasan A, Pozzoli G, Cenciarelli C. Cancer immunotherapy with immune checkpoint inhibitors (ICIs): potential, mechanisms of resistance, and strategies for reinvigorating T cell responsiveness when resistance is acquired. Cancer Cell Int 2023; 23:64. [PMID: 37038154 PMCID: PMC10088229 DOI: 10.1186/s12935-023-02902-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023] Open
Abstract
Cancer is still the leading cause of death globally. The approval of the therapeutic use of monoclonal antibodies against immune checkpoint molecules, notably those that target the proteins PD-1 and PD-L1, has changed the landscape of cancer treatment. In particular, first-line PD-1/PD-L1 inhibitor drugs are increasingly common for the treatment of metastatic cancer, significantly prolonging patient survival. Despite the benefits brought by immune checkpoint inhibitors (ICIs)-based therapy, the majority of patients had their diseases worsen following a promising initial response. To increase the effectiveness of ICIs and advance our understanding of the mechanisms causing cancer resistance, it is crucial to find new, effective, and tolerable combination treatments. In this article, we addressed the potential of ICIs for the treatment of solid tumors and offer some insight into the molecular pathways behind therapeutic resistance to ICIs. We also discuss cutting-edge therapeutic methods for reactivating T-cell responsiveness after resistance has been established.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Giacomo Pozzoli
- Pharmacology Section, Department of Health Care Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | |
Collapse
|
19
|
Jie C, Li R, Cheng Y, Wang Z, Wu Q, Xie C. Prospects and feasibility of synergistic therapy with radiotherapy, immunotherapy, and DNA methyltransferase inhibitors in non-small cell lung cancer. Front Immunol 2023; 14:1122352. [PMID: 36875059 PMCID: PMC9981667 DOI: 10.3389/fimmu.2023.1122352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
The morbidity and mortality of lung cancer are increasing, seriously threatening human health and life. Non-small cell lung cancer (NSCLC) has an insidious onset and is not easy to be diagnosed in its early stage. Distant metastasis often occurs and the prognosis is poor. Radiotherapy (RT) combined with immunotherapy, especially with immune checkpoint inhibitors (ICIs), has become the focus of research in NSCLC. The efficacy of immunoradiotherapy (iRT) is promising, but further optimization is necessary. DNA methylation has been involved in immune escape and radioresistance, and becomes a game changer in iRT. In this review, we focused on the regulation of DNA methylation on ICIs treatment resistance and radioresistance in NSCLC and elucidated the potential synergistic effects of DNA methyltransferases inhibitors (DNMTis) with iRT. Taken together, we outlined evidence suggesting that a combination of DNMTis, RT, and immunotherapy could be a promising treatment strategy to improve NSCLC outcomes.
Collapse
Affiliation(s)
- Chen Jie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rumeng Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yajie Cheng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhihao Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Boeren M, Meysman P, Laukens K, Ponsaerts P, Ogunjimi B, Delputte P. T cell immunity in HSV-1- and VZV-infected neural ganglia. Trends Microbiol 2023; 31:51-61. [PMID: 35987880 DOI: 10.1016/j.tim.2022.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Herpesviruses hijack the MHC class I (MHC I) and class II (MHC II) antigen-presentation pathways to manipulate immune recognition by T cells. First, we illustrate herpes simplex virus-1 (HSV-1) and varicella-zoster virus (VZV) MHC immune evasion strategies. Next, we describe MHC-T cell interactions in HSV-1- and VZV- infected neural ganglia. Although studies on the topic are scarce, and use different models, most reports indicate that neuronal HSV-1 infection is mainly controlled by CD8+ T cells through noncytolytic mechanisms, whereas VZV seems to be largely controlled through CD4+ T cell-specific immune responses. Autologous human stem-cell-derived in vitro models could substantially aid in elucidating these neuroimmune interactions and are fit for studies on both herpesviruses.
Collapse
Affiliation(s)
- Marlies Boeren
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium; Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Pieter Meysman
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium; Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium; Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium; Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium; Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Benson Ogunjimi
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium; Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium; Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Department of Paediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium; Infla-med, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
21
|
Pang K, Shi ZD, Wei LY, Dong Y, Ma YY, Wang W, Wang GY, Cao MY, Dong JJ, Chen YA, Zhang P, Hao L, Xu H, Pan D, Chen ZS, Han CH. Research progress of therapeutic effects and drug resistance of immunotherapy based on PD-1/PD-L1 blockade. Drug Resist Updat 2023; 66:100907. [PMID: 36527888 DOI: 10.1016/j.drup.2022.100907] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
The binding of programmed death-1 (PD-1) on the surface of T cells and PD-1 ligand 1 (PD-L1) on tumor cells can prevent the immune-killing effect of T cells on tumor cells and promote the immune escape of tumor cells. Therefore, immune checkpoint blockade targeting PD-1/PD-L1 is a reliable tumor therapy with remarkable efficacy. However, the main challenges of this therapy are low response rate and acquired resistance, so that the outcomes of this therapy are usually unsatisfactory. This review begins with the description of biological structure of the PD-1/PD-L1 immune checkpoint and its role in a variety of cells. Subsequently, the therapeutic effects of immune checkpoint blockers (PD-1 / PD-L1 inhibitors) in various tumors were introduced and analyzed, and the reasons affecting the function of PD-1/PD-L1 were systematically analyzed. Then, we focused on analyzing, sorting out and introducing the possible underlying mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade including abnormal expression of PD-1/PD-L1 and some factors, immune-related pathways, tumor immune microenvironment, and T cell dysfunction and others. Finally, promising therapeutic strategies to sensitize the resistant patients with PD-1/PD-L1 blockade treatment were described. This review is aimed at providing guidance for the treatment of various tumors, and highlighting the drug resistance mechanisms to offer directions for future tumor treatment and improvement of patient prognosis.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China; School of Life Sciences, Jiangsu Normal University, Jiangsu, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China; School of Life Sciences, Jiangsu Normal University, Jiangsu, China; Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China
| | - Liu-Ya Wei
- School of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, China
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Yu-Yang Ma
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Wei Wang
- Department of Medical College, Southeast University, 87 DingjiaQiao, Nanjing, China
| | - Guang-Yue Wang
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Ming-Yang Cao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Jia-Jun Dong
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Yu-Ang Chen
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Peng Zhang
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Hao Xu
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Deng Pan
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| | - Cong-Hui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China; School of Life Sciences, Jiangsu Normal University, Jiangsu, China; Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China.
| |
Collapse
|
22
|
Targeting immunoproteasome in neurodegeneration: A glance to the future. Pharmacol Ther 2023; 241:108329. [PMID: 36526014 DOI: 10.1016/j.pharmthera.2022.108329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.
Collapse
|
23
|
Lin J, Liu J, Hao SG, Lan B, Zheng XB, Xiong JN, Zhang YQ, Gao X, Chen CB, Chen L, Huang YF, Luo H, Yi YT, Yi X, Lu JP, Zheng XW, Chen G, Wang XF, Chen Y. An EGFR L858R mutation identified in 1862 Chinese NSCLC patients can be a promising neoantigen vaccine therapeutic strategy. Front Immunol 2022; 13:1022598. [PMID: 36505399 PMCID: PMC9727402 DOI: 10.3389/fimmu.2022.1022598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Background This study aimed to develop a vaccine that targets mutation-derived neoantigen in Chinese non-small-cell lung cancer (NSCLC). Methods A cohort of 1862 Chinese NSCLC patients who underwent targeted sequencing with a 1021-gene panel was investigated. HLA typing was done using OptiType v1.0 and neoantigens were predicted by netMHCpan v4.0. HLA LOH was inferred using the lohhla algorithm and TMB were quantified by counting the total number of non-synonymous ones based on our panel data. CIBERSORT was utilized to estimate the TME in different EGFR mutant subtype by using TCGA data. Results HLA-A*11:01(42.59%) was the top one allele and HLA-A*33:03(12.94%) ranked 12th. EGFR L858R (22.61%) was the most prevalent gene variant. The binding affinity (IC50 MT = 22.9 nM) and shared frequency (2.93%) of EGFR L858R in combination with HLA-A*33:03 were optimal. In a subsequent further analysis on immunological features of EGFR mutant subtypes, 63.1% HLA loss of heterozygosity LOH (HLA LOH) and 0.37% (7 of 1862) B2M aberrations were found in our population, both had no significant association with EGFR mutant subtypes suggesting that the process of antigen presentation involved HLA LOH and B2M mechanisms in EGFR L858R is working. Tumor mutation burden (TMB) was investigated by utilizing our panel and showed that EGFR L858R had the lowest TMB compared with other EGFR mutant subtypes. In addition, analysis of 22 immune cell types from The Cancer Genome Atlas (TCGA) data showed EGFR L858R was correlated with low level of CD8 T cells, activated CD4 memory T cells and elevated level of macrophage M2 suggesting an inhibited tumor microenvironment (TME). Conclusion Our study identified that EGFR L858R neoantigen had the potential to generate cancer vaccines in NSCLC patients with HLA A*33:03. The neoantigen-based vaccines may become an effective salvage regimen for EGFR L858R subgroup after targeted therapy or immune checkpoint inhibitors (ICIs) failure.
Collapse
Affiliation(s)
- Jing Lin
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jun Liu
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | | | - Bin Lan
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xiao-bin Zheng
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jia-ni Xiong
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | | | - Xuan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,Department of Translational Medicine, GenePlus- Shenzhen Clinical Laboratory, ShenZhen, China
| | - Chuan-ben Chen
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Ling Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yu-fang Huang
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Hong Luo
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yu-ting Yi
- Geneplus-Beijing Institute, Beijing, China
| | - Xin Yi
- Geneplus-Beijing Institute, Beijing, China
| | - Jian-ping Lu
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xiong-wei Zheng
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Gang Chen
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xue-feng Wang
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China,*Correspondence: Yu Chen, ; Xue-feng Wang,
| | - Yu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,*Correspondence: Yu Chen, ; Xue-feng Wang,
| |
Collapse
|
24
|
Wingbermühle S, Schäfer LV. Partial peptide dissociation and binding groove plasticity in two major histocompatibility complex class I alleles - differences between alleles versus force field and sampling effects. RSC Adv 2022; 12:29908-29914. [PMID: 36321080 PMCID: PMC9580618 DOI: 10.1039/d2ra05324a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) reports a cell's health status by presenting antigenic peptides inside its binding groove. However, MHC I binding grooves can differ largely in their plasticity, from binding grooves that are conformationally stable by themselves to those that require a high-affinity peptide to be bound to attain conformational stability. These latter MHC I alleles are dependent on the C-terminus of the peptide that stabilizes the F-pocket region of their binding grooves. It has remained unclear to what extent a peptide-MHC I complex (pMHC I) can tolerate the (intermittent) partial dissociation of high-affinity peptides, especially of the peptide's N-terminus. Using bias exchange umbrella sampling (BEUS), a technique to achieve enhanced sampling in molecular dynamics (MD) simulations, we obtained the free-energy profiles of the N-terminal dissociation of a respective high-affinity peptide from HLA-B*35:01 and HLA-B*44:02, two alleles on opposite ends of the scale regarding binding groove plasticity. The potential of mean force (PMF) for HLA-B*35:01 was calculated for two different sets of starting structures and is compared with a PMF obtained previously with a different force field to disentangle allele differences from force field and sampling effects. For both alleles, the free-energy profiles indicate that the peptide N-terminus dissociates in a substantial fraction of the pMHC I, suggesting that their crystal structures with fully bound peptides only partially capture the dynamic conformational ensemble of pMHC I in solution, and thus in the cell. In solution, high-affinity peptides are likely to dissociate partially from two alleles of major histocompatibility complex I. Despite very similar free-energy profiles, two molecular dynamics force fields predict different underlying mechanisms.![]()
Collapse
|
25
|
Zhou X, Ni Y, Liang X, Lin Y, An B, He X, Zhao X. Mechanisms of tumor resistance to immune checkpoint blockade and combination strategies to overcome resistance. Front Immunol 2022; 13:915094. [PMID: 36189283 PMCID: PMC9520263 DOI: 10.3389/fimmu.2022.915094] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Immune checkpoint blockade (ICB) has rapidly transformed the treatment paradigm for various cancer types. Multiple single or combinations of ICB treatments have been approved by the US Food and Drug Administration, providing more options for patients with advanced cancer. However, most patients could not benefit from these immunotherapies due to primary and acquired drug resistance. Thus, a better understanding of the mechanisms of ICB resistance is urgently needed to improve clinical outcomes. Here, we focused on the changes in the biological functions of CD8+ T cells to elucidate the underlying resistance mechanisms of ICB therapies and summarized the advanced coping strategies to increase ICB efficacy. Combinational ICB approaches and individualized immunotherapies require further in-depth investigation to facilitate longer-lasting efficacy and a more excellent safety of ICB in a broader range of patients.
Collapse
|
26
|
Wu B, Wang Q, Li B, Jiang M. LAMTOR1 degrades MHC-II via the endocytic in hepatocellular carcinoma. Carcinogenesis 2022; 43:1059-1070. [PMID: 36070764 PMCID: PMC9890926 DOI: 10.1093/carcin/bgac075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/11/2022] [Accepted: 09/06/2022] [Indexed: 02/04/2023] Open
Abstract
Tumor cell surface antigen recognition is a major hallmark of cancer therapy, and loss of major histocompatibility complex class I (MHC-I) is the most common mechanism that impairs tumor cell surface antigen processing and expression. In addition to this, MHC-II regulates antigen presentation in CD4+ T cell immune responses involved in tumor killing by CD8+ T cells, whereas the regulation of endocytosis regulating MHC-II antigen presentation has not been reported. Therefore, the regulation of the endocytosis pathway on the expression of MHC-II surface level and antitumor T cell response remains to be explored. In this experiment, we found that LAMTOR1 regulates the endocytic pathway through the GTPase domain of DNM2 and triggers the formation of autophagosomes. We performed flow cytometry and western blotting analyses, which revealed that the expression of MHC-II molecules on the surface of cells is influenced by LAMTOR1 through the endocytic pathway. We showed that the expression of MHC-II molecules, which recognize CD4+ T cells on the surface of cells, was regulated by LAMTOR1 through an endocytic pathway. By coculture experiments, we showed that CD8+/CD4+ T cells exhibit substantially higher levels of tumor cell apoptosis than those observed when hepatocellular carcinoma (HCC) cells were cocultured with CD8+ T cells alone. This study revealed that LAMTOR1 decreases the expression levels of MHC-II on cell surfaces in order to reduce antigen expression, leading to a decrease in antitumor T cell responses.
Collapse
Affiliation(s)
- Bo Wu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Qian Wang
- Department of Radiology, The Fifth Hospital of Xiamen, Xiamen 361101, China
| | - Bowen Li
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Meixi Jiang
- To whom correspondence should be addressed. Tel: +86 13782206769; Fax: +86 02462255001;
| |
Collapse
|
27
|
Fang P, Zhou J, Liang Z, Yang Y, Luan S, Xiao X, Li X, Zhang H, Shang Q, Zeng X, Yuan Y. Immunotherapy resistance in esophageal cancer: Possible mechanisms and clinical implications. Front Immunol 2022; 13:975986. [PMID: 36119033 PMCID: PMC9478443 DOI: 10.3389/fimmu.2022.975986] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Esophageal cancer (EC) is a common malignant gastrointestinal (GI) cancer in adults. Although surgical technology combined with neoadjuvant chemoradiotherapy has advanced rapidly, patients with EC are often diagnosed at an advanced stage and the five-year survival rate remains unsatisfactory. The poor prognosis and high mortality in patients with EC indicate that effective and validated therapy is of great necessity. Recently, immunotherapy has been successfully used in the clinic as a novel therapy for treating solid tumors, bringing new hope to cancer patients. Several immunotherapies, such as immune checkpoint inhibitors (ICIs), chimeric antigen receptor T-cell therapy, and tumor vaccines, have achieved significant breakthroughs in EC treatment. However, the overall response rate (ORR) of immunotherapy in patients with EC is lower than 30%, and most patients initially treated with immunotherapy are likely to develop acquired resistance (AR) over time. Immunosuppression greatly weakens the durability and efficiency of immunotherapy. Because of the heterogeneity within the immune microenvironment and the highly disparate oncological characteristics in different EC individuals, the exact mechanism of immunotherapy resistance in EC remains elusive. In this review, we provide an overview of immunotherapy resistance in EC, mainly focusing on current immunotherapies and potential molecular mechanisms underlying immunosuppression and drug resistance in immunotherapy. Additionally, we discuss prospective biomarkers and novel methods for enhancing the effect of immunotherapy to provide a clear insight into EC immunotherapy.
Collapse
Affiliation(s)
- Pinhao Fang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianfeng Zhou
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiwen Liang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yushang Yang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Siyuan Luan
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Xiao
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaokun Li
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Hanlu Zhang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Qixin Shang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Yuan
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yong Yuan,
| |
Collapse
|
28
|
Zhang L, Zhou C, Zhang S, Chen X, Liu J, Xu F, Liang W. Chemotherapy reinforces anti-tumor immune response and enhances clinical efficacy of immune checkpoint inhibitors. Front Oncol 2022; 12:939249. [PMID: 36003765 PMCID: PMC9393416 DOI: 10.3389/fonc.2022.939249] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/04/2022] [Indexed: 12/03/2022] Open
Abstract
New evidence suggests that the clinical success of chemotherapy is not merely due to tumor cell toxicity but also arises from the restoration of immunosurveillance, which has been immensely neglected in previous preclinical and clinical researches. There is an urgent need for novel insights into molecular mechanisms and regimens that uplift the efficacy of immunotherapy since only a minority of cancer patients are responsive to immune checkpoint inhibitors (ICIs). Recent findings on combination therapy of chemotherapy and ICIs have shown promising results. This strategy increases tumor recognition and elimination by the host immune system while reducing immunosuppression by the tumor microenvironment. Currently, several preclinical studies are investigating molecular mechanisms that give rise to the immunomodulation by chemotherapeutic agents and exploit them in combination therapy with ICIs in order to achieve a synergistic clinical activity. In this review, we summarize studies that exhibit the capacity of conventional chemotherapeutics to elicit anti-tumor immune responses, thereby facilitating anti-tumor activities of the ICIs. In conclusion, combining chemotherapeutics with ICIs appears to be a promising approach for improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pharmacy, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Songou Zhang
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Xiaozhen Chen
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Jian Liu
- Department of Hepatobiliary Surgery, Shanghai Oriental Hepatobiliary Hospital, Shanghai, China
| | - Fangming Xu
- Department of Gastroenterology, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
29
|
Kumar S, Chatterjee M, Ghosh P, Ganguly KK, Basu M, Ghosh MK. Targeting PD-1/PD-L1 in cancer immunotherapy: an effective strategy for treatment of triple-negative breast cancer (TNBC) patients. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
30
|
Walker-Sperling V, Digitale JC, Viard M, Martin MP, Bashirova A, Yuki Y, Ramsuran V, Kulkarni S, Naranbhai V, Li H, Anderson SK, Yum L, Clifford R, Kibuuka H, Ake J, Thomas R, Rowland-Jones S, Rek J, Arinaitwe E, Kamya M, Rodriguez-Barraquer I, Feeney ME, Carrington M. Genetic variation that determines TAPBP expression levels associates with the course of malaria in an HLA allotype-dependent manner. Proc Natl Acad Sci U S A 2022; 119:e2205498119. [PMID: 35858344 PMCID: PMC9303992 DOI: 10.1073/pnas.2205498119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022] Open
Abstract
HLA class I (HLA-I) allotypes vary widely in their dependence on tapasin (TAPBP), an integral component of the peptide-loading complex, to present peptides on the cell surface. We identified two single-nucleotide polymorphisms that regulate TAPBP messenger RNA (mRNA) expression in Africans, rs111686073 (G/C) and rs59097151 (A/G), located in an AP-2α transcription factor binding site and a microRNA (miR)-4486 binding site, respectively. rs111686073G and rs59097151A induced significantly higher TAPBP mRNA expression relative to the alternative alleles due to higher affinity for AP-2α and abrogation of miR-4486 binding, respectively. These variants associated with lower Plasmodium falciparum parasite prevalence and lower incidence of clinical malaria specifically among individuals carrying tapasin-dependent HLA-I allotypes, presumably by augmenting peptide loading, whereas tapasin-independent allotypes associated with relative protection, regardless of imputed TAPBP mRNA expression levels. Thus, an attenuated course of malaria may occur through enhanced breadth and/or magnitude of antigen presentation, an important consideration when evaluating vaccine efficacy.
Collapse
Affiliation(s)
- Victoria Walker-Sperling
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892
| | - Jean C. Digitale
- Department of Medicine, University of California San Francisco, San Francisco, California, 94158
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, 94143
| | - Mathias Viard
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
| | - Maureen P. Martin
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
| | - Arman Bashirova
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
| | - Yuko Yuki
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Smita Kulkarni
- Texas Biomedical Research Institute, Host Pathogen Interaction Program, San Antonio, Texas, 78227
| | - Vivek Naranbhai
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
- Dana Farber Cancer Institute, Department of Medical Oncology, Boston, Massachusetts, 02215
- MGH Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, 02114
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, 4041, South Africa
| | - Hongchuan Li
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
| | - Stephen K. Anderson
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
| | - Lauren Yum
- U.S. Military HIV Research Program,, Walter Reed Army Institute of Research, Silver Spring, Maryland, 20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, 20817
| | - Robert Clifford
- U.S. Military HIV Research Program,, Walter Reed Army Institute of Research, Silver Spring, Maryland, 20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, 20817
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Julie Ake
- U.S. Military HIV Research Program,, Walter Reed Army Institute of Research, Silver Spring, Maryland, 20910
| | - Rasmi Thomas
- U.S. Military HIV Research Program,, Walter Reed Army Institute of Research, Silver Spring, Maryland, 20910
| | - Sarah Rowland-Jones
- Viral Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | | | - Margaret E. Feeney
- Department of Medicine, University of California San Francisco, San Francisco, California, 94158
- Department of Pediatrics, University of California San Francisco, San Francisco, California, 94158
| | - Mary Carrington
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, 02139
| |
Collapse
|
31
|
Hopkins JR, MacLachlan BJ, Harper S, Sewell AK, Cole DK. Unconventional modes of peptide-HLA-I presentation change the rules of TCR engagement. DISCOVERY IMMUNOLOGY 2022; 1:kyac001. [PMID: 38566908 PMCID: PMC10917088 DOI: 10.1093/discim/kyac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 04/04/2024]
Abstract
The intracellular proteome of virtually every nucleated cell in the body is continuously presented at the cell surface via the human leukocyte antigen class I (HLA-I) antigen processing pathway. This pathway classically involves proteasomal degradation of intracellular proteins into short peptides that can be presented by HLA-I molecules for interrogation by T-cell receptors (TCRs) expressed on the surface of CD8+ T cells. During the initiation of a T-cell immune response, the TCR acts as the T cell's primary sensor, using flexible loops to mould around the surface of the pHLA-I molecule to identify foreign or dysregulated antigens. Recent findings demonstrate that pHLA-I molecules can also be highly flexible and dynamic, altering their shape according to minor polymorphisms between different HLA-I alleles, or interactions with different peptides. These flexible presentation modes have important biological consequences that can, for example, explain why some HLA-I alleles offer greater protection against HIV, or why some cancer vaccine approaches have been ineffective. This review explores how these recent findings redefine the rules for peptide presentation by HLA-I molecules and extend our understanding of the molecular mechanisms that govern TCR-mediated antigen discrimination.
Collapse
Affiliation(s)
- Jade R Hopkins
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Bruce J MacLachlan
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | | | - Andrew K Sewell
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - David K Cole
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| |
Collapse
|
32
|
Nagasaki J, Togashi Y. A variety of 'exhausted' T cells in the tumor microenvironment. Int Immunol 2022; 34:563-570. [PMID: 35460561 DOI: 10.1093/intimm/dxac013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
In T cell biology, 'exhaustion' was initially described as a hyporesponsive state in CD8 + T cells during chronic infections. Recently, exhaustion has been recognized as a T-cell dysfunctional state in the tumor microenvironment (TME). The term 'exhaustion' is used mainly to refer to effector T cells with a reduced capacity to secrete cytokines and an increased expression of inhibitory receptors. The upregulation of exhaustion-related inhibitory receptors, including programmed cell death protein 1 (PD-1), in such T cells has been associated with the development of tumors, prompting the development of immune checkpoint inhibitors. In addition to CD8 + T cells, CD4 + T cells, including the regulatory T (Treg) cell subset, perform a wide variety of functions within the adaptive immune system. Upregulation of the same inhibitory receptors that are associated with CD8 + T-cell exhaustion has also been identified in CD4 + T cells in chronic infections and cancers, suggesting a similar CD4 + T-cell exhaustion phenotype. For instance, high expression of PD-1 has been observed in Treg cells in the TME, and such Treg cells can play an important role in the resistance to PD-1 blockade therapies. Furthermore, recent progress in single-cell RNA sequencing has shown that CD4 + T cells with cytotoxic activity are also vulnerable to exhaustion. In this review, we will discuss novel insights into various exhausted T-cell subsets, which could reveal novel therapeutic targets and strategies to induce a robust antitumor immune response.
Collapse
Affiliation(s)
- Joji Nagasaki
- Department of Tumor Microenvironment, Okayama University, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Hematology, Graduate School of Medicine, Osaka City University, Osaka, Japan.,Chiba Cancer Center, Research Institute, Chiba, Japan
| | - Yosuke Togashi
- Department of Tumor Microenvironment, Okayama University, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Chiba Cancer Center, Research Institute, Chiba, Japan
| |
Collapse
|
33
|
Vijayakumar S. Harnessing Fuzzy Rule Based System for Screening Major Histocompatibility Complex Class I Peptide Epitopes from the Whole Proteome: An Implementation on the Proteome of Leishmania donovani. J Comput Biol 2022; 29:1045-1058. [PMID: 35404099 DOI: 10.1089/cmb.2021.0464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of peptide-based vaccines is enhanced by immunoinformatics, which predicts the patterns that B cells and T cells recognize. Although several tools are available for predicting the Major histocompatibility complex (MHC-I) binding peptides, the wide variants of human leucocyte antigen allele make it challenging to choose a peptide that will induce an immune response in a majority of people. In addition, for a peptide to be considered a potential vaccine candidate, factors such as T cell affinity, proteasome cleavage, and similarity to human proteins also play a major role. Identifying peptides that satisfy the earlier cited measures across the entire proteome is, therefore, challenging. Hence, the fuzzy inference system (FIS) is proposed to detect each peptide's potential as a vaccine candidate and assign it either a very high, high, moderate, or low ranking. The FIS includes input features from 6 modules (binding of 27 major alleles, T cell propensity, pro-inflammatory response, proteasome cleavage, transporter associated with antigen processing, and similarity with human peptide) and rules derived from an observation of features on positive samples. On validation of experimentally verified peptides, a balanced accuracy of ∼80% was achieved, with a Mathew's correlation coefficient score of 0.67 and an F-1 score of 0.74. In addition, the method was implemented on complete proteome of Leishmania donovani, which contains ∼4,800,000 peptides. Lastly, a searchable database of the ranked results of the L. donovani proteome was made and is available online (MHC-FIS-LdDB). It is hoped that this method will simplify the identification of potential MHC-I binding candidates from a large proteome.
Collapse
Affiliation(s)
- Saravanan Vijayakumar
- Department of Bioinformatics, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| |
Collapse
|
34
|
Mathé J, Benhammadi M, Kobayashi KS, Brochu S, Perreault C. Regulation of MHC Class I Expression in Lung Epithelial Cells during Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1021-1033. [PMID: 35173036 DOI: 10.4049/jimmunol.2100664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Lung infections are a perennial leading cause of death worldwide. The lung epithelium comprises three main cell types: alveolar type I (AT1), alveolar type II (AT2), and bronchiolar cells. Constitutively, these three cell types express extremely low amounts of surface MHC class I (MHC I) molecules, that is, <1% of levels found on medullary thymic epithelial cells (ECs). We report that inhalation of the TLR4 ligand LPS upregulates cell surface MHC I by ∼25-fold on the three subtypes of mouse lung ECs. This upregulation is dependent on Nlrc5, Stat1, and Stat2 and caused by a concerted production of the three IFN families. It is nevertheless hampered, particularly in AT1 cells, by the limited expression of genes instrumental in the peptide loading of MHC I molecules. Genes involved in production and response to cytokines and chemokines were selectively induced in AT1 cells. However, discrete gene subsets were selectively downregulated in AT2 or bronchiolar cells following LPS inhalation. Genes downregulated in AT2 cells were linked to cell differentiation and cell proliferation, and those repressed in bronchiolar cells were primarily involved in cilium function. Our study shows a delicate balance between the expression of transcripts maintaining lung epithelium integrity and transcripts involved in Ag presentation in primary lung ECs.
Collapse
Affiliation(s)
- Justine Mathé
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Mohamed Benhammadi
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Koichi S Kobayashi
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX; and
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada;
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada;
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
35
|
Sabbatino F, Liguori L, Pepe S, Ferrone S. Immune checkpoint inhibitors for the treatment of melanoma. Expert Opin Biol Ther 2022; 22:563-576. [PMID: 35130816 PMCID: PMC9038682 DOI: 10.1080/14712598.2022.2038132] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Immune checkpoint inhibitor (ICI) based immunotherapy is dramatically changing the management of many types of cancers including melanoma. In this malignancy, ICIs have been shown to prolong disease and progression free survival as well as overall survival of a percentage of treated patients, becoming the cornerstone of melanoma treatment. AREAS COVERED : In this review, first, we will describe the mechanisms of immune checkpoint activation and inhibition, second, we will summarize the results obtained with ICIs in melanoma treatment in terms of efficacy as well as toxicity, third, we will discuss the potential mechanisms of immune escape from ICI, and lastly, we will review the potential predictive biomarkers of clinical efficacy of ICI-based immunotherapy in melanoma. EXPERT OPINION : ICIs represent one of the pillars of melanoma treatment. The success of ICI-based therapy is limited by the development of escape mechanisms which allow melanoma cells to avoid recognition and destruction by immune cells. These results emphasize the need of additional studies to confirm the efficacy of therapies which combine different classes of ICIs as well as ICIs with other types of therapies. Furthermore, novel and more effective predictive biomarkers are needed to better stratify melanoma patients in order to define more precisely the therapeutic algorithms.
Collapse
Affiliation(s)
- Francesco Sabbatino
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno, Italy 84131
| | - Luigi Liguori
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy 80131
| | - Stefano Pepe
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno, Italy 84131
| | - Soldano Ferrone
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
36
|
Nagasaki J, Inozume T, Sax N, Ariyasu R, Ishikawa M, Yamashita K, Kawazu M, Ueno T, Irie T, Tanji E, Morinaga T, Honobe A, Ohnuma T, Yoshino M, Iwata T, Kawase K, Sasaki K, Hanazawa T, Kochin V, Kawamura T, Matsue H, Hino M, Mano H, Suzuki Y, Nishikawa H, Togashi Y. PD-1 blockade therapy promotes infiltration of tumor-attacking exhausted T cell clonotypes. Cell Rep 2022; 38:110331. [PMID: 35108529 DOI: 10.1016/j.celrep.2022.110331] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 10/21/2021] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
PD-1 blockade exerts clinical efficacy against various types of cancer by reinvigorating T cells that directly attack tumor cells (tumor-specific T cells) in the tumor microenvironment (TME), and tumor-infiltrating lymphocytes (TILs) also comprise nonspecific bystander T cells. Here, using single-cell sequencing, we show that TILs include skewed T cell clonotypes, which are characterized by exhaustion (Tex) or nonexhaustion signatures (Tnon-ex). Among skewed clonotypes, those in the Tex, but not those in the Tnon-ex, cluster respond to autologous tumor cell lines. After PD-1 blockade, non-preexisting tumor-specific clonotypes in the Tex cluster appear in the TME. Tumor-draining lymph nodes (TDLNs) without metastasis harbor a considerable number of such clonotypes, whereas these clonotypes are rarely detected in peripheral blood. We propose that tumor-infiltrating skewed T cell clonotypes with an exhausted phenotype directly attack tumor cells and that PD-1 blockade can promote infiltration of such Tex clonotypes, mainly from TDLNs.
Collapse
Affiliation(s)
- Joji Nagasaki
- Chiba Cancer Center, Research Institute, 666-2 Nitona-cho, Chuo-ku, Chiba 260-8717, Japan; Division of Cancer Immunology, National Cancer Center, Research Institute, Exploratory Oncology Research and Clinical Trial Center (EPOC), 6-5-1 Kashiwanoha, Tokyo 104-0045, Kashiwa 277-8577, Japan; Department of Hematology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Takashi Inozume
- Chiba Cancer Center, Research Institute, 666-2 Nitona-cho, Chuo-ku, Chiba 260-8717, Japan; Department of Dermatology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; Department of Dermatology, University of Yamanashi, Chuo, Japan
| | - Nicolas Sax
- KOTAI Biotechnologies, Inc., Osaka 565-0871, Japan
| | - Ryo Ariyasu
- Division of Cancer Immunology, National Cancer Center, Research Institute, Exploratory Oncology Research and Clinical Trial Center (EPOC), 6-5-1 Kashiwanoha, Tokyo 104-0045, Kashiwa 277-8577, Japan
| | | | | | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center, Research Institute, Tokyo 104-0045, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center, Research Institute, Tokyo 104-0045, Japan
| | - Takuma Irie
- Division of Cancer Immunology, National Cancer Center, Research Institute, Exploratory Oncology Research and Clinical Trial Center (EPOC), 6-5-1 Kashiwanoha, Tokyo 104-0045, Kashiwa 277-8577, Japan
| | - Etsuko Tanji
- Chiba Cancer Center, Research Institute, 666-2 Nitona-cho, Chuo-ku, Chiba 260-8717, Japan
| | - Takao Morinaga
- Chiba Cancer Center, Research Institute, 666-2 Nitona-cho, Chuo-ku, Chiba 260-8717, Japan
| | - Akiko Honobe
- Department of Dermatology, University of Yamanashi, Chuo, Japan
| | - Takehiro Ohnuma
- Department of Dermatology, University of Yamanashi, Chuo, Japan
| | - Mitsuru Yoshino
- Department of Thoracic Surgery, Chiba Cancer Center, Chiba 260-8717, Japan
| | - Takekazu Iwata
- Department of Thoracic Surgery, Chiba Cancer Center, Chiba 260-8717, Japan
| | - Katsushige Kawase
- Chiba Cancer Center, Research Institute, 666-2 Nitona-cho, Chuo-ku, Chiba 260-8717, Japan; Department of Head and Neck Surgery, Chiba Cancer Center, Chiba 260-8717, Japan; Department of Otolaryngology, Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Keita Sasaki
- Department of Head and Neck Surgery, Chiba Cancer Center, Chiba 260-8717, Japan
| | - Toyoyuki Hanazawa
- Department of Otolaryngology, Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Vitaly Kochin
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | - Hiroyuki Matsue
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Masayuki Hino
- Department of Hematology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center, Research Institute, Tokyo 104-0045, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, National Cancer Center, Research Institute, Exploratory Oncology Research and Clinical Trial Center (EPOC), 6-5-1 Kashiwanoha, Tokyo 104-0045, Kashiwa 277-8577, Japan; Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Yosuke Togashi
- Chiba Cancer Center, Research Institute, 666-2 Nitona-cho, Chuo-ku, Chiba 260-8717, Japan; Division of Cancer Immunology, National Cancer Center, Research Institute, Exploratory Oncology Research and Clinical Trial Center (EPOC), 6-5-1 Kashiwanoha, Tokyo 104-0045, Kashiwa 277-8577, Japan; Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-0932, Japan.
| |
Collapse
|
37
|
Jin H, Du W, Huang W, Yan J, Tang Q, Chen Y, Zou Z. lncRNA and breast cancer: Progress from identifying mechanisms to challenges and opportunities of clinical treatment. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:613-637. [PMID: 34589282 PMCID: PMC8463317 DOI: 10.1016/j.omtn.2021.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is a malignant tumor that has a high mortality rate and mostly occurs in women. Although significant progress has been made in the implementation of personalized treatment strategies for molecular subtypes in breast cancer, the therapeutic response is often not satisfactory. Studies have reported that long non-coding RNAs (lncRNAs) are abnormally expressed in breast cancer and closely related to the occurrence and development of breast cancer. In addition, the high tissue and cell-type specificity makes lncRNAs particularly attractive as diagnostic biomarkers, prognostic factors, and specific therapeutic targets. Therefore, an in-depth understanding of the regulatory mechanisms of lncRNAs in breast cancer is essential for developing new treatment strategies. In this review, we systematically elucidate the general characteristics, potential mechanisms, and targeted therapy of lncRNAs and discuss the emerging functions of lncRNAs in breast cancer. Additionally, we also highlight the advantages and challenges of using lncRNAs as biomarkers for diagnosis or therapeutic targets for drug resistance in breast cancer and present future perspectives in clinical practice.
Collapse
Affiliation(s)
- Huan Jin
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.,MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wei Du
- Department of Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jiajing Yan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
38
|
Lan H, Abualrous ET, Sticht J, Fernandez LMA, Werk T, Weise C, Ballaschk M, Schmieder P, Loll B, Freund C. Exchange catalysis by tapasin exploits conserved and allele-specific features of MHC-I molecules. Nat Commun 2021; 12:4236. [PMID: 34244493 PMCID: PMC8271027 DOI: 10.1038/s41467-021-24401-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022] Open
Abstract
The repertoire of peptides presented by major histocompatibility complex class I (MHC-I) molecules on the cell surface is tailored by the ER-resident peptide loading complex (PLC), which contains the exchange catalyst tapasin. Tapasin stabilizes MHC-I molecules and promotes the formation of stable peptide-MHC-I (pMHC-I) complexes that serve as T cell antigens. Exchange of suboptimal by high-affinity ligands is catalyzed by tapasin, but the underlying mechanism is still elusive. Here we analyze the tapasin-induced changes in MHC-I dynamics, and find the catalyst to exploit two essential features of MHC-I. First, tapasin recognizes a conserved allosteric site underneath the α2-1-helix of MHC-I, ‘loosening’ the MHC-I F-pocket region that accomodates the C-terminus of the peptide. Second, the scoop loop11–20 of tapasin relies on residue L18 to target the MHC-I F-pocket, enabling peptide exchange. Meanwhile, tapasin residue K16 plays an accessory role in catalysis of MHC-I allotypes bearing an acidic F-pocket. Thus, our results provide an explanation for the observed allele-specificity of catalyzed peptide exchange. Tapasin is part of the peptide loading complex necessary for presenting antigenic peptides on MHC-I for the induction of adaptive immunity. Here the authors show that tapasin interacts with MHC-I in both conserved and allele-specific regions to promote antigen presentation, with tapasin L18 and K16 residues both implicated in this molecular interaction.
Collapse
Affiliation(s)
- Huan Lan
- Laboratory of Protein Biochemistry, Institute for Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Esam T Abualrous
- Laboratory of Protein Biochemistry, Institute for Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany.,Artificial Intelligence for the Sciences, Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Jana Sticht
- Laboratory of Protein Biochemistry, Institute for Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany.,Core Facility BioSupraMol, Institute for Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Laura Maria Arroyo Fernandez
- Laboratory of Protein Biochemistry, Institute for Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Tamina Werk
- Laboratory of Protein Biochemistry, Institute for Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Christoph Weise
- Laboratory of Protein Biochemistry, Institute for Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany.,Core Facility BioSupraMol, Institute for Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Martin Ballaschk
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Bernhard Loll
- Laboratory of Structural Biology, Institute for Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute for Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
39
|
Massafra V, Tundo S, Dietzig A, Ducret A, Jost C, Klein C, Kontermann RE, Knoetgen H, Steegmaier M, Romagnani A, Nagel YA. Proteolysis-Targeting Chimeras Enhance T Cell Bispecific Antibody-Driven T Cell Activation and Effector Function through Increased MHC Class I Antigen Presentation in Cancer Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:493-504. [PMID: 34215653 DOI: 10.4049/jimmunol.2000252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/11/2021] [Indexed: 11/19/2022]
Abstract
The availability of Ags on the surface of tumor cells is crucial for the efficacy of cancer immunotherapeutic approaches using large molecules, such as T cell bispecific Abs (TCBs). Tumor Ags are processed through intracellular proteasomal protein degradation and are displayed as peptides on MHC class I (MHC I). Ag recognition through TCRs on the surface of CD8+ T cells can elicit a tumor-selective immune response. In this article, we show that proteolysis-targeting chimeras (PROTACs) that target bromo- and extraterminal domain proteins increase the abundance of the corresponding target-derived peptide Ags on MHC I in both liquid and solid tumor-derived human cell lines. This increase depends on the engagement of the E3 ligase to bromo- and extraterminal domain protein. Similarly, targeting of a doxycycline-inducible Wilms tumor 1 (WT1)-FKBP12F36V fusion protein, by a mutant-selective FKBP12F36V degrader, increases the presentation of WT1 Ags in human breast cancer cells. T cell-mediated response directed against cancer cells was tested on treatment with a TCR-like TCB, which was able to bridge human T cells to a WT1 peptide displayed on MHC I. FKBP12F36V degrader treatment increased the expression of early and late activation markers (CD69, CD25) in T cells; the secretion of granzyme β, IFN-γ, and TNF-α; and cancer cell killing in a tumor-T cell coculture model. This study supports harnessing targeted protein degradation in tumor cells, for modulation of T cell effector function, by investigating for the first time, to our knowledge, the potential of combining a degrader and a TCB in a cancer immunotherapy setting.
Collapse
Affiliation(s)
- Vittoria Massafra
- Molecular Targeted Therapy-Discovery Oncology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Sofia Tundo
- Molecular Targeted Therapy-Discovery Oncology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Aline Dietzig
- Molecular Targeted Therapy-Discovery Oncology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Axel Ducret
- Pharmaceutical Sciences-Biomarkers, Bioinformatics, and Omics, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Christian Jost
- Cancer Immunotherapy-Discovery Oncology, Roche Pharma Research and Early Development, Roche Innovation Center Zurich, F. Hoffmann-La Roche Ltd., Schlieren, Switzerland
| | - Christian Klein
- Cancer Immunotherapy-Discovery Oncology, Roche Pharma Research and Early Development, Roche Innovation Center Zurich, F. Hoffmann-La Roche Ltd., Schlieren, Switzerland
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, Stuttgart University, Stuttgart, Germany
| | - Hendrik Knoetgen
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland; and
| | - Martin Steegmaier
- Large Molecule Research, Roche Pharma Research and Early Development, Roche Innovation Center Munich, F. Hoffmann-La Roche Ltd., Penzberg, Germany
| | - Andrea Romagnani
- Molecular Targeted Therapy-Discovery Oncology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Yvonne A Nagel
- Molecular Targeted Therapy-Discovery Oncology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland;
| |
Collapse
|
40
|
Russell BL, Sooklal SA, Malindisa ST, Daka LJ, Ntwasa M. The Tumor Microenvironment Factors That Promote Resistance to Immune Checkpoint Blockade Therapy. Front Oncol 2021; 11:641428. [PMID: 34268109 PMCID: PMC8276693 DOI: 10.3389/fonc.2021.641428] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Through genetic and epigenetic alterations, cancer cells present the immune system with a diversity of antigens or neoantigens, which the organism must distinguish from self. The immune system responds to neoantigens by activating naïve T cells, which mount an anticancer cytotoxic response. T cell activation begins when the T cell receptor (TCR) interacts with the antigen, which is displayed by the major histocompatibility complex (MHC) on antigen-presenting cells (APCs). Subsequently, accessory stimulatory or inhibitory molecules transduce a secondary signal in concert with the TCR/antigen mediated stimulus. These molecules serve to modulate the activation signal's strength at the immune synapse. Therefore, the activation signal's optimum amplitude is maintained by a balance between the costimulatory and inhibitory signals. This system comprises the so-called immune checkpoints such as the programmed cell death (PD-1) and Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and is crucial for the maintenance of self-tolerance. Cancers often evade the intrinsic anti-tumor activity present in normal physiology primarily by the downregulation of T cell activation. The blockade of the immune checkpoint inhibitors using specific monoclonal antibodies has emerged as a potentially powerful anticancer therapy strategy. Several drugs have been approved mainly for solid tumors. However, it has emerged that there are innate and acquired mechanisms by which resistance is developed against these therapies. Some of these are tumor-intrinsic mechanisms, while others are tumor-extrinsic whereby the microenvironment may have innate or acquired resistance to checkpoint inhibitors. This review article will examine mechanisms by which resistance is mounted against immune checkpoint inhibitors focussing on anti-CTL4-A and anti-PD-1/PD-Ll since drugs targeting these checkpoints are the most developed.
Collapse
Affiliation(s)
- Bonnie L. Russell
- Department of Life & Consumer Sciences, University of South Africa, Johannesburg, South Africa
- Innovation Hub, Buboo (Pty) Ltd, Pretoria, South Africa
| | - Selisha A. Sooklal
- Department of Life & Consumer Sciences, University of South Africa, Johannesburg, South Africa
| | - Sibusiso T. Malindisa
- Department of Life & Consumer Sciences, University of South Africa, Johannesburg, South Africa
| | | | - Monde Ntwasa
- Department of Life & Consumer Sciences, University of South Africa, Johannesburg, South Africa
| |
Collapse
|
41
|
Jéhannet P, Palstra AP, Heinsbroek LTN, Kruijt L, Dirks RP, Swinkels W, Komen H. What Goes Wrong during Early Development of Artificially Reproduced European Eel Anguilla anguilla? Clues from the Larval Transcriptome and Gene Expression Patterns. Animals (Basel) 2021; 11:ani11061710. [PMID: 34201077 PMCID: PMC8227761 DOI: 10.3390/ani11061710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/23/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Closing the life cycle of the European eel in captivity is urgently needed to gain perspective for the commercial production of juvenile glass eels. Larvae are produced weekly at our facilities, but large variations in larval mortality are observed during the first week after hatching. Although much effort has been devoted to investigating ways to prevent early larval mortality, it remains unclear what the causes are. The aim of this study was to perform a transcriptomic study on European eel larvae in order to identify genes and physiological pathways that are differentially regulated in the comparison of larvae from batches that did not survive for longer than three days vs. larvae from batches that survived for at least a week up to 22 days after hatching (non-viable vs. viable larvae). In contrast to earlier published studies on European eel, we conclude that larvae exhibit immune competency. Non-viable larvae initiated an inflammatory and host protection immune response and tried to maintain osmoregulatory homeostasis. As a perspective, microbial control and salinity reduction might benefit eel larvae in terms of lower mortality and improved development by lowering the costs of immune functioning and osmoregulation. Abstract In eels, large variations in larval mortality exist, which would impede the viable production of juvenile glass eels in captivity. The transcriptome of European eel larvae was investigated to identify physiological pathways and genes that show differential regulation between non-viable vs. viable larvae. Expression of genes involved in inflammation and host protection was higher, suggesting that non-viable larvae suffered from microbial infection. Expression of genes involved in osmoregulation was also higher, implying that non-viable larvae tried to maintain homeostasis by strong osmoregulatory adaptation. Expression of genes involved in myogenesis, neural, and sensory development was reduced in the non-viable larvae. Expression of the major histocompatibility complex class-I (mhc1) gene, M-protein (myom2), the dopamine 2B receptor (d2br), the melatonin receptor (mtr1), and heat-shock protein beta-1 (hspb1) showed strong differential regulation and was therefore studied in 1, 8, and 15 days post-hatch (dph) larvae by RT-PCR to comprehend the roles of these genes during ontogeny. Expression patterning of these genes indicated the start of active swimming (8 dph) and feed searching behavior (15 dph) and confirmed immunocompetence immediately after hatching. This study revealed useful insights for improving larval survival by microbial control and salinity reduction.
Collapse
Affiliation(s)
- Pauline Jéhannet
- Animal Breeding and Genomics, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (P.J.); (L.K.); (H.K.)
| | - Arjan P. Palstra
- Animal Breeding and Genomics, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (P.J.); (L.K.); (H.K.)
- Correspondence:
| | | | - Leo Kruijt
- Animal Breeding and Genomics, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (P.J.); (L.K.); (H.K.)
| | - Ron P. Dirks
- Future Genomics Technologies B.V., 2333 BE Leiden, The Netherlands;
| | | | - Hans Komen
- Animal Breeding and Genomics, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (P.J.); (L.K.); (H.K.)
| |
Collapse
|
42
|
Pezeshki PS, Mahdavi Sharif P, Rezaei N. Resistance mechanisms to programmed cell death protein 1 and programmed death ligand 1 inhibitors. Expert Opin Biol Ther 2021; 21:1575-1590. [PMID: 33984254 DOI: 10.1080/14712598.2021.1929919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: In the past few years, administrating monoclonal humanized antibodies, namely checkpoint inhibitors, against programmed cell death protein 1 (PD-1), and its ligand (PD-L1), has yielded reassuring tumor regression rates. Anti-PD-1/PD-L1 checkpoint inhibitors disrupt the engagement of PD-1 on T-cells and their ligands on tumor or other target cells and reactivate the tumor-specific T infiltrating lymphocytes (TILs), which are mostly in a state of anergy before the PD-1/PD-L1 blockade. However, a limited number of patients initially respond, and the others show a primary (innate) resistance. Moreover, the rate of relapse and tumor progression after a partial, or even complete response (secondary or acquired resistance) is relatively considerable.Areas covered: This paper presents a comprehensive discussion on the mechanisms of primary and secondary resistance to PD-1/PD-L1 blockade. Loss of T-cell infiltration or T-cell exclusion, lack of PD-L1 or PD-1 expression, and also lack of tumor immunogenicity are among the most important mechanisms, and also biomarkers of resistance in patients undergoing PD-1/PD-L1 blockade. Several somatic mutations in tumors are known to be related to at least one of the resistance mechanisms.Expert opinion: Identification of the novel resistance mechanisms suggests further combinatorial therapies to tackle primary and secondary resistance to PD-1/PD-L1 blockade.
Collapse
Affiliation(s)
- Parmida Sadat Pezeshki
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Mahdavi Sharif
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK
| |
Collapse
|
43
|
Abualrous ET, Sticht J, Freund C. Major histocompatibility complex (MHC) class I and class II proteins: impact of polymorphism on antigen presentation. Curr Opin Immunol 2021; 70:95-104. [PMID: 34052735 DOI: 10.1016/j.coi.2021.04.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 01/01/2023]
Abstract
The major histocompatibility complex (MHC) loci are amongst the most polymorphic regions in the genomes of vertebrates. In the human population, thousands of MHC gene variants (alleles) exist that translate into distinct allotypes equipped with overlapping but unique peptide binding profiles. Understanding the differential structural and dynamic properties of MHC alleles and their interaction with critical regulators of peptide exchange bears the potential for more personalized strategies of immune modulation in the context of HLA-associated diseases.
Collapse
Affiliation(s)
- Esam T Abualrous
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Jana Sticht
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Christian Freund
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany.
| |
Collapse
|
44
|
Xu H, Van der Jeught K, Zhou Z, Zhang L, Yu T, Sun Y, Li Y, Wan C, So KM, Liu D, Frieden M, Fang Y, Mosley AL, He X, Zhang X, Sandusky GE, Liu Y, Meroueh SO, Zhang C, Wijeratne AB, Huang C, Ji G, Lu X. Atractylenolide I enhances responsiveness to immune checkpoint blockade therapy by activating tumor antigen presentation. J Clin Invest 2021; 131:e146832. [PMID: 33830945 PMCID: PMC8121519 DOI: 10.1172/jci146832] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
One of the primary mechanisms of tumor cell immune evasion is the loss of antigenicity, which arises due to lack of immunogenic tumor antigens as well as dysregulation of the antigen processing machinery. In a screen for small-molecule compounds from herbal medicine that potentiate T cell-mediated cytotoxicity, we identified atractylenolide I (ATT-I), which substantially promotes tumor antigen presentation of both human and mouse colorectal cancer (CRC) cells and thereby enhances the cytotoxic response of CD8+ T cells. Cellular thermal shift assay (CETSA) with multiplexed quantitative mass spectrometry identified the proteasome 26S subunit non-ATPase 4 (PSMD4), an essential component of the immunoproteasome complex, as a primary target protein of ATT-I. Binding of ATT-I with PSMD4 augments the antigen-processing activity of immunoproteasome, leading to enhanced MHC-I-mediated antigen presentation on cancer cells. In syngeneic mouse CRC models and human patient-derived CRC organoid models, ATT-I treatment promotes the cytotoxicity of CD8+ T cells and thus profoundly enhances the efficacy of immune checkpoint blockade therapy. Collectively, we show here that targeting the function of immunoproteasome with ATT-I promotes tumor antigen presentation and empowers T cell cytotoxicity, thus elevating the tumor response to immunotherapy.
Collapse
Affiliation(s)
- Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Medical and Molecular Genetics
| | | | | | - Lu Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Medical and Molecular Genetics
| | - Tao Yu
- Department of Medical and Molecular Genetics
| | - Yifan Sun
- Department of Medical and Molecular Genetics
| | - Yujing Li
- Department of Medical and Molecular Genetics
| | - Changlin Wan
- Center for Computational Biology and Bioinformatics
| | - Ka Man So
- Center for Computational Biology and Bioinformatics
| | - Degang Liu
- Department of Biochemistry and Molecular Biology, and
| | | | | | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, and
- Proteomics Core Facility, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Xinna Zhang
- Department of Medical and Molecular Genetics
- Melvin and Bren Simon Cancer Center and
| | - George E. Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics
- Center for Computational Biology and Bioinformatics
- Melvin and Bren Simon Cancer Center and
| | | | - Chi Zhang
- Department of Medical and Molecular Genetics
- Center for Computational Biology and Bioinformatics
- Melvin and Bren Simon Cancer Center and
| | - Aruna B. Wijeratne
- Department of Biochemistry and Molecular Biology, and
- Proteomics Core Facility, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Cheng Huang
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics
- Center for Computational Biology and Bioinformatics
- Melvin and Bren Simon Cancer Center and
| |
Collapse
|
45
|
The critical role of CD4+ T cells in PD-1 blockade against MHC-II-expressing tumors such as classic Hodgkin lymphoma. Blood Adv 2021; 4:4069-4082. [PMID: 32870971 DOI: 10.1182/bloodadvances.2020002098] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/02/2020] [Indexed: 12/18/2022] Open
Abstract
Classic Hodgkin lymphoma (cHL) responds markedly to PD-1 blockade therapy, and the clinical responses are reportedly dependent on expression of major histocompatibility complex class II (MHC-II). This dependence is different from other solid tumors, in which the MHC class I (MHC-I)/CD8+ T-cell axis plays a critical role. In this study, we investigated the role of the MHC-II/CD4+ T-cell axis in the antitumor effect of PD-1 blockade on cHL. In cHL, MHC-I expression was frequently lost, but MHC-II expression was maintained. CD4+ T cells highly infiltrated the tumor microenvironment of MHC-II-expressing cHL, regardless of MHC-I expression status. Consequently, CD4+ T-cell, but not CD8+ T-cell, infiltration was a good prognostic factor in cHL, and PD-1 blockade showed antitumor efficacy against MHC-II-expressing cHL associated with CD4+ T-cell infiltration. Murine lymphoma and solid tumor models revealed the critical role of antitumor effects mediated by CD4+ T cells: an anti-PD-1 monoclonal antibody exerted antitumor effects on MHC-I-MHC-II+ tumors but not on MHC-I-MHC-II- tumors, in a cytotoxic CD4+ T-cell-dependent manner. Furthermore, LAG-3, which reportedly binds to MHC-II, was highly expressed by tumor-infiltrating CD4+ T cells in MHC-II-expressing tumors. Therefore, the combination of LAG-3 blockade with PD-1 blockade showed a far stronger antitumor immunity compared with either treatment alone. We propose that PD-1 blockade therapies have antitumor effects on MHC-II-expressing tumors such as cHL that are mediated by cytotoxic CD4+ T cells and that LAG-3 could be a candidate for combination therapy with PD-1 blockade.
Collapse
|
46
|
Yang Y, Yang L, Wang Y. [Immunotherapy for Lung Cancer: Mechanisms of Resistance and Response Strategy]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:112-123. [PMID: 33626853 PMCID: PMC7936078 DOI: 10.3779/j.issn.1009-3419.2021.101.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inhibition of immune checkpoints is at the forefront of immunotherapy for lung cancer. However, a high percentage of lung cancer patients do not respond to these immunotherpy or their responses are transient, indicating the existence of immune resistance. Emerging evidence suggested that the interactions between cancer cells and immune system were continuous and dynamic. Here, we review how a range of cancer-cell-autonomous characteristics, tumor-microenvironment factors, and host-related influences account for heterogenous responses. Furthermore, with the identification of new targets of immunotherapy and development of immune-based combination therapy, we elucidate the methods might useful to overcome resistance.
Collapse
Affiliation(s)
- Yaning Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lu Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
47
|
Shukla A, Cloutier M, Appiya Santharam M, Ramanathan S, Ilangumaran S. The MHC Class-I Transactivator NLRC5: Implications to Cancer Immunology and Potential Applications to Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22041964. [PMID: 33671123 PMCID: PMC7922096 DOI: 10.3390/ijms22041964] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
The immune system constantly monitors the emergence of cancerous cells and eliminates them. CD8+ cytotoxic T lymphocytes (CTLs), which kill tumor cells and provide antitumor immunity, select their targets by recognizing tumor antigenic peptides presented by MHC class-I (MHC-I) molecules. Cancer cells circumvent immune surveillance using diverse strategies. A key mechanism of cancer immune evasion is downregulation of MHC-I and key proteins of the antigen processing and presentation machinery (APM). Even though impaired MHC-I expression in cancers is well-known, reversing the MHC-I defects remains the least advanced area of tumor immunology. The discoveries that NLRC5 is the key transcriptional activator of MHC-I and APM genes, and genetic lesions and epigenetic modifications of NLRC5 are the most common cause of MHC-I defects in cancers, have raised the hopes for restoring MHC-I expression. Here, we provide an overview of cancer immunity mediated by CD8+ T cells and the functions of NLRC5 in MHC-I antigen presentation pathways. We describe the impressive advances made in understanding the regulation of NLRC5 expression, the data supporting the antitumor functions of NLRC5 and a few reports that argue for a pro-tumorigenic role. Finally, we explore the possible avenues of exploiting NLRC5 for cancer immunotherapy.
Collapse
Affiliation(s)
- Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Madanraj Appiya Santharam
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
- Correspondence: ; Tel.: +1-819-346-1110 (ext. 14834)
| |
Collapse
|
48
|
Abstract
Spurred into action by the COVID-19 pandemic, the global scientific community has, in a short of period of time, made astonishing progress in understanding and combating COVID-19. Given the known human protein machinery for (a) SARS-CoV-2 entry, (b) the host innate immune response, and (c) virus-host interactions (protein-protein and RNA-protein), the potential effects of human genetic variation in this machinery, which may contribute to clinical differences in SARS-CoV-2 pathogenesis and help determine individual risk for COVID-19 infection, are explored. The Genome Aggregation Database (gnomAD) was used to show that several rare germline exome variants of proteins in these pathways occur in the human population, suggesting that carriers of these rare variants (especially for proteins of innate immunity pathways) are at risk for severe symptoms (like the severe symptoms in patients who are known to be rare variant carriers), whereas carriers of other variants could have a protective advantage against infection. The occurrence of genetic variation is thus expected to motivate the experimental probing of natural variants to understand the mechanistic differences in SARS-CoV-2 pathogenesis from one individual to another.
Collapse
Affiliation(s)
- Suvobrata Chakravarty
- Chemistry & Biochemistry, South
Dakota State University, Brookings, South Dakota 57007, United
States
- BioSNTR, Brookings, South
Dakota 57007, United States
| |
Collapse
|
49
|
Sun X, Tokunaga R, Nagai Y, Miyahara R, Kishimura A, Kawakami S, Katayama Y, Mori T. Ligand Design for Specific MHC Class I Molecules on the Cell Surface. Biochemistry 2020; 59:4646-4653. [PMID: 33252220 DOI: 10.1021/acs.biochem.0c00735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have validated that ligand peptides designed from antigen peptides could be used for targeting specific major histocompatibility complex class I (MHC-I) molecules on the cell surface. To design the ligand peptides, we used reported antigen peptides for each MHC-I molecule with high binding affinity. From the crystal structure of the peptide/MHC-I complexes, we determined a modifiable residue in the antigen peptides and replaced this residue with a lysine with an ε-amine group modified with functional molecules. The designed ligand peptides successfully bound to cells expressing the corresponding MHC-I molecules via exchange of peptides bound to MHC-I. We demonstrated that the peptide ligands could be used to transport a protein or a liposome to cells expressing the corresponding MHC-I. This strategy may be useful for targeted delivery to cells overexpressing MHC-I, which have been observed in autoimmune diseases.
Collapse
Affiliation(s)
- Xizheng Sun
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Reika Tokunaga
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoko Nagai
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryo Miyahara
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akihiro Kishimura
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Yoshiki Katayama
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Center for Advanced Medical Innovation, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan.,Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li, 32023 ROC, Taiwan
| | - Takeshi Mori
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
50
|
HLA polymorphism and tapasin independence influence outcomes of HIV and dengue virus infection. Proc Natl Acad Sci U S A 2020; 117:31570-31572. [PMID: 33239443 DOI: 10.1073/pnas.2020109117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|