1
|
Gökşen Tosun N, Kaplan Ö. Dual targeting of HSP90 and BCL-2 in breast cancer cells using inhibitors BIIB021 and ABT-263. Breast Cancer Res Treat 2025; 210:493-506. [PMID: 39779635 PMCID: PMC11930872 DOI: 10.1007/s10549-024-07587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE The incidence of breast cancer has been increasing in recent years, and monotherapy approaches are not sufficient alone in the treatment of breast cancer. In the combined therapy approach, combining two or three different agents in lower doses can mitigate the side effects on living cells and tissues caused by high doses of chemical agents used alone. ABT-263 (navitoclax), a clinically tested Bcl-2 family protein inhibitor, has shown limited success in clinical trials due to the development of resistance to monotherapy in breast cancer cells. This resistance shows that monotherapy approaches are inadequate and more effective treatment strategies are needed. It is the ability of HSP90 inhibitors to destabilize many oncoproteins that are critical for the survival of cancer cells. This study aimed to examine the anticancer activity of the combination of ABT-263 with BIIB021, a new generation HSP90 inhibitor, on two widely used breast cancer cell lines: MCF-7 (ER-positive) and MDA-MB-231 (triple-negative breast cancer, TNBC). These cell lines were selected to represent distinct breast cancer subtypes with different molecular characteristics and clinical behaviors. METHODS Single and combined cytotoxic effects of this agents on MCF-7 and MDA-MB-231 breast cancer cell lines were determined using the MTT cell viability test. The combined use of these two agents showed a synergistic effect, and this effect was assigned using the Chou and Talalay method. mRNA and protein levels of apoptosis-related genes Bax, Bcl-2, Casp9, and Heat Shock Proteins HSP27, HSP70, and HSP90 were analyzed using Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and Western Blotting, respectively. RESULTS The cytotoxicity analysis, combined with the application of the Chou-Talalay method, demonstrated that the BIIB021 and ABT-263 combination exhibited significantly greater anticancer activity compared to the individual effects of either BIIB021 or ABT-263 in breast cancer cell lines. The analysis of mRNA and protein levels indicated that the BIIB021+ABT-263 combination may have triggered the intrinsic apoptotic pathway in breast cancer cells. CONCLUSION This study showed that co-administration of ABT-263 and BIIB021 agents exhibited synergistic cytotoxic effects and increased the expression of apoptosis-related genes in breast cancer cell lines.
Collapse
Affiliation(s)
- Nazan Gökşen Tosun
- Tokat Vocational School of Health Services, Department of Medical Services and Techniques, Tokat Gaziosmanpaşa University, Tokat, Turkey.
| | - Özlem Kaplan
- Rafet Kayış Faculty of Engineering, Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Antalya, Turkey.
| |
Collapse
|
2
|
Dai Y, Stuehr DJ. Heme delivery into soluble guanylyl cyclase requires a heme redox change and is regulated by NO and Hsp90 by distinct mechanisms. J Biol Chem 2025; 301:108315. [PMID: 39955066 PMCID: PMC11938259 DOI: 10.1016/j.jbc.2025.108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Nitric oxide (NO) signaling often relies on it activating cGMP production by the heterodimeric enzyme soluble guanylyl cyclase (sGC). To mature to function, an sGCβ subunit must first incorporate heme and then form a heterodimer with a partner α subunit. Our previous studies in cells showed that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) supplies heme to the apo-sGCβ subunit, which is complexed with the cell chaperone Hsp90. Through its ATP hydrolysis, Hsp90 then promotes heme insertion into apo-sGCβ and consequent formation of a functional heterodimer. NO at physiologic levels somehow stimulates cell heme allocation into apo-sGCβ by this process. To gain insight, we utilized purified apo-sGCβ and GAPDH reporter proteins whose heme contents can be followed by fluorescence and determined the impact of Hsp90 and NO on heme transfer between them. Results show that heme transfer out of GAPDH and into apo-sGCβ is tightly coupled in all circumstances and is limited by the ability of the apo-sGCβ to incorporate the heme, which in turn relies on a ferric to ferrous heme transition taking place inside the sGCβ. Hsp90 can influence the heme transfer kinetics in a negative or positive manner through its conformational effects on apo-sGCβ, while NO speeds heme transfer by binding to the heme iron and thus speeding heme dissociation from GAPDH. Our findings provide new mechanistic understanding of sGC maturation and how Hsp90 and NO combine to dynamically regulate heme incorporation for sGC heterodimer formation and consequent cGMP production in biological settings.
Collapse
Affiliation(s)
- Yue Dai
- Department of Inflammation and Immunity, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
3
|
Pokhrel S, Devi S, Gestwicki JE. Chaperone-dependent and chaperone-independent functions of carboxylate clamp tetratricopeptide repeat (CC-TPR) proteins. Trends Biochem Sci 2025; 50:121-133. [PMID: 39706778 DOI: 10.1016/j.tibs.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/23/2024]
Abstract
The molecular chaperones HSP70 and HSP90 play key roles in proteostasis by acting as adapters; they bind to a 'client' protein, often with the assistance of cochaperones, and then recruit additional cochaperones that promote specific fates (e.g., folding or degradation). One family of cochaperones contains a region termed the tetratricopeptide repeat with carboxylate clamps (CC-TPRs) domain. These domains bind to an EEVD motif at the C-termini of cytoplasmic HSP70 and HSP90 proteins, bringing them into proximity to chaperone-bound clients. It has recently become clear that CC-TPR proteins also bind to 'EEVD-like' motifs in non-chaperone proteins, circumventing the need for HSP70s or HSP90s. We provide an overview of the chaperone-dependent and -independent roles of CC-TPR proteins and discuss how, together, they shape proteostasis.
Collapse
Affiliation(s)
- Saugat Pokhrel
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Shweta Devi
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco (UCSF), San Francisco, CA 94158, USA.
| |
Collapse
|
4
|
Kirigin E, Okpara MO, Matandirotya L, Ruck JL, Weaver F, Jackson Z, Chakraborty A, Veale CGL, Whitehouse A, Edkins AL. Hsp70-Hsp90 organising protein (HOP/STIP1) is required for KSHV lytic replication. J Gen Virol 2024; 105. [PMID: 39607759 DOI: 10.1099/jgv.0.002053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a DNA virus that causes Kaposi's sarcoma, a cancer of endothelial origin. KSHV uses the activity of host molecular chaperones like Hsp70 and Hsp90 for the folding of host and viral proteins required for productive infection. Hsp70 and Hsp90 chaperones form proteostasis networks with several regulatory proteins known as co-chaperones. Of these, Hsp90-Hsp70-organizing protein (HOP) is an early-stage co-chaperone that regulates the transfer of folding substrate proteins between the Hsp70 and Hsp90 chaperone systems. While the roles for Hsp90 and Hsp70 in KSHV biology have been described, HOP has not previously been studied in this context despite its prominent interaction with both chaperones. Here, we demonstrate a novel function for HOP as a new host factor required for effective lytic replication of KSHV in primary effusion cell lines.
Collapse
Affiliation(s)
- Elisa Kirigin
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6139, South Africa
| | - Michael Obinna Okpara
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6139, South Africa
| | - Lorraine Matandirotya
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6139, South Africa
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jamie-Lee Ruck
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6139, South Africa
| | - Frederick Weaver
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Zoe Jackson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Abir Chakraborty
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6139, South Africa
| | | | - Adrian Whitehouse
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6139, South Africa
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6139, South Africa
- Centre for Chemico- and Biomedicinal Research (CCBR), Rhodes University, Makhanda, 6139, South Africa
| |
Collapse
|
5
|
Salem S, Alpaugh M, Saint-Pierre M, Alves-Martins-Borba FN, Cerquera-Cleves C, Lemieux M, Ngonza-Nito SB, De Koninck P, Melki R, Cicchetti F. Treatment with Tau fibrils impact Huntington's disease-related phenotypes in cell and mouse models. Neurobiol Dis 2024; 202:106696. [PMID: 39389154 DOI: 10.1016/j.nbd.2024.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/13/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
There is now compelling evidence for the presence of pathological forms of Tau in tissues of both patients and animal models of Huntington's disease (HD). While the root cause of this illness is a mutation within the huntingtin gene, a number of studies now suggest that HD could also be considered a secondary tauopathy. However, the contributory role of Tau in the pathogenesis and pathophysiology of this condition, as well as its implications in cellular toxicity and consequent behavioral impairments are largely unknown. We therefore performed intracerebral stereotaxic injections of recombinant human Tau monomers and fibrils into the knock-in zQ175 mouse model of HD. Tau fibrils induced cognitive and anxiety-like phenotypes predominantly in zQ175 mice and increased the number and size of insoluble mutant huntingtin (mHTT) aggregates in the brains of treated animals. To better understand the putative mechanisms through which Tau could initiate and/or contribute to pathology, we incubated StHdh striatal cells, an in vitro model of HD, with the different Tau forms and evaluated the effects on cell functionality and heat shock proteins Hsp70 and Hsp90. Calcium imaging experiments showed functional impairments of HD StHdh cells following treatment with Tau fibrils, as well as significant changes to the levels of both heat shock proteins which were found trapped within mHTT aggregates. The accumulation of Hsp70 and 90 within aggregates was also present in mouse tissue which suggests that alteration of molecular chaperone-dependent protein quality control may influence aggregation, implicating proteostasis in the mHTT-Tau interplay.
Collapse
Affiliation(s)
- Shireen Salem
- Cente de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| | - Melanie Alpaugh
- Cente de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Martine Saint-Pierre
- Cente de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Flavia Natale Alves-Martins-Borba
- Cente de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Catalina Cerquera-Cleves
- Cente de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Mado Lemieux
- CERVO Brain Research Center, 2601 de la Canardière, Québec, QC G1J 2G3, Canada
| | - Soki Bradel Ngonza-Nito
- Labortory of Neurodegenerative Diseases, Institut François Jacob, MIRCen, CEA, CNRS, Fontenay-aux-Roses, France
| | - Paul De Koninck
- CERVO Brain Research Center, 2601 de la Canardière, Québec, QC G1J 2G3, Canada
| | - Ronald Melki
- Labortory of Neurodegenerative Diseases, Institut François Jacob, MIRCen, CEA, CNRS, Fontenay-aux-Roses, France
| | - Francesca Cicchetti
- Cente de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada; Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
6
|
Riedl S, Bilgen E, Agam G, Hirvonen V, Jussupow A, Tippl F, Riedl M, Maier A, Becker CFW, Kaila VRI, Lamb DC, Buchner J. Evolution of the conformational dynamics of the molecular chaperone Hsp90. Nat Commun 2024; 15:8627. [PMID: 39366960 PMCID: PMC11452706 DOI: 10.1038/s41467-024-52995-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
Hsp90 is a molecular chaperone of central importance for protein homeostasis in the cytosol of eukaryotic cells, with key functional and structural traits conserved from yeast to man. During evolution, Hsp90 has gained additional functional importance, leading to an increased number of interacting co-chaperones and client proteins. Here, we show that the overall conformational transitions coupled to the ATPase cycle of Hsp90 are conserved from yeast to humans, but cycle timing as well as the dynamics are significantly altered. In contrast to yeast Hsp90, the human Hsp90 is characterized by broad ensembles of conformational states, irrespective of the absence or presence of ATP. The differences in the ATPase rate and conformational transitions between yeast and human Hsp90 are based on two residues in otherwise conserved structural elements that are involved in triggering structural changes in response to ATP binding. The exchange of these two mutations allows swapping of the ATPase rate and of the conformational transitions between human and yeast Hsp90. Our combined results show that Hsp90 evolved to a protein with increased conformational dynamics that populates ensembles of different states with strong preferences for the N-terminally open, client-accepting states.
Collapse
Affiliation(s)
- Stefan Riedl
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Ecenaz Bilgen
- Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Ganesh Agam
- Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Viivi Hirvonen
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Alexander Jussupow
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Franziska Tippl
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Maximilian Riedl
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Andreas Maier
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Don C Lamb
- Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Johannes Buchner
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany.
| |
Collapse
|
7
|
Pugh K, Xu H, Blagg BSJ. Investigation of the site 2 pocket of Grp94 with KUNG65 benzamide derivatives. Bioorg Med Chem Lett 2024; 111:129893. [PMID: 39043265 PMCID: PMC11385017 DOI: 10.1016/j.bmcl.2024.129893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
Glucose-regulated protein 94 (Grp94) is an isoform of the heat shock protein 90 kDa (Hsp90) family of molecular chaperones. Inhibiting Grp94 has been implicated for many diseases. Co-crystal structures of two generations of Grp94 inhibitors revealed the importance of investigating the ester group, which is projected into the site 2 pocket unique to Grp94. Therefore, a series of KUNG65 benzamide analogs was designed and synthesized to evaluate their impact on the affinity and selectivity for Grp94. The data demonstrated that substituents with small and saturated ring systems that contain hydrogen bond acceptors exhibited increased affinity for Grp94, whereas larger saturated ring system manifested increased selectivity for Grp94 over Hsp90α.
Collapse
Affiliation(s)
- Kyler Pugh
- Department of Chemistry and Biochemistry, Warren Center for Drug Discovery, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN 46556, USA
| | - Hao Xu
- Department of Chemistry and Biochemistry, Warren Center for Drug Discovery, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN 46556, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, Warren Center for Drug Discovery, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN 46556, USA.
| |
Collapse
|
8
|
Horikawa M, Fukuyama M, Antebi A, Mizunuma M. Regulatory mechanism of cold-inducible diapause in Caenorhabditis elegans. Nat Commun 2024; 15:5793. [PMID: 38987256 PMCID: PMC11237089 DOI: 10.1038/s41467-024-50111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Temperature is a critical environmental cue that controls the development and lifespan of many animal species; however, mechanisms underlying low-temperature adaptation are poorly understood. Here, we describe cold-inducible diapause (CID), another type of diapause induced by low temperatures in Caenorhabditis elegans. A premature stop codon in heat shock factor 1 (hsf-1) triggers entry into CID at 9 °C, whereas wild-type animals enter CID at 4 °C. Furthermore, both wild-type and hsf-1(sy441) mutant animals undergoing CID can survive for weeks, and resume growth at 20 °C. Using epistasis analysis, we demonstrate that neural signalling pathways, namely tyraminergic and neuromedin U signalling, regulate entry into CID of the hsf-1 mutant. Overexpression of anti-ageing genes, such as hsf-1, XBP1/xbp-1, FOXO/daf-16, Nrf2/skn-1, and TFEB/hlh-30, also inhibits CID entry of the hsf-1 mutant. Based on these findings, we hypothesise that regulators of the hsf-1 mutant CID may impact longevity, and successfully isolate 16 long-lived mutants among 49 non-CID mutants via genetic screening. Furthermore, we demonstrate that the nonsense mutation of MED23/sur-2 prevents CID entry of the hsf-1(sy441) mutant and extends lifespan. Thus, CID is a powerful model to investigate neural networks involving cold acclimation and to explore new ageing mechanisms.
Collapse
Affiliation(s)
- Makoto Horikawa
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
| | - Masamitsu Fukuyama
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Masaki Mizunuma
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|
9
|
Asdemir A, Özgür A. Molecular mechanism of anticancer effect of heat shock protein 90 inhibitor BIIB021 in human bladder cancer cell line. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5167-5177. [PMID: 38240781 PMCID: PMC11166791 DOI: 10.1007/s00210-024-02950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/10/2024] [Indexed: 06/12/2024]
Abstract
Bladder cancer is a type of urologic malignancy that exhibits significant morbidity, mortality, and treatment costs. Inhibition of heat shock protein 90 (HSP90) activity has been a promising pharmacological strategy for blocking of bladder cancer pathogenesis. BIIB021 is a next-generation HSP90 inhibitor which interrupts ATP hydrolysis process of HSP90 and inhibits the stabilization and correct folding of client proteins. In current study, we aimed to investigate the molecular mechanism of the anticancer activity of BIIB021 in human bladder cancer T24 cells. Our results revealed that nanomolar concentration of BIIB021 decreased viability of T24 cell. BIIB021 downregulated HSP90 expression in T24 cells and inhibited the refolding activity of luciferase in the presence of T24 cell lysate. PCR array data indicated a significant alteration in transcript levels of cancer-related genes involved in metastases, apoptotic cell death, cell cycle, cellular senescence, DNA damage and repair mechanisms, epithelial-to-mesenchymal transition, hypoxia, telomeres and telomerase, and cancer metabolism pathways in T24 cells. All findings hypothesize that BIIB021 could exhibit as effective HSP90 inhibitor in the future for treatment of bladder cancer patients.
Collapse
Affiliation(s)
- Aydemir Asdemir
- Faculty of Medicine, Department of Urology, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Aykut Özgür
- Artova Vocational School, Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
10
|
Rios EI, Gonçalves D, Morano KA, Johnson JL. Quantitative proteomic analysis reveals unique Hsp90 cycle-dependent client interactions. Genetics 2024; 227:iyae057. [PMID: 38606935 PMCID: PMC11151932 DOI: 10.1093/genetics/iyae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024] Open
Abstract
Hsp90 is an abundant and essential molecular chaperone that mediates the folding and activation of client proteins in a nucleotide-dependent cycle. Hsp90 inhibition directly or indirectly impacts the function of 10-15% of all proteins due to degradation of client proteins or indirect downstream effects. Due to its role in chaperoning oncogenic proteins, Hsp90 is an important drug target. However, compounds that occupy the ATP-binding pocket and broadly inhibit function have not achieved widespread use due to negative effects. More selective inhibitors are needed; however, it is unclear how to achieve selective inhibition. We conducted a quantitative proteomic analysis of soluble proteins in yeast strains expressing wild-type Hsp90 or mutants that disrupt different steps in the client folding pathway. Out of 2,482 proteins in our sample set (approximately 38% of yeast proteins), we observed statistically significant changes in abundance of 350 (14%) of those proteins (log2 fold change ≥ 1.5). Of these, 257/350 (∼73%) with the strongest differences in abundance were previously connected to Hsp90 function. Principal component analysis of the entire dataset revealed that the effects of the mutants could be separated into 3 primary clusters. As evidence that Hsp90 mutants affect different pools of clients, simultaneous co-expression of 2 mutants in different clusters restored wild-type growth. Our data suggest that the ability of Hsp90 to sample a wide range of conformations allows the chaperone to mediate folding of a broad array of clients and that disruption of conformational flexibility results in client defects dependent on those states.
Collapse
Affiliation(s)
- Erick I Rios
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Davi Gonçalves
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX 77030, USA
| | - Kevin A Morano
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX 77030, USA
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
11
|
Park SG, Keller A, Kaiser NK, Bruce JE. Interactome dynamics during heat stress signal transmission and reception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591712. [PMID: 38746244 PMCID: PMC11092488 DOI: 10.1101/2024.04.29.591712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Among evolved molecular mechanisms, cellular stress response to altered environmental conditions to promote survival is among the most fundamental. The presence of stress-induced unfolded or misfolded proteins and molecular registration of these events constitute early steps in cellular stress response. However, what stress-induced changes in protein conformations and protein-protein interactions within cells initiate stress response and how these features are recognized by cellular systems are questions that have remained difficult to answer, requiring new approaches. Quantitative in vivo chemical cross-linking coupled with mass spectrometry (qXL-MS) is an emerging technology that provides new insight on protein conformations, protein-protein interactions and how the interactome changes during perturbation within cells, organelles, and even tissues. In this work, qXL-MS and quantitative proteome analyses were applied to identify significant time-dependent interactome changes that occur prior to large-scale proteome abundance remodeling within cells subjected to heat stress. Interactome changes were identified within minutes of applied heat stress, including stress-induced changes in chaperone systems as expected due to altered functional demand. However, global analysis of all interactome changes revealed the largest significant enrichment in the gene ontology molecular function term of RNA binding. This group included more than 100 proteins among multiple components of protein synthesis machinery, including mRNA binding, spliceosomes, and ribosomes. These interactome data provide new conformational insight on the complex relationship that exists between transcription, translation and cellular stress response mechanisms. Moreover, stress-dependent interactome changes suggest that in addition to conformational stabilization of RNA-binding proteins, adaptation of RNA as interacting ligands offers an additional fitness benefit resultant from generally lower RNA thermal stability. As such, RNA ligands also serve as fundamental temperature sensors that signal stress through decreased conformational regulation of their protein partners as was observed in these interactome dynamics.
Collapse
|
12
|
Jia L, Yang H, Liu Y, Zhou Y, Li G, Zhou Q, Xu Y, Huang Z, Ye F, Ye J, Liu A, Ji C. Targeted delivery of HSP90 inhibitors for efficient therapy of CD44-positive acute myeloid leukemia and solid tumor-colon cancer. J Nanobiotechnology 2024; 22:198. [PMID: 38649957 PMCID: PMC11036589 DOI: 10.1186/s12951-024-02460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Heat shock protein 90 (HSP90) is overexpressed in numerous cancers, promotes the maturation of numerous oncoproteins and facilitates cancer cell growth. Certain HSP90 inhibitors have entered clinical trials. Although less than satisfactory clinical effects or insurmountable toxicity have compelled these trials to be terminated or postponed, these results of preclinical and clinical studies demonstrated that the prospects of targeting therapeutic strategies involving HSP90 inhibitors deserve enough attention. Nanoparticulate-based drug delivery systems have been generally supposed as one of the most promising formulations especially for targeting strategies. However, so far, no active targeting nano-formulations have succeeded in clinical translation, mainly due to complicated preparation, complex formulations leading to difficult industrialization, incomplete biocompatibility or nontoxicity. In this study, HSP90 and CD44-targeted A6 peptide functionalized biomimetic nanoparticles (A6-NP) was designed and various degrees of A6-modification on nanoparticles were fabricated to evaluate targeting ability and anticancer efficiency. With no excipients, the hydrophobic HSP90 inhibitor G2111 and A6-conjugated human serum albumin could self-assemble into nanoparticles with a uniform particle size of approximately 200 nm, easy fabrication, well biocompatibility and avoidance of hepatotoxicity. Besides, G2111 encapsulated in A6-NP was only released less than 5% in 12 h, which may avoid off-target cell toxicity before entering into cancer cells. A6 peptide modification could significantly enhance uptake within a short time. Moreover, A6-NP continues to exert the broad anticancer spectrum of Hsp90 inhibitors and displays remarkable targeting ability and anticancer efficacy both in hematological malignancies and solid tumors (with colon tumors as the model cancer) both in vitro and in vivo. Overall, A6-NP, as a simple, biomimetic and active dual-targeting (CD44 and HSP90) nanomedicine, displays high potential for clinical translation.
Collapse
Affiliation(s)
- Lejiao Jia
- Department of Pharmacy, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Huatian Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yue Liu
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine (TCM), Jinan, Shandong, 250014, China
| | - Ying Zhou
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Guosheng Li
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Qian Zhou
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yan Xu
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhiping Huang
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Feng Ye
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingjing Ye
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
| | - Anchang Liu
- Department of Pharmacy, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
| | - Chunyan Ji
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
13
|
Gouda A, Tolba S, Mahrose K, Felemban SG, Khafaga AF, Khalifa NE, Jaremko M, Moustafa M, Alshaharni MO, Algopish U, Abd El-Hack ME. Heat shock proteins as a key defense mechanism in poultry production under heat stress conditions. Poult Sci 2024; 103:103537. [PMID: 38428202 PMCID: PMC10912679 DOI: 10.1016/j.psj.2024.103537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 03/03/2024] Open
Abstract
Over the past years, the poultry industry has been assigned to greater production performance but has become highly sensitive to environmental changes. The average world temperature has recently risen and is predicted to continue rising. In open-sided houses, poultry species confront high outside temperatures, which cause heat stress (HS) problems. Cellular responses are vital in poultry, as they may lead to identifying confirmed HS biomarkers. Heat shock proteins (HSP) are highly preserved protein families that play a significant role in cell function and cytoprotection against various stressors, including HS. The optimal response in which the cell survives the HS elevates HSP levels that prevent cellular proteins from damage caused by HS. The HSP have chaperonic action to ensure that stress-denatured proteins are folded, unfolded, and refolded. The HSP70 and HSP90 are the primary HSP in poultry with a defensive function during HS. HSP70 was the optimal biological marker for assessing HS among the HSP studied. The current review attempts to ascertain the value of HSP as a heat stress defense mechanism in poultry.
Collapse
Affiliation(s)
- Ahmed Gouda
- Animal Production Department, Agricultural and Biological Research Division, National Research Center, Dokki, Cairo, Egypt
| | - Samar Tolba
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Khalid Mahrose
- Animal and Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig 44511, Egypt
| | - Shatha G Felemban
- Medical Laboratory Science Department, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Mohammed O Alshaharni
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Uthman Algopish
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
14
|
König B, Hansen FK. 2-(Difluoromethyl)-1,3,4-oxadiazoles: The Future of Selective Histone Deacetylase 6 Modulation? ACS Pharmacol Transl Sci 2024; 7:899-903. [PMID: 38481687 PMCID: PMC10928878 DOI: 10.1021/acsptsci.4c00031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Indexed: 02/23/2025]
Abstract
Histone deacetylase 6 (HDAC6) is an important target for the treatment of oncological and non-oncological diseases. Established HDAC6 inhibitors feature a hydroxamic acid as a zinc-binding group (ZBG) and thus possess mutagenic and genotoxic potential. Recently, the 2-(difluoromethyl)-1,3,4-oxadiazole (DFMO) group emerged as a novel ZBG. In this Viewpoint, we summarize the discovery of the mode of action of DFMOs. Additionally, we discuss opportunities and challenges in the journey toward the clinical development of DFMO-based drugs for the treatment of HDAC6-driven diseases.
Collapse
Affiliation(s)
- Beate König
- Department of Pharmaceutical
and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Finn K. Hansen
- Department of Pharmaceutical
and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
15
|
Hu J, Fan L, Huang Y, He P, He L, Zhao J. Novel Strategy for In Vitro Validation of Babesia orientalis Heat Shock Proteins Chaperone Activity and Thermostability. Acta Parasitol 2024; 69:591-598. [PMID: 38240997 DOI: 10.1007/s11686-023-00775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/04/2023] [Indexed: 05/01/2024]
Abstract
BACKGROUND Babesia orientalis is an intra-erythrocytic protozoan parasite that causes babesiosis in water buffalo. The genome of B. orientalis has been reported and various genes have been accurately annotated, including heat shock proteins (HSP). Three B. orientalis HSPs (HSP90, HSP70 and HSP20) have been previously identified as potential antigenic targets. Here, a new validation strategy for the chaperone activities and cell protection characteristics of the three HSPs was developed in vitro. METHODS BoHSP20, BoHSP70 and BoHSP90B were amplified from cDNA, followed by cloning them into the pEGFP-N1 vector and transfecting the vector plasmid separately into 293T and Hela mammalian cells. Their expression and localization were determined by fluorescence microscopy. The biological functions and protein stability were testified through an analysis of the fluorescence intensity duration. Their role in the protection of cell viability from heat-shock treatments was examined by MTT assay (cell proliferation assay based on thiazolyl blue tetrazolium bromide). RESULTS Fusion proteins pEGFP-N1-BoHSP20, pEGFP-N1-BoHSP70, and pEGFP-N1-BoHSP90B (pBoHSPs: pBoHSP20; pBoHSP70 and pBoHSP90B) were identified as 47 kDa/97 kDa/118 kDa with a 27 kDa GFP tag, respectively. Prolonged fluorescent protein half-time was observed specifically in pBoHSPs under heat shock treatment at 55 °C, and BoHSP20 showed relatively better thermotolerance than BoHSP70 and BoHSP90B. Significant difference was found between pBoHSPs and controls in the cell survival curve after 2 h of 45 °C heat shock. CONCLUSION Significant biological properties of heat stress-associated genes of B. orientalis were identified in eukaryote by a new strategy. Fusion proteins pBoHSP20, pBoHSP70 and pBoHSP90B showed good chaperone activity and thermo-stability in this study, implying that BoHSPs played a key role in protecting B. orientalis against heat-stress environment during parasite life cycle. In conclusion, the in vitro model explored in this study provides a new way to investigate the biological functions of B. orientalis proteins during the host-parasite interaction.
Collapse
Affiliation(s)
- Jinfang Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Guangdong Province Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510633, Guangdong, China
| | - Lizhe Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuan Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Pei He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
- Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
16
|
Wei H, Zhang Y, Jia Y, Chen X, Niu T, Chatterjee A, He P, Hou G. Heat shock protein 90: biological functions, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e470. [PMID: 38283176 PMCID: PMC10811298 DOI: 10.1002/mco2.470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Heat shock protein 90 (Hsp90) is a predominant member among Heat shock proteins (HSPs), playing a central role in cellular protection and maintenance by aiding in the folding, stabilization, and modification of diverse protein substrates. It collaborates with various co-chaperones to manage ATPase-driven conformational changes in its dimer during client protein processing. Hsp90 is critical in cellular function, supporting the proper operation of numerous proteins, many of which are linked to diseases such as cancer, Alzheimer's, neurodegenerative conditions, and infectious diseases. Recognizing the significance of these client proteins across diverse diseases, there is a growing interest in targeting Hsp90 and its co-chaperones for potential therapeutic strategies. This review described biological background of HSPs and the structural characteristics of HSP90. Additionally, it discusses the regulatory role of heat shock factor-1 (HSF-1) in modulating HSP90 and sheds light on the dynamic chaperone cycle of HSP90. Furthermore, the review discusses the specific contributions of HSP90 in various disease contexts, especially in cancer. It also summarizes HSP90 inhibitors for cancer treatment, offering a thoughtful analysis of their strengths and limitations. These advancements in research expand our understanding of HSP90 and open up new avenues for considering HSP90 as a promising target for therapeutic intervention in a range of diseases.
Collapse
Affiliation(s)
- Huiyun Wei
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Yingying Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Yilin Jia
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Xunan Chen
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Tengda Niu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Aniruddha Chatterjee
- Department of PathologyDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Pengxing He
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Guiqin Hou
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
- Department of PathologyDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
17
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
18
|
Qiu C, Shen X, Lu H, Chen Y, Xu C, Zheng P, Xia Y, Wang J, Zhang Y, Li S, Zou P, Cui R, Chen J. Combination therapy with HSP90 inhibitors and piperlongumine promotes ROS-mediated ER stress in colon cancer cells. Cell Death Discov 2023; 9:375. [PMID: 37833257 PMCID: PMC10576049 DOI: 10.1038/s41420-023-01672-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Colon cancer is a major cause of cancer-related death. Despite recent improvements in the treatment of colon cancer, new strategies to improve the overall survival of patients are urgently needed. Heat shock protein 90 (HSP90) is widely recognized as a promising target for treating various cancers, including colon cancer. However, no HSP90 inhibitor has been approved for clinical use due to limited efficacy. In this study, we evaluated the antitumor activities of HSP90 inhibitors in combination with piperlongumine in colon cancer cells. We show that combination treatment with HSP90 inhibitors and piperlongumine displayed strong synergistic interaction in colon cancer cells. These agents synergize by promoting ER stress, JNK activation, and DNA damage. This process is fueled by oxidative stress, which is caused by the accumulation of reactive oxygen species. These studies nominated piperlongumine as a promising agent for HSP90 inhibitor-based combination therapy against colon cancer.
Collapse
Affiliation(s)
- Chenyu Qiu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xin Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hui Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yinghua Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chenxin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Peisen Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yiqun Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325035, China
| | - Junqi Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yafei Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shaotang Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325035, China
| | - Peng Zou
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Ri Cui
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Jundixia Chen
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
19
|
König B, Watson PR, Reßing N, Cragin AD, Schäker-Hübner L, Christianson DW, Hansen FK. Difluoromethyl-1,3,4-oxadiazoles Are Selective, Mechanism-Based, and Essentially Irreversible Inhibitors of Histone Deacetylase 6. J Med Chem 2023; 66:13821-13837. [PMID: 37782298 PMCID: PMC10591924 DOI: 10.1021/acs.jmedchem.3c01345] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Histone deacetylase 6 (HDAC6) is an important drug target in oncological and non-oncological diseases. Most available HDAC6 inhibitors (HDAC6i) utilize hydroxamic acids as a zinc-binding group, which limits therapeutic opportunities due to its genotoxic potential. Recently, difluoromethyl-1,3,4-oxadiazoles (DFMOs) were reported as potent and selective HDAC6i but their mode of inhibition remained enigmatic. Herein, we report that DFMOs act as mechanism-based and essentially irreversible HDAC6i. Biochemical data confirm that DFMO 6 is a tight-binding HDAC6i capable of inhibiting HDAC6 via a two-step slow-binding mechanism. Crystallographic and mechanistic experiments suggest that the attack of 6 by the zinc-bound water at the sp2 carbon closest to the difluoromethyl moiety followed by a subsequent ring opening of the oxadiazole yields deprotonated difluoroacetylhydrazide 13 as active species. The strong anionic zinc coordination of 13 and the binding of the difluoromethyl moiety in the P571 pocket finally result in an essentially irreversible inhibition of HDAC6.
Collapse
Affiliation(s)
- Beate König
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Paris R Watson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nina Reßing
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| | - Abigail D Cragin
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Linda Schäker-Hübner
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| |
Collapse
|
20
|
Wan S, Liu C, Li C, Wang Z, Zhao G, Li J, Ran W, Zhong X, Li Y, Zhang L, Cui H. AKIP1 accelerates glioblastoma progression through stabilizing EGFR expression. Oncogene 2023; 42:2905-2918. [PMID: 37596322 DOI: 10.1038/s41388-023-02796-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023]
Abstract
A Kinase Interacting Protein 1 (AKIP1) is found to be overexpressed in a variety of human cancers and associated with patients' worse prognosis. Several studies have established AKIP1's malignant functions in tumor metastasis, angiogenesis, and chemoradiotherapy resistance. However, the mechanism of AKIP1 involved in accelerating glioblastoma (GBM) progression remains unknown. Here, we showed that the expression of AKIP1 was positively correlated with the glioma pathological grades. Down-regulating AKIP1 greatly impaired the proliferation, colony formation, and tumorigenicity of GBM cells. In terms of the mechanism, AKIP1 cooperates with transcriptional factor Yin Yang 1 (YY1)-mediated Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) transcriptional activation, enhancing the stability of Epidermal Growth Factor Receptor (EGFR). YY1 was identified as a potential transcriptional factor of HSP90AA1 and directly interacts with AKIP1. The overexpression of HSP90α significantly reversed AKIP1 depletion incurred EGFR instability and the blocked cell proliferation. Moreover, we further investigated the interacted pattern between EGFR and HSP90α. These findings established that AKIP1 acted as a critical oncogenic factor in GBM and uncovered a novel regulatory mechanism in EGFR aberrant expression.
Collapse
Affiliation(s)
- Sicheng Wan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Chaolong Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Chongyang Li
- School of Basic Medicine, Fudan University, Shanghai, 200032, China
| | - Zhi Wang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Gaichao Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Jingui Li
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Wenhao Ran
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Xi Zhong
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Yongsen Li
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Li Zhang
- Department of Radiology and Nuclear Medicine, The First Hospital of HeBei Medical University, Shijiazhuang, HeBei Province, 050000, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
21
|
Karademir D, Özgür A. The effects of STA-9090 (Ganetespib) and venetoclax (ABT-199) combination on apoptotic pathways in human cervical cancer cells. Med Oncol 2023; 40:234. [PMID: 37432531 DOI: 10.1007/s12032-023-02107-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
Combined chemotherapy is recommended strategy as a first-line treatment method in patients with cervical cancer. Ganetespib (STA-9090) is a second-generation heat shock protein 90 (Hsp90) inhibitor that blocks the ATPase function of Hsp90 and inhibits the proper folding of oncogenic client proteins. Venetoclax (ABT-199) is an orally bioavailable Bcl-2 (B-cell lymphoma 2) inhibitor that stimulates apoptotic signaling pathways in cancer cells. This study evaluated the anticancer effects of STA-9090 combined with Venetoclax in the human cervical cancer cell line (HeLa). The human cervical cancer cells were treated with STA-9090, Venetoclax, and Sta-9090 plus Venetoclax for 48 h, and cell viability was measured using the XTT assay. The alteration of the Hsp90 protein expression level and the chaperone activity of HSP90 were detected by ELISA and luciferase aggregation assay, respectively. For the apoptotic process, qRT-PCR was applied to study Bcl-2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), Bcl-2-like protein 1 (Bcl-xL ), Cytochrome c (Cyt-c), Caspase3 (Cas-3), and Caspase7 (Cas-7) expression levels after drug treatments. Also, a colorimetric Cas-3 activity assay was performed to detect the induction of the apoptosis process. Our results demonstrated that 8 nM of STA-9090 combined with 4 µM of Venetoclax synergistically inhibited cervical cancer cell proliferation more than STA-9090 or Venetoclax alone after 48 h of treatment. STA-9090 and Venetoclax combination decreased the protein expression level of Hsp90 and significantly inhibited chaperone activity of Hsp90. This combination stimulated apoptosis in cervical cancer cells by down-regulating of anti-apoptotic markers while inducing pro-apoptotic markers. Also, the STA-9090-Venetoclax combination increased Cas-3 activity in Hela cells. Collectively, these findings pointed out that the STA-9090-Venetoclax combination exhibited more activity than the individual drugs to stimulate toxicity and apoptosis in cervical cancer cells based on HSP90 inhibition.
Collapse
Affiliation(s)
- Dilay Karademir
- Faculty of Medicine, Department of Gynecology and Obstetrics, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Aykut Özgür
- Artova Vocational School, Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
22
|
Nguyen V, Ahler E, Sitko KA, Stephany JJ, Maly DJ, Fowler DM. Molecular determinants of Hsp90 dependence of Src kinase revealed by deep mutational scanning. Protein Sci 2023; 32:e4656. [PMID: 37167432 PMCID: PMC10273359 DOI: 10.1002/pro.4656] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/13/2023]
Abstract
Hsp90 is a molecular chaperone involved in the refolding and activation of numerous protein substrates referred to as clients. While the molecular determinants of Hsp90 client specificity are poorly understood and limited to a handful of client proteins, strong clients are thought to be destabilized and conformationally extended. Here, we measured the phosphotransferase activity of 3929 variants of the tyrosine kinase Src in both the presence and absence of an Hsp90 inhibitor. We identified 84 previously unknown functionally dependent client variants. Unexpectedly, many destabilized or extended variants were not functionally dependent on Hsp90. Instead, functionally dependent client variants were clustered in the αF pocket and β1-β2 strand regions of Src, which have yet to be described in driving Hsp90 dependence. Hsp90 dependence was also strongly correlated with kinase activity. We found that a combination of activation, global extension, and general conformational flexibility, primarily induced by variants at the αF pocket and β1-β2 strands, was necessary to render Src functionally dependent on Hsp90. Moreover, the degree of activation and flexibility required to transform Src into a functionally dependent client varied with variant location, suggesting that a combination of regulatory domain disengagement and catalytic domain flexibility are required for chaperone dependence. Thus, by studying the chaperone dependence of a massive number of variants, we highlight factors driving Hsp90 client specificity and propose a model of chaperone-kinase interactions.
Collapse
Affiliation(s)
- Vanessa Nguyen
- Department of BioengineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Ethan Ahler
- Department of Genome SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Katherine A. Sitko
- Department of Genome SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Jason J. Stephany
- Department of Genome SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Dustin J. Maly
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Douglas M. Fowler
- Department of BioengineeringUniversity of WashingtonSeattleWashingtonUSA
- Department of Genome SciencesUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
23
|
Kotler JLM, Street TO. Mechanisms of Protein Quality Control in the Endoplasmic Reticulum by a Coordinated Hsp40-Hsp70-Hsp90 System. Annu Rev Biophys 2023; 52:509-524. [PMID: 37159299 DOI: 10.1146/annurev-biophys-111622-091309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The Hsp40, Hsp70, and Hsp90 chaperone families are ancient, highly conserved, and critical to cellular protein homeostasis. Hsp40 chaperones can transfer their protein clients to Hsp70, and Hsp70 can transfer clients to Hsp90, but the functional benefits of these transfers are unclear. Recent structural and mechanistic work has opened up the possibility of uncovering how Hsp40, Hsp70, and Hsp90 work together as unified system. In this review, we compile mechanistic data on the ER J-domain protein 3 (ERdj3) (an Hsp40), BiP (an Hsp70), and Grp94 (an Hsp90) chaperones within the endoplasmic reticulum; what is known about how these chaperones work together; and gaps in this understanding. Using calculations, we examine how client transfer could impact the solubilization of aggregates, the folding of soluble proteins, and the triage decisions by which proteins are targeted for degradation. The proposed roles of client transfer among Hsp40-Hsp70-Hsp90 chaperones are new hypotheses, and we discuss potential experimental tests of these ideas.
Collapse
Affiliation(s)
- Judy L M Kotler
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA;
| | - Timothy O Street
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA;
| |
Collapse
|
24
|
9-Butyl-Harmol Exerts Antiviral Activity against Newcastle Disease Virus through Targeting GSK-3β and HSP90β. J Virol 2023; 97:e0198422. [PMID: 36877059 PMCID: PMC10062145 DOI: 10.1128/jvi.01984-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
The paramyxoviruses represent a large family of human and animal pathogens that cause significant health and economic burdens worldwide. However, there are no available drugs against the virus. β-carboline alkaloids are a family of naturally occurring and synthetic products with outstanding antiviral activities. Here, we examined the antiviral effect of a series of β-carboline derivatives against several paramyxoviruses, including Newcastle disease virus (NDV), peste des petits ruminants virus (PPRV), and canine distemper virus (CDV). Among these derivatives, 9-butyl-harmol was identified as an effective antiviral agent against these paramyxoviruses. Further, a genome-wide transcriptome analysis in combination with target validation strategies reveals a unique antiviral mechanism of 9-butyl-harmol through the targeting of GSK-3β and HSP90β. On one hand, NDV infection blocks the Wnt/β-catenin pathway to suppress the host immune response. 9-butyl-harmol targeting GSK-3β dramatically activates the Wnt/β-catenin pathway, which results in the boosting of a robust immune response. On the other hand, NDV proliferation depends on the activity of HSP90. The L protein, but not the NP protein or the P protein, is proven to be a client protein of HSP90β, rather than HSP90α. 9-butyl-harmol targeting HSP90β decreases the stability of the NDV L protein. Our findings identify 9-butyl-harmol as a potential antiviral agent, provide mechanistic insights into the antiviral mechanism of 9-butyl-harmol, and illustrate the role of β-catenin and HSP90 during NDV infection. IMPORTANCE Paramyxoviruses cause devastating impacts on health and the economy worldwide. However, there are no suitable drugs with which to counteract the viruses. We determined that 9-butyl-harmol could serve as a potential antiviral agent against paramyxoviruses. Until now, the antiviral mechanism of β-carboline derivatives against RNA viruses has rarely been studied. Here, we found that 9-butyl-harmol exerts dual mechanisms of antiviral action, with its antiviral activities being mediated by two targets: GSK-3β and HSP90β. Correspondingly, the interaction between NDV infection and the Wnt/β-catenin pathway or HSP90 is demonstrated in this study. Taken together, our findings shed light on the development of antiviral agents against paramyxoviruses, based on the β-carboline scaffold. These results present mechanistic insights into the polypharmacology of 9-butyl-harmol. Understanding this mechanism also deepens the host-virus interaction and reveals new drug targets for anti-paramyxoviruses.
Collapse
|
25
|
Dernovšek J, Tomašič T. Following the design path of isoform-selective Hsp90 inhibitors: Small differences, great opportunities. Pharmacol Ther 2023; 245:108396. [PMID: 37001734 DOI: 10.1016/j.pharmthera.2023.108396] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/03/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
The heat shock protein 90 (Hsp90) family consists of four highly conserved isoforms: the mitochondrial TRAP-1, the endoplasmic reticulum-localised Grp94, and the cytoplasmic Hsp90α and Hsp90β. Since the late 1990s, this family has been extensively studied as a potential target for the treatment of cancer, neurological disorders, and infectious diseases. The initial approach was to develop non-selective, so-called pan-Hsp90 ATP-competitive inhibitors of the N-terminal domain. Many of these agents were tested in clinical trials, mainly for the treatment of cancer, but none of them succeeded in the clinic. This was mainly due to the lack of efficacy and various toxicities associated with the induction of heat shock response (HSR). This lack of success has prompted a turn to new approaches of Hsp90 inhibition. Thus, inhibitors selective for a particular isoform of Hsp90 have been developed. These isoform-selective inhibitors do not induce HSR and have a more targeted effect because not all client proteins are equally dependent on all four paralogues of Hsp90. However, it is extremely difficult to develop such selective compounds because the family is highly conserved. Hsp90α and Hsp90β have an amazing 95% identity of the N-terminal ATP binding site, differing only in two amino acid residues. Therefore, the focus of this review is to fully elucidate the key structural features of the selective inhibitor classes in terms of binding site dissimilarities. In addition to a methodological characterisation of the structure-activity relationships, the main advantages of selective inhibition of the TRAP-1, Grp94, Hsp90α and Hsp90β isoforms are discussed.
Collapse
Affiliation(s)
- Jaka Dernovšek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
26
|
García-Gomez BI, Sánchez TA, Cano SN, do Nascimento NA, Bravo A, Soberón M. Insect chaperones Hsp70 and Hsp90 cooperatively enhance toxicity of Bacillus thuringiensis Cry1A toxins and counteract insect resistance. Front Immunol 2023; 14:1151943. [PMID: 37153577 PMCID: PMC10157212 DOI: 10.3389/fimmu.2023.1151943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Bacillus thuringiensis (Bt) produces different insecticidal proteins effective for pest control. Among them, Cry insecticidal proteins have been used in transgenic plants for the control of insect pests. However, evolution of resistance by insects endangers this technology. Previous work showed that the lepidopteran insect Plutella xylostella PxHsp90 chaperone enhanced the toxicity of Bt Cry1A protoxins by protecting them from degradation by the larval gut proteases and by enhancing binding of the protoxin to its receptors present in larval midgut cells. In this work, we show that PxHsp70 chaperone also protects Cry1Ab protoxin from gut proteases degradation, enhancing Cry1Ab toxicity. We also show that both PxHsp70 and PxHsp90 chaperones act cooperatively, increasing toxicity and the binding of Cry1Ab439D mutant, affected in binding to midgut receptors, to cadherin receptor. Also, insect chaperones recovered toxicity of Cry1Ac protein to a Cry1Ac-highly resistant P. xylostella population, NO-QAGE, that has a disruptive mutation in an ABCC2 transporter linked to Cry1Ac resistance. These data show that Bt hijacked an important cellular function for enhancing its infection capability, making use of insect cellular chaperones for enhancing Cry toxicity and for lowering the evolution of insect resistance to these toxins.
Collapse
|
27
|
p23 and Aha1: Distinct Functions Promote Client Maturation. Subcell Biochem 2023; 101:159-187. [PMID: 36520307 DOI: 10.1007/978-3-031-14740-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hsp90 is a conserved molecular chaperone regulating the folding and activation of a diverse array of several hundreds of client proteins. The function of Hsp90 in client processing is fine-tuned by a cohort of co-chaperones that modulate client activation in a client-specific manner. They affect the Hsp90 ATPase activity and the recruitment of client proteins and can in addition affect chaperoning in an Hsp90-independent way. p23 and Aha1 are central Hsp90 co-chaperones that regulate Hsp90 in opposing ways. While p23 inhibits the Hsp90 ATPase and stabilizes a client-bound Hsp90 state, Aha1 accelerates ATP hydrolysis and competes with client binding to Hsp90. Even though both proteins have been intensively studied for decades, research of the last few years has revealed intriguing new aspects of these co-chaperones that expanded our perception of how they regulate client activation. Here, we review the progress in understanding p23 and Aha1 as promoters of client processing. We highlight the structures of Aha1 and p23, their interaction with Hsp90, and how their association with Hsp90 affects the conformational cycle of Hsp90 in the context of client maturation.
Collapse
|
28
|
Sager RA, Backe SJ, Neckers L, Woodford MR, Mollapour M. Detecting Posttranslational Modifications of Hsp90 Isoforms. Methods Mol Biol 2023; 2693:125-139. [PMID: 37540432 PMCID: PMC10518168 DOI: 10.1007/978-1-0716-3342-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The molecular chaperone heat shock protein 90 (Hsp90) is essential in eukaryotes. Hsp90 chaperones proteins that are important determinants of multistep carcinogenesis. There are multiple Hsp90 isoforms including the cytosolic Hsp90α and Hsp90β as well as GRP94 located in the endoplasmic reticulum and TRAP1 in the mitochondria. The chaperone function of Hsp90 is linked to its ability to bind and hydrolyze ATP. Co-chaperones and posttranslational modifications (such as phosphorylation, SUMOylation, and ubiquitination) are important for Hsp90 stability and regulation of its ATPase activity. Both mammalian and yeast cells can be used to express and purify Hsp90 and TRAP1 and also detect post-translational modifications by immunoblotting.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
29
|
Kim H, Moon S, Ham S, Lee K, Römling U, Lee C. Cytoplasmic molecular chaperones in Pseudomonas species. J Microbiol 2022; 60:1049-1060. [PMID: 36318358 DOI: 10.1007/s12275-022-2425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Pseudomonas is widespread in various environmental and host niches. To promote rejuvenation, cellular protein homeostasis must be finely tuned in response to diverse stresses, such as extremely high and low temperatures, oxidative stress, and desiccation, which can result in protein homeostasis imbalance. Molecular chaperones function as key components that aid protein folding and prevent protein denaturation. Pseudomonas, an ecologically important bacterial genus, includes human and plant pathogens as well as growth-promoting symbionts and species useful for bioremediation. In this review, we focus on protein quality control systems, particularly molecular chaperones, in ecologically diverse species of Pseudomonas, including the opportunistic human pathogen Pseudomonas aeruginosa, the plant pathogen Pseudomonas syringae, the soil species Pseudomonas putida, and the psychrophilic Pseudomonas antarctica.
Collapse
Affiliation(s)
- Hyunhee Kim
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Seongjoon Moon
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Soojeong Ham
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Kihyun Lee
- CJ Bioscience, Seoul, 04527, Republic of Korea
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
30
|
Meka PN, Amatya E, Kaur S, Banerjee M, Zuo A, Dobrowsky RT, Blagg BSJ. Synthesis and evaluation of 3'- and 4'-substituted cyclohexyl noviomimetics that modulate mitochondrial respiration. Bioorg Med Chem 2022; 70:116940. [PMID: 35905686 PMCID: PMC11664489 DOI: 10.1016/j.bmc.2022.116940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022]
Abstract
KU-32 (2) and KU-596 (3), are first and second generation cytoprotective novologues that are derivatives of novobiocin (1), a heat shock protein 90 (Hsp90) C-terminal inhibitor. Although 2 and 3 improve mitochondrial bioenergetics and have demonstrated considerable cytoprotective activity, they contain a synthetically demanding noviose sugar. This issue was initially addressed by creating noviomimetics, such as KU-1202 (4), which replaced the noviose sugar with ether-linked cyclohexyl derivatives that retained some cytoprotective potential due to their ability to increase mitochondrial bioenergetics. Based on structure-activity relationship (SAR) studies of KU-1202 (4), the current study investigated 3'- and 4'-substituted cyclohexyl scaffolds as noviomimetics and determined their efficacy at increasing mitochondrial bioenergetic as a marker for cytoprotective potential.
Collapse
Affiliation(s)
- Penchala Narasimharao Meka
- Department of Chemistry and Biochemistry, 305 McCourtney Hall, The University of Notre Dame, Notre Dame, IN 46556, United States
| | - Eva Amatya
- Department of Chemistry and Biochemistry, 305 McCourtney Hall, The University of Notre Dame, Notre Dame, IN 46556, United States
| | - Sukhmanjit Kaur
- Department of Pharmacology and Toxicology Department, The University of Kansas, Lawrence, KS 66045, United States
| | - Monimoy Banerjee
- Department of Chemistry and Biochemistry, 305 McCourtney Hall, The University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ang Zuo
- Department of Chemistry and Biochemistry, 305 McCourtney Hall, The University of Notre Dame, Notre Dame, IN 46556, United States
| | - Rick T Dobrowsky
- Department of Pharmacology and Toxicology Department, The University of Kansas, Lawrence, KS 66045, United States.
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, 305 McCourtney Hall, The University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
31
|
Abstract
Heat shock proteins (HSPs) are a kind of proteins which mostly found in bacterial, plant and animal cells, in which they are involved in the monitoring and regulation of cellular life activities. HSPs protect other proteins under environmental and cellular stress by regulating protein folding and supporting the correctly folded structure of proteins as chaperones. During viral infection, some HSPs can have an antiviral effect by inhibiting viral proliferation through interaction and activating immune pathways to protect the host cell. However, although the biological function of HSPs is to maintain the homeostasis of cells, some HSPs will also be hijacked by viruses to help their invasion, replication, and maturation, thereby increasing the chances of viral survival in unfavorable conditions inside the host cell. In this review, we summarize the roles of the heat shock protein family in various stages of viral infection and the potential uses of these proteins in antiviral therapy.
Collapse
Affiliation(s)
- Xizhen Zhang
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
- *Correspondence: Wei Yu,
| |
Collapse
|
32
|
Verkhivker GM. Conformational Dynamics and Mechanisms of Client Protein Integration into the Hsp90 Chaperone Controlled by Allosteric Interactions of Regulatory Switches: Perturbation-Based Network Approach for Mutational Profiling of the Hsp90 Binding and Allostery. J Phys Chem B 2022; 126:5421-5442. [PMID: 35853093 DOI: 10.1021/acs.jpcb.2c03464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the allosteric mechanisms of the Hsp90 chaperone interactions with cochaperones and client protein clientele is fundamental to dissect activation and regulation of many proteins. In this work, atomistic simulations are combined with perturbation-based approaches and dynamic network modeling for a comparative mutational profiling of the Hsp90 binding and allosteric interaction networks in the three Hsp90 maturation complexes with FKBP51 and P23 cochaperones and the glucocorticoid receptor (GR) client. The conformational dynamics signatures of the Hsp90 complexes and dynamics fluctuation analysis revealed how the intrinsic plasticity of the Hsp90 dimer can be modulated by cochaperones and client proteins to stabilize the closed dimer state required at the maturation stage of the ATPase cycle. In silico deep mutational scanning of the protein residues characterized the hot spots of protein stability and binding affinity in the Hsp90 complexes, showing that binding hot spots may often coincide with the regulatory centers that modulate dynamic allostery in the Hsp90 dimer. We introduce a perturbation-based network approach for mutational scanning of allosteric residue potentials and characterize allosteric switch clusters that control mechanism of cochaperone-dependent client recognition and remodeling by the Hsp90 chaperone. The results revealed a conserved network of allosteric switches in the Hsp90 complexes that allow cochaperones and GR protein to become integrated into the Hsp90 system by anchoring to the conformational switch points in the functional Hsp90 regions. This study suggests that the Hsp90 binding and allostery may operate under a regulatory mechanism in which activation or repression of the Hsp90 activity can be pre-encoded in the allosterically regulated Hsp90 dimer motions. By binding directly to the conformational switch centers on the Hsp90, cochaperones and interacting proteins can efficiently modulate the allosteric interactions and long-range communications required for client remodeling and activation.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
- Depatment of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
33
|
In Silico Discovery and Optimisation of a Novel Structural Class of Hsp90 C-Terminal Domain Inhibitors. Biomolecules 2022; 12:biom12070884. [PMID: 35883440 PMCID: PMC9312846 DOI: 10.3390/biom12070884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
Hsp90 is a promising target for the development of novel agents for cancer treatment. The N-terminal Hsp90 inhibitors have several therapeutic limitations, the most important of which is the induction of heat shock response, which can be circumvented by targeting the allosteric binding site on the C-terminal domain (CTD) of Hsp90. In the absence of an Hsp90—CTD inhibitor co-crystal structure, the use of structure-based design approaches for the Hsp90 CTD is difficult and the structural diversity of Hsp90 CTD inhibitors is limited. In this study, we describe the discovery of a novel structural class of Hsp90 CTD inhibitors. A structure-based virtual screening was performed by docking a library of diverse compounds to the Hsp90β CTD binding site. Three selected virtual hits were tested in the MCF-7 breast cancer cell line, with compound TVS-23 showing antiproliferative activity with an IC50 value of 26.4 ± 1.1 µM. We report here the optimisation, synthesis and biological evaluation of TVS-23 analogues. Several analogues showed significantly enhanced antiproliferative activities in MCF-7 breast cancer and SK-N-MC Ewing sarcoma cell lines, with 7l being the most potent (IC50 = 1.4 ± 0.4 µM MCF-7; IC50 = 2.8 ± 0.4 µM SK-N-MC). The results of this study highlight the use of virtual screening to expand the structural diversity of Hsp90 CTD inhibitors and provide new starting points for further development.
Collapse
|
34
|
Zheng HY, Qin PH, Yang K, Liu TX, Zhang YJ, Chu D. Genome-Wide Identification and Analysis of the Heat-Shock Protein Gene Superfamily in Bemisia tabaci and Expression Pattern Analysis under Heat Shock. INSECTS 2022; 13:insects13070570. [PMID: 35886746 PMCID: PMC9319060 DOI: 10.3390/insects13070570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Bemisia tabaci MED is an invasive pest that had caused considerable economic damage in the past decades. Its successful colonization is closely related to heat-shock proteins (HSPs), which are related to heat resistance. In this study, 33 BtaHsps were identified based on the sequenced genome of B. tabaci MED belonging to six HSP families, among which 22 BtaHsps were newly identified. Analysis of the secondary structure and evolutionary relationship showed that they were all closely related. In addition, BtaHsp90A3 of the HSP90 family was screened by analyzing the expression level changes of these genes under 42 °C heat shock and RNAi was performed on the BtaHsp90A3. The results showed that the silencing of BtaHsp90A3 is closely related to the heat resistance of B. tabaci MED. Taken together, this study conducted an in-depth identification of BtaHsps that clarifies their evolutionary relationships and their response to thermal stress in B. tabaci MED. Abstract The thermal tolerance of Bemisia tabaci MED, an invasive whitefly species with worldwide distribution, plays an important role in its ecological adaptation during the invasion process. Heat-shock proteins (HSPs) are closely related to heat resistance. In this study, 33 Hsps (BtaHsps) were identified based on sequenced genome of B. tabaci MED belonging to six HSP families, among which 22 Hsps were newly identified. The secondary structures of a further 22 BtaHsps were also predicted. The results of RT-qPCR showed that heat shock could affect the expression of 14 of the 22 Hsps newly identified in this study. Among them, the expression level of six Hsps increased under 42 °C treatment. As the unstudied gene, BtaHsp90A3 had the highest increase rate. Therefore, BtaHsp90A3 was chosen for the RNAi test, and silencing BtaHsp90A3 by RNAi decreased the survival rate of adult B. tabaci at 42 °C. The results indicated that only a few Hsps were involved in the thermal tolerance of host whitefly although many Hsps would response under heat stress. This study conducted a more in-depth and comprehensive identification that demonstrates the evolutionary relationship of BtaHsps and illustrates the response of BtaHsps under the influence of thermal stress in B. tabaci MED.
Collapse
Affiliation(s)
- Hao-Yuan Zheng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (H.-Y.Z.); (P.-H.Q.); (K.Y.); (T.-X.L.)
| | - Peng-Hao Qin
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (H.-Y.Z.); (P.-H.Q.); (K.Y.); (T.-X.L.)
| | - Kun Yang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (H.-Y.Z.); (P.-H.Q.); (K.Y.); (T.-X.L.)
| | - Tong-Xian Liu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (H.-Y.Z.); (P.-H.Q.); (K.Y.); (T.-X.L.)
| | - You-Jun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Dong Chu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (H.-Y.Z.); (P.-H.Q.); (K.Y.); (T.-X.L.)
- Correspondence: ; Tel.: +86-58957712
| |
Collapse
|
35
|
Exploring Mechanisms of Allosteric Regulation and Communication Switching in the Multiprotein Regulatory Complexes of the Hsp90 Chaperone with Cochaperones and Client Proteins : Atomistic Insights from Integrative Biophysical Modeling and Network Analysis of Conformational Landscapes. J Mol Biol 2022; 434:167506. [DOI: 10.1016/j.jmb.2022.167506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022]
|
36
|
HSP90 as a regulator of extracellular matrix dynamics. Biochem Soc Trans 2021; 49:2611-2625. [PMID: 34913470 DOI: 10.1042/bst20210374] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
The extracellular matrix (ECM) is a dynamic and organised extracellular network assembled from proteins and carbohydrates exported from the cell. The ECM is critical for multicellular life, providing spatial and temporal cellular cues to maintain tissue homeostasis. Consequently, ECM production must be carefully balanced with turnover to ensure homeostasis; ECM dysfunction culminates in disease. Hsp90 is a molecular chaperone central to protein homeostasis, including in the ECM. Intracellular and extracellular Hsp90 isoforms collaborate to regulate the levels and status of proteins in the ECM via multiple mechanisms. In so doing, Hsp90 regulates ECM dynamics, and changes in Hsp90 levels or activity support the development of ECM-related diseases, like cancer and fibrosis. Consequently, Hsp90 levels may have prognostic value, while inhibition of Hsp90 may have therapeutic potential in conditions characterised by ECM dysfunction.
Collapse
|
37
|
Tang X, Cheng L, Li G, Yan YM, Su F, Huang DL, Zhang S, Liu Z, Qian M, Li J, Cheng YX, Liu B. A small-molecule compound D6 overcomes EGFR-T790M-mediated resistance in non-small cell lung cancer. Commun Biol 2021; 4:1391. [PMID: 34903832 PMCID: PMC8668973 DOI: 10.1038/s42003-021-02906-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a deadly and highly prevalent malignancy. Targeting activated-EGFR mutations in NSCLC via EGFR tyrosine kinase inhibitor (EGFR-TKI) initially achieves a profound therapeutic response, but resistance frequently evolves, reducing treatment options. Here, we present a small-molecule compound D6 which selectively inhibits tumor cell growth and migration in NSCLC cells with EGFR-TKI-resistant T790M-EGFR-activated mutations (T790M-EGFR-AM), e.g., L858R/T790M, 19Del/T790M and L858R/T790M/C797S. D6 mimics a natural product isolated from the roots of Codonopsis pilosula and selectively competes with T790M-EGFR-AM to bind to HSP90, thus facilitating the ubiquitination dependent proteasomal degradation of T790M-EGFR-AM. By contrast, D6 has little impact on typical HSP90 chaperone activity, suggesting low systemic toxicity. Promisingly, D6 combined with erlotinib or osimertinib shows efficacy in overcoming the EGFR-TKIs-resistance in NSCLCs. Our study raises an alternative strategy to overcome T790M-mediated EGFR-TKI resistance in NSCLC via targeting the protein-protein interaction of HSP90 and T790M-EGFR by intervention with D6.
Collapse
Affiliation(s)
- Xiaolong Tang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China.
| | - Lizhi Cheng
- grid.263488.30000 0001 0472 9649Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Guo Li
- grid.452223.00000 0004 1757 7615Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yong-Ming Yan
- grid.263488.30000 0001 0472 9649Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Fengting Su
- grid.263488.30000 0001 0472 9649Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Dan-Ling Huang
- grid.263488.30000 0001 0472 9649Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Shuping Zhang
- grid.452223.00000 0004 1757 7615Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zuojun Liu
- grid.263488.30000 0001 0472 9649Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Minxian Qian
- grid.263488.30000 0001 0472 9649Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Ji Li
- grid.452223.00000 0004 1757 7615Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yong-Xian Cheng
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China.
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China. .,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University, Shenzhen, China. .,National Engineering Research Center for Biotechnology (Shenzhen); Marshall Laboratory of Biomedical Engineering; International Cancer Center, Shenzhen University, Shenzhen, China. .,Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
38
|
Kellner A, Cherubin P, Harper JK, Teter K. Proline Isomerization as a Key Determinant for Hsp90-Toxin Interactions. Front Cell Infect Microbiol 2021; 11:771653. [PMID: 34746036 PMCID: PMC8569296 DOI: 10.3389/fcimb.2021.771653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
The A chains of ADP-ribosylating toxins exploit Hsp90 for translocation into the host cytosol. Here, we hypothesize that cis proline residues play a key role in toxin recognition by Hsp90. Our model is largely derived from studies on the unusual interplay between Hsp90 and the catalytic A1 subunit of cholera toxin (CTA1), including the recent identification of an RPPDEI-like binding motif for Hsp90 in CTA1 and several other bacterial toxins. Cis/trans proline isomerization is known to influence protein-protein interactions and protein structure/function, but it has not yet been proposed to affect Hsp90-toxin interactions. Our model thus provides a new framework to understand the molecular basis for Hsp90 chaperone function and Hsp90-driven toxin translocation.
Collapse
Affiliation(s)
- Alisha Kellner
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Patrick Cherubin
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - James K Harper
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Ken Teter
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
39
|
Houben B, Rousseau F, Schymkowitz J. Protein structure and aggregation: a marriage of necessity ruled by aggregation gatekeepers. Trends Biochem Sci 2021; 47:194-205. [PMID: 34561149 DOI: 10.1016/j.tibs.2021.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022]
Abstract
Protein aggregation propensity is a pervasive and seemingly inescapable property of proteomes. Strikingly, a significant fraction of the proteome is supersaturated, meaning that, for these proteins, their native conformation is less stable than the aggregated state. Maintaining the integrity of a proteome under such conditions is precarious and requires energy-consuming proteostatic regulation. Why then is aggregation propensity maintained at such high levels over long evolutionary timescales? Here, we argue that the conformational stability of the native and aggregated states are correlated thermodynamically and that codon usage strengthens this correlation. As a result, the folding of stable proteins requires kinetic control to avoid aggregation, provided by aggregation gatekeepers. These unique residues are evolutionarily selected to kinetically favor native folding, either on their own or by coopting chaperones.
Collapse
Affiliation(s)
- Bert Houben
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
40
|
Cascarina SM, Kaplan JP, Elder MR, Brookbank L, Ross ED. Generalizable Compositional Features Influencing the Proteostatic Fates of Polar Low-Complexity Domains. Int J Mol Sci 2021; 22:ijms22168944. [PMID: 34445649 PMCID: PMC8396281 DOI: 10.3390/ijms22168944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022] Open
Abstract
Protein aggregation is associated with a growing list of human diseases. A substantial fraction of proteins in eukaryotic proteomes constitutes a proteostasis network—a collection of proteins that work together to maintain properly folded proteins. One of the overarching functions of the proteostasis network is the prevention or reversal of protein aggregation. How proteins aggregate in spite of the anti-aggregation activity of the proteostasis machinery is incompletely understood. Exposed hydrophobic patches can trigger degradation by the ubiquitin-proteasome system, a key branch of the proteostasis network. However, in a recent study, we found that model glycine (G)-rich or glutamine/asparagine (Q/N)-rich prion-like domains differ in their susceptibility to detection and degradation by this system. Here, we expand upon this work by examining whether the features controlling the degradation of our model prion-like domains generalize broadly to G-rich and Q/N-rich domains. Experimentally, native yeast G-rich domains in isolation are sensitive to the degradation-promoting effects of hydrophobic residues, whereas native Q/N-rich domains completely resist these effects and tend to aggregate instead. Bioinformatic analyses indicate that native G-rich domains from yeast and humans tend to avoid degradation-promoting features, suggesting that the proteostasis network may act as a form of selection at the molecular level that constrains the sequence space accessible to G-rich domains. However, the sensitivity or resistance of G-rich and Q/N-rich domains, respectively, was not always preserved in their native protein contexts, highlighting that proteins can evolve other sequence features to overcome the intrinsic sensitivity of some LCDs to degradation.
Collapse
|
41
|
Wickner S, Nguyen TLL, Genest O. The Bacterial Hsp90 Chaperone: Cellular Functions and Mechanism of Action. Annu Rev Microbiol 2021; 75:719-739. [PMID: 34375543 DOI: 10.1146/annurev-micro-032421-035644] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that folds and remodels proteins, thereby regulating the activity of numerous substrate proteins. Hsp90 is widely conserved across species and is essential in all eukaryotes and in some bacteria under stress conditions. To facilitate protein remodeling, bacterial Hsp90 collaborates with the Hsp70 molecular chaperone and its cochaperones. In contrast, the mechanism of protein remodeling performed by eukaryotic Hsp90 is more complex, involving more than 20 Hsp90 cochaperones in addition to Hsp70 and its cochaperones. In this review, we focus on recent progress toward understanding the basic mechanisms of bacterial Hsp90-mediated protein remodeling and the collaboration between Hsp90 and Hsp70. We describe the universally conserved structure and conformational dynamics of these chaperones and their interactions with one another and with client proteins. The physiological roles of Hsp90 in Escherichia coli and other bacteria are also discussed. We anticipate that the information gained from exploring the mechanism of the bacterial chaperone system will provide a framework for understanding the more complex eukaryotic Hsp90 system. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Thu-Lan Lily Nguyen
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Olivier Genest
- Aix-Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France;
| |
Collapse
|
42
|
Jiang F, Chang G, Li Z, Abouzaid M, Du X, Hull JJ, Ma W, Lin Y. The HSP/co-chaperone network in environmental cold adaptation of Chilo suppressalis. Int J Biol Macromol 2021; 187:780-788. [PMID: 34358598 DOI: 10.1016/j.ijbiomac.2021.07.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/16/2021] [Indexed: 01/07/2023]
Abstract
Winter cold is one of the major environmental stresses for ectotherm species. Chilo suppressalis, a notorious lepidopteran pest of rice, has a wide geographic region that includes temperate zones with severe environmental conditions. Although C. suppressalis exhibits remarkable cold tolerance, its cold-adaptation mechanisms remain unclear. Here, we used bioinformatics approaches to evaluate transcript levels of genes comprising the C. suppressalis heat shock protein (HSP)/co-chaperone network in response to cold-induced stress. Using all such genes identified in the C. suppressalis genome, we experimentally examined the corresponding transcript levels under cold-acclimation or intermittent cold-shock stresses in diapause and non-diapausing larvae. In total, we identified 19 HSPs and 8 HSP co-chaperones in the C. suppressalis genome. Nine (hsp90, hsp75, hsp70, hsp40, small hsp, activator of 90 kDa heat shock protein ATPase-like, heat shock factor, heat shock factor binding protein 1-like and HSPB1-associated protein 1) were highly cold-inducible and likely comprise the principal cold-response HSP/co-chaperone network in C. suppressalis. We also found that transcriptional regulation of the HSP/co-chaperone networks response differs between cold-acclimation and short-term cold-shock. Moreover, activation of the HSP/co-chaperone network depends on the diapause state of overwintering larvae and cold acclimation may further increase larval cold tolerance. These results provide key new insights in the cold-adaptation mechanisms in C. suppressalis.
Collapse
Affiliation(s)
- Fan Jiang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China; College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guofeng Chang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhenzhen Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Mostafa Abouzaid
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoyong Du
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - J Joe Hull
- U.S. Arid Land Agricultural Research Center, U.S. Agricultural Research Service, Department of Agriculture, Maricopa, AZ, USA
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China.
| |
Collapse
|
43
|
Junho CVC, Azevedo CAB, da Cunha RS, de Yurre AR, Medei E, Stinghen AEM, Carneiro-Ramos MS. Heat Shock Proteins: Connectors between Heart and Kidney. Cells 2021; 10:cells10081939. [PMID: 34440708 PMCID: PMC8391307 DOI: 10.3390/cells10081939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022] Open
Abstract
Over the development of eukaryotic cells, intrinsic mechanisms have been developed in order to provide the ability to defend against aggressive agents. In this sense, a group of proteins plays a crucial role in controlling the production of several proteins, guaranteeing cell survival. The heat shock proteins (HSPs), are a family of proteins that have been linked to different cellular functions, being activated under conditions of cellular stress, not only imposed by thermal variation but also toxins, radiation, infectious agents, hypoxia, etc. Regarding pathological situations as seen in cardiorenal syndrome (CRS), HSPs have been shown to be important mediators involved in the control of gene transcription and intracellular signaling, in addition to be an important connector with the immune system. CRS is classified as acute or chronic and according to the first organ to suffer the injury, which can be the heart (CRS type 1 and type 2), kidneys (CRS type 3 and 4) or both (CRS type 5). In all types of CRS, the immune system, redox balance, mitochondrial dysfunction, and tissue remodeling have been the subject of numerous studies in the literature in order to elucidate mechanisms and propose new therapeutic strategies. In this sense, HSPs have been targeted by researchers as important connectors between kidney and heart. Thus, the present review has a focus to present the state of the art regarding the role of HSPs in the pathophysiology of cardiac and renal alterations, as well their role in the kidney–heart axis.
Collapse
Affiliation(s)
- Carolina Victória Cruz Junho
- Center of Natural and Human Sciences (CCNH), Laboratory of Cardiovascular Immunology, Federal University of ABC, Santo André 09210-580, Brazil
| | - Carolina Amaral Bueno Azevedo
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil
| | - Regiane Stafim da Cunha
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil
| | - Ainhoa Rodriguez de Yurre
- Laboratory of Cardioimmunology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Emiliano Medei
- Laboratory of Cardioimmunology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- D'Or Institute for Research and Education, Rio de Janeiro 21941-902, Brazil
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro 22281-100, Brazil
| | - Andréa Emilia Marques Stinghen
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil
| | - Marcela Sorelli Carneiro-Ramos
- Center of Natural and Human Sciences (CCNH), Laboratory of Cardiovascular Immunology, Federal University of ABC, Santo André 09210-580, Brazil
| |
Collapse
|
44
|
Cordeiro LM, Soares MV, da Silva AF, Machado ML, Bicca Obetine Baptista F, da Silveira TL, Arantes LP, Soares FAA. Neuroprotective effects of rutin on ASH neurons in Caenorhabditis elegans model of Huntington's disease. Nutr Neurosci 2021; 25:2288-2301. [PMID: 34311678 DOI: 10.1080/1028415x.2021.1956254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant, progressive neurodegenerative disease. It occurs due to a mutated huntingtin gene that contains an abnormal expansion of cytosine-adenine-guanine repeats, leading to a variable-length N-terminal polyglutamine (polyQ) chain. The mutation confers toxic functions to mutant huntingtin protein, causing neurodegeneration. Rutin is a flavonoid found in various plants, such as buckwheat, some teas, and apples. Our previous studies have indicated that rutin has protective effects in HD models, but more studies are needed to unravel its effects on protein homeostasis, and to discern the underlying mechanisms. In the present study, we investigated the effects of rutin in a Caenorhabditis elegans model of HD, focusing on ASH neurons and antioxidant defense. We tested behavioral changes (touch response, movement, and octanol response), measured neuronal polyQ aggregates, and assessed degeneration using a dye-filling assay. In addition, we analyzed expression levels of heat-shock protein-16.2 and superoxide dismutase-3. Overall, our data demonstrate that chronic rutin treatment maintains the function of ASH neurons, and decreases the degeneration of their sensory terminations. We propose that rutin does so in a mechanism that involves antioxidant activity by controlling the expression of antioxidant enzymes and other chaperones regulating proteostasis. Our findings provide new evidence of rutin's potential neuroprotective role in the C. elegans model and should inform treatment strategies for neurodegenerative diseases and other diseases caused by age-related protein aggregation.
Collapse
Affiliation(s)
- Larissa Marafiga Cordeiro
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Marcell Valandro Soares
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Aline Franzen da Silva
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Marina Lopes Machado
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Fabiane Bicca Obetine Baptista
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Tássia Limana da Silveira
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Leticia Priscilla Arantes
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Felix Alexandre Antunes Soares
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
45
|
Cote-Hammarlof PA, Fragata I, Flynn J, Mavor D, Zeldovich KB, Bank C, Bolon DNA. The Adaptive Potential of the Middle Domain of Yeast Hsp90. Mol Biol Evol 2021; 38:368-379. [PMID: 32871012 PMCID: PMC7826181 DOI: 10.1093/molbev/msaa211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The distribution of fitness effects (DFEs) of new mutations across different environments quantifies the potential for adaptation in a given environment and its cost in others. So far, results regarding the cost of adaptation across environments have been mixed, and most studies have sampled random mutations across different genes. Here, we quantify systematically how costs of adaptation vary along a large stretch of protein sequence by studying the distribution of fitness effects of the same ≈2,300 amino-acid changing mutations obtained from deep mutational scanning of 119 amino acids in the middle domain of the heat shock protein Hsp90 in five environments. This region is known to be important for client binding, stabilization of the Hsp90 dimer, stabilization of the N-terminal-Middle and Middle-C-terminal interdomains, and regulation of ATPase–chaperone activity. Interestingly, we find that fitness correlates well across diverse stressful environments, with the exception of one environment, diamide. Consistent with this result, we find little cost of adaptation; on average only one in seven beneficial mutations is deleterious in another environment. We identify a hotspot of beneficial mutations in a region of the protein that is located within an allosteric center. The identified protein regions that are enriched in beneficial, deleterious, and costly mutations coincide with residues that are involved in the stabilization of Hsp90 interdomains and stabilization of client-binding interfaces, or residues that are involved in ATPase–chaperone activity of Hsp90. Thus, our study yields information regarding the role and adaptive potential of a protein sequence that complements and extends known structural information.
Collapse
Affiliation(s)
| | - Inês Fragata
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Julia Flynn
- University of Massachusetts Medical School, Worcester, MA
| | - David Mavor
- University of Massachusetts Medical School, Worcester, MA
| | | | - Claudia Bank
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Institute of Ecology and Evolution, University of Bern, Switzerland
| | | |
Collapse
|
46
|
Akter T, Nakamoto H. pH-regulated chaperone function of cyanobacterial Hsp90 and Hsp70: Implications for light/dark regulation. J Biochem 2021; 170:463-471. [PMID: 33993259 DOI: 10.1093/jb/mvab061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/06/2021] [Indexed: 11/14/2022] Open
Abstract
We have shown that cyanobacterial chaperonins have pH-dependent anti-aggregation activity. The pH in cyanobacterial cytosol increases by one pH unit following a shift from darkness to light. In the present study, we examined whether other major chaperones such as Hsp90 (HtpG) and Hsp70 (DnaK2) from the cyanobacterium Synechococcus elongatus PCC7942 also display pH-dependent activity. Suppressing aggregation of various heat-denatured proteins, especially lactate dehydrogenase, at an equimolar ratio of cyanobacterial Hsp90 to protein substrate was found to be pH-dependent. Hsp90 showed the highest activity at pH 8.5 over the examined pH range of 7.0 to 8.5. pH affected the anti-aggregation activity of DnaK2 in a similar manner to that of Hsp90 in the presence of half equimolar DnaK2 to the protein substrate. The ATPase activity of cyanobacterial Hsp90 was pH-dependent, with a four-fold increase in activity when the pH was raised from 7.0 to 8.5. The ATPase activity of DnaK2 was also regulated by pH in a similar manner. Finally, an increase in pH from 7.0 to 8.5 enhanced activities of both Hsp90 and Hsp70 in protein-folding assistance by two- to three-fold. These results suggest that changes in pH may regulate chaperone function during a light-dark cycle in cyanobacterial cells.
Collapse
Affiliation(s)
- Tahmina Akter
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Hitoshi Nakamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| |
Collapse
|
47
|
Jin Y, Kotler JLM, Wang S, Huang B, Halpin JC, Street TO. The ER Chaperones BiP and Grp94 Regulate the Formation of Insulin-Like Growth Factor 2 (IGF2) Oligomers. J Mol Biol 2021; 433:166963. [PMID: 33811917 DOI: 10.1016/j.jmb.2021.166963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 01/05/2023]
Abstract
While cytosolic Hsp90 chaperones have been extensively studied, less is known about how the ER Hsp90 paralog Grp94 recognizes clients and influences client folding. Here, we examine how Grp94 and the ER Hsp70 paralog, BiP, influence the folding of insulin-like growth factor 2 (IGF2), an established client protein of Grp94. ProIGF2 is composed of a disulfide-bonded insulin-like hormone and a C-terminal E-peptide that has sequence characteristics of an intrinsically disordered region. BiP and Grp94 have a minimal influence on folding whereby both chaperones slow proIGF2 folding and do not substantially alter the disulfide-bonded folding intermediates, suggesting that BiP and Grp94 may have an additional influence unrelated to proIGF2 folding. Indeed, we made the unexpected discovery that the E-peptide region allows proIGF2 to form dynamic oligomers. ProIGF2 oligomers can transition from a dynamic state that is capable of exchanging monomers to an irreversibly aggregated state, providing a plausible role for BiP and Grp94 in regulating proIGF2 oligomerization. In contrast to the modest influence on folding, BiP and Grp94 have a stronger influence on proIGF2 oligomerization and these chaperones exert counteracting effects. BiP suppresses proIGF2 oligomerization while Grp94 can enhance proIGF2 oligomerization in a nucleotide-dependent manner. We propose that BiP and Grp94 regulate the assembly and dynamic behavior of proIGF2 oligomers, although the biological role of proIGF2 oligomerization is not yet known.
Collapse
Affiliation(s)
- Yi Jin
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Judy L M Kotler
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Shiyu Wang
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Bin Huang
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Jackson C Halpin
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Timothy O Street
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
48
|
Hohrman K, Gonçalves D, Morano KA, Johnson JL. Disrupting progression of the yeast Hsp90 folding pathway at different transition points results in client-specific maturation defects. Genetics 2021; 217:iyab009. [PMID: 33789348 PMCID: PMC8045699 DOI: 10.1093/genetics/iyab009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/11/2021] [Indexed: 11/12/2022] Open
Abstract
The protein molecular chaperone Hsp90 (Heat shock protein, 90 kilodalton) plays multiple roles in the biogenesis and regulation of client proteins impacting myriad aspects of cellular physiology. Amino acid alterations located throughout Saccharomyces cerevisiae Hsp90 have been shown to result in reduced client activity and temperature-sensitive growth defects. Although some Hsp90 mutants have been shown to affect activity of particular clients more than others, the mechanistic basis of client-specific effects is unknown. We found that Hsp90 mutants that disrupt the early step of Hsp70 and Sti1 interaction, or show reduced ability to adopt the ATP-bound closed conformation characterized by Sba1 and Cpr6 interaction, similarly disrupt activity of three diverse clients, Utp21, Ssl2, and v-src. In contrast, mutants that appear to alter other steps in the folding pathway had more limited effects on client activity. Protein expression profiling provided additional evidence that mutants that alter similar steps in the folding cycle cause similar in vivo consequences. Our characterization of these mutants provides new insight into how Hsp90 and cochaperones identify and interact with diverse clients, information essential for designing pharmaceutical approaches to selectively inhibit Hsp90 function.
Collapse
Affiliation(s)
- Kaitlyn Hohrman
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Davi Gonçalves
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX 77030, USA
| | - Kevin A Morano
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX 77030, USA
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
49
|
Kim JW, Cho YB, Lee S. Cell Surface GRP94 as a Novel Emerging Therapeutic Target for Monoclonal Antibody Cancer Therapy. Cells 2021; 10:cells10030670. [PMID: 33802964 PMCID: PMC8002708 DOI: 10.3390/cells10030670] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
Glucose-regulated protein 94 (GRP94) is an endoplasmic reticulum (ER)-resident member of the heat shock protein 90 (HSP90) family. In physiological conditions, it plays a vital role in regulating biological functions, including chaperoning cellular proteins in the ER lumen, maintaining calcium homeostasis, and modulating immune system function. Recently, several reports have shown the functional role and clinical relevance of GRP94 overexpression in the progression and metastasis of several cancers. Therefore, the current review highlights GRP94’s physiological and pathophysiological roles in normal and cancer cells. Additionally, the unmet medical needs of small chemical inhibitors and the current development status of monoclonal antibodies specifically targeting GRP94 will be discussed to emphasize the importance of cell surface GRP94 as an emerging therapeutic target in monoclonal antibody therapy for cancer.
Collapse
|
50
|
Yin L, Yang Y, Zhu W, Xian Y, Han Z, Huang H, Peng L, Zhang K, Zhao Y. Heat Shock Protein 90 Triggers Multi-Drug Resistance of Ovarian Cancer via AKT/GSK3β/β-Catenin Signaling. Front Oncol 2021; 11:620907. [PMID: 33738259 PMCID: PMC7960917 DOI: 10.3389/fonc.2021.620907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Ovarian cancer is the most lethal gynaecologic tumor, with which multi-drug resistance as the major therapeutic hindrance. Heat shock protein 90 (Hsp90) has been involved in cancer malignant behaviors. However, its role and mechanism in multi-drug resistance of ovarian cancer remains poorly understood. Our results demonstrated that Hsp90 was overexpressed in multi-drug resistant ovarian cancer cells. Hsp90 downregulation by shHsp90 or inhibitor BIIB021 increased the sensitivity of multi-drug resistant ovarian cancer cells to paclitaxel and cisplatin, and augmented the drugs-induced apoptosis. Hsp90 positively regulated the expressions of multi-drug resistance protein 1 (P-gp/MDR1), breast cancer resistance protein (BCRP), Survivin and Bcl-2 expressions closely associated with multi-drug resistance. Moreover, overexpression of Hsp90 promoted β-catenin accumulation, while Hsp90 downregulation decreased the accumulation, nuclear translocation and transcriptional activity of β-catenin. We also identified that β-catenin was responsible for Hsp90-mediated expressions of P-gp, BCRP, Survivin, and Bcl-2. Furthermore, Hsp90 enhanced the AKT/GSK3β signaling, and AKT signaling played a critical role in Hsp90-induced accumulation and transcriptional activity of β-catenin, as well as multi-drug resistance to paclitaxel and cisplatin. In conclusion, Hsp90 enhanced the AKT/GSK3β/β-catenin signaling to induce multi-drug resistance of ovarian cancer. Suppressing Hsp90 chemosensitized multi-drug resistant ovarian cancer cells via impairing the AKT/GSK3β/β-catenin signaling, providing a promising therapeutic strategy for a successful treatment of ovarian cancer.
Collapse
Affiliation(s)
- Lan Yin
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Yuhan Yang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Wanglong Zhu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Yu Xian
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Zhengyu Han
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Houyi Huang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Liaotian Peng
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Kun Zhang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Ye Zhao
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|