1
|
Lin Z, Ruan C, Xia R, Liao J, Zhu L, Wang D, Alvarez PJJ, Yu P. Bacterium-Phage Interactions Enhance Biofilm Resilience during Membrane Filtration Biofouling under Oxidative and Hydraulic Stresses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8614-8628. [PMID: 40145670 DOI: 10.1021/acs.est.5c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Microbial interactions on membrane surfaces can facilitate biofilm formation and biofouling, which poses a significant challenge for pressure-driven membrane filtration systems. This multiomics study investigates the adaptive responses of bacterium-phage interactions under varying oxidative and hydraulic stress during membrane backwashing and their biological contributions to biofouling. Oxidative and hydraulic stress distinctly shaped bacteria and phage diversity and community composition. Under moderate oxidative backwashing (300 ppm of NaClO), diversity was maintained, with increased antioxidant enzyme activities, extracellular polymeric substance (EPS) production, and quorum sensing (QS) signaling, promoting bacterial resilience and biofilm formation. In contrast, excessive oxidative stress (600 ppm of NaClO) reduced bacteria and phage diversity, disrupted antioxidant responses, and increased microbial sensitivity. Hydraulic stress predominantly influenced viral diversity and co-occurrence network topology, favoring the expansion of broad host-range phages and lysogenic lifestyles under combined stresses. Phage-bacterium interaction analyses highlighted phages' adaptive preferences for hosts with high network centrality and broad ecological niches, which enhanced microbial interactions and resilience. Transcriptomic profiling demonstrated the early enrichment of genes associated with energy metabolism, ROS detoxification, and biofilm formation, followed by stabilization as biofilms matured. Phage-encoded auxiliary metabolic genes were involved in DNA repair, QS, and EPS biosynthesis, contributing to microbial adaptation through oxidative stress resistance and biofilm stabilization. Overall, these findings provide mechanistic insights into biofouling dynamics and highlight the need to optimize chlorine dosing to prevent suboptimal levels of microbial adaptation and biofouling.
Collapse
Affiliation(s)
- Zijun Lin
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chujin Ruan
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Switzerland
| | - Rong Xia
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Liang Zhu
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Dongsheng Wang
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering and Rice WaTER Institute, Rice University, Houston, Texas 77005, United States
| | - Pingfeng Yu
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| |
Collapse
|
2
|
Lee J, Lee MJ, Jung MJ, Kim YB, Roh SW, Ryu BH, Jeon CO, Choi HJ, Whon TW, Lee SH. Unravelling the key factors for the dominance of Leuconostoc starters during kimchi fermentation. NPJ Sci Food 2025; 9:61. [PMID: 40280915 PMCID: PMC12032216 DOI: 10.1038/s41538-025-00415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Recent studies aim to prevent kimchi spoilage and enhance the sensory and nutritional qualities using lactic acid bacteria, particularly Leuconostoc species, as kimchi starters. However, the factors enabling the successful adaptation and predominance of Leuconostoc species remain unclear. This study investigates the factors that contribute to the successful adaptation of Leuconostoc starter strains WiKim32, WiKim33, WiKim0121 and CBA3628 during kimchi fermentation using a comprehensive multi-omics approach. Our findings reveal that ATP-dependent molecular chaperones, which respond to cold and acidic kimchi environments, play crucial roles in successfully adapting Leuconostoc starter strains. Moreover, genes involved in carbohydrate metabolic pathways enhance ATP production, thereby supporting chaperone activity and bacterial growth. This study highlights the practical use of Leuconostoc starter strains WiKim32, WiKim33 and WiKim0121 and identifies essential factors for their successful adaptation and predominance during kimchi fermentation.
Collapse
Affiliation(s)
- Jisu Lee
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Min Ji Lee
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Mi-Ja Jung
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Yeon Bee Kim
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Seong Woon Roh
- Microbiome Research Team, LISCure Biosciences Inc., Seongnam, 13486, Republic of Korea
| | - Byung Hee Ryu
- Jongga R&D Production Division Kimchi R&D Team, Global Kimchi Division, Daesang Corporation, Seoul, 03130, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hak-Jong Choi
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Tae Woong Whon
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Se Hee Lee
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea.
| |
Collapse
|
3
|
Izquierdo-Fiallo K, Muñoz-Villagrán C, Schimpf C, Mardonez MP, Rafaja D, Schlömann M, Tello M, Orellana O, Levicán G. Adaptive response of the holdase chaperone network of Acidithiobacillus ferrooxidans ATCC 23270 to stresses and energy sources. World J Microbiol Biotechnol 2025; 41:121. [PMID: 40167894 DOI: 10.1007/s11274-025-04325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/15/2025] [Indexed: 04/02/2025]
Abstract
Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophilic bacterium belonging to microbial communities involved in sulfide ore bioleaching. This microorganism possesses redundancy of genes encoding ATP-independent chaperone holdases like Hsp20 (hps20.1, hsp20.2, and hsp20.3), Hsp31, Hsp33, RidA (ridA.1 and ridA.2), and Lon (lon.1, lon.2, and lon.3), and single copy genes encoding SlyD and CnoX. We evaluated the response of these holdases to short and long-term stresses induced by changes in temperature (30° to 37 °C), pH (1.6 to 1.2 or 2.0), and oxidative status (1 mM H2O2) as well as to different energy sources (iron, sulfur, pyrite, sphalerite or chalcopyrite). Cells adapted under thermal and oxidative stress conditions showed a generalized upregulation of holdase genes, while short-term stress led to more discrete increases in transcript levels, with only hsp20.2 and hsp31 showing higher mRNA levels. hsp31 was also upregulated under acidic stresses, sulfur and sulfides. hsp20 variants showed different mRNA levels under different conditions, and cnoX was induced under oxidative conditions. Cells cultured on chalcopyrite had similar responses to those grown with peroxide. With some exceptions, stresses led to significant increases in intracellular ROS content, and decreases in ATP. These results pave the way to understanding proteostasis systems in extreme acidophilic bacteria.
Collapse
Affiliation(s)
- Katherin Izquierdo-Fiallo
- Laboratory of Applied and Basic Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Santiago, Chile
| | - Claudia Muñoz-Villagrán
- Laboratory of Applied and Basic Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Santiago, Chile
| | - Christian Schimpf
- Institute of Materials Science, TU Bergakademie Freiberg, Freiberg, Germany
| | - Mick Parra Mardonez
- Laboratory of Natural Products Chemistry and its Applications, Faculty of Chemistry and Biology, CBA, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Santiago, Chile
| | - David Rafaja
- Institute of Materials Science, TU Bergakademie Freiberg, Freiberg, Germany
| | - Michael Schlömann
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Mario Tello
- Laboratory of Natural Products Chemistry and its Applications, Faculty of Chemistry and Biology, CBA, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Santiago, Chile
| | - Omar Orellana
- Programa de Biología Celular y Molecular, Facultad de Medicina, ICBM, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Gloria Levicán
- Laboratory of Applied and Basic Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Santiago, Chile.
| |
Collapse
|
4
|
Hurła M, Pikor D, Banaszek-Hurła N, Drelichowska A, Dorszewska J, Kozubski W, Kacprzak E, Paul M. Unraveling the Role of Proteinopathies in Parasitic Infections. Biomedicines 2025; 13:610. [PMID: 40149586 PMCID: PMC11940292 DOI: 10.3390/biomedicines13030610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Proteinopathies, characterized by the misfolding, aggregation, and deposition of proteins, are hallmarks of various neurodegenerative and systemic diseases. Increasingly, research has highlighted the role of protein misfolding in parasitic infections, unveiling intricate interactions between host and parasite that exacerbate disease pathology and contribute to chronic outcomes. The life cycles of parasitic protozoa, including Plasmodium, Toxoplasmosis, and Leishmania species, are complicated and involve frequent changes between host and vector environments. Their proteomes are severely stressed during these transitions, which calls for highly specialized protein quality control systems. In order to survive harsh intracellular conditions during infection, these parasites have been demonstrated to display unique adaptations in the unfolded protein response, a crucial pathway controlling endoplasmic reticulum stress. In addition to improving parasite survival, these adaptations affect host cell signaling and metabolism, which may jeopardize cellular homeostasis. By causing oxidative stress, persistent inflammation, and disturbance of cellular proteostasis, host-parasite interactions also contribute to proteinopathy. For instance, Plasmodium falciparum disrupts normal protein homeostasis and encourages the accumulation of misfolded proteins by influencing host redox systems involved in protein folding. In addition to interfering with host chaperone systems, the parasitic secretion of effector proteins exacerbates protein misfolding and aggregate formation. Autophagy, apoptosis regulation, organelle integrity, and other vital cellular processes are all disrupted by these pathological protein aggregates. Long-term misfolding and aggregation can cause irreversible tissue damage, which can worsen the clinical course of illnesses like visceral leishmaniasis, cerebral malaria, and toxoplasmosis. Treating parasite-induced proteinopathies is a potentially fruitful area of therapy. According to recent research, autophagy modulators, proteasome enhancers, and small-molecule chaperones may be repurposed to lessen these effects. Pharmacological agents that target the UPR, for example, have demonstrated the ability to decrease parasite survival while also reestablishing host protein homeostasis. Targeting the proteins secreted by parasites that disrupt host proteostasis may also offer a novel way to stop tissue damage caused by proteinopathies. In conclusion, the intersection of protein misfolding and parasitic infections represents a rapidly advancing field of research. Dissecting the molecular pathways underpinning these processes offers unprecedented opportunities for developing innovative therapies. These insights could not only transform the management of parasitic diseases but also contribute to a broader understanding of proteinopathies in infectious and non-infectious diseases alike.
Collapse
Affiliation(s)
- Mikołaj Hurła
- Department of Tropical and Parasitic Diseases, Central University Hospital, Przybyszewskiego 49, 61-701 Poznan, Poland
| | - Damian Pikor
- Department of Internal Medicine, University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Natalia Banaszek-Hurła
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Alicja Drelichowska
- Student Scientific Society of Poznan, University of Medical Sciences, 60-806 Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Elżbieta Kacprzak
- Department of Tropical and Parasitic Diseases, Central University Hospital, Przybyszewskiego 49, 61-701 Poznan, Poland
| | - Małgorzata Paul
- Department of Internal Medicine, University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| |
Collapse
|
5
|
Dolpatcha S, Phong HX, Thanonkeo S, Klanrit P, Boonchot N, Yamada M, Thanonkeo P. Transcriptional Regulation Mechanisms in Adaptively Evolved Pichia kudriavzevii Under Acetic Acid Stress. J Fungi (Basel) 2025; 11:177. [PMID: 40137215 PMCID: PMC11942776 DOI: 10.3390/jof11030177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Acetic acid, a common weak acid in industrial fermentation processes, occurs naturally in lignocellulosic hydrolysates and is a byproduct of microbial metabolism. As a significant environmental stressor, it triggers the expression of multiple genes involved in various cellular responses, including biological processes, cellular components, and molecular functions. Using the acid-tolerant strain Pichia kudriavzevii PkAC-9, developed through adaptive laboratory evolution under acetic acid stress, we conducted a transcriptional analysis of 70 stress response-associated genes. RT-qPCR analysis revealed significant upregulation of several genes compared with the wild-type strain under acetic acid stress conditions. The most dramatic changes occurred in genes encoding key metabolic enzymes and stress response proteins associated with the TCA cycle (Fum: 18.6-fold, Aco: 17.1-fold, Oxo: 9.0-fold), carbon and energy metabolism (Tdh2: 28.0-fold, Erg2: 2.0-fold), electron transport chain (Gst: 10.6-fold), molecular chaperones (Hsp104: 26.9-fold, Hsp70: 13.0-fold, Sgt2: 10.0-fold), and transcriptional activators. Our findings indicate that the enhanced acetic acid tolerance of P. kudriavzevii PkAC-9 primarily depends on the coordinated upregulation of genes involved in energy metabolism, cellular detoxification mechanisms, and protein quality control systems through heat shock and transcriptional activator proteins.
Collapse
Affiliation(s)
- Sureeporn Dolpatcha
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; (S.D.); (P.K.); (N.B.)
| | - Huynh Xuan Phong
- Department of Microbial Biotechnology, Institute of Food and Biotechnology, Can Tho University, Can Tho 900000, Vietnam;
| | - Sudarat Thanonkeo
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham 44150, Thailand;
| | - Preekamol Klanrit
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; (S.D.); (P.K.); (N.B.)
- Fermentation Research Center for Value Added Agricultural Products (FerVAAPs), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nongluck Boonchot
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; (S.D.); (P.K.); (N.B.)
- Fermentation Research Center for Value Added Agricultural Products (FerVAAPs), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Mamoru Yamada
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan;
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Pornthap Thanonkeo
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; (S.D.); (P.K.); (N.B.)
- Fermentation Research Center for Value Added Agricultural Products (FerVAAPs), Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
6
|
Domingo-Serrano L, Sanchis-López C, Alejandre C, Soldek J, Palacios JM, Albareda M. A microaerobically induced small heat shock protein contributes to Rhizobium leguminosarum/ Pisum sativum symbiosis and interacts with a wide range of bacteroid proteins. Appl Environ Microbiol 2025; 91:e0138524. [PMID: 39714151 PMCID: PMC11784457 DOI: 10.1128/aem.01385-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
During the establishment of the symbiosis with legume plants, rhizobia are exposed to hostile physical and chemical microenvironments to which adaptations are required. Stress response proteins including small heat shock proteins (sHSPs) were previously shown to be differentially regulated in bacteroids induced by Rhizobium leguminosarum bv. viciae UPM791 in different hosts. In this work, we undertook a functional analysis of the host-dependent sHSP RLV_1399. A rlv_1399-deleted mutant strain was impaired in the symbiotic performance with peas but not with lentil plants. Expression of rlv_1399 gene was induced under microaerobic conditions in a FnrN-dependent manner consistent with the presence of an anaerobox in its regulatory region. Overexpression of this sHSP improves the viability of bacterial cultures following exposure to hydrogen peroxide and to cationic nodule-specific cysteine-rich (NCR) antimicrobial peptides. Co-purification experiments have identified proteins related to nitrogenase synthesis, stress response, carbon and nitrogen metabolism, and to other relevant cellular functions as potential substrates for RLV_1399 in pea bacteroids. These results, along with the presence of unusually high number of copies of shsp genes in rhizobial genomes, indicate that sHSPs might play a relevant role in the adaptation of the bacteria against stress conditions inside their host.IMPORTANCEThe identification and analysis of the mechanisms involved in host-dependent bacterial stress response is important to develop optimal Rhizobium/legume combinations to maximize nitrogen fixation for inoculant development and might have also applications to extend nitrogen fixation to other crops. The data presented in this work indicate that sHSP RLV_1399 is part of the bacterial stress response to face specific stress conditions offered by each legume host. The identification of a wide diversity of sHSP potential targets reveals the potential of this protein to protect essential bacteroid functions. The finding that nitrogenase is the most abundant RLV_1399 substrate suggests that this protein is required to obtain an optimal nitrogen-fixing symbiosis.
Collapse
Affiliation(s)
- Lucía Domingo-Serrano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Claudia Sanchis-López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Carla Alejandre
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Joanna Soldek
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - José Manuel Palacios
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Marta Albareda
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Méndez V, Sepúlveda M, Izquierdo-Fiallo K, Macaya CC, Esparza T, Báez-Matus X, Durán RE, Levicán G, Seeger M. Surfing in the storm: how Paraburkholderia xenovorans thrives under stress during biodegradation of toxic aromatic compounds and other stressors. FEMS Microbiol Rev 2025; 49:fuaf021. [PMID: 40388301 PMCID: PMC12117332 DOI: 10.1093/femsre/fuaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 05/07/2025] [Accepted: 05/15/2025] [Indexed: 05/21/2025] Open
Abstract
The adaptive mechanisms of Burkholderiales during the catabolism of aromatic compounds and abiotic stress are crucial for their fitness and performance. The aims of this report are to review the bacterial adaptation mechanisms to aromatic compounds, oxidative stress, and environmental stressful conditions, focusing on the model aromatic-degrading Paraburkholderia xenovorans LB400, other Burkholderiales, and relevant degrading bacteria. These mechanisms include (i) the stress response during aromatic degradation, (ii) the oxidative stress response to aromatic compounds, (iii) the metabolic adaptation to oxidative stress, (iv) the osmoadaptation to saline stress, (v) the synthesis of siderophore during iron limitation, (vi) the proteostasis network, which plays a crucial role in cellular function maintenance, and (vii) the modification of cellular membranes, morphology, and bacterial lifestyle. Remarkably, we include, for the first time, novel genomic analyses on proteostasis networks, carbon metabolism modulation, and the synthesis of stress-related molecules in P. xenovorans. We analyzed these metabolic features in silico to gain insights into the adaptive strategies of P. xenovorans to challenging environmental conditions. Understanding how to enhance bacterial stress responses can lead to the selection of more robust strains capable of thriving in polluted environments, which is critical for improving biodegradation and bioremediation strategies.
Collapse
Affiliation(s)
- Valentina Méndez
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Mario Sepúlveda
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Katherin Izquierdo-Fiallo
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago, Chile
| | - Constanza C Macaya
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Teresa Esparza
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Ximena Báez-Matus
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Roberto E Durán
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Gloria Levicán
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago, Chile
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| |
Collapse
|
8
|
Soldatov V, Venediktov A, Belykh A, Piavchenko G, Naimzada MD, Ogneva N, Kartashkina N, Bushueva O. Chaperones vs. oxidative stress in the pathobiology of ischemic stroke. Front Mol Neurosci 2024; 17:1513084. [PMID: 39723236 PMCID: PMC11668803 DOI: 10.3389/fnmol.2024.1513084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
As many proteins prioritize functionality over constancy of structure, a proteome is the shortest stave in the Liebig's barrel of cell sustainability. In this regard, both prokaryotes and eukaryotes possess abundant machinery supporting the quality of the proteome in healthy and stressful conditions. This machinery, namely chaperones, assists in folding, refolding, and the utilization of client proteins. The functions of chaperones are especially important for brain cells, which are highly sophisticated in terms of structural and functional organization. Molecular chaperones are known to exert beneficial effects in many brain diseases including one of the most threatening and widespread brain pathologies, ischemic stroke. However, whether and how they exert the antioxidant defense in stroke remains unclear. Herein, we discuss the chaperones shown to fight oxidative stress and the mechanisms of their antioxidant action. In ischemic stroke, during intense production of free radicals, molecular chaperones preserve the proteome by interacting with oxidized proteins, regulating imbalanced mitochondrial function, and directly fighting oxidative stress. For instance, cells recruit Hsp60 and Hsp70 to provide proper folding of newly synthesized proteins-these factors are required for early ischemic response and to refold damaged polypeptides. Additionally, Hsp70 upregulates some dedicated antioxidant pathways such as FOXO3 signaling. Small HSPs decrease oxidative stress via attenuation of mitochondrial function through their involvement in the regulation of Nrf- (Hsp22), Akt and Hippo (Hsp27) signaling pathways as well as mitophagy (Hsp27, Hsp22). A similar function has also been proposed for the Sigma-1 receptor, contributing to the regulation of mitochondrial function. Some chaperones can prevent excessive formation of reactive oxygen species whereas Hsp90 is suggested to be responsible for pro-oxidant effects in ischemic stroke. Finally, heat-resistant obscure proteins (Hero) are able to shield client proteins, thus preventing their possible over oxidation.
Collapse
Affiliation(s)
- Vladislav Soldatov
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Artem Venediktov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrei Belykh
- Pathophysiology Department, Kursk State Medical University, Kursk, Russia
- Research Institute of General Pathology, Kursk State Medical University, Kursk, Russia
| | - Gennadii Piavchenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mukhammad David Naimzada
- Research Institute of Experimental Medicine, Kursk State Medical University, Kursk, Russia
- Laboratory of Public Health Indicators Analysis and Health Digitalization, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nastasya Ogneva
- Scientific Center of Biomedical Technologies, Federal Medical and Biological Agency of Russia, Moscow, Russia
| | - Natalia Kartashkina
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| |
Collapse
|
9
|
Yan G, Wei T, Lan Y, Xu T, Qian P. Different parts of the mussel Gigantidas haimaensis holobiont responded differently to deep-sea sampling stress. Integr Zool 2024. [PMID: 39072987 DOI: 10.1111/1749-4877.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Acute environmental changes cause stress during conventional deep-sea biological sampling without in situ fixation and affect gene expressions of samples collected. However, the degree of influence and underlying mechanisms are hardly investigated. Here, we conducted comparative transcriptomic analyses between in situ and onboard fixed gills and between in situ and onboard fixed mantles of deep-sea mussel Gigantidas haimaensis to assess the effects of incidental sampling stress. Results showed that transcription, translation, and energy metabolism were upregulated in onboard fixed gills and mantles, thereby mobilizing rapid gene expression to tackle the stress. Autophagy and phagocytosis that related to symbiotic interactions between the host and endosymbiont were downregulated in the onboard fixed gills. These findings demonstrated that symbiotic gill and nonsymbiotic mantle responded differently to sampling stress, and symbiosis in the gill was perturbed. Further comparative metatranscriptomic analysis between in situ and onboard fixed gills revealed that stress response genes, peptidoglycan biosynthesis, and methane fixation were upregulated in the onboard fixed endosymbiotic Gammaproteobacteria inside the gills, implying that energy metabolism of the endosymbiont was increased to cope with sampling stress. Furthermore, comparative analysis between the mussel G. haimaensis and the limpet Bathyacmaea lactea transcriptomes resultedidentified six transcription factor orthologs upregulated in both onboard fixed mussel mantles and limpets, including sharply increased early growth response protein 1 and Kruppel-like factor 5. They potentially play key roles in initiating the response of sampled deep-sea macrobenthos to sampling stress. Our results clearly show that in situ fixed biological samples are vital for studying deep-sea environmental adaptation.
Collapse
Affiliation(s)
- Guoyong Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tong Wei
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ting Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Peiyuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
10
|
Shin J, Zielinski DC, Palsson BO. Deciphering nutritional stress responses via knowledge-enriched transcriptomics for microbial engineering. Metab Eng 2024; 84:34-47. [PMID: 38825177 DOI: 10.1016/j.ymben.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Understanding diverse bacterial nutritional requirements and responses is foundational in microbial research and biotechnology. In this study, we employed knowledge-enriched transcriptomic analytics to decipher complex stress responses of Vibrio natriegens to supplied nutrients, aiming to enhance microbial engineering efforts. We computed 64 independently modulated gene sets that comprise a quantitative basis for transcriptome dynamics across a comprehensive transcriptomics dataset containing a broad array of nutrient conditions. Our approach led to the i) identification of novel transporter systems for diverse substrates, ii) a detailed understanding of how trace elements affect metabolism and growth, and iii) extensive characterization of nutrient-induced stress responses, including osmotic stress, low glycolytic flux, proteostasis, and altered protein expression. By clarifying the relationship between the acetate-associated regulon and glycolytic flux status of various nutrients, we have showcased its vital role in directing optimal carbon source selection. Our findings offer deep insights into the transcriptional landscape of bacterial nutrition and underscore its significance in tailoring strain engineering strategies, thereby facilitating the development of more efficient and robust microbial systems for biotechnological applications.
Collapse
Affiliation(s)
- Jongoh Shin
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Daniel C Zielinski
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Sakai T, Ogata A, Ikenuma H, Yamada T, Hattori S, Abe J, Imamura S, Ichise M, Tada M, Kakita A, Koyama H, Suzuki M, Kato T, Ito K, Kimura Y. A novel PET probe to selectively image heat shock protein 90α/β isoforms in the brain. EJNMMI Radiopharm Chem 2024; 9:19. [PMID: 38436869 PMCID: PMC10912062 DOI: 10.1186/s41181-024-00248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Heat shock proteins (HSPs) are present throughout the brain. They function as molecular chaperones, meaning they help with the folding and unfolding of large protein complexes. These chaperones are vital in the development of neuropathological conditions such as Alzheimer's disease and Lewy body disease, with HSP90, a specific subtype of HSP, playing a key role. Many studies have shown that drugs that inhibit HSP90 activity have beneficial effects in the neurodegenerative diseases. Therefore, HSP90 PET imaging ligand can be used effectively to study HSP90 in neurodegenerative diseases. Among four HSP90 isoforms, two cytosolic isoforms (HSP90α and HSP90β) thought to be involved in the structural homeostasis of the proteins related to the neurodegenerative diseases. Currently, no useful PET imaging ligands selectively targeting the two cytosolic isoforms of HSP90 have been available yet. RESULTS In this study, we developed a novel positron emission tomography (PET) imaging ligand, [11C]BIIB021, by 11C-radiolabeling (a positron emitter with a half-life of 20.4 min) 6-Chloro-9-[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]-9H-purin-2-amine (BIIB021), an inhibitor with a high affinity for and selectivity to HSP90α and HSP90β. [11C]BIIB021 was synthesized with a high yield, molar activity and radiochemical purity. [11C]BIIB021 showed a high binding affinity for rat brain homogenate as well as human recombinant HSP90α and HSP90β proteins. Radioactivity was well detected in the rat brain (SUV 1.4). It showed clear specific binding in PET imaging of healthy rats and autoradiography of healthy rat and human brain sections. Radiometabolite was detected in the brain, however, total distribution volume was well quantified using dual-input graphical model. Inhibition of p-glycoprotein increased brain radioactivity concentrations. However, total distribution volume values with and without p-glycoprotein inhibition were nearly the same. CONCLUSIONS We have developed a new PET imaging agent, [11C]BIIB021, specifically targeting HSP90α/β. We have been successful in synthesizing [11C]BIIB021 and in vitro and in vivo imaging HSP90α/β. However, the quantification of HSP90α/β is complicated by the presence of radiometabolites in the brain and the potential to be a substrate for p-glycoprotein. Further efforts are needed to develop radioligand suitable for imaging of HSP90α/β.
Collapse
Affiliation(s)
- Takayuki Sakai
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Aya Ogata
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science (GUMS), Kani, Japan
| | - Hiroshi Ikenuma
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Takashi Yamada
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Saori Hattori
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Junichiro Abe
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Shinichi Imamura
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Masanori Ichise
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Mari Tada
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroko Koyama
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Masaaki Suzuki
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Takashi Kato
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Kengo Ito
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Yasuyuki Kimura
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan.
| |
Collapse
|
12
|
Wu M, Maiorano G, Stadnicka K. Protein profiles in the transfected oviductal secreting cells of laying hen (Gallus gallus domesticus). Poult Sci 2024; 103:103305. [PMID: 38198917 PMCID: PMC10792652 DOI: 10.1016/j.psj.2023.103305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024] Open
Abstract
Due to the intensive development of novel biopharming applications, there is a need for the in vitro verification models prior to in vivo testing. Laying hen has been already applied as an animal bioreactor to produce the therapeutical enzyme in a rare disease called lysosomal acid lipase deficiency. In this study, we aimed to verify how the proteome of the transfected oviduct epithelial cells would be affected by genetic nonviral modification with the human exogene. The study was based on a previously developed method to cultivate chicken oviduct epithelial cells (COEC). The typical characteristics of the COEC epithelial cells were retained across the experiments. The mean efficiency of nucleofection ranged from 2.6 to 19.7% depending on the cells' isolation and location in the oviduct (upper, infundibulum site, or magnum). The PCR confirmed the incorporation of human interferon alpha2a (hIFNα2a) exogene into the nucleofected COEC but, the production of hIFNα2a protein did not exceed the detection level in this study. The ovalbumin protein was detected in the nontransfected and transfected COEC, which confirmed the normal secreting functions of the cells subject to modification. Proteomic analysis revealed an increase in abundance of the cell adhesion molecules and collagen molecules after introducing gene under ovalbumin promoter. According to the bioinformatic analyses there was a limited negative impact of transfection on cells, and the normal biochemical pathways were not severely disordered. In conclusion, the observations provide new knowledge about the proteomic profile of the manipulated COEC with regard to the retained normal functionality of the cells, which can be informative for avian biopharma research.
Collapse
Affiliation(s)
- Mengjun Wu
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Giuseppe Maiorano
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Katarzyna Stadnicka
- Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-821 Bydgoszcz, Poland.
| |
Collapse
|
13
|
Dubinkina V, Bhogale S, Hsieh PH, Dibaeinia P, Nambiar A, Maslov S, Yoshikuni Y, Sinha S. A transcriptomic atlas of acute stress response to low pH in multiple Issatchenkia orientalis strains. Microbiol Spectr 2024; 12:e0253623. [PMID: 38018981 PMCID: PMC10783018 DOI: 10.1128/spectrum.02536-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Issatchenkia orientalis is a promising industrial chassis to produce biofuels and bioproducts due to its high tolerance to multiple environmental stresses such as low pH, heat, and other chemicals otherwise toxic for the most widely used microbes. Yet, little is known about specific mechanisms of such tolerance in this organism, hindering our ability to engineer this species to produce valuable biochemicals. Here, we report a comprehensive study of the mechanisms of acidic tolerance in this species via transcriptome profiling across variable pH for 12 different strains with different phenotypes. We found multiple regulatory mechanisms involved in tolerance to low pH in different strains of I. orientalis, marking potential targets for future gene editing and perturbation experiments.
Collapse
Affiliation(s)
- Veronika Dubinkina
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- The Gladstone Institute of Data Science and Biotechnology, San Francisco, California, USA
| | - Shounak Bhogale
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Ping-Hung Hsieh
- Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Payam Dibaeinia
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Ananthan Nambiar
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Sergei Maslov
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Yasuo Yoshikuni
- Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Global Institution for Collaborative Research and Education, Hokkaido University, Hokkaido, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Saurabh Sinha
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, Georgia, USA
- Department of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Tilahun L, Asrat A, Wessel GM, Simachew A. Ancestors in the Extreme: A Genomics View of Microbial Diversity in Hypersaline Aquatic Environments. Results Probl Cell Differ 2024; 71:185-212. [PMID: 37996679 DOI: 10.1007/978-3-031-37936-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The origin of eukaryotic cells, and especially naturally occurring syncytial cells, remains debatable. While a majority of our biomedical research focuses on the eukaryotic result of evolution, our data remain limiting on the prokaryotic precursors of these cells. This is particularly evident when considering extremophile biology, especially in how the genomes of organisms in extreme environments must have evolved and adapted to unique habitats. Might these rapidly diversifying organisms have created new genetic tools eventually used to enhance the evolution of the eukaryotic single nuclear or syncytial cells? Many organisms are capable of surviving, or even thriving, in conditions of extreme temperature, acidity, organic composition, and then rapidly adapt to yet new conditions. This study identified organisms found in extremes of salinity. A lake and a nearby pond in the Ethiopian Rift Valley were interrogated for life by sequencing the DNA of populations of organism collected from the water in these sites. Remarkably, a vast diversity of microbes were identified, and even though the two sites were nearby each other, the populations of organisms were distinctly different. Since these microbes are capable of living in what for humans would be inhospitable conditions, the DNA sequences identified should inform the next step in these investigations; what new gene families, or modifications to common genes, do these organisms employ to survive in these extreme conditions. The relationship between organisms and their environment can be revealed by decoding genomes of organisms living in extreme environments. These genomes disclose new biological mechanisms that enable life outside moderate environmental conditions, new gene functions for application in biotechnology, and may even result in identification of new species. In this study, we have collected samples from two hypersaline sites in the Danakil depression, the shorelines of Lake As'ale and an actively mixing salt pond called Muda'ara (MUP), to identify the microbial community by metagenomics. Shotgun sequencing was applied to high density sampling, and the relative abundance of Operational Taxonomic Units (OTUs) was calculated. Despite the broad taxonomic similarities among the salt-saturated metagenomes analyzed, MUP stood out from Lake As'ale samples. In each sample site, Archaea accounted for 95% of the total OTUs, largely to the class Halobacteria. The remaining 5% of organisms were eubacteria, with an unclassified strain of Salinibacter ruber as the dominant OTU in both the Lake and the Pond. More than 40 different genes coding for stress proteins were identified in the three sample sites of Lake As'ale, and more than 50% of the predicted stress-related genes were associated with oxidative stress response proteins. Chaperone proteins (DnaK, DnaJ, GrpE, and ClpB) were predicted, with percentage of query coverage and similarities ranging between 9.5% and 99.2%. Long reads for ClpB homologous protein from Lake As'ale metagenome datasets were modeled, and compact 3D structures were generated. Considering the extreme environmental conditions of the Danakil depression, this metagenomics dataset can add and complement other studies on unique gene functions on stress response mechanisms of thriving bio-communities that could have contributed to cellular changes leading to single and/or multinucleated eukaryotic cells.
Collapse
Affiliation(s)
- Lulit Tilahun
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asfawossen Asrat
- Department of Mining and Geological Engineering, Botswana International University of Science and Technology, Palapye, Botswana
- School of Earth Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gary M Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| | - Addis Simachew
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
15
|
Zhou Y, Xu K, Gao H, Yao W, Zhang Y, Zhang Y, Azhar Hussain M, Wang F, Yang X, Li H. Comparative Proteomic Analysis of Two Wild Soybean ( Glycine soja) Genotypes Reveals Positive Regulation of Saline-Alkaline Stress Tolerance by Tonoplast Transporters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14109-14124. [PMID: 37749803 DOI: 10.1021/acs.jafc.3c02111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Soil saline-alkalization is a significant constraint for soybean production. Owing to higher genetic diversity of wild soybean, we compared the proteomic landscape of saline-alkaline stress-tolerant (SWBY032) and stress-sensitive (SWLJ092) wild soybean (Glycine soja) strains under saline and saline-alkaline stress. Out of 346 differentially expressed proteins (DEPs) specifically involved in saline-alkaline stress, 159 and 133 DEPs were identified in only SWLJ092 and SWBY032, respectively. Functional annotations revealed that more ribosome proteins were downregulated in SWLJ092, whereas more membrane transporters were upregulated in SWBY032. Moreover, protein-protein interaction analysis of 133 DEPs revealed that 14 protein-synthesis- and 2 TCA-cycle-related DEPs might alter saline-alkaline tolerance by affecting protein synthesis and amino acid metabolism. Furthermore, we confirmed G. soja tonoplast intrinsic protein (GsTIP2-1 and GsTIP2-2), inositol transporter (GsINT1), sucrose transport protein (GsSUC4), and autoinhibited Ca2+-ATPase (GsACA11) as tonoplast transporters can synergistically improve saline-alkaline tolerance in soybean, possibly by relieving the inhibition of protein synthesis and amino acid metabolism. Overall, our findings provided a foundation for molecular breeding of a saline-alkaline stress-tolerant soybean.
Collapse
Affiliation(s)
- Yonggang Zhou
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Keheng Xu
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Hongtao Gao
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Wenbo Yao
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Yinhe Zhang
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Yuntong Zhang
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Muhammad Azhar Hussain
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Fawei Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Xinquan Yang
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Haiyan Li
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570288, China
| |
Collapse
|
16
|
Huanca-Juarez J, Nascimento-Silva EA, Silva NH, Silva-Rocha R, Guazzaroni ME. Identification and functional analysis of novel protein-encoding sequences related to stress-resistance. Front Microbiol 2023; 14:1268315. [PMID: 37840709 PMCID: PMC10568318 DOI: 10.3389/fmicb.2023.1268315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Currently, industrial bioproducts are less competitive than chemically produced goods due to the shortcomings of conventional microbial hosts. Thus, is essential developing robust bacteria for improved cell tolerance to process-specific parameters. In this context, metagenomic approaches from extreme environments can provide useful biological parts to improve bacterial robustness. Here, in order to build genetic constructs that increase bacterial resistance to diverse stress conditions, we recovered novel protein-encoding sequences related to stress-resistance from metagenomic databases using an in silico approach based on Hidden-Markov-Model profiles. For this purpose, we used metagenomic shotgun sequencing data from microbial communities of extreme environments to identify genes encoding chaperones and other proteins that confer resistance to stress conditions. We identified and characterized 10 novel protein-encoding sequences related to the DNA-binding protein HU, the ATP-dependent protease ClpP, and the chaperone protein DnaJ. By expressing these genes in Escherichia coli under several stress conditions (including high temperature, acidity, oxidative and osmotic stress, and UV radiation), we identified five genes conferring resistance to at least two stress conditions when expressed in E. coli. Moreover, one of the identified HU coding-genes which was retrieved from an acidic soil metagenome increased E. coli tolerance to four different stress conditions, implying its suitability for the construction of a synthetic circuit directed to expand broad bacterial resistance.
Collapse
Affiliation(s)
- Joshelin Huanca-Juarez
- Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine (FMRP) – University of São Paulo (USP), São Paulo, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP) – University of São Paulo (USP), São Paulo, Brazil
| | - Edson Alexandre Nascimento-Silva
- Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine (FMRP) – University of São Paulo (USP), São Paulo, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP) – University of São Paulo (USP), São Paulo, Brazil
| | - Ninna Hirata Silva
- Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine (FMRP) – University of São Paulo (USP), São Paulo, Brazil
| | | | - María-Eugenia Guazzaroni
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP) – University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
17
|
Izquierdo-Fiallo K, Muñoz-Villagrán C, Orellana O, Sjoberg R, Levicán G. Comparative genomics of the proteostasis network in extreme acidophiles. PLoS One 2023; 18:e0291164. [PMID: 37682893 PMCID: PMC10490939 DOI: 10.1371/journal.pone.0291164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Extreme acidophiles thrive in harsh environments characterized by acidic pH, high concentrations of dissolved metals and high osmolarity. Most of these microorganisms are chemolithoautotrophs that obtain energy from low redox potential sources, such as the oxidation of ferrous ions. Under these conditions, the mechanisms that maintain homeostasis of proteins (proteostasis), as the main organic components of the cells, are of utmost importance. Thus, the analysis of protein chaperones is critical for understanding how these organisms deal with proteostasis under such environmental conditions. In this work, using a bioinformatics approach, we performed a comparative genomic analysis of the genes encoding classical, periplasmic and stress chaperones, and the protease systems. The analysis included 35 genomes from iron- or sulfur-oxidizing autotrophic, heterotrophic, and mixotrophic acidophilic bacteria. The results showed that classical ATP-dependent chaperones, mostly folding chaperones, are widely distributed, although they are sub-represented in some groups. Acidophilic bacteria showed redundancy of genes coding for the ATP-independent holdase chaperones RidA and Hsp20. In addition, a systematically high redundancy of genes encoding periplasmic chaperones like HtrA and YidC was also detected. In the same way, the proteolytic ATPase complexes ClpPX and Lon presented redundancy and broad distribution. The presence of genes that encoded protein variants was noticeable. In addition, genes for chaperones and protease systems were clustered within the genomes, suggesting common regulation of these activities. Finally, some genes were differentially distributed between bacteria as a function of the autotrophic or heterotrophic character of their metabolism. These results suggest that acidophiles possess an abundant and flexible proteostasis network that protects proteins in organisms living in energy-limiting and extreme environmental conditions. Therefore, our results provide a means for understanding the diversity and significance of proteostasis mechanisms in extreme acidophilic bacteria.
Collapse
Affiliation(s)
- Katherin Izquierdo-Fiallo
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Claudia Muñoz-Villagrán
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Omar Orellana
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rachid Sjoberg
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Gloria Levicán
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| |
Collapse
|
18
|
Lai MC, Cheng HY, Lew SH, Chen YA, Yu CH, Lin HY, Lin SM. Crystal structures of dimeric and heptameric mtHsp60 reveal the mechanism of chaperonin inactivation. Life Sci Alliance 2023; 6:e202201753. [PMID: 36973006 PMCID: PMC10053435 DOI: 10.26508/lsa.202201753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Mitochondrial Hsp60 (mtHsp60) plays a crucial role in maintaining the proper folding of proteins in the mitochondria. mtHsp60 self-assembles into a ring-shaped heptamer, which can further form a double-ring tetradecamer in the presence of ATP and mtHsp10. However, mtHsp60 tends to dissociate in vitro, unlike its prokaryotic homologue, GroEL. The molecular structure of dissociated mtHsp60 and the mechanism behind its dissociation remain unclear. In this study, we demonstrated that Epinephelus coioides mtHsp60 (EcHsp60) can form a dimeric structure with inactive ATPase activity. The crystal structure of this dimer reveals symmetrical subunit interactions and a rearranged equatorial domain. The α4 helix of each subunit extends and interacts with its adjacent subunit, leading to the disruption of the ATP-binding pocket. Furthermore, an RLK motif in the apical domain contributes to stabilizing the dimeric complex. These structural and biochemical findings provide new insights into the conformational transitions and functional regulation of this ancient chaperonin.
Collapse
Affiliation(s)
- Meng-Cheng Lai
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Yu Cheng
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Sin-Hong Lew
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-An Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Hung Yu
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Han-You Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Ming Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
19
|
Kumar M, Sharma S, Mazumder S. Role of UPR mt and mitochondrial dynamics in host immunity: it takes two to tango. Front Cell Infect Microbiol 2023; 13:1135203. [PMID: 37260703 PMCID: PMC10227438 DOI: 10.3389/fcimb.2023.1135203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
The immune system of a host contains a group of heterogeneous cells with the prime aim of restraining pathogenic infection and maintaining homeostasis. Recent reports have proved that the various subtypes of immune cells exploit distinct metabolic programs for their functioning. Mitochondria are central signaling organelles regulating a range of cellular activities including metabolic reprogramming and immune homeostasis which eventually decree the immunological fate of the host under pathogenic stress. Emerging evidence suggests that following bacterial infection, innate immune cells undergo profound metabolic switching to restrain and countervail the bacterial pathogens, promote inflammation and restore tissue homeostasis. On the other hand, bacterial pathogens affect mitochondrial structure and functions to evade host immunity and influence their intracellular survival. Mitochondria employ several mechanisms to overcome bacterial stress of which mitochondrial UPR (UPRmt) and mitochondrial dynamics are critical. This review discusses the latest advances in our understanding of the immune functions of mitochondria against bacterial infection, particularly the mechanisms of mitochondrial UPRmt and mitochondrial dynamics and their involvement in host immunity.
Collapse
Affiliation(s)
- Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shagun Sharma
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- Faculty of Life Sciences and Biotechnology, South Asian University, Delhi, India
| |
Collapse
|
20
|
Davoodi SM, Miri S, Brar SK, Martel R. Formulation of synthetic bacteria consortia for enzymatic biodegradation of polyaromatic hydrocarbons contaminated soil: soil column study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27233-5. [PMID: 37178293 DOI: 10.1007/s11356-023-27233-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
As an efficient method to remove contaminants from highly polluted sites, enzyme biodegradation addresses unresolved issues such as bioremediation inefficiency. In this study, the key enzymes involved in PAH degradation were brought together from different arctic strains for the biodegradation of highly contaminated soil. These enzymes were produced via a multi-culture of psychrophilic Pseudomonas and Rhodococcus strains. As a result of biosurfactant production, the removal of pyrene was sufficiently prompted by Alcanivorax borkumensis. The key enzymes (e.g., naphthalene dioxygenase, pyrene dioxygenase, catechol-2,3 dioxygenase, 1-hydroxy-2-naphthoate hydroxylase, protocatechuic acid 3,4-dioxygenase) obtained via multi-culture were characterized by tandem LC-MS/MS and kinetic studies. To simulate in situ application of produced enzyme solutions, pyrene- and dilbit-contaminated soil was bioremediated in soil columns and flask tests by injecting enzyme cocktails from the most promising consortia. The enzyme cocktail contained about 35.2 U/mg protein pyrene dioxygenase, 61.4 U/mg protein naphthalene dioxygenase, 56.5 U/mg protein catechol-2,3-dioxygenase, 6.1 U/mg protein 1-hydroxy-2-naphthoate hydroxylase, and 33.5 U/mg protein protocatechuic acid (P3,4D) 3,4-dioxygenase enzymes. It was found that after 6 weeks, the average pyrene removal values showed that the enzyme solution could be effective in the soil column system (80-85% degradation of pyrene).
Collapse
Affiliation(s)
- Seyyed Mohammadreza Davoodi
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON, M3J 1P3, Canada
| | - Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON, M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON, M3J 1P3, Canada.
| | - Richard Martel
- INRS-ETE, Université du Québec, 490, Rue de La Couronne, Québec, G1K 9A9, Canada
| |
Collapse
|
21
|
Sriwastaw S, Rai R, Raj A, Kesari V, Rai LC. All3048, a DnaJ III homolog of Anabaena sp. PCC7120 mediates heat shock response in E. coli and its N-terminus J-domain stimulates DnaK ATPase activity. Int J Biol Macromol 2023; 233:123563. [PMID: 36746302 DOI: 10.1016/j.ijbiomac.2023.123563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Cyanobacterial DnaJ offers thermo-tolerance and effectively prevents aggregation of denatured protein in coordination with DnaK. The hypothetical protein All3048 of Anabaena sp. PCC7120 was found to be a 24 kDa DnaJ III protein with a putative J-domain at the extreme N-terminus. This paper decodes the role of All3048 in thermo-tolerance and as a co-chaperon of DnaK. Semi-quantitative and RT-PCR results showed up-accumulation of all3048 in heat, UV-B, cadmium, arsenic and salt. BL21/pET-28a-all3048, all3048(1-95) and all3048(31-128) reduced the heat stress-induced ROS generation by 40 %, 21 % and 24 % as compared to BL21/pET-28-a. Conformational properties of All3048 and its truncated variants were assessed using bis ANS, guanidine hydrochloride and acrylamide quenching. All3048(1-95), All3048 and All3048(31-128) increased DnaK ATPase activity by 8.6, 8.2, and 2.5 fold, respectively. The thermostability investigated using DSC and DSF methods affirmed the relative stability of All3048 and All3048 (31-128), whereas All3048 (1-95) was the least stable. All3048 is a novel cyanobacterial DnaJ III that imparts heat stress tolerance in E. coli; however, only the J-domain present at N-terminus was sufficient for stimulating DnaK's ATPase activity.
Collapse
Affiliation(s)
- Sonam Sriwastaw
- Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ruchi Rai
- Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Alka Raj
- Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vigya Kesari
- Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - L C Rai
- Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
22
|
HSP70 mediates a crosstalk between the estrogen and the heat shock response pathways. J Biol Chem 2023; 299:102872. [PMID: 36610605 PMCID: PMC9926311 DOI: 10.1016/j.jbc.2023.102872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Cells respond to multiple signals from the environment simultaneously, which often creates crosstalk between pathways affecting the capacity to adapt to the changing environment. Chaperones are an important component in the cellular integration of multiple responses to environmental signals, often implicated in negative feedback and inactivation mechanisms. These mechanisms include the stabilization of steroid hormone nuclear receptors in the cytoplasm in the absence of their ligand. Here, we show using immunofluorescence, chromatin immunoprecipitation, and nascent transcripts production that the heat shock protein 70 (HSP70) chaperone plays a central role in a new crosstalk mechanism between the steroid and heat shock response pathways. HSP70-dependent feedback mechanisms are required to inactivate the heat shock factor 1 (HSF1) after activation. Interestingly, a steroid stimulation leads to faster accumulation of HSF1 in inactive foci following heat shock. Our results further show that in the presence of estrogen, HSP70 accumulates at HSF1-regulated noncoding regions, leading to deactivation of HSF1 and the abrogation of the heat shock transcriptional response. Using an HSP70 inhibitor, we demonstrate that the crosstalk between both pathways is dependent on the chaperone activity. These results suggest that HSP70 availability is a key determinant in the transcriptional integration of multiple external signals. Overall, these results offer a better understanding of the crosstalk between the heat shock and steroid responses, which are salient in neurodegenerative disorders and cancers.
Collapse
|
23
|
Ma J, Wang Q, Wei LL, Zhao Y, Zhang GZ, Wang J, Gu CH. Responses of the tree peony (Paeonia suffruticosa, Paeoniaceae) cultivar 'Yu Hong' to heat stress revealed by iTRAQ-based quantitative proteomics. Proteome Sci 2022; 20:18. [PMID: 36578066 PMCID: PMC9798725 DOI: 10.1186/s12953-022-00202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/30/2022] [Indexed: 12/30/2022] Open
Abstract
Horticulture productivity has been increasingly restricted by heat stress from growing global warming, making it far below the optimum production capacity. As a popular ornamental cultivar of tree peony, Paeonia suffruticosa 'Yu Hong' has also been suffering from heat stress not suitable for its optimal growth. To better understand the response mechanisms against heat stress of tree peony, investigations of phenotypic changes, physiological responses, and quantitative proteomics were conducted. Phenotypic and physiological changes indicated that 24 h of exposure to heat stress (40 °C) was the critical duration of heat stress in tree peony. The proteomic analyses revealed a total of 100 heat-responsive proteins (HRPs). According to bioinformatic analysis of HRPs, the heat tolerance of tree peony might be related to signal transduction, synthesis/degradation, heat kinetic proteins, antioxidants, photosynthesis, energy conversion, and metabolism. Our research will provide some new insights into the molecular mechanism under the response against the heat stress of tree peony, which will benefit the future breeding of heat-resistant ornamental plants.
Collapse
Affiliation(s)
- Jin Ma
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration On Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Qun Wang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration On Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Ling-Ling Wei
- Institute of Ecological Civilization, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- School of Humanities & Social Sciences, Beijing Forestry University, Beijing, 100083, China
| | - Yu Zhao
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration On Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Guo-Zhe Zhang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration On Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Jie Wang
- Kunpeng Institute of Modern Agriculture at Foshan, Guangdong, Foshan, 528200, China.
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia.
| | - Cui-Hua Gu
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China.
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China.
- Key Laboratory of National Forestry and Grassland Administration On Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
24
|
Emerging Trends of Nanotechnology and Genetic Engineering in Cyanobacteria to Optimize Production for Future Applications. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122013. [PMID: 36556378 PMCID: PMC9781209 DOI: 10.3390/life12122013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Nanotechnology has the potential to revolutionize various fields of research and development. Multiple nanoparticles employed in a nanotechnology process are the magic elixir that provides unique features that are not present in the component's natural form. In the framework of contemporary research, it is inappropriate to synthesize microparticles employing procedures that include noxious elements. For this reason, scientists are investigating safer ways to produce genetically improved Cyanobacteria, which has many novel features and acts as a potential candidate for nanoparticle synthesis. In recent decades, cyanobacteria have garnered significant interest due to their prospective nanotechnological uses. This review will outline the applications of genetically engineered cyanobacteria in the field of nanotechnology and discuss its challenges and future potential. The evolution of cyanobacterial strains by genetic engineering is subsequently outlined. Furthermore, the recombination approaches that may be used to increase the industrial potential of cyanobacteria are discussed. This review provides an overview of the research undertaken to increase the commercial avenues of cyanobacteria and attempts to explain prospective topics for future research.
Collapse
|
25
|
B. Soro A, Shokri S, Nicolau-Lapeña I, Ekhlas D, Burgess CM, Whyte P, Bolton DJ, Bourke P, Tiwari BK. Current challenges in the application of the UV-LED technology for food decontamination. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Xie C, Yang L, Jia G, Yan K, Zhang S, Yang G, Wu C, Gai Y, Zheng C, Huang J. Maize HEAT UP-REGULATED GENE 1 plays vital roles in heat stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6417-6433. [PMID: 35709944 DOI: 10.1093/jxb/erac262] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Increasing temperature is one of the major threats to maize growth and yield globally. Under heat stress conditions, intracellular protein homeostasis is seriously disturbed, leading to accumulation of abnormally folded proteins, especially in the endoplasmic reticulum (ER). Molecular chaperones are vital players in the renaturation process and in preventing protein aggregation. However, heat stress tolerance-associated chaperones are not well documented in maize. Here, we characterized the biological roles of HEAT UP-REGULATED GENE 1 (ZmHUG1) in maize. ZmHUG1 encodes a heat-inducible holdase-type molecular chaperone localized in the ER. Knockout mutant of ZmHUG1 exhibited remarkably enhanced sensitivity to heat stress. Accordingly, the zmhug1 mutant showed severe ER stress under high temperature. MAIZE PRENYLATED RAB ACCEPTOR 1.C1 (ZmPRA1.C1) was identified as a client of ZmHUG1, and heat-induced aggregation of ZmPRA1.C1 was accelerated in the zmhug1 mutant. Furthermore, the expression of ZmHUG1 was rapidly transactivated by ER stress sensor BASIC LEUCINE ZIPPER DOMAIN 60 (bZIP60) when heat stress occurred. This study reveals a ZmHUG1-based thermo-protective mechanism in maize.
Collapse
Affiliation(s)
- Chen Xie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Liu Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Guixian Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Kang Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yingping Gai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
27
|
Identification of a Hydroxygallic Acid Derivative, Zingibroside R1 and a Sterol Lipid as Potential Active Ingredients of Cuscuta chinensis Extract That Has Neuroprotective and Antioxidant Effects in Aged Caenorhabditis elegans. Nutrients 2022; 14:nu14194199. [PMID: 36235851 PMCID: PMC9570774 DOI: 10.3390/nu14194199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022] Open
Abstract
We examined the effects of the extracts from two traditional Chinese medicine plants, Cuscuta chinensis and Eucommia ulmoides, on the healthspan of the model organism Caenorhabditis elegans. C. chinensis increased the short-term memory and the mechanosensory response of aged C. elegans. Furthermore, both extracts improved the resistance towards oxidative stress, and decreased the intracellular level of reactive oxygen species. Chemical analyses of the extracts revealed the presence of several bioactive compounds such as chlorogenic acid, cinnamic acid, and quercetin. A fraction from the C. chinensis extract enriched in zingibroside R1 improved the lifespan, the survival after heat stress, and the locomotion in a manner similar to the full C. chinensis extract. Thus, zingibroside R1 could be (partly) responsible for the observed health benefits of C. chinensis. Furthermore, a hydroxygallic acid derivative and the sterol lipid 4-alpha-formyl-stigmasta-7,24(241)-dien-3-beta-ol are abundantly present in the C. chinensis extract and its most bioactive fraction, but hardly in E. ulmoides, making them good candidates to explain the overall healthspan benefits of C. chinensis compared to the specific positive effects on stress resistance by E. ulmoides. Our findings highlight the overall anti-aging effects of C. chinensis in C. elegans and provide first hints about the components responsible for these effects.
Collapse
|
28
|
Does Chlorination Promote Antimicrobial Resistance in Waterborne Pathogens? Mechanistic Insight into Co-Resistance and Its Implication for Public Health. Antibiotics (Basel) 2022; 11:antibiotics11050564. [PMID: 35625208 PMCID: PMC9137585 DOI: 10.3390/antibiotics11050564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Chemical agents including chlorine and antibiotics are used extensively to control infectious microorganisms. While antibiotics are mainly used to treat bacterial infections, chlorine is widely used for microbial inactivation in the post-secondary disinfection steps of water treatment. The extensive use of these agents has been acknowledged as a driving force for the expansion of antimicrobial resistance (AMR) and has prompted discourse on their roles in the evolution and proliferation of resistant pathogens in the aquatic milieus. We live in a possible “post-antibiotic” era when resistant microbes spread at startling levels with dire predictions relating to a potential lack of effective therapeutic antibacterial drugs. There have been reports of enhancement of resistance among some waterborne pathogens due to chlorination. In this context, it is pertinent to investigate the various factors and mechanisms underlying the emergence and spread of resistance and the possible association between chlorination and AMR. We, therefore, reflect on the specifics of bacterial resistance development, the mechanisms of intrinsic and acquired resistance with emphasis on their environmental and public health implications, the co-selection for antibiotic resistance due to chlorination, biofilm microbiology, and multidrug efflux activity. In-depth knowledge of the molecular basis of resistance development in bacteria will significantly contribute to the more rational utilization of these biocidal agents and aid in filling identified knowledge gap toward curbing resistance expansion.
Collapse
|
29
|
Taylor JA, Díez-Vives C, Nielsen S, Wemheuer B, Thomas T. Communality in microbial stress response and differential metabolic interactions revealed by time-series analysis of sponge symbionts. Environ Microbiol 2022; 24:2299-2314. [PMID: 35229422 DOI: 10.1111/1462-2920.15962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/13/2022] [Accepted: 02/26/2022] [Indexed: 11/03/2022]
Abstract
The diversity and function of sponge-associated symbionts is now increasingly understood, however, we lack an understanding on how they dynamically behave to ensure holobiont stability in the face of environmental variation. Here we performed a metatransciptomics analysis of three microbial symbionts of the sponge Cymbastela concentrica in situ over 14 months and through differential gene expression and correlation analysis to environmental variables uncovered differences that speak to their metabolic activities and level of symbiotic and environmental interactions. The nitrite-oxidising Ca. Porinitrospira cymbastela maintained a seemingly stable metabolism, with the few differentially expressed genes related only to stress responses. The heterotrophic Ca. Porivivens multivorans displayed differential use of holobiont-derived compounds and respiration modes, while the ammonium-oxidising archaeon Ca. Nitrosopumilus cymbastelus differentially expressed genes related to phosphate metabolism and symbiosis effectors. One striking similarity between the symbionts was their similar variation in expression of stress-related genes. Our timeseries study showed that the microbial community of C. concentrica undertakes dynamic gene expression adjustments in response to the surroundings, tuned to deal with general stress and metabolic interactions between holobiont members. The success of these dynamic adjustments likely underpins the stability of the sponge holobiont and may provide resilience against environmental change. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jessica A Taylor
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Cristina Díez-Vives
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, Australia.,Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Madrid, Spain
| | - Shaun Nielsen
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, Australia
| | - Bernd Wemheuer
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, Australia.,School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, Australia.,School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
30
|
Chakdar H, Thapa S, Srivastava A, Shukla P. Genomic and proteomic insights into the heavy metal bioremediation by cyanobacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127609. [PMID: 34772552 DOI: 10.1016/j.jhazmat.2021.127609] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/16/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Heavy metals (HMs) pose a global ecological threat due to their toxic effects on aquatic and terrestrial life. Effective remediation of HMs from the environment can help to restore soil's fertility and ecological vigor, one of the key Sustainable Development Goals (SDG) set by the United Nations. The cyanobacteria have emerged as a potential option for bioremediation of HMs due to their unique adaptations and robust metabolic machineries. Generally, cyanobacteria deploy multifarious mechanisms such as biosorption, bioaccumulation, activation of metal transporters, biotransformation and induction of detoxifying enzymes to sequester and minimize the toxic effects of heavy metals. Therefore, understanding the physiological responses and regulation of adaptation mechanisms at molecular level is necessary to unravel the candidate genes and proteins which can be manipulated to improve the bioremediation efficiency of cyanobacteria. Chaperons, cellular metabolites (extracellular polymers, biosurfactants), transcriptional regulators, metal transporters, phytochelatins and metallothioneins are some of the potential targets for strain engineering. In the present review, we have discussed the potential of cyanobacteria for HM bioremediation and provided a deeper insight into their genomic and proteomic regulation of various tolerance mechanisms. These approaches might pave new possibilities of implementing genetic engineering strategies for improving bioremediation efficiency with a future perspective.
Collapse
Affiliation(s)
- Hillol Chakdar
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau 275103, Uttar Pradesh, India
| | - Shobit Thapa
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau 275103, Uttar Pradesh, India
| | - Amit Srivastava
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, ID 47907-2048, United States
| | - Pratyoosh Shukla
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
31
|
Kishore A, Fetter A, Zeilinger C. Microarray-Based Screening of Putative HSP90 Inhibitors Predicted and Isolated from Microorganisms. Methods Mol Biol 2022; 2489:435-448. [PMID: 35524063 DOI: 10.1007/978-1-0716-2273-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein microarrays are useful tools for detecting the presence of a target where different prey and bait combinations exist. Here we describe the extended application for a functional target-oriented screening assay with full length Heat shock proteins (HSPs ) for the identification of novel compounds.
Collapse
Affiliation(s)
- Anusha Kishore
- Gottfried-Wilhelm-Leibniz University of Hannover, BMWZ (Zentrum für Biomolekulare Wirkstoffe), Hannover, Germany
| | - Artem Fetter
- Gottfried-Wilhelm-Leibniz University of Hannover, BMWZ (Zentrum für Biomolekulare Wirkstoffe), Hannover, Germany
| | - Carsten Zeilinger
- Gottfried-Wilhelm-Leibniz University of Hannover, BMWZ (Zentrum für Biomolekulare Wirkstoffe), Hannover, Germany.
| |
Collapse
|
32
|
Lin KH, Ali A, Kuo CH, Yang PC, Kumar VB, Padma VV, Lo JF, Huang CY, Kuo WW. Carboxyl terminus of HSP70-interacting protein attenuates advanced glycation end products-induced cardiac injuries by promoting NFκB proteasomal degradation. J Cell Physiol 2021; 237:1888-1901. [PMID: 34958118 DOI: 10.1002/jcp.30660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 11/06/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
Advanced glycation end products (AGEs), which are highly reactive molecules resulting from persistent high-glucose levels, can lead to the generation of oxidative stress and cardiac complications. The carboxyl terminus of HSP70 interacting protein (CHIP) has been demonstrated to have a protective role in several diseases, including cardiac complications; however, the role in preventing AGE-induced cardiac damages remains poorly understood. Here, we found that elevated AGE levels impaired cardiac CHIP expression in streptozotocin-induced diabetes and high-fat diet-administered animals, representing AGE exposure models. We used the TUNEL assay, hematoxylin and eosin, Masson's trichrome staining, and western blotting to prove that cardiac injuries were induced in diabetic animals and AGE-treated cardiac cells. Interestingly, our results collectively indicated that CHIP overexpression significantly rescued the AGE-induced cardiac injuries and promoted cell survival. Moreover, CHIP knockdown-mediated stabilization of nuclear factor κB (NFκB) was attenuated by overexpressing CHIP in the cells. Furthermore, co-immunoprecipitation and immunoblot assay revealed that CHIP promotes the ubiquitination and proteasomal degradation of AGE-induced NFκB. Importantly, fluorescence microscopy, a luciferase reporter assay, electrophoretic mobility shift assay, and subcellular fractionation further demonstrated that CHIP overexpression inhibits AGE-induced NFκB nuclear translocation, reduced its binding ability with the promoter sequences of the receptor of AGE, consequently inhibiting the translocation of the receptor AGE to the cell membrane for its proper function. Overall, our current study findings suggest that CHIP can target NFκB for ubiquitin-mediated proteasomal degradation, and thereby potentially rescue AGE-induced cardiac damages.
Collapse
Affiliation(s)
- Kuan-Ho Lin
- College of Medicine, China Medical University, Taichung, Taiwan.,Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ayaz Ali
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Pei-Chen Yang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | | | | | - Jeng-Fan Lo
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Genome Research Centre, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Centre of Excellence, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yang Huang
- Department of Biotechnology, Asia University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Centre of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| |
Collapse
|
33
|
Molecular Effects of Elongation Factor Ts and Trigger Factor on the Unfolding and Aggregation of Elongation Factor Tu Induced by the Prokaryotic Molecular Chaperone Hsp33. BIOLOGY 2021; 10:biology10111171. [PMID: 34827164 PMCID: PMC8614738 DOI: 10.3390/biology10111171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Proteins are versatile biological macromolecules involved in most biological processes. However, because of the highly labile nature of protein structures, protein quality control (PQC) to ensure proteostasis (i.e., protein homeostasis)is difficult. Therefore, proteins of a specialized class (i.e., molecular chaperones) are required that assist in proper folding and prevent aberrant folding of other proteins. Hsp33 was originally discovered as a holding chaperone that is overexpressed upon heat shock and activated by oxidation to prevent the misfolding of client proteins. Recently, an unfoldase/aggregase activity of Hsp33 was identified in its reduced state against a specific substrate, EF-Tu, which plays a key role in protein biosynthesis in cells. The present study demonstrates that EF-Tu unfolding/aggregation by Hsp33 can be accelerated by another molecular chaperone trigger factor. Given that the unfolded/aggregated EF-Tu is finally degraded by another chaperone, Lon protease, it is likely that a chaperone network dysregulating EF-Tu operates in heat shock to attenuate protein biosynthesis, which is harmful to cell survival under stressed conditions. Therefore, the apparently contradictory chaperone function (i.e., promotion of client misfolding) of Hsp33 can also be associated with the PQC processes to ensure proteostasis in cells. Abstract Hsp33, a prokaryotic redox-regulated holding chaperone, has been recently identified to be able to exhibit an unfoldase and aggregase activity against elongation factor Tu (EF-Tu) in its reduced state. In this study, we investigated the effect of elongation factor Ts (EF-Ts) and trigger factor (TF) on Hsp33-mediated EF-Tu unfolding and aggregation using gel filtration, light scattering, circular dichroism, and isothermal titration calorimetry. We found that EF-Tu unfolding and subsequent aggregation induced by Hsp33 were evident even in its complex state with EF-Ts, which enhanced EF-Tu stability. In addition, although TF alone had no substantial effect on the stability of EF-Tu, it markedly amplified the Hsp33-mediated EF-Tu unfolding and aggregation. Collectively, the present results constitute the first example of synergistic unfoldase/aggregase activity of molecular chaperones and suggest that the stability of EF-Tu is modulated by a sophisticated network of molecular chaperones to regulate protein biosynthesis in cells under stress conditions.
Collapse
|
34
|
Waterworth SC, Parker-Nance S, Kwan JC, Dorrington RA. Comparative Genomics Provides Insight into the Function of Broad-Host Range Sponge Symbionts. mBio 2021; 12:e0157721. [PMID: 34519538 PMCID: PMC8546597 DOI: 10.1128/mbio.01577-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022] Open
Abstract
The fossil record indicates that the earliest evidence of extant marine sponges (phylum Porifera) existed during the Cambrian explosion and that their symbiosis with microbes may have begun in their extinct ancestors during the Precambrian period. Many symbionts have adapted to their sponge host, where they perform specific, specialized functions. There are also widely distributed bacterial taxa such as Poribacteria, SAUL, and Tethybacterales that are found in a broad range of invertebrate hosts. Here, we added 11 new genomes to the Tethybacterales order, identified a novel family, and show that functional potential differs between the three Tethybacterales families. We compare the Tethybacterales with the well-characterized Entoporibacteria and show that these symbionts appear to preferentially associate with low-microbial abundance (LMA) and high-microbial abundance (HMA) sponges, respectively. Within these sponges, we show that these symbionts likely perform distinct functions and may have undergone multiple association events, rather than a single association event followed by coevolution. IMPORTANCE Marine sponges often form symbiotic relationships with bacteria that fulfil a specific need within the sponge holobiont, and these symbionts are often conserved within a narrow range of related taxa. To date, there exist only three known bacterial taxa (Entoporibacteria, SAUL, and Tethybacterales) that are globally distributed and found in a broad range of sponge hosts, and little is known about the latter two. We show that the functional potential of broad-host range symbionts is conserved at a family level and that these symbionts have been acquired several times over evolutionary history. Finally, it appears that the Entoporibacteria are associated primarily with high-microbial abundance sponges, while the Tethybacterales associate with low-microbial abundance sponges.
Collapse
Affiliation(s)
- Samantha C. Waterworth
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin, USA
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Shirley Parker-Nance
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
- South African Environmental Observation Network, Elwandle Coastal Node, Gqeberha (Port Elizabeth), South Africa
| | - Jason C. Kwan
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Rosemary A. Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| |
Collapse
|
35
|
Abstract
Gram-negative bacteria have a multicomponent and constitutively active periplasmic chaperone system to ensure the quality control of their outer membrane proteins (OMPs). Recently, OMPs have been identified as a new class of vulnerable targets for antibiotic development, and therefore a comprehensive understanding of OMP quality control network components will be critical for discovering antimicrobials. Here, we demonstrate that the periplasmic chaperone Spy protects certain OMPs against protein-unfolding stress and can functionally compensate for other periplasmic chaperones, namely Skp and FkpA, in the Escherichia coli K-12 MG1655 strain. After extensive in vivo genetic experiments for functional characterization of Spy, we use nuclear magnetic resonance and circular dichroism spectroscopy to elucidate the mechanism by which Spy binds and folds two different OMPs. Along with holding OMP substrates in a dynamic conformational ensemble, Spy binding enables OmpX to form a partially folded β-strand secondary structure. The bound OMP experiences temperature-dependent conformational exchange within the chaperone, pointing to a multitude of local dynamics. Our findings thus deepen the understanding of functional compensation among periplasmic chaperones during OMP biogenesis and will promote the development of innovative antimicrobials against pathogenic Gram-negative bacteria.
Collapse
|
36
|
Park SY, Egan S, Cura AJ, Aron KL, Xu X, Zheng M, Borys M, Ghose S, Li Z, Lee K. Untargeted proteomics reveals upregulation of stress response pathways during CHO-based monoclonal antibody manufacturing process leading to disulfide bond reduction. MAbs 2021; 13:1963094. [PMID: 34424810 PMCID: PMC8386704 DOI: 10.1080/19420862.2021.1963094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Monoclonal antibody (mAb) interchain disulfide bond reduction can cause a loss of function and negatively impact the therapeutic’s efficacy and safety. Disulfide bond reduction has been observed at various stages during the manufacturing process, including processing of the harvested material. The factors and mechanisms driving this phenomenon are not fully understood. In this study, we examined the host cell proteome as a potential factor affecting the susceptibility of a mAb to disulfide bond reduction in the harvested cell culture fluid (HCCF). We used untargeted liquid-chromatography-mass spectrometry-based proteomics experiments in conjunction with a semi-automated protein identification workflow to systematically compare Chinese hamster ovary (CHO) cell protein abundances between bioreactor conditions that result in reduction-susceptible and reduction-free HCCF. Although the growth profiles and antibody titers of these two bioreactor conditions were indistinguishable, we observed broad differences in host cell protein (HCP) expression. We found significant differences in the abundance of glycolytic enzymes, key protein reductases, and antioxidant defense enzymes. Multivariate analysis of the proteomics data determined that upregulation of stress-inducible endoplasmic reticulum (ER) and other chaperone proteins is a discriminatory characteristic of reduction-susceptible HCP profiles. Overall, these results suggest that stress response pathways activated during bioreactor culture increase the reduction-susceptibility of HCCF. Consequently, these pathways could be valuable targets for optimizing culture conditions to improve protein quality.
Collapse
Affiliation(s)
- Seo-Young Park
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA.,School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Susan Egan
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, USA
| | - Anthony J Cura
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, USA
| | - Kathryn L Aron
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, USA
| | - Xuankuo Xu
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, USA
| | - Mengyuan Zheng
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, USA
| | - Michael Borys
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, USA
| | - Sanchayita Ghose
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, USA
| | - Zhengjian Li
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, USA
| | - Kyongbum Lee
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
37
|
Sharma M, Singh DN, Budhraja R, Sood U, Rawat CD, Adrian L, Richnow HH, Singh Y, Negi RK, Lal R. Comparative proteomics unravelled the hexachlorocyclohexane (HCH) isomers specific responses in an archetypical HCH degrading bacterium Sphingobium indicum B90A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41380-41395. [PMID: 33783707 DOI: 10.1007/s11356-021-13073-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Hexachlorocyclohexane (HCH) is a persistent organochlorine pesticide that poses threat to different life forms. Sphingobium indicum B90A that belong to sphingomonad is well-known for its ability to degrade HCH isomers (α-, β-, γ-, δ-), but effects of HCH isomers and adaptive mechanisms of strain B90A under HCH load remain obscure. To investigate the responses of strain B90A to HCH isomers, we followed the proteomics approach as this technique is considered as the powerful tool to study the microbial response to environmental stress. Strain B90A culture was exposed to α-, β-, γ-, δ-HCH (5 mgL-1) and control (without HCH) taken for comparison and changes in whole cell proteome were analyzed. In β- and δ-HCH-treated cultures growth decreased significantly when compared to control, α-, and γ-HCH-treated cultures. HCH residue analysis corroborated previous observations depicting the complete depletion of α- and γ-HCH, while only 66% β-HCH and 34% δ-HCH were depleted from culture broth. Comparative proteome analyses showed that β- and δ-HCH induced utmost systemic changes in strain B90A proteome, wherein stress-alleviating proteins such as histidine kinases, molecular chaperons, DNA binding proteins, ABC transporters, TonB proteins, antioxidant enzymes, and transcriptional regulators were significantly affected. Besides study confirmed constitutive expression of linA, linB, and linC genes that are crucial for the initiation of HCH isomers degradation, while increased abundance of LinM and LinN in presence of β- and δ-HCH suggested the important role of ABC transporter in depletion of these isomers. These results will help to understand the HCH-induced damages and adaptive strategies of strain B90A under HCH load which remained unravelled to date.
Collapse
Affiliation(s)
- Monika Sharma
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | | | - Rohit Budhraja
- Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Utkarsh Sood
- Department of Zoology, University of Delhi, Delhi, 110007, India
- The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003, India
| | - Charu Dogra Rawat
- Department of Zoology, Ramjas College, University of Delhi, Delhi, 110007, India
| | - Lorenz Adrian
- Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | | | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India.
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi, 110007, India.
- The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003, India.
| |
Collapse
|
38
|
Wang J, Liang C, Yang S, Song J, Li X, Dai X, Wang F, Juntawong N, Tan F, Zhang X, Jiao C, Zou X, Chen W. iTRAQ-based quantitative proteomic analysis of heat stress-induced mechanisms in pepper seedlings. PeerJ 2021; 9:e11509. [PMID: 34141478 PMCID: PMC8180192 DOI: 10.7717/peerj.11509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/03/2021] [Indexed: 11/30/2022] Open
Abstract
Background As one of the most important vegetable crops, pepper has rich nutritional value and high economic value. Increasing heat stress due to the global warming has a negative impact on the growth and yield of pepper. Methods To understand the heat stress response mechanism of pepper, an iTRAQ-based quantitative proteomic analysis was employed to identify possible heat-responsive proteins and metabolic pathways in 17CL30 and 05S180 pepper seedlings under heat stress. Result In the present study, we investigated the changes of phenotype, physiology, and proteome in heat-tolerant (17CL30) and heat-sensitive (05S180) pepper cultivars in response to heat stress. Phenotypic and physiological changes showed that 17CL30 had a stronger ability to resist heat stress compared with 05S180. In proteomic analysis, a total of 3,874 proteins were identified, and 1,591 proteins were considered to participate in the process of heat stress response. According to bioinformatic analysis of heat-responsive proteins, the heat tolerance of 17CL30 might be related to a higher ROS scavenging, photosynthesis, signal transduction, carbohydrate metabolism, and stress defense, compared with 05S180.
Collapse
Affiliation(s)
- Jing Wang
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China.,Longping Branch, Graduate School of Hunan University, Changsha, China
| | - Chengliang Liang
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Sha Yang
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jingshuang Song
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xuefeng Li
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiongze Dai
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
| | - Fei Wang
- Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Niran Juntawong
- Faculty of Science, Department of Botany, Kasetsart University, Bangkok, Thailand
| | - Fangjun Tan
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xilu Zhang
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Chunhai Jiao
- Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xuexiao Zou
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
| | - Wenchao Chen
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
39
|
Troussicot L, Burmann BM, Molin M. Structural determinants of multimerization and dissociation in 2-Cys peroxiredoxin chaperone function. Structure 2021; 29:640-654. [PMID: 33945778 DOI: 10.1016/j.str.2021.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
Peroxiredoxins (PRDXs) are abundant peroxidases present in all kingdoms of life. Recently, they have been shown to also carry out additional roles as molecular chaperones. To address this emerging supplementary function, this review focuses on structural studies of 2-Cys PRDX systems exhibiting chaperone activity. We provide a detailed understanding of the current knowledge of structural determinants underlying the chaperone function of PRDXs. Specifically, we describe the mechanisms which may modulate their quaternary structure to facilitate interactions with client proteins and how they are coordinated with the functions of other molecular chaperones. Following an overview of PRDX molecular architecture, we outline structural details of the presently best-characterized peroxiredoxins exhibiting chaperone function and highlight common denominators. Finally, we discuss the remarkable structural similarities between 2-Cys PRDXs, small HSPs, and J-domain-independent Hsp40 holdases in terms of their functions and dynamic equilibria between low- and high-molecular-weight oligomers.
Collapse
Affiliation(s)
- Laura Troussicot
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Björn M Burmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden.
| | - Mikael Molin
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, 405 30 Göteborg, Sweden.
| |
Collapse
|
40
|
Aussel L, Ezraty B. Methionine Redox Homeostasis in Protein Quality Control. Front Mol Biosci 2021; 8:665492. [PMID: 33928125 PMCID: PMC8076862 DOI: 10.3389/fmolb.2021.665492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/24/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteria live in different environments and are subject to a wide variety of fluctuating conditions. During evolution, they acquired sophisticated systems dedicated to maintaining protein structure and function, especially during oxidative stress. Under such conditions, methionine residues are converted into methionine sulfoxide (Met-O) which can alter protein function. In this review, we focus on the role in protein quality control of methionine sulfoxide reductases (Msr) which repair oxidatively protein-bound Met-O. We discuss our current understanding of the importance of Msr systems in rescuing protein function under oxidative stress and their ability to work in coordination with chaperone networks. Moreover, we highlight that bacterial chaperones, like GroEL or SurA, are also targeted by oxidative stress and under the surveillance of Msr. Therefore, integration of methionine redox homeostasis in protein quality control during oxidative stress gives a complete picture of this bacterial adaptive mechanism.
Collapse
Affiliation(s)
- Laurent Aussel
- Aix-Marseille Université, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Benjamin Ezraty
- Aix-Marseille Université, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| |
Collapse
|
41
|
Higareda Alvear VM, Mateos M, Cortez D, Tamborindeguy C, Martinez-Romero E. Differential gene expression in a tripartite interaction: Drosophila, Spiroplasma and parasitic wasps. PeerJ 2021; 9:e11020. [PMID: 33717711 PMCID: PMC7937342 DOI: 10.7717/peerj.11020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/06/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Several facultative bacterial symbionts of insects protect their hosts against natural enemies. Spiroplasma poulsonii strain sMel (hereafter Spiroplasma), a male-killing heritable symbiont of Drosophila melanogaster, confers protection against some species of parasitic wasps. Several lines of evidence suggest that Spiroplasma-encoded ribosome inactivating proteins (RIPs) are involved in the protection mechanism, but the potential contribution of the fly-encoded functions (e.g., immune response), has not been deeply explored. METHODS Here we used RNA-seq to evaluate the response of D. melanogaster to infection by Spiroplasma and parasitism by the Spiroplasma-susceptible wasp Leptopilina heterotoma, and the Spiroplasma-resistant wasp Ganaspis sp. In addition, we used quantitative (q)PCR to evaluate the transcript levels of the Spiroplasma-encoded Ribosomal inactivation protein (RIP) genes. RESULTS In the absence of Spiroplasma infection, we found evidence of Drosophila immune activation by Ganaspis sp., but not by L. heterotoma, which in turn negatively influenced functions associated with male gonad development. As expected for a symbiont that kills males, we detected extensive downregulation in the Spiroplasma-infected treatments of genes known to have male-biased expression. We detected very few genes whose expression patterns appeared to be influenced by the Spiroplasma-L. heterotoma interaction, and these genes are not known to be associated with immune response. For most of these genes, parasitism by L. heterotoma (in the absence of Spiroplasma) caused an expression change that was at least partly reversed when both L. heterotoma and Spiroplasma were present. It is unclear whether such genes are involved in the Spiroplasma-mediated mechanism that leads to wasp death and/or fly rescue. Nonetheless, the expression pattern of some of these genes, which reportedly undergo expression shifts during the larva-to-pupa transition, is suggestive of an influence of Spiroplasma on the development time of L. heterotoma-parasitized flies. One of the five RIP genes (RIP2) was consistently highly expressed independently of wasp parasitism, in two substrains of sMel. Finally, the RNAseq data revealed evidence consistent with RIP-induced damage in the ribosomal (r)RNA of the Spiroplasma-susceptible, but not the Spiroplasma-resistant, wasp. Acknowledging the caveat that we lacked adequate power to detect the majority of DE genes with fold-changes lower than 3, we conclude that immune priming is unlikely to contribute to the Spiroplasma-mediated protection against wasps, and that the mechanism by which Ganaspis sp. resists/tolerates Spiroplasma does not involve inhibition of RIP transcription.
Collapse
Affiliation(s)
| | - Mariana Mateos
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
| | - Diego Cortez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | |
Collapse
|
42
|
Pátek M, Grulich M, Nešvera J. Stress response in Rhodococcus strains. Biotechnol Adv 2021; 53:107698. [PMID: 33515672 DOI: 10.1016/j.biotechadv.2021.107698] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
Rhodococci are bacteria which can survive under various extreme conditions, in the presence of toxic compounds, and in other hostile habitats. Their tolerance of unfavorable conditions is associated with the structure of their cell wall and their large array of enzymes, which degrade or detoxify harmful compounds. Their physiological and biotechnological properties, together with tools for their genetic manipulation, enable us to apply them in biotransformations, biodegradation and bioremediation. Many such biotechnological applications cause stresses that positively or negatively affect their efficiency. Whereas numerous reviews on rhodococci described their enzyme activities, the optimization of degradation or production processes, and corresponding technological solutions, only a few reviews discussed some specific effects of stresses on the physiology of rhodococci and biotechnological processes. This review aims to comprehensively describe individual stress responses in Rhodococcus strains, the interconnection of different types of stresses and their consequences for cell physiology. We examine here the responses to (1) environmental stresses (desiccation, heat, cold, osmotic and pH stress), (2) the presence of stress-inducing compounds (metals, organic compounds and antibiotics) in the environment (3) starvation and (4) stresses encountered during biotechnological applications. Adaptations of the cell envelope, the formation of multicellular structures and stresses induced by the interactions of hosts with pathogenic rhodococci are also included. The roles of sigma factors of RNA polymerase in the global regulation of stress responses in rhodococci are described as well. Although the review covers a large number of stressful conditions, our intention was to provide an overview of the selected stress responses and their possible connection to biotechnological processes, not an exhaustive survey of the scientific literature. The findings on stress responses summarized in this review and the demonstration of gaps in current knowledge may motivate researchers working to fill these gaps.
Collapse
Affiliation(s)
- Miroslav Pátek
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.
| | - Michal Grulich
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.
| | - Jan Nešvera
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.
| |
Collapse
|
43
|
Goyal RK, Schmidt MA, Hynes MF. Molecular Biology in the Improvement of Biological Nitrogen Fixation by Rhizobia and Extending the Scope to Cereals. Microorganisms 2021; 9:microorganisms9010125. [PMID: 33430332 PMCID: PMC7825764 DOI: 10.3390/microorganisms9010125] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022] Open
Abstract
The contribution of biological nitrogen fixation to the total N requirement of food and feed crops diminished in importance with the advent of synthetic N fertilizers, which fueled the “green revolution”. Despite being environmentally unfriendly, the synthetic versions gained prominence primarily due to their low cost, and the fact that most important staple crops never evolved symbiotic associations with bacteria. In the recent past, advances in our knowledge of symbiosis and nitrogen fixation and the development and application of recombinant DNA technology have created opportunities that could help increase the share of symbiotically-driven nitrogen in global consumption. With the availability of molecular biology tools, rapid improvements in symbiotic characteristics of rhizobial strains became possible. Further, the technology allowed probing the possibility of establishing a symbiotic dialogue between rhizobia and cereals. Because the evolutionary process did not forge a symbiotic relationship with the latter, the potential of molecular manipulations has been tested to incorporate a functional mechanism of nitrogen reduction independent of microbes. In this review, we discuss various strategies applied to improve rhizobial strains for higher nitrogen fixation efficiency, more competitiveness and enhanced fitness under unfavorable environments. The challenges and progress made towards nitrogen self-sufficiency of cereals are also reviewed. An approach to integrate the genetically modified elite rhizobia strains in crop production systems is highlighted.
Collapse
Affiliation(s)
- Ravinder K. Goyal
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada;
- Correspondence:
| | - Maria Augusta Schmidt
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada;
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada;
| | - Michael F. Hynes
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada;
| |
Collapse
|
44
|
Ulfig A, Leichert LI. The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens. Cell Mol Life Sci 2021; 78:385-414. [PMID: 32661559 PMCID: PMC7873122 DOI: 10.1007/s00018-020-03591-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022]
Abstract
Neutrophils are predominant immune cells that protect the human body against infections by deploying sophisticated antimicrobial strategies including phagocytosis of bacteria and neutrophil extracellular trap (NET) formation. Here, we provide an overview of the mechanisms by which neutrophils kill exogenous pathogens before we focus on one particular weapon in their arsenal: the generation of the oxidizing hypohalous acids HOCl, HOBr and HOSCN during the so-called oxidative burst by the enzyme myeloperoxidase. We look at the effects of these hypohalous acids on biological systems in general and proteins in particular and turn our attention to bacterial strategies to survive HOCl stress. HOCl is a strong inducer of protein aggregation, which bacteria can counteract by chaperone-like holdases that bind unfolding proteins without the need for energy in the form of ATP. These chaperones are activated by HOCl through thiol oxidation (Hsp33) or N-chlorination of basic amino acid side-chains (RidA and CnoX) and contribute to bacterial survival during HOCl stress. However, neutrophil-generated hypohalous acids also affect the host system. Recent studies have shown that plasma proteins act not only as sinks for HOCl, but get actively transformed into modulators of the cellular immune response through N-chlorination. N-chlorinated serum albumin can prevent aggregation of proteins, stimulate immune cells, and act as a pro-survival factor for immune cells in the presence of cytotoxic antigens. Finally, we take a look at the emerging role of HOCl as a potential signaling molecule, particularly its role in neutrophil extracellular trap formation.
Collapse
Affiliation(s)
- Agnes Ulfig
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry-Microbial Biochemistry, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry-Microbial Biochemistry, Universitätsstrasse 150, 44780, Bochum, Germany.
| |
Collapse
|
45
|
Johnston HE, Samant RS. Alternative systems for misfolded protein clearance: life beyond the proteasome. FEBS J 2020; 288:4464-4487. [PMID: 33135311 DOI: 10.1111/febs.15617] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/15/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
Protein misfolding is a major driver of ageing-associated frailty and disease pathology. Although all cells possess multiple, well-characterised protein quality control systems to mitigate the toxicity of misfolded proteins, how they are integrated to maintain protein homeostasis ('proteostasis') in health-and how their disintegration contributes to disease-is still an exciting and fast-paced area of research. Under physiological conditions, the predominant route for misfolded protein clearance involves ubiquitylation and proteasome-mediated degradation. When the capacity of this route is overwhelmed-as happens during conditions of acute environmental stress, or chronic ageing-related decline-alternative routes for protein quality control are activated. In this review, we summarise our current understanding of how proteasome-targeted misfolded proteins are retrafficked to alternative protein quality control routes such as juxta-nuclear sequestration and selective autophagy when the ubiquitin-proteasome system is compromised. We also discuss the molecular determinants of these alternative protein quality control systems, attempt to clarify distinctions between various cytoplasmic spatial quality control inclusion bodies (e.g., Q-bodies, p62 bodies, JUNQ, aggresomes, and aggresome-like induced structures 'ALIS'), and speculate on emerging concepts in the field that we hope will spur future research-with the potential to benefit the rational development of healthy ageing strategies.
Collapse
Affiliation(s)
| | - Rahul S Samant
- Signalling Programme, The Babraham Institute, Cambridge, UK
| |
Collapse
|
46
|
Kim YK, Hammerling U. The mitochondrial PKCδ/retinol signal complex exerts real-time control on energy homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158614. [PMID: 31927141 PMCID: PMC7347429 DOI: 10.1016/j.bbalip.2020.158614] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/17/2022]
Abstract
The review focuses on the role of vitamin A (retinol) in the control of energy homeostasis, and on the manner in which certain retinoids subvert this process, leading potentially to disease. In eukaryotic cells, the pyruvate dehydrogenase complex (PDHC) is negatively regulated by four pyruvate dehydrogenase kinases (PDKs) and two antagonistically acting pyruvate dehydrogenase phosphatases (PDPs). The second isoform, PDK2, is regulated by an autonomous mitochondrial signal cascade that is anchored on protein kinase Cδ (PKCδ), where retinoids play an indispensible co-factor role. Along with its companion proteins p66Shc, cytochrome c, and vitamin A, the PKCδ/retinol complex is located in the intermembrane space of mitochondria. At this site, and in contrast to cytosolic locations, PKCδ is activated by the site-specific oxidation of its cysteine-rich activation domain (CRD) that is configured into a complex RING-finger. Oxidation involves the transfer of electrons from cysteine moieties to oxidized cytochrome c, a step catalyzed by vitamin A. The PKCδ/retinol signalosome monitors the internal cytochrome c redox state that reflects the workload of the respiratory chain. Upon sensing demands for energy PKCδ signals the PDHC to increase glucose-derived fuel flux entering the KREBS cycle. Conversely, if excessive fuel flux surpasses the capacity of the respiratory chain, threatening the release of damaging reactive oxygen species (ROS), the polarity of the cytochrome c redox system is reversed, resulting in the chemical reduction of the PKCδ CRD, restoration of the RING-finger, refolding of PKCδ into the inactive, globular form, and curtailment of PDHC output, thereby constraining the respiratory capacity within safe margins. Several retinoids, notably anhydroretinol and fenretinide, capable of displacing retinol from binding sites on PKCδ, can co-activate PKCδ signaling but, owing to their extended system of conjugated double bonds, are unable to silence PKCδ in a timely manner. Left in the ON position, PKCδ causes chronic overload of the respiratory chain leading to mitochondrial dysfunction. This review explores how defects in the PKCδ signal machinery potentially contribute to metabolic and degenerative diseases.
Collapse
Affiliation(s)
- Youn-Kyung Kim
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Ulrich Hammerling
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
47
|
Shakya M, Yildirim T, Lindberg I. Increased expression and retention of the secretory chaperone proSAAS following cell stress. Cell Stress Chaperones 2020; 25:929-941. [PMID: 32607937 PMCID: PMC7591655 DOI: 10.1007/s12192-020-01128-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 11/25/2022] Open
Abstract
The secretory pathway of neurons and endocrine cells contains a variety of mechanisms designed to combat cellular stress. These include not only the unfolded protein response pathways but also diverse chaperone proteins that collectively work to ensure proteostatic control of secreted and membrane-bound molecules. One of the least studied of these chaperones is the neural- and endocrine-specific molecule known as proSAAS. This small chaperone protein acts as a potent anti-aggregant both in vitro and in cellulo and also represents a cerebrospinal fluid biomarker in Alzheimer's disease. In the present study, we have examined the idea that proSAAS, like other secretory chaperones, might represent a stress-responsive protein. We find that exposure of neural and endocrine cells to the cell stressors tunicamycin and thapsigargin increases cellular proSAAS mRNA and protein in Neuro2A cells. Paradoxically, proSAAS secretion is inhibited by these same drugs. Exposure of Neuro2A cells to low concentrations of the hypoxic stress inducer cobalt chloride, or to sodium arsenite, an oxidative stressor, also increases cellular proSAAS content and reduces its secretion. We conclude that the cellular levels of the small secretory chaperone proSAAS are positively modulated by cell stress.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF2, S267, Baltimore, MD, 21201, USA
| | - Taha Yildirim
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF2, S267, Baltimore, MD, 21201, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF2, S267, Baltimore, MD, 21201, USA.
| |
Collapse
|
48
|
Varatnitskaya M, Degrossoli A, Leichert LI. Redox regulation in host-pathogen interactions: thiol switches and beyond. Biol Chem 2020; 402:299-316. [PMID: 33021957 DOI: 10.1515/hsz-2020-0264] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
Our organism is exposed to pathogens on a daily basis. Owing to this age-old interaction, both pathogen and host evolved strategies to cope with these encounters. Here, we focus on the consequences of the direct encounter of cells of the innate immune system with bacteria. First, we will discuss the bacterial strategies to counteract powerful reactive species. Our emphasis lies on the effects of hypochlorous acid (HOCl), arguably the most powerful oxidant produced inside the phagolysosome of professional phagocytes. We will highlight individual examples of proteins in gram-negative bacteria activated by HOCl via thiol-disulfide switches, methionine sulfoxidation, and N-chlorination of basic amino acid side chains. Second, we will discuss the effects of HOCl on proteins of the host. Recent studies have shown that both host and bacteria address failing protein homeostasis by activation of chaperone-like holdases through N-chlorination. After discussing the role of individual proteins in the HOCl-defense, we will turn our attention to the examination of effects on host and pathogen on a systemic level. Recent studies using genetically encoded redox probes and redox proteomics highlight differences in redox homeostasis in host and pathogen and give first hints at potential cellular HOCl signaling beyond thiol-disulfide switch mechanisms.
Collapse
Affiliation(s)
- Marharyta Varatnitskaya
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Adriana Degrossoli
- Faculty of Health Science - Health Science Department, Federal University of Lavras, Lavras, Brazil
| | - Lars I Leichert
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
49
|
New insights into thermo-acidophilic properties of Alicyclobacillus acidoterrestris after acid adaptation. Food Microbiol 2020; 94:103657. [PMID: 33279082 DOI: 10.1016/j.fm.2020.103657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 12/31/2022]
Abstract
Alicyclobacillus acidoterrestris has unique thermo-acidophilic properties and is the main cause of fruit juice deterioration. Given the acidic environment and thermal treatment during juice processing, the effects of acid adaptation (pH 3.5, 3.2, and 3.0) on the resistance of A. acidoterrestris to heat (65 °C, 5 min) and acid (pH = 2.2, 1 h) stresses were investigated for the first time. The results showed that acid adaptation induced cross-protection against heat stress of A. acidoterrestris and acid tolerance response, and the extent of induced tolerance was increased with the decrease of adaptive pH values. Acid adaptation treatments did not disrupt the membrane potential stability and intracellular pH homeostasis, but reduced intracellular ATP concentration, increased cyclic fatty acids content, and changed the acquired Fourier transform infrared spectra. Transcription levels of stress-inducible (dnaK, grpE, clpP, ctsR) genes and genes related to spore formation (spo0A, ctoX) were up-regulated after acid adaptation, and spore formation was observed by scanning electron microscopy. This study revealed that the intracellular microenvironment homeostasis, expression of chaperones and proteases, and spore formation played a coordinated role in acid stress adaptive responses, with implications for applications in fruit juice processing.
Collapse
|
50
|
Mas G, Burmann BM, Sharpe T, Claudi B, Bumann D, Hiller S. Regulation of chaperone function by coupled folding and oligomerization. SCIENCE ADVANCES 2020; 6:6/43/eabc5822. [PMID: 33087350 PMCID: PMC7577714 DOI: 10.1126/sciadv.abc5822] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/03/2020] [Indexed: 05/03/2023]
Abstract
The homotrimeric molecular chaperone Skp of Gram-negative bacteria facilitates the transport of outer membrane proteins across the periplasm. It has been unclear how its activity is modulated during its functional cycle. Here, we report an atomic-resolution characterization of the Escherichia coli Skp monomer-trimer transition. We find that the monomeric state of Skp is intrinsically disordered and that formation of the oligomerization interface initiates folding of the α-helical coiled-coil arms via a unique "stapling" mechanism, resulting in the formation of active trimeric Skp. Native client proteins contact all three Skp subunits simultaneously, and accordingly, their binding shifts the Skp population toward the active trimer. This activation mechanism is shown to be essential for Salmonella fitness in a mouse infection model. The coupled mechanism is a unique example of how an ATP-independent chaperone can modulate its activity as a function of the presence of client proteins.
Collapse
Affiliation(s)
- Guillaume Mas
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Björn M Burmann
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Timothy Sharpe
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Beatrice Claudi
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Dirk Bumann
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|