1
|
Patel M, Surti M, Janiyani K, Adnan M. Next-generation nanotechnology-integrated biosurfactants: Innovations in biopesticide development for sustainable and modern agriculture. Adv Colloid Interface Sci 2025; 343:103555. [PMID: 40393186 DOI: 10.1016/j.cis.2025.103555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/16/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025]
Abstract
The increasing global demand for eco-friendly agricultural practices necessitates the development of innovative pest management solutions, effectively addressing the environmental and ecological issues associated with traditional chemical pesticides, such as pest resistance, environmental contamination, and non-target organism toxicity. Biosurfactants, biologically derived amphiphilic molecules from microbial and plant sources, offer distinct advantages including biodegradability, excellent surface-active properties, and inherent antimicrobial efficacy, making them as promising candidates for sustainable pest management and control. Concurrently, nanotechnology introduces innovative delivery mechanisms, enhancing biopesticide stability, solubility, and targeted application, significantly minimizing off-target impact and environmental footprint. This review emphasizes recent breakthroughs in integrating biosurfactants with nanotechnological strategies to produce advanced biopesticides. Key advancements include the role of biosurfactants to increase the bioavailability and effectiveness of active ingredients and utilizing nanopesticides for targeted pest control with improved precision. Combining the unique amphiphilic properties of biosurfactants and the precise targeting capabilities of nanocarriers presents substantial improvements in pest management efficacy and aligns closely with Integrated Pest Management (IPM) principles. Despite these promising developments, significant knowledge gaps remain, including understanding the interactions between biosurfactants, nanomaterials, and the environmental matrices, as well as assessing long-term ecological impacts and safety profiles associated with nanopesticide usage. This article outlines critical research areas requiring further exploration to optimize biosurfactant-nanotechnology systems for large-scale agricultural deployment. Addressing these challenges will facilitate broader adoption, ensuring sustainable pest control practices that significantly contribute to global food security and environmental preservation. Integrating biosurfactants with nanotechnology represents a transformative approach in agricultural pest management, offering substantial potential to revolutionize sustainable agriculture through effective, environment-friendly solutions.
Collapse
Affiliation(s)
- Mitesh Patel
- Research and Development Cell (RDC), Parul University, Waghodia, Vadodara, Gujarat 391760, India; Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Waghodia, Vadodara, Gujarat 391760, India.
| | - Malvi Surti
- Research and Development Cell (RDC), Parul University, Waghodia, Vadodara, Gujarat 391760, India; Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Waghodia, Vadodara, Gujarat 391760, India
| | - Komal Janiyani
- Research and Development Cell (RDC), Parul University, Waghodia, Vadodara, Gujarat 391760, India; Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Waghodia, Vadodara, Gujarat 391760, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| |
Collapse
|
2
|
Zhang S, Xu J. Multi-strain synergistic fermentation of waste biomass with bacterial cellulose fermentation wastewater to prepare sustainable detergents. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03172-y. [PMID: 40325272 DOI: 10.1007/s00449-025-03172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
Synthetic surfactants threaten the environment and public health due to their difficult degradation and high toxicity, creating a need for low-energy, high-efficiency green alternatives. Preparing natural surfactants is often expensive, inefficient, and complex, while the resource utilization of bacterial cellulose (BC) fermentation wastewater is still tricky. In this study, waste biomass, including pineapple peel and Sapindus mukorossi Gaertn., was combined with BC fermentation wastewater using synergistic fermentation by Saccharomyces cerevisiae, Lactobacillus sp., and Acetobacter sp. to extract triterpene saponins and proteases. This process was used to prepare green detergents enriched with surface-active substances. The results showed that after 10 days of fermentation, the saponin extraction efficiency reached 84.29%, significantly outperforming traditional methods such as ultrasound-assisted alcoholic extraction (16.17%), ultrasound-water immersion (19.00%), double extraction (31.72%), and cellulase-assisted extraction (38.98%). Protease activity reached 36.92 ± 0.20 U/mg. The fermentation broth reduced surface tension by 36.95 mN/m compared to pure water, which improved emulsification and dispersion. It exhibited high surface activity and foam stability with a low critical micelle concentration (CMC) of 0.163 ± 0.01 mg/mL. Green detergents showed a 20.71-45.87% higher efficiency than synthetic detergents in removing carbon black oil (90.38%), sebum (100%), and protein stains (89%). Saponins contributed to this advantage by reducing surface tension (P ≤ 0.01) and enhancing wettability (P ≤ 0.05). This study provides a sustainable new solution for the high-value utilization of waste biomass and BC fermentation wastewater and exhibits the broad prospects of green detergents for environmental and industrial applications.
Collapse
Affiliation(s)
- Shuangfei Zhang
- College of Textile Science and Engineering, College of Textiles and Clothing, Jiangnan University, 1800 Lihu AVE, Wuxi, 214122, People's Republic of China
| | - Jin Xu
- College of Textile Science and Engineering, College of Textiles and Clothing, Jiangnan University, 1800 Lihu AVE, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
3
|
Raheja Y, Sharma P, Gaur P, Gaur VK, Srivastava JK. Advancing bioremediation: biosurfactants as catalysts for sustainable remediation. Biodegradation 2025; 36:33. [PMID: 40237836 DOI: 10.1007/s10532-025-10128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Emerging contaminants such as persistent organic pollutants, perfluorinated compounds, and microplastics pose unparallel challenges to environmental health and current remediation techniques. Microbial biosurfactants, biodegradable compounds produced by microorganisms, have gained attention as eco-friendly alternatives for degrading recalcitrant pollutants. Unlike traditional chemical surfactants, biosurfactants offer the dual benefit of being derived from renewable resources while enhancing the solubility and bioavailability of hydrophobic contaminants. This review is novel in its comprehensive exploration of microbial biosurfactants as a one-step solution for tackling the most persistent environmental pollutants. It introduces recent advancements in metabolic engineering and alternative fermentation strategies that have significantly improved biosurfactant production. Furthermore, the review critically examines the current limitations, including high production costs and complex downstream processing, and proposes cutting-edge approaches to overcome these barriers, such as the use of low-cost feedstocks and integrated bioprocessing techniques. Beyond their established uses, this review also sheds light on their untapped potential in heavy metal removal and microplastic degradation areas that have received little attention. By emphasizing these novel applications and outlining pathways for large-scale production, this review offers valuable insights into how biosurfactants could play a transformative role in sustainable environmental remediation.
Collapse
Affiliation(s)
- Yashika Raheja
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Prachi Gaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Vivek Kumar Gaur
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea.
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India.
| | | |
Collapse
|
4
|
Kabeil SS, Darwish AM, Abdelgalil SA, Shamseldin A, Salah A, Taha HA, Bashir SI, Hafez EE, El-Enshasy HA. Rhamnolipids bio-production and miscellaneous applications towards green technologies: a literature review. PeerJ 2025; 13:e18981. [PMID: 40247838 PMCID: PMC12005046 DOI: 10.7717/peerj.18981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/22/2025] [Indexed: 04/19/2025] Open
Abstract
Growing attention towards rhamnolipids (RLs) biosurfactants with antibacterial, antifungal, antivirus and antitumor potentials encourage future research in biotechnology and biomedicine fields. Economic production from waste materials, biodegradability and low toxicity makes RLs perform as green molecules that serve in sustainability and green technologies. This review aims to focus on bioproduction, detection and applications of rhamnolipids in pharmaceuticals, soil bioremediation, agriculture and food industries in addition to future perspectives. This will help to shed light on and update the existing knowledge of feasible and sustainable biosurfactant production depending on the fermentation processes.
Collapse
Affiliation(s)
- Sanaa S.A. Kabeil
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Borg El Arab, Egypt
| | - Amira M.G. Darwish
- Food Industry Technology Program, Faculty of Industrial and Energy Technology, Borg Al Arab Technological University (BATU), Alexandria, Borg El Arab, Egypt
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Borg El Arab, Egypt
| | - Soad A. Abdelgalil
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, (SRTA-City), Alexandria, Borg El Arab, Egypt
| | - Abdelaal Shamseldin
- Envirommental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, (SRTA-City), Alexandria, Borg El Arab, Egypt
| | - Abdallah Salah
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Borg El Arab, Egypt
| | - Heba A.I.M. Taha
- Department of Nutrition, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Shimaa Ismael Bashir
- Department of Plant Protection and Biomolecular Diagnosis, Arid Land Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Borg El Arab, Egypt
| | - Elsayed E. Hafez
- Department of Plant Protection and Biomolecular Diagnosis, Arid Land Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Borg El Arab, Egypt
| | - Hesham Ali El-Enshasy
- City of Scientific Research and Technology Application (SRTA-City), Alexandria, Egypt
- Universiti Teknologi Malaysia (UTM), Innovation Centre in Agritechnology for Advanced Bioprocessing, Johor, Malaysia
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
5
|
Farooq SA, Khaliq S, Ahmad S, Ashraf N, Ghauri MA, Anwar MA, Akhtar K. Application of Combined Irradiation Mutagenesis Technique for Hyperproduction of Surfactin in Bacillus velezensis Strain AF_3B. Int J Microbiol 2025; 2025:5570585. [PMID: 40018418 PMCID: PMC11867730 DOI: 10.1155/ijm/5570585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/15/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025] Open
Abstract
The major challenge in large-scale industrial use of lipopeptide surfactin is the low yield by indigenous bacterial strains and the higher cost of its production that have been proved as a limiting factor in commercial applications. Therefore, there is an urgent demand for high-yielding strains that can be achieved through strain improvement. A first report on the use of a combination of UV and gamma-irradiation mutagenesis for the development of surfactin hyperproducing mutants of Bacillus spp. proved to be significant and resulted in a twofold enhancement in surfactin yield. The mutant was able to grow and produce surfactin on all the tested carbon and nitrogen sources, while 2% glycerol favored maximum surfactin yield (1.62 g/L) as compared to the wild-type strain that showed a maximum 0.85 g/L surfactin yield at 3% sucrose. Additionally, the mutant exhibited a good yield of pure surfactin, that is, 1.55 g/L as compared to the wild strain (0.411 g/L) by using corn steep liquor as the main component of the fermentation medium. The study concluded overall a threefold enhancement in the relative abundance of purified surfactin and its isoforms detected by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) analysis in mutant strain AF-UVγ2500.
Collapse
Affiliation(s)
- Syeda Amna Farooq
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Shazia Khaliq
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Saeed Ahmad
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Neelma Ashraf
- Institute of Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, Albert-Ludwig University of Freiburg, Freiburg im Breisgau, Germany
| | - Muhammad Afzal Ghauri
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Munir Ahmad Anwar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Kalsoom Akhtar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| |
Collapse
|
6
|
Zamorano-González CA, Ramírez-Trujillo JA, Pilotzi-Xahuentitla H, Yáñez-Ocampo G, Hernández-Nuñéz E, Suárez-Rodríguez R, Orea-Flores MLA, Gómez-Rodríguez O, Espinosa-Zaragoza S, Rangel-Zaragoza JL, Aguilar-Marcelino L, Aguilar-Fuentes J, Wong-Villarreal A. In Vitro Evaluation of the Biosurfactant Produced by Serratia ureilytica UTS with Antifungal and Nematicidal Activity Against Nacobbus aberrans. Curr Microbiol 2025; 82:63. [PMID: 39751912 DOI: 10.1007/s00284-024-04042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
In the present study, the nematicidal and fungicidal activity of the biosurfactant (BS) produced by the strain Serratia ureilytica UTS was evaluated. The highest mortality of J2 juveniles of the nematode Nacobbus aberrans was 92.3% at a concentration of 30 mg/mL. Among the phytopathogenic fungi, the concentration of 1.0% of the crude extract of the biosurfactant was the one that obtained the highest percentage inhibition against the phytopathogens Fusarium oxysporum 72.2%, Fusarium sp., 80.2% and Alternaria solani 100% at 168 h of incubation. Analysis of the BS by GC-MS revealed the presence of the three amino acids alanine, homocystine and valine in its composition. As well as the presence of fatty acids: stearic acid, lauric acid and palmitic acid. With nuclear magnetic resonance (NMR) and mass spectrophotometry (MS) analysis, the crude extract was found to have the structure of a quaternary ammonium salt derived from stearic fatty acid, which is a component of the biosurfactant. Based on this evidence, it is suggested that the BS produced by S. ureilytica has a lipopeptide-like chemical structure and possesses nematicidal and fungicidal activity, and is therefore proposed for potential use and application as a biopesticide for the benefit of regenerative and sustainable agriculture.
Collapse
Affiliation(s)
- Carlos A Zamorano-González
- Centro de Investigaciones en Biotécnología, Universidad Autónoma del Estado de Morelos, C.P. 62209, Cuernavaca, Morelos, Mexico
| | - José A Ramírez-Trujillo
- Centro de Investigaciones en Biotécnología, Universidad Autónoma del Estado de Morelos, C.P. 62209, Cuernavaca, Morelos, Mexico
| | | | - Gustavo Yáñez-Ocampo
- Laboratorio de Exploración de Microbiología del Suelo, Facultad de Ciencias, Universidad Autónoma del Estado de Mexico, Campus El Cerrillo, Carretera Toluca-Ixtlahuaca Km 15.5, Piedras Blancas, C.P. 50200, Toluca de Lerdo, Mexico
| | - Emanuel Hernández-Nuñéz
- Departamento de Estudios de Posgrado e Investigación, Instituto Tecnológico Superior del Calkiní en el Estado de Campeche (ITESCAM), Av. AH Canun S/N San Felipe, 24900, Calkini, Campeche, Mexico
| | - Ramón Suárez-Rodríguez
- Centro de Investigaciones en Biotécnología, Universidad Autónoma del Estado de Morelos, C.P. 62209, Cuernavaca, Morelos, Mexico
| | - Maria Laura A Orea-Flores
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Complejo de Ciencias, C.U, Puebla, Mexico
| | - Olga Gómez-Rodríguez
- Colegio de Postgraduados, Carretera México-Texcoco, Km. 36.5, Montecillo, Texcoco, México
| | - Saúl Espinosa-Zaragoza
- Facultad de Ciencias Agrícolas, Universidad Autónoma de Chiapas, 30660, Huehuetan, Mexico
| | - José L Rangel-Zaragoza
- Dirección General de Sanidad Vegetal, Centro Nacional de Referencia Fitosanitaria, Km. 37.5, Carretera Federal México-Pachuca, Av. Centenario de la Educación, Col. Santa Ana, C.P. 55740, Tecamac, Mexico, Mexico
| | - Liliana Aguilar-Marcelino
- National Center for Disciplinary Research in Animal Health and Safety (INIFAP), Km 11 Federal Road Cuernavaca-Cuautla, 62550, Jiutepec, Mexico, Mexico
| | - Javier Aguilar-Fuentes
- Facultad de Ciencias Agrícolas, Universidad Autónoma de Chiapas, 30660, Huehuetan, Mexico
| | - Arnoldo Wong-Villarreal
- División Agroalimentaria, Universidad Tecnológica de la Selva, C.P. 29950, Ocosingo, Chiapas, Mexico.
| |
Collapse
|
7
|
de Souza Araújo L, Santana LAR, Otenio MH, Nascimento CW, Cerqueira AFLW, Rodarte MP. Biosurfactant Production by Pseudomonas: a Systematic Review. Appl Biochem Biotechnol 2024; 196:9049-9063. [PMID: 39088028 DOI: 10.1007/s12010-024-05036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
It is of fundamental interest to research and develop innovative biotechnologies, as well as bioproducts that replace or are alternatives to those of non-renewable origin, such as biosurfactants in relation to traditional surfactants used in various sectors. Consequently, there are a large number of experimental studies addressing different subjects, especially with the use of bacteria of the genus Pseudomonas; however, there is a lack of work that demonstrates the evaluation of this science produced to date. Therefore, this article discusses the production of biosurfactants by Pseudomonas with the aim of surveying and analyzing experimental articles on this topic. To realize this, a systematic search was carried out with well-defined temporal space, databases, and inclusion and exclusion criteria, based on metric studies that guided what information would be collected and the method of evaluation. Therefore, a large number of articles were selected, which demonstrated Pseudomonas aeruginosa as the bioagent mostly used in the tests, which aimed to improve the process in the area. Furthermore, interest in this field has increased over the years, predominantly in emerging market countries, where the most prominent authors on the topic are found. Therefore, it is necessary that there is an expansion of interest in the area to make the production of biosurfactants cheaper in areas that currently have greater development deficiencies, such as means of purifying the bioprocess and reducing foam formation in the bioprocess.
Collapse
Affiliation(s)
- Larissa de Souza Araújo
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, S/N-São Pedro, Juiz de Fora, Minas Gerais State, 36036-900, Brazil
| | - Larice Aparecida Rezende Santana
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, S/N-São Pedro, Juiz de Fora, Minas Gerais State, 36036-900, Brazil
| | - Marcelo Henrique Otenio
- Embrapa Dairy Cattle, Research Center, Juiz de Fora, Av. Eugênio Do Nascimento, 610-Aeroporto, Juiz de Fora, Minas Gerais State, 36038-330, Brazil.
| | - Clerison Wagner Nascimento
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, S/N-São Pedro, Juiz de Fora, Minas Gerais State, 36036-900, Brazil
| | - Ana Flávia Lawall Werneck Cerqueira
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, S/N-São Pedro, Juiz de Fora, Minas Gerais State, 36036-900, Brazil
| | - Mirian Pereira Rodarte
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, S/N-São Pedro, Juiz de Fora, Minas Gerais State, 36036-900, Brazil
| |
Collapse
|
8
|
Dai C, Shu Z, Ma C, Yan P, Huang L, He R, Ma H. Isolation of a surfactin-producing strain of Bacillus subtilis and evaluation of the probiotic potential and antioxidant activity of surfactin from fermented soybean meal. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8469-8479. [PMID: 38922941 DOI: 10.1002/jsfa.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Surfactin, usually produced by microbial metabolism, has many advantages including low toxicity, high biodegradability, and stability at extreme pH levels and temperatures, making it suitable for industry. However, its commercial production has not yet been achieved. RESULTS A strain with a strong surfactin-producing ability was isolated and identified as Bacillus subtilis SOPC5, based on the appearance of colonies, microscopic observation, and 16S rDNA sequencing. The isolate exhibited significant tolerance to acid, bile, gastric, and intestinal juices, and was sufficiently susceptible to antibiotics. Bacillus subtilis SOPC5 showed high levels of auto-aggregation and surface hydrophobicity, and a strong capacity to secrete protease, amylase, and cellulase. The strain also exhibited antibacterial activity against Staphylococcus aureus 10 306 with a antibacterial circle diameter of 18.0 ± 1.1 mm. The maximal yield of surfactin (1.32 mg mL-1) was obtained by fermenting soybean meal (SBM) using the isolate under the following conditions: SBM 86 g L-1, inoculation 1.5 × 107 CFU mL-1, FeSO4 1.2 mg L-1, MnSO4 2.6 mg L-1, MgSO4 0.5 mg mL-1, L-Glu 4 mg L-1, temperature 33 °C, duration 120 h, and shaking at 210 rpm. The purity of surfactin was 97.42% as measured by high-performance liquid chromatography (HPLC). The half inhibitory concentration (IC50) values for surfactin to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS·+) were 1.275 ± 0.11 and 0.73 ± 0.08 mg mL-1, respectively. CONCLUSION This study provides a scientific basis for the application of B. subtilis SOPC5 (as a potential probiotic) and the preparation of its metabolic product (surfactin). © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Zhenzhen Shu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Chunfang Ma
- Shandong Yuwang Ecological Food Industry Co., Ltd., Yucheng, China
| | - Pengfei Yan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Liurong Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Zhang Y, Gao J, Li Q, Yang J, Gao Y, Xue J, Li L, Ji Y. Biosurfactant production by Bacillus cereus GX7 utilizing organic waste and its application in the remediation of hydrocarbon-contaminated environments. World J Microbiol Biotechnol 2024; 40:334. [PMID: 39358641 DOI: 10.1007/s11274-024-04115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/17/2024] [Indexed: 10/04/2024]
Abstract
The use of biosurfactants represents a promising technology for remediating hydrocarbon pollution in the environment. This study evaluated a highly effective biosurfactant strain-Bacillus cereus GX7's ability to produce biosurfactants from industrial and agriculture organic wastes. Bacillus cereus GX7 showed poor utilization capacity for oil soluble organic waste but effectively utilized of water- soluble organic wastes such as starch hydrolysate and wheat bran juice as carbon sources to enhance biosurfactant production. This led to significant improvements in surface tension and emulsification index. Corn steep liquor was also effective as a nitrogen source for Bacillus cereus GX7 in biosurfactant production. The biosurfactants produced by strain Bacillus cereus GX7 demonstrated a remediation effect on oily beach sand, but are slightly inferior to chemical surfactants. Inoculation with Bacillus cereus GX7 (70.36%) or its fermentation solution (94.38%) effectively enhanced the degradation efficiency of diesel oil in polluted seawater, surpassing that of indigenous degrading bacteria treatments (57.62%). Moreover, inoculation with Bacillus cereus GX7's fermentation solution notably improved the community structure by increasing the abundance of functional bacteria such as Pseudomonas and Stenotrophomonas in seawater. These findings suggest that the Bacillus cereus GX7 as a promising candidate for bioremediation of petroleum hydrocarbons.
Collapse
Affiliation(s)
- Yunyun Zhang
- College of Safety and Environment Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao, 266590, Shandong, People's Republic of China
| | - Jin Gao
- Weifang City Ecological Environmental Protection Comprehensive Law Enforcement Detachment, Weifang, 261000, China
| | - Qintong Li
- College of Engineering, Shibaura Institute of Technology, Tokyo, 1358548, Japan
| | - Jingjing Yang
- College of Safety and Environment Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao, 266590, Shandong, People's Republic of China
| | - Yu Gao
- College of Safety and Environment Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao, 266590, Shandong, People's Republic of China.
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266510, China.
| | - Jianliang Xue
- College of Safety and Environment Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao, 266590, Shandong, People's Republic of China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266510, China
| | - Lin Li
- College of Safety and Environment Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao, 266590, Shandong, People's Republic of China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266510, China
| | - Yiting Ji
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| |
Collapse
|
10
|
Morales Sandoval PH, Ortega Urquieta ME, Valenzuela Ruíz V, Montañez Acosta K, Campos Castro KA, Parra Cota FI, Santoyo G, de Los Santos Villalobos S. Improving Beneficial Traits in Bacillus cabrialesii subsp. cabrialesii TE3 T through UV-Induced Genomic Changes. PLANTS (BASEL, SWITZERLAND) 2024; 13:2578. [PMID: 39339553 PMCID: PMC11434716 DOI: 10.3390/plants13182578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
It is essential to hunt for new technologies that promote sustainable practices for agroecosystems; thus, the bioprospecting of beneficial microorganisms complementing with mutation induction techniques to improve their genomic, metabolic, and functional traits is a promising strategy for the development of sustainable microbial inoculants. Bacillus cabrialesii subsp. cabrialesii strain TE3T, a previously recognized plant growth-promoting and biological control agent, was subjected to UV mutation induction to improve these agro-biotechnological traits. Dilutions were made which were spread on Petri dishes and placed under a 20 W UV lamp at 10-min intervals for 60 min. After the UV-induced mutation of this strain, 27 bacterial colonies showed morphological differences compared to the wild-type strain; however, only a strain named TE3T-UV25 showed an improvement in 53.6% of the biocontrol against Bipolaris sorokiniana vs. the wild-type strain, by competition of nutrient and space (only detected in the mutant strain), as well as diffusible metabolites. Furthermore, the ability to promote wheat growth was evaluated by carrying out experiments under specific greenhouse conditions, considering un-inoculated, strain TE3T, and strain TE3T-UV25 treatments. Thus, after 120 days, biometric traits in seedlings were quantified and statistical analyses were performed, which showed that strain TE3T-UV25 maintained its ability to promote wheat growth in comparison with the wild-type strain. On the other hand, using bioinformatics tools such as ANI, GGDC, and TYGS, the Overall Genome Relatedness Index (OGRI) and phylogenomic relationship of mutant strain TE3T-UV25 were performed, confirming that it changed its taxonomic affiliation from B. cabrialesii subsp. cabrialesii to Bacillus subtilis. In addition, genome analysis showed that the mutant, wild-type, and B. subtilis strains shared 3654 orthologous genes; however, a higher number of shared genes (3954) was found between the TE3T-UV25 mutant strain and B. subtilis 168, while the mutant strain shared 3703 genes with the wild-type strain. Genome mining was carried out using the AntiSMASH v7.0 web server and showed that mutant and wild-type strains shared six biosynthetic gene clusters associated with biocontrol but additionally, pulcherriminic acid cluster only was detected in the genome of the mutant strain and Rhizocticin A was exclusively detected in the genome of the wild-type strain. Finally, using the PlaBase tool, differences in the number of genes (17) associated with beneficial functions in agroecosystems were detected in the genome of the mutant vs. wild-type strain, such as biofertilization, bioremediation, colonizing plant system, competitive exclusion, phytohormone, plant immune response stimulation, putative functions, stress control, and biocontrol. Thus, the UV-induced mutation was a successful strategy to improve the bioactivity of B. cabrialesii subsp. cabrialesii TE3T related to the agro-biotecnology applications. The obtained mutant strain, B. subtilis TE3T-UV25, is a promising strain to be further studied as an active ingredient for the bioformulation of bacterial inoculants to migrate sustainable agriculture.
Collapse
Affiliation(s)
- Pamela Helué Morales Sandoval
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Ciudad Obregón 85000, Sonora, Mexico
| | - María Edith Ortega Urquieta
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Ciudad Obregón 85000, Sonora, Mexico
| | - Valeria Valenzuela Ruíz
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Ciudad Obregón 85000, Sonora, Mexico
| | - Kevin Montañez Acosta
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Ciudad Obregón 85000, Sonora, Mexico
| | - Kevin Alejandro Campos Castro
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Ciudad Obregón 85000, Sonora, Mexico
| | - Fannie I Parra Cota
- Campo Experimental Norman E. Borlaug, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Norman E. Borlaug Km. 12, Ciudad Obregón 85000, Sonora, Mexico
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Sergio de Los Santos Villalobos
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Ciudad Obregón 85000, Sonora, Mexico
| |
Collapse
|
11
|
Thundiparambil Venu A, Vijayan J, Ammanamveetil MHA, Kottekkattu Padinchati K. An Insightful Overview of Microbial Biosurfactant: A Promising Next-Generation Biomolecule for Sustainable Future. J Basic Microbiol 2024; 64:e2300757. [PMID: 38934506 DOI: 10.1002/jobm.202300757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 06/28/2024]
Abstract
Microbial biosurfactant is an emerging vital biomolecule of the 21st century. They are amphiphilic compounds produced by microorganisms and possess unique properties to reduce surface tension activity. The use of microbial surfactants spans most of the industrial fields due to their biodegradability, less toxicity, being environmentally safe, and being synthesized from renewable sources. These would be highly efficient eco-friendly alternatives to petroleum-derived surfactants that would open up new approaches to research on the production of biosurfactants. In the upcoming era, biobased surfactants will become a dominating multifunctional compound in the world market. Research on biosurfactants ranges from the search for novel microorganisms that can produce new molecules, structural and physiochemical characterization of biosurfactants, and fermentation process for enhanced large-scale productivity and green applications. The main goal of this review is to provide an overview of the recent state of knowledge and trends about microbially derived surfactants, various aspects of biosurfactant production, definition, properties, characteristics, diverse advances, and applications. This would lead a long way in the production of biosurfactants as globally successful biomolecules of the current century.
Collapse
Affiliation(s)
- Athira Thundiparambil Venu
- Department of Marine Biology, Microbiology, and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Jasna Vijayan
- Department of Marine Biology, Microbiology, and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Mohamed Hatha Abdulla Ammanamveetil
- Department of Marine Biology, Microbiology, and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
- CUSAT-NCPOR Centre for Polar Science, Kochi, Kerala, India
| | - Krishnan Kottekkattu Padinchati
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa, India
| |
Collapse
|
12
|
Raj S, Ramamurthy K. Classification of surfactants and admixtures for producing stable aqueous foam. Adv Colloid Interface Sci 2024; 331:103234. [PMID: 38889625 DOI: 10.1016/j.cis.2024.103234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Surfactants and foam have captured the interest of researchers worldwide due to their unique behavior of surface activity, the dynamic nature of foam formation, and simultaneous destruction. The present review focuses on the surfactants' classification, surfactant-solvent interaction, foam formation, characteristics, and a range of admixtures to enhance the foam performance. Although surfactants have been researched and developed for decades, recently, their sustainability has been given special attention. One such aspect is the development of green foaming agents from natural and renewable sources and assessing their suitability for different applications. Further, widely researched parameters are the type of surfactant, surfactant concentration, surfactant-solvent interaction, and foam production method on the foamability of a surfactant solution and related foam characteristics, including stability and texture. However, still, there is no rule to predict the best foam. Another vital concern is the non-standardization of foam assessment methods across industries and regions. Recently, research has progressed in identifying suitable admixtures for foam performance enhancement and utilizing them to produce stable foams for application in enhanced oil recovery, drug delivery, and manufacturing of aerated food products and foamed concrete. Although foam stabilization using various admixtures has been recognized well in the literature, the underlying mechanism requires further research. The interaction of surfactant and admixtures in solution is complicated and requires more research.
Collapse
Affiliation(s)
- Shubham Raj
- Building Technology and Construction Management Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
| | - K Ramamurthy
- Building Technology and Construction Management Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
13
|
Olsen BG, Falone MF, Buffon E, Yoshimura I, Vale RDS, Contiero J, Stradiotto NR. Alternative method for rhamnolipids quantification using an electrochemical platform based on reduced graphene oxide, manganese nanoparticles and molecularly imprinted Poly(L-Ser). Talanta 2024; 272:125778. [PMID: 38364566 DOI: 10.1016/j.talanta.2024.125778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/17/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Rhamnolipids (RHLs) are promising biosurfactants with important applications in several industrial segments. These compounds are produced through biotechnological processes using the bacteria Pseudomonas Aeruginosa. The main methods of analyzing this compound are based on chromatographic techniques. In this study, an electrochemical sensor based on a platform modified with reduced graphene oxide, manganese nanoparticles covered with a molecularly imprinted poly (L-Ser) film was used as an alternative method to quantify RHL through its hydrolysis product, acid 3-hydroxydecanoic acid (3-HDA). The proposed sensor was characterized microscopically, spectroscopically and electrochemically. Under optimized experimental conditions, an analytical curve was obtained in the linear concentration range from 2.0 × 10-12 mol L-1 to 1.0 × 10-10 mol L-1. The values estimated of LOD, LOQ and AS were 8.3 × 10-13 mol L-1, 2.7 × 10-12 mol L-1and 1.3 × 107 A L mol-1, respectively. GCE/rGO/MnNPs/L-Ser@MIP exhibits excellent selectivity, repeatability, and high stability for the detection of 3-HDA. Furthermore, the developed method was successfully applied to the recognition of the hydrolysis product (3-HDA) of RHLs obtained from guava agro-waste. Statistical comparison between GCE/rGO/MnNPs/L-Ser@MIP and HPLC method confirms the accuracy of the electrochemical sensor within a 95% confidence interval.
Collapse
Affiliation(s)
- Bruna Gabrielle Olsen
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060, Araraquara, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 14800-060, Araraquara, São Paulo, Brazil
| | - Max Fabrício Falone
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060, Araraquara, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 14800-060, Araraquara, São Paulo, Brazil.
| | - Edervaldo Buffon
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060, Araraquara, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 14800-060, Araraquara, São Paulo, Brazil
| | - Ingrid Yoshimura
- Institute of Biosciences, São Paulo State University (UNESP), 13506-900, Rio Claro, São Paulo, Brazil
| | - Rayane da Silva Vale
- Institute of Biosciences, São Paulo State University (UNESP), 13506-900, Rio Claro, São Paulo, Brazil
| | - Jonas Contiero
- Institute of Biosciences, São Paulo State University (UNESP), 13506-900, Rio Claro, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 13500-230, Rio Claro, São Paulo, Brazil
| | - Nelson Ramos Stradiotto
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060, Araraquara, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 14800-060, Araraquara, São Paulo, Brazil
| |
Collapse
|
14
|
Datta D, Ghosh S, Kumar S, Gangola S, Majumdar B, Saha R, Mazumdar SP, Singh SV, Kar G. Microbial biosurfactants: Multifarious applications in sustainable agriculture. Microbiol Res 2024; 279:127551. [PMID: 38016380 DOI: 10.1016/j.micres.2023.127551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Agriculture in the 21st century faces grave challenges to meet the unprecedented food demand of the burgeoning population as well as reduce the ecological footprint for achieving sustainable development goals. The extensive use of harsh synthetic surfactants in pesticides and the agrochemical industry has substantial adverse impacts on the soil and environment due to their toxic and non-biodegradable nature. Biosurfactants derived from plant, animal, and microbial sources can be an eco-friendly alternative to chemical surfactants. Microbes producing biosurfactants play a noteworthy role in biofilm formation, plant pathogen elimination, biodegradation, bioremediation, improving nutrient bioavailability, and can thrive well under stressful environments. Microbial biosurfactants are well suited for heavy metal and organic contaminants remediation in agricultural soil due to their low toxicity, high activity at fluctuating temperatures, biodegradability, and stability over a wide array of environmental conditions. This green technology will improve the agricultural soil quality by increasing the soil flushing efficiency, mobilization, and solubilization of nutrients by forming metal-biosurfactant complexes, and through the dissemination of complex nutrients. Such characteristics help it to play a pivotal role in environmental sustainability in the foreseeable future, which is required to increase the viability of biosurfactants for extensive commercial uses, making them accessible, affordable, and economically sustainable.
Collapse
Affiliation(s)
- Debarati Datta
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India
| | - Sourav Ghosh
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India.
| | - Saurabh Kumar
- ICAR-Research Complex for Eastern Region, Patna 800014, Bihar, India
| | - Saurabh Gangola
- Graphic Era Hill University, Bhimtal 263 156, Uttarakhand, India
| | - Bijan Majumdar
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India
| | - Ritesh Saha
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India
| | - Sonali Paul Mazumdar
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India
| | - Shiv Vendra Singh
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi 238004, Uttar Pradesh, India
| | - Gouranga Kar
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India
| |
Collapse
|
15
|
Das S, Rao KVB. A comprehensive review of biosurfactant production and its uses in the pharmaceutical industry. Arch Microbiol 2024; 206:60. [PMID: 38197951 DOI: 10.1007/s00203-023-03786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024]
Abstract
Biosurfactants are naturally occurring, surface-active chemicals generated by microorganisms and have attracted interest recently because of their numerous industrial uses. Compared to their chemical equivalents, they exhibit qualities that include lower toxic levels, increased biodegradable properties, and unique physiochemical properties. Due to these traits, biosurfactants have become attractive substitutes for synthetic surfactants in the pharmaceutical industry. In-depth research has been done in the last few decades, demonstrating their vast use in various industries. This review article includes a thorough description of the various types of biosurfactants and their production processes. The production process discussed here is from oil-contaminated waste, agro-industrial waste, dairy, and sugar industry waste, and also how biosurfactants can be produced from animal fat. Various purification methods such as ultrafiltration, liquid-liquid extraction, acid precipitation, foam fraction, and adsorption are required to acquire a purified product, which is necessary in the pharmaceutical industry, are also discussed here. Alternative ways for large-scale production of biosurfactants using different statistical experimental designs such as CCD, ANN, and RSM are described here. Several uses of biosurfactants, including drug delivery systems, antibacterial and antifungal agents, wound healing, and cancer therapy, are discussed. Additionally, in this review, the future challenges and aspects of biosurfactant utilization in the pharmaceutical industry and how to overcome them are also discussed.
Collapse
Affiliation(s)
- Sriya Das
- Marine Biotechnology Laboratory, Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632-014, India
| | - K V Bhaskara Rao
- Marine Biotechnology Laboratory, Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632-014, India.
| |
Collapse
|
16
|
Shaikhah D, Loise V, Angelico R, Porto M, Calandra P, Abe AA, Testa F, Bartucca C, Oliviero Rossi C, Caputo P. New Trends in Biosurfactants: From Renewable Origin to Green Enhanced Oil Recovery Applications. Molecules 2024; 29:301. [PMID: 38257213 PMCID: PMC10821525 DOI: 10.3390/molecules29020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Enhanced oil recovery (EOR) processes are technologies used in the oil and gas industry to maximize the extraction of residual oil from reservoirs after primary and secondary recovery methods have been carried out. The injection into the reservoir of surface-active substances capable of reducing the surface tension between oil and the rock surface should favor its extraction with significant economic repercussions. However, the most commonly used surfactants in EOR are derived from petroleum, and their use can have negative environmental impacts, such as toxicity and persistence in the environment. Biosurfactants on the other hand, are derived from renewable resources and are biodegradable, making them potentially more sustainable and environmentally friendly. The present review intends to offer an updated overview of the most significant results available in scientific literature on the potential application of biosurfactants in the context of EOR processes. Aspects such as production strategies, techniques for characterizing the mechanisms of action and the pros and cons of the application of biosurfactants as a principal method for EOR will be illustrated and discussed in detail. Optimized concepts such as the HLD in biosurfactant choice and design for EOR are also discussed. The scientific findings that are illustrated and reviewed in this paper show why general emphasis needs to be placed on the development and adoption of biosurfactants in EOR as a substantial contribution to a more sustainable and environmentally friendly oil and gas industry.
Collapse
Affiliation(s)
- Dilshad Shaikhah
- Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK;
- Scientific Research Centre, Soran University, Erbil 44008, Kurdistan Region, Iraq
| | - Valeria Loise
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci Cubo 14D, 87036 Rende, CS, Italy; (V.L.); (C.B.); (C.O.R.); (P.C.)
| | - Ruggero Angelico
- Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, Via De Sanctis, 86100 Campobasso, CB, Italy
| | - Michele Porto
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci Cubo 14D, 87036 Rende, CS, Italy; (V.L.); (C.B.); (C.O.R.); (P.C.)
| | - Pietro Calandra
- National Research Council, CNR-ISMN (National Research Council-Institute for the Study of Nanostructured Materials), Strada Provinciale 35D n.9–00010, 00010 Montelibretti, RM, Italy;
| | - Abraham A. Abe
- Department of Chemistry, University of Bari, Via E. Orabona 4, 70126 Bari, BA, Italy;
| | - Flaviano Testa
- Department of Computer Engineering, Modeling, Electronics and Systems Engineering, University of Calabria, Via P. Bucci Cubo 45A, 87036 Rende, CS, Italy;
| | - Concetta Bartucca
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci Cubo 14D, 87036 Rende, CS, Italy; (V.L.); (C.B.); (C.O.R.); (P.C.)
| | - Cesare Oliviero Rossi
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci Cubo 14D, 87036 Rende, CS, Italy; (V.L.); (C.B.); (C.O.R.); (P.C.)
| | - Paolino Caputo
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci Cubo 14D, 87036 Rende, CS, Italy; (V.L.); (C.B.); (C.O.R.); (P.C.)
| |
Collapse
|
17
|
Xia L, Wen J. Available strategies for improving the biosynthesis of surfactin: a review. Crit Rev Biotechnol 2023; 43:1111-1128. [PMID: 36001039 DOI: 10.1080/07388551.2022.2095252] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/04/2022] [Indexed: 11/03/2022]
Abstract
Surfactin is an excellent biosurfactant with a wide range of application prospects in many industrial fields. However, its low productivity and high cost have largely limited its commercial applications. In this review, the pathways for surfactin synthesis in Bacillus strains are summarized and discussed. Further, the latest strategies for improving surfactin production, including: medium optimization, genome engineering methods (rational genetic engineering, genome reduction, and genome shuffling), heterologous synthesis, and the use of synthetic biology combined with metabolic engineering approaches to construct high-quality artificial cells for surfactin production using xylose, are described. Finally, the prospects for improving surfactin synthesis are discussed in detail.
Collapse
Affiliation(s)
- Li Xia
- Key Laboratory of Systems Bioengineering, Ministry of Education, Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
- National Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, People's Republic of China
- Frontier Science Center of the Ministry of Education, Tianjin University, Tianjin, People's Republic of China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering, Ministry of Education, Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
- National Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, People's Republic of China
- Frontier Science Center of the Ministry of Education, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
18
|
Zhou J, Miao SJ, Yang SZ, Liu JF, Gang HZ, Mu BZ. Quantitative determination of rhamnolipid using HPLC-UV through carboxyl labeling. Biotechnol Appl Biochem 2023; 70:1806-1816. [PMID: 37278163 DOI: 10.1002/bab.2483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/21/2023] [Indexed: 06/07/2023]
Abstract
Rhamnolipid, as a low-toxic, biodegradable and environmentally friendly biosurfactant, has broad application prospects in many industries. However, the quantitative determination of rhamnolipid is still a challenging task. Here, a new sensitive method for the quantitative analysis of rhamnolipid based on a simple derivatization reaction was developed. In this study, 3-[3'-(l-rhamnopyranosyloxy) decanoyloxy] decanoic acid (Rha-C10-C10) and 3-[3'-(2'-O-α-l-rhamnopyranosyloxy) decanoyloxy] decanoic acid (Rha-Rha-C10-C10) were utilized as the representative rhamnolipids. Liquid chromatography-mass spectrometry and high-performance liquid chromatography-ultra violet results showed that these two compounds were successfully labeled with 1 N1-(4-nitrophenyl)-1,2-ethylenediamine. There was an excellent linear relationship between rhamnolipid concentration and peak area of labeled rhamnolipid. The detection limits of the Rha-C10-C10 and Rha-Rha-C10-C10 were 0.018 mg/L (36 nmol/L) and 0.014 mg/L (22 nmol/L), respectively. The established amidation method was suitable for the accurate analysis of rhamnolipids in the biotechnological process. The method had good reproducibility with the relative standard deviation of 0.96% and 0.79%, respectively, and sufficient accuracy with a recovery of 96%-100%. This method was applied to quantitative analysis of 10 rhamnolipid homologs metabolized by Pseudomonas aeruginosa LJ-8. The single labeling method was used for the quantitative analysis of multiple components, which provided an effective method for the quality evaluation of other glycolipids with carboxyl groups.
Collapse
Affiliation(s)
- Jing Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Si-Jia Miao
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
- Engineering Research Center of Microbial Enhanced Oil Recovery, Ministry of Education, Shanghai, P. R. China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
- Engineering Research Center of Microbial Enhanced Oil Recovery, Ministry of Education, Shanghai, P. R. China
| | - Hong-Ze Gang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
- Engineering Research Center of Microbial Enhanced Oil Recovery, Ministry of Education, Shanghai, P. R. China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
- Engineering Research Center of Microbial Enhanced Oil Recovery, Ministry of Education, Shanghai, P. R. China
| |
Collapse
|
19
|
Treinen C, Claassen L, Hoffmann M, Lilge L, Henkel M, Hausmann R. Evaluation of an external foam column for in situ product removal in aerated surfactin production processes. Front Bioeng Biotechnol 2023; 11:1264787. [PMID: 38026897 PMCID: PMC10657896 DOI: 10.3389/fbioe.2023.1264787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
In Bacillus fermentation processes, severe foam formation may occur in aerated bioreactor systems caused by surface-active lipopeptides. Although they represent interesting compounds for industrial biotechnology, their property of foaming excessively during aeration may pose challenges for bioproduction. One option to turn this obstacle into an advantage is to apply foam fractionation and thus realize in situ product removal as an initial downstream step. Here we present and evaluate a method for integrated foam fractionation. A special feature of this setup is the external foam column that operates separately in terms of, e.g., aeration rates from the bioreactor system and allows recycling of cells and media. This provides additional control points in contrast to an internal foam column or a foam trap. To demonstrate the applicability of this method, the foam column was exemplarily operated during an aerated batch process using the surfactin-producing Bacillus subtilis strain JABs24. It was also investigated how the presence of lipopeptides and bacterial cells affected functionality. As expected, the major foam formation resulted in fermentation difficulties during aerated processes, partially resulting in reactor overflow. However, an overall robust performance of the foam fractionation could be demonstrated. A maximum surfactin concentration of 7.7 g/L in the foamate and enrichments of up to 4 were achieved. It was further observed that high lipopeptide enrichments were associated with low sampling flow rates of the foamate. This relation could be influenced by changing the operating parameters of the foam column. With the methodology presented here, an enrichment of biosurfactants with simultaneous retention of the production cells was possible. Since both process aeration and foam fractionation can be individually controlled and designed, this method offers the prospect of being transferred beyond aerated batch processes.
Collapse
Affiliation(s)
- Chantal Treinen
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Linda Claassen
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Mareen Hoffmann
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Lars Lilge
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Marius Henkel
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Rudolf Hausmann
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
20
|
Bouassida M, Mnif I, Hammami I, Triki MA, Ghribi D. Bacillus subtilis SPB1 lipopeptide biosurfactant: antibacterial efficiency against the phytopathogenic bacteria Agrobacterium tumefaciens and compared production in submerged and solid state fermentation systems. Food Sci Biotechnol 2023; 32:1595-1609. [PMID: 37637836 PMCID: PMC10449737 DOI: 10.1007/s10068-023-01274-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
Bacillus subtilis SPB1 derived biosurfactants (BioS) proved its bio-control activity against Agrobacterium tumefaciens using tomato plant. Almost 83% of disease symptoms triggered by Agrobacterium tumefaciens were reduced. Aiming potential application, we studied lipopeptide cost-effective production in both fermentations systems, namely the submerged fermentation (SmF) and the solid-state fermentation (SSF) as well as the use of Aleppo pine waste and confectionery effluent as cheap substrates. Optimization studies using Box-Behnken (BB) design followed by the analysis with response surface methodology were applied. When using an effluent/sea water ratio of 1, Aleppo pine waste of 14.08 g/L and an inoculum size of 0.2, a best production yield of 17.16 ± 0.91 mg/g was obtained for the SmF. While for the SSF, the best production yield of 27.59 ± 1.63 mg/g was achieved when the value of Aleppo pine waste, moisture, and inoculum size were, respectively, equal to 25 g, 75%, and 0.2. Hence, this work demonstrated the superiority of SSF over SmF.
Collapse
Affiliation(s)
- Mouna Bouassida
- Laboratoire d’Amélioration des Plantes et Valorisation des Agro-Ressources, Ecole Nationale d’Ingénieurs de Sfax, Sfax, Tunisie
- Bioréacteur couple à un ultra filtre, Ecole Nationale D’Ingénieurs de Sfax, Sfax, Tunisie
| | - Inès Mnif
- Laboratoire de Biochimie et Génie Enzymatique des Lipases, Ecole Nationale d’Ingénieurs de Sfax, Sfax, Tunisie
- Faculté des Sciences de Gabes, Université de Gabes, Gabes, Tunisie
| | - Ines Hammami
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Mohamed-Ali Triki
- Institut de l’Olivier-Institution of Agricultural Research and Higher Education-Tunisia-Protection of Plants Researcher, Tunis, Tunisie
| | - Dhouha Ghribi
- Laboratoire d’Amélioration des Plantes et Valorisation des Agro-Ressources, Ecole Nationale d’Ingénieurs de Sfax, Sfax, Tunisie
- Institut Supérieur de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisie
| |
Collapse
|
21
|
Begum W, Saha B, Mandal U. A comprehensive review on production of bio-surfactants by bio-degradation of waste carbohydrate feedstocks: an approach towards sustainable development. RSC Adv 2023; 13:25599-25615. [PMID: 37649573 PMCID: PMC10463011 DOI: 10.1039/d3ra05051c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
The advancement of science and technology demands chemistry which is safer, smarter and green by nature. The sustainability of science thus requires well-behaved alternates that best suit the demand. Bio-surfactants are surface active compounds, established to affect surface chemistry. In general, microbial bio-surfactants are a group of structurally diverse molecules produced by different microbes. A large number of bio-surfactants are produced during hydrocarbon degradation by hydrocarbonoclistic microorganisms during their own growth on carbohydrates and the production rate is influenced by the rate of degradation of carbohydrates. The production of such biological surfactants is thus of greater importance. This write up is a dedicated review to update the existing knowledge of inexpensive carbohydrate sources as substrates, microorganisms and technologies of biosurfactant production. This is an economy friendly as well as sustainable approach which will facilitate achieving some sustainable development goals. The production is dependent on the fermentation strategies, different factors of the microbial culture broth and downstream processing; these all have been elaborately presented in this article.
Collapse
Affiliation(s)
- Wasefa Begum
- Department of Chemistry, The University of Burdwan Golapbag West Bengal 713104 India
| | - Bidyut Saha
- Department of Chemistry, The University of Burdwan Golapbag West Bengal 713104 India
| | - Ujjwal Mandal
- Department of Chemistry, The University of Burdwan Golapbag West Bengal 713104 India
| |
Collapse
|
22
|
Zhou Y, Yang X, Li Q, Peng Z, Li J, Zhang J. Optimization of fermentation conditions for surfactin production by B. subtilis YPS-32. BMC Microbiol 2023; 23:117. [PMID: 37101148 PMCID: PMC10131397 DOI: 10.1186/s12866-023-02838-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Surfactin produced by microbial fermentation has attracted increasing attention because of its low toxicity and excellent antibacterial activity. However, its application is greatly limited by high production costs and low yield. Therefore, it is important to produce surfactin efficiently while reducing the cost. In this study, B. subtilis strain YPS-32 was used as a fermentative strain for the production of surfactin, and the medium and culture conditions for the fermentation of B. subtilis YPS-32 for surfactin production were optimized. RESULTS First, Landy 1 medium was screened as the basal medium for surfactin production by B. subtilis strain YPS-32. Then, using single-factor optimization, the optimal carbon source for surfactin production by B. subtilis YPS-32 strain was determined to be molasses, nitrogen sources were glutamic acid and soybean meal, and inorganic salts were KCl, K2HPO4, MgSO4, and Fe2(SO4)3. Subsequently, using Plackett-Burman design, MgSO4, time (h) and temperature (°C) were identified as the main effect factors. Finally, Box-Behnken design were performed on the main effect factors to obtain optimal fermentation conditions: temperature of 42.9 °C, time of 42.8 h, MgSO4 = 0.4 g·L- 1. This modified Landy medium was predicted to be an optimal fermentation medium: molasses 20 g·L- 1, glutamic acid 15 g·L- 1, soybean meal 4.5 g·L- 1, KCl 0.375 g·L- 1, K2HPO4 0.5 g·L- 1, Fe2(SO4)3 1.725 mg·L- 1, MgSO4 0.4 g·L- 1. Using the modified Landy medium, the yield of surfactin reached 1.82 g·L- 1 at pH 5.0, 42.9 ℃, and 2% inoculum for 42.8 h, which was 2.27-fold higher than that of the Landy 1 medium in shake flask fermentation. Additionally, under these optimal process conditions, further fermentation was carried out at the 5 L fermenter level by foam reflux method, and at 42.8 h of fermentation, surfactin reached a maximum yield of 2.39 g·L- 1, which was 2.96-fold higher than that of the Landy 1 medium in 5 L fermenter. CONCLUSION In this study, the fermentation process of surfactin production by B. subtilis YPS-32 was improved by using a combination of single-factor tests and response surface methodology for test optimization, which laid the foundation for its industrial development and application.
Collapse
Affiliation(s)
- Yingjun Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Qingdao Vland Biotech Group Co., Ltd, Qingdao, 266000, China
| | - Xiaoxue Yang
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Qing Li
- Qingdao Vland Biotech Group Co., Ltd, Qingdao, 266000, China
| | - Zheng Peng
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Juan Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
23
|
Pal S, Chatterjee N, Das AK, McClements DJ, Dhar P. Sophorolipids: A comprehensive review on properties and applications. Adv Colloid Interface Sci 2023; 313:102856. [PMID: 36827914 DOI: 10.1016/j.cis.2023.102856] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Sophorolipids are surface-active glycolipids produced by several non-pathogenic yeast species and are widely used as biosurfactants in several industrial applications. Sophorolipids provide a plethora of benefits over chemically synthesized surfactants for certain applications like bioremediation, oil recovery, and pharmaceuticals. They are, for instance less toxic, more benign and environment friendly in nature, biodegradable, freely adsorb to different surfaces, self-assembly in hydrated solutions, robustness for industrial applications etc. These miraculous properties result in valuable physicochemical attributes such as low critical micelle concentrations (CMCs), reduced interfacial surface tension, and capacity to dissolve non-polar components. Moreover, they exhibit a diverse range of physicochemical, functional, and biological attributes due to their unique molecular composition and structure. In this article, we highlight the physico-chemical properties of sophorolipids, how these properties are exploited by the human community for extensive benefits and the conditions which lead to their unique tailor-made structures and how they entail their interfacial behavior. Besides, we discuss the advantages and disadvantages associated with the use of these sophorolipids. We also review their physiological and functional attributes, along with their potential commercial applications, in real-world scenario. Biosurfactants are compared to their man-made equivalents to show the variations in structure-property correlations and possible benefits. Those attempting to manufacture purported natural or green surfactant with innovative and valuable qualities can benefit from an understanding of biosurfactant features structured along the same principles. The uniqueness of this review article is the detailed physico-chemical study of the sophorolipid biosurfactant and how these properties helps in their usage and detailed explicit study of their applications in the current scenario and also covering their pros and cons.
Collapse
Affiliation(s)
- Srija Pal
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India; Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India
| | - Arun K Das
- Eastern Regional Station, ICAR-IVRI, 37 Belgachia Road, Kolkata 700037, West Bengal, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India; Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India.
| |
Collapse
|
24
|
Madankar CS, Borde PK. Review on sophorolipids – a promising microbial bio-surfactant. TENSIDE SURFACT DET 2023. [DOI: 10.1515/tsd-2022-2441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Abstract
Surfactants are amphiphilic molecules used primarily for cleaning. Petroleum-based surfactants have a high production rate, but are non-biodegradable and destructive to the environment. Environmentally friendly biosurfactants are therefore becoming increasingly important. In addition to not being toxic; they are environmentally safe and mild to the skin. Depending on their structure, there are different types of biosurfactants. One of the types are the glycolipids, they are low molecular weight biosurfactants, and consist of sophorolipids. Sophorolipids are getting more attention as alternative to petroleum-based surfactants due to excellent stability at various pH levels, temperatures, and salinities. In addition to being anti-microbial, they have excellent wetting and foaming abilities and act as emulsifiers. There are numerous applications of sophorolipids in food, agriculture, biomedicine, cosmetics and personal care.
Collapse
Affiliation(s)
- Chandu S. Madankar
- Department of Oils, Oleochemicals and Surfactants Technology , Institute of Chemical Technology , Mumbai , India
| | - Priti K. Borde
- Department of Oils, Oleochemicals and Surfactants Technology , Institute of Chemical Technology , Mumbai , India
| |
Collapse
|
25
|
Freitas-Silva J, de Oliveira BFR, Dias GR, de Carvalho MM, Laport MS. Unravelling the sponge microbiome as a promising source of biosurfactants. Crit Rev Microbiol 2023; 49:101-116. [PMID: 35176944 DOI: 10.1080/1040841x.2022.2037507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Microbial surfactants are particularly useful in bioremediation and heavy metal removal from soil and aquatic environments, amongst other highly valued uses in different economic and biomedical sectors. Marine sponge-associated bacteria are well-known producers of bioactive compounds with a wide array of potential applications. However, little progress has been made on investigating biosurfactants produced by these bacteria, especially when compared with other groups of biologically active molecules harnessed from the sponge microbiome. Using a thorough literature search in eight databases, the purpose of the review was to compile the current knowledge on biosurfactants from sponge-associated bacteria, with a focus on their relevant biotechnological applications. From the publications between the years 1995 and 2021, lipopeptides and glycolipids were the most identified chemical classes of biosurfactants. Firmicutes was the dominant phylum of biosurfactant-producing strains, followed by Actinobacteria and Proteobacteria. Bioremediation led as the most promising application field for the studied surface-active molecules in sponge-derived bacteria, despite the reports endorsed their use as antimicrobial and antibiofilm agents. Finally, we appoint some key strategies to instigate the research appetite on the isolation and characterization of novel biosurfactants from the poriferan microbiome.
Collapse
Affiliation(s)
- Jéssyca Freitas-Silva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Francesco Rodrigues de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Gabriel Rodrigues Dias
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Alvarado-Ramírez L, Santiesteban-Romero B, Poss G, Sosa-Hernández JE, Iqbal HMN, Parra-Saldívar R, Bonaccorso AD, Melchor-Martínez EM. Sustainable production of biofuels and bioderivatives from aquaculture and marine waste. FRONTIERS IN CHEMICAL ENGINEERING 2023; 4. [DOI: 10.3389/fceng.2022.1072761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
The annual global fish production reached a record 178 million tonnes in 2020, which continues to increase. Today, 49% of the total fish is harvested from aquaculture, which is forecasted to reach 60% of the total fish produced by 2030. Considering that the wastes of fishing industries represent up to 75% of the whole organisms, the fish industry is generating a large amount of waste which is being neglected in most parts of the world. This negligence can be traced to the ridicule of the value of this resource as well as the many difficulties related to its valorisation. In addition, the massive expansion of the aquaculture industry is generating significant environmental consequences, including chemical and biological pollution, disease outbreaks that increase the fish mortality rate, unsustainable feeds, competition for coastal space, and an increase in the macroalgal blooms due to anthropogenic stressors, leading to a negative socio-economic and environmental impact. The establishment of integrated multi-trophic aquaculture (IMTA) has received increasing attention due to the environmental benefits of using waste products and transforming them into valuable products. There is a need to integrate and implement new technologies able to valorise the waste generated from the fish and aquaculture industry making the aquaculture sector and the fish industry more sustainable through the development of a circular economy scheme. This review wants to provide an overview of several approaches to valorise marine waste (e.g., dead fish, algae waste from marine and aquaculture, fish waste), by their transformation into biofuels (biomethane, biohydrogen, biodiesel, green diesel, bioethanol, or biomethanol) and recovering biomolecules such as proteins (collagen, fish hydrolysate protein), polysaccharides (chitosan, chitin, carrageenan, ulvan, alginate, fucoidan, and laminarin) and biosurfactants.
Collapse
|
27
|
Li H, Fang C, Liu X, Bao K, Li Y, Bao M. Quantitative analysis of biosurfactants in water samples by a modified oil spreading technique †. RSC Adv 2023; 13:9933-9944. [PMID: 37006363 PMCID: PMC10052697 DOI: 10.1039/d3ra00102d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
The oil spreading technique relies on biosurfactant to reduce the surface tension of an oil film and form an oil spreading ring in the center, and then judges the content of biosurfactant according to the diameter of the spreading ring. However, the instability and large errors of the traditional oil spreading technique limit its further application. In this paper, we modified the traditional oil spreading technique by optimizing the oily material, image acquisition and calculation method, which improves the accuracy and stability of the quantification of biosurfactant. We screened lipopeptides and glycolipid biosurfactants for rapid and quantitative analysis of biosurfactant concentrations. By selecting areas by color done by the software to modify image acquisition, the results showed that the modified oil spreading technique has a good quantitative effect, reflected in the concentration of biosurfactant being proportional to the diameter of the sample droplet. More importantly, using the pixel ratio method instead of the diameter measurement method to optimize the calculation method, the region selection was more exact, and the accuracy of the data results was high, and the calculation efficiency was improved significantly. Finally, the contents of rhamnolipid and lipopeptide in oilfield water samples were judged by the modified oil spreading technique, the relative errors were analyzed according to the different substances as the standard, and the quantitative measurement and analysis of oilfield water samples (the produced water of Zhan 3-X24 and the injected water of the estuary oil production plant) were realized. The study provides a new perspective on the accuracy and stability of the method in the quantification of biosurfactant, and provided some theoretical and data support for the study of the microbial oil displacement technology mechanism. The oil spreading technique relies on biosurfactant to reduce the surface tension of an oil film and form an oil spreading ring in the center, and then judges the content of biosurfactant according to the diameter of the spreading ring.![]()
Collapse
Affiliation(s)
- Haoshuai Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of ChinaNo. 238 Songling RoadQingdao 266100Shandong ProvinceChina+86-532-66782509+86-532-66782509
- College of Chemistry and Chemical Engineering, Ocean University of ChinaQingdao 266100China
| | - Chao Fang
- College of Chemistry and Chemical Engineering, Ocean University of ChinaQingdao 266100China
| | - Xinrui Liu
- College of Chemistry and Chemical Engineering, Ocean University of ChinaQingdao 266100China
| | | | - Yang Li
- China Petrochemical Corporation (Sinopec Group)Beijing 100728China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of ChinaNo. 238 Songling RoadQingdao 266100Shandong ProvinceChina+86-532-66782509+86-532-66782509
- College of Chemistry and Chemical Engineering, Ocean University of ChinaQingdao 266100China
| |
Collapse
|
28
|
Phulpoto IA, Yu Z, Qazi MA, Ndayisenga F, Yang J. A comprehensive study on microbial-surfactants from bioproduction scale-up toward electrokinetics remediation of environmental pollutants: Challenges and perspectives. CHEMOSPHERE 2023; 311:136979. [PMID: 36309062 DOI: 10.1016/j.chemosphere.2022.136979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Currently, researchers have focused on electrokinetic (EK) bioremediation due to its potential to remove a wide-range of pollutants. Further, to improve their performance, synthetic surfactants are employed as effective additives because of their excellent solubility and mobility. Synthetic surfactants have an excessive position in industries since they are well-established, cheap, and easily available. Nevertheless, these surfactants have adverse environmental effects and could be detrimental to aquatic and terrestrial life. Owing to social and environmental awareness, there is a rising demand for bio-based surfactants in the global market, from environmental sustainability to public health, because of their excellent surface and interfacial activity, higher and stable emulsifying property, biodegradability, non- or low toxicity, better selectivity and specificity at extreme environmental conditions. Unfortunately, challenges to biosurfactants, like expensive raw materials, low yields, and purification processes, hinder their applicability to large-scale. To date, extensive research has already been conducted for production scale-up using multidisciplinary approaches. However, it is still essential to research and develop high-yielding bacteria for bioproduction through traditional and biotechnological advances to reduce production costs. Herein, this review evaluates the recent progress made on microbial-surfactants for bioproduction scale-up and provides detailed information on traditional and advanced genetic engineering approaches for cost-effective bioproduction. Furthermore, this study emphasized the role of electrokinetic (EK) bioremediation and discussed the application of BioS-mediated EK for various pollutants remediation.
Collapse
Affiliation(s)
- Irfan Ali Phulpoto
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China; Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur Mir's, 66020, Sindh, Pakistan
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, 100085, China.
| | - Muneer Ahmed Qazi
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur Mir's, 66020, Sindh, Pakistan
| | - Fabrice Ndayisenga
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Jie Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
29
|
Production of liamocins by Aureobasidium spp. with potential applications. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Tsui L, Paul A, Chen YT, Tz-Chi E. Potential mechanisms contributing to the high cadmium removal efficiency from contaminated soil by using effective microorganisms as novel electrolyte in electrokinetic remediation applications. ENVIRONMENTAL RESEARCH 2022; 215:114239. [PMID: 36184964 DOI: 10.1016/j.envres.2022.114239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
In this study, we tested the ability of a solution of effective microorganisms (EM) to remove cadmium from soil. Experimental results revealed that EM had an overall cadmium removal efficiency of 90.5% after 7 days of electrokinetic (EK) treatment. During EK treatment, EM exhibited a low initial pH of 3.6 and a high conductivity of 7.0 mS/m; therefore, they reduced the pH of the anode after an electric field was applied. EM had a surface tension of 50.3 dyne/cm and exhibited biosurfactant property in the EK experiments. The cadmium removal efficiency of EM in soil was compared with that of tap water, citric acid, and ethylenediaminetetraacetic acid (EDTA). The results revealed that after 7 days of EK treatment, EM had a higher cadmium removal efficiency than did citric acid (72.3%), EDTA (75.4%), and tap water (21.7%). This result can be partly attributed to the biosurfactant property of EM, which enables them to penetrate deeply into the soil matrix and thus dissolve a high quantity of pollutants. Overall, the results of this study indicate that EM can serve as an economic and efficient biosurfactant for removing cadmium from soil in EK applications.
Collapse
Affiliation(s)
- Lo Tsui
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City, 24301, Taiwan, ROC; Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City, 24301, Taiwan, ROC.
| | - Aaneta Paul
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City, 24301, Taiwan, ROC.
| | - Yi-Ting Chen
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City, 24301, Taiwan, ROC.
| | - E Tz-Chi
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City, 24301, Taiwan, ROC.
| |
Collapse
|
31
|
Feng Z, Xu M, Yang J, Zhang R, Geng Z, Mao T, Sheng Y, Wang L, Zhang J, Zhang H. Molecular characterization of a novel strain of Bacillus halotolerans protecting wheat from sheath blight disease caused by Rhizoctonia solani Kühn. FRONTIERS IN PLANT SCIENCE 2022; 13:1019512. [PMID: 36325560 PMCID: PMC9618607 DOI: 10.3389/fpls.2022.1019512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Rhizoctonia solani Kühn naturally infects and causes Sheath blight disease in cereal crops such as wheat, rice and maize, leading to severe reduction in grain yield and quality. In this work, a new bacterial strain Bacillus halotolerans LDFZ001 showing efficient antagonistic activity against the pathogenic strain Rhizoctonia solani Kühn sh-1 was isolated. Antagonistic, phylogenetic and whole genome sequencing analyses demonstrate that Bacillus halotolerans LDFZ001 strongly suppressed the growth of Rhizoctonia solani Kühn sh-1, showed a close evolutionary relationship with B. halotolerans F41-3, and possessed a 3,965,118 bp circular chromosome. Bioinformatic analysis demonstrated that the genome of Bacillus halotolerans LDFZ001 contained ten secondary metabolite biosynthetic gene clusters (BGCs) encoding five non-ribosomal peptide synthases, two polyketide synthase, two terpene synthases and one bacteriocin synthase, and a new kijanimicin biosynthetic gene cluster which might be responsible for the biosynthesis of novel compounds. Gene-editing experiments revealed that functional expression of phosphopantetheinyl transferase (SFP) and major facilitator superfamily (MFS) transporter genes in Bacillus halotolerans LDFZ001 was essential for its antifungal activity against R. solani Kühn sh-1. Moreover, the existence of two identical chitosanases may also make contribution to the antipathogen activity of Bacillus halotolerans LDFZ001. Our findings will provide fundamental information for the identification and isolation of new sheath blight resistant genes and bacterial strains which have a great potential to be used for the production of bacterial control agents. IMPORTANCE A new Bacillus halotolerans strain Bacillus halotolerans LDFZ001 resistant to sheath blight in wheat is isolated. Bacillus halotolerans LDFZ001 harbors a new kijanimicin biosynthetic gene cluster, and the functional expression of SFP and MFS contribute to its antipathogen ability.
Collapse
Affiliation(s)
- Zhibin Feng
- College of Life Science, Ludong University, Yantai, China
| | - Mingzhi Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Jin Yang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Renhong Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Zigui Geng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Tingting Mao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Yuting Sheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Juan Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai, China
| |
Collapse
|
32
|
Yu F, Du Y, Deng S, Jin M, Zhang D, Zhao M, Yin J, Long X. Efficient preparation of extremely high-purity surfactin from fermentation broth by ethanol extraction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2022]
|
33
|
Pal Y, Mali SN, Pratap AP. Optimization of the primary purification process of extracting sphorolipid from the fermentation broth to achieve a higher yield and purity. TENSIDE SURFACT DET 2022. [DOI: 10.1515/tsd-2022-2450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Sophorolipid (SL) is a surface-active glycolipid biosurfactant with promising industrial applications. It is synthesised by fermentation of hydrophobic and hydrophilic substrates using selected non-pathogenic yeasts. However, its applications are limited by high production costs and ineffective product recovery in downstream purification stages. Natural sophorolipids are produced in six to nine different hydrophobic sophorosides, where the carboxyl end of the fatty acid is either free, which is known as the acidic or open form, or it can be esterified internally to produce the lactonic form. The present study deals with the screening and selection of suitable solvents for the extraction of acidic and lactonic SL from fermentation broth. The optimisation study involves exhaustive extraction with the six different immiscible solvents ethyl acetate, butyl acetate, methylene dichloride, methyl tert.-butyl ether, methyl iso-butyl ketone and methyl ethyl ketone. The partition coefficient (Kd), which is the ratio of the solute concentration in the organic layer compared to the aqueous layer, determines the performance measurement of the extraction process in terms of yield and purity of the desired solute. The factors that influence exhaustive extraction were the broth to solvent ratio and the extraction stages. The optimal extraction conditions for the highest possible yield were a broth to solvent ratio of 1:1 and a number of extraction steps of 2. Methylene dichloride showed better results in terms of yield and selectivity in the extraction of acidic and lactonic SL from the fermentation broth compared to the other solvents investigated. For lactonic SL, the highest Kd value determined was 36.6 and for acidic SL the highest Kd value was 1.14.
Collapse
Affiliation(s)
- Yogita Pal
- Department of Oils, Oleochemicals and Surfactants Technology , Institute of Chemical Technology (University under Section 3 of UGC Act 1956, Formerly UDCT/UICT) , Nathalal Parekh Marg, Matunga (East) , Mumbai 400019 , India
| | - Suraj N. Mali
- Department of Pharmaceutical Sciences and Technology , Institute of Chemical Technology (University under Section 3 of UGC Act 1956, Formerly UDCT/UICT) , Nathalal Parekh Marg, Matunga (East) , Mumbai 400019 , India
| | - Amit P. Pratap
- Department of Oils, Oleochemicals and Surfactants Technology , Institute of Chemical Technology (University under Section 3 of UGC Act 1956, Formerly UDCT/UICT) , Nathalal Parekh Marg, Matunga (East) , Mumbai 400019 , India
| |
Collapse
|
34
|
Sah D, Rai JPN, Ghosh A, Chakraborty M. A review on biosurfactant producing bacteria for remediation of petroleum contaminated soils. 3 Biotech 2022; 12:218. [PMID: 35965658 PMCID: PMC9365905 DOI: 10.1007/s13205-022-03277-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 11/01/2022] Open
Abstract
The discharge of potentially toxic petroleum hydrocarbons into the environment has been a matter of concern, as these organic pollutants accumulate in many ecosystems due to their hydrophobicity and low bioavailability. Petroleum hydrocarbons are neurotoxic and carcinogenic organic pollutants, extremely harmful to human and environmental health. Traditional treatment methods for removing hydrocarbons from polluted areas, including various mechanical and chemical strategies, are ineffective and costly. However, many indigenous microorganisms in soil and water can utilise hydrocarbon compounds as sources of carbon and energy and hence, can be employed to degrade hydrocarbon contaminants. Therefore, bioremediation using bacteria that degrade petroleum hydrocarbons is commonly viewed as an environmentally acceptable and effective method. The efficacy of bioremediation can be boosted further by using potential biosurfactant-producing microorganisms, as biosurfactants reduce surface tension, promote emulsification and micelle formation, making hydrocarbons bio-available for microbial breakdown. Further, introducing nanoparticles can improve the solubility of hydrophobic hydrocarbons as well as microbial synthesis of biosurfactants, hence establishing a favourable environment for microbial breakdown of these chemicals. The review provides insights into the role of microbes in the bioremediation of soils contaminated with petroleum hydrocarbons and emphasises the significance of biosurfactants and potential biosurfactant-producing bacteria. The review partly focusses on how nanotechnology is being employed in different critical bioremediation processes.
Collapse
Affiliation(s)
- Diksha Sah
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - J. P. N. Rai
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Ankita Ghosh
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Moumita Chakraborty
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| |
Collapse
|
35
|
Guava Seed Oil: Potential Waste for the Rhamnolipids Production. FERMENTATION 2022. [DOI: 10.3390/fermentation8080379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Guava is consumed in natura and is also of considerable importance to the food industry. The seeds and peel of this fruit are discarded, however, guava seeds yield oil (~13%) that can be used for the bioproducts synthesis. The use of a by-product as a carbon source is advantageous, as it reduces the environmental impact of possible harmful materials to nature, while adding value to products. In addition, the use of untested substrates can bring new yield and characterization results. Thus, this research sought to study rhamnolipids (RLs) production from guava seed oil, a by-product of the fructorefinery. The experiments were carried out using Pseudomonas aeruginosa LBI 2A1 and experimental design was used to optimize the variables Carbon and Nitrogen concentration. Characterization of RLs produced occurred by LC-MS. In this study, variables in the quadratic forms and the interaction between them influenced the response (p < 0.05). The most significant variable was N concentration. Maximum RLs yield achieved 39.97 g/L, predominantly of mono-RL. Characterization analysis revealed 9 homologues including the presence of RhaC10C14:2 (m/z 555) whose structure has not previously been observed. This research showed that guava seed oil is an alternative potential carbon source for rhamnolipid production with rare rhamnolipid homologues.
Collapse
|
36
|
Pardhi DS, Panchal RR, Raval VH, Joshi RG, Poczai P, Almalki WH, Rajput KN. Microbial surfactants: A journey from fundamentals to recent advances. Front Microbiol 2022; 13:982603. [PMID: 35992692 PMCID: PMC9386247 DOI: 10.3389/fmicb.2022.982603] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial surfactants are amphiphilic surface-active substances aid to reduce surface and interfacial tensions by accumulating between two fluid phases. They can be generically classified as low or high molecular weight biosurfactants based on their molecular weight, whilst overall chemical makeup determines whether they are neutral or anionic molecules. They demonstrate a variety of fundamental characteristics, including the lowering of surface tension, emulsification, adsorption, micelle formation, etc. Microbial genera like Bacillus spp., Pseudomonas spp., Candida spp., and Pseudozyma spp. are studied extensively for their production. The type of biosurfactant produced is reliant on the substrate utilized and the pathway pursued by the generating microorganisms. Some advantages of biosurfactants over synthetic surfactants comprise biodegradability, low toxicity, bioavailability, specificity of action, structural diversity, and effectiveness in harsh environments. Biosurfactants are physiologically crucial molecules for producing microorganisms which help the cells to grasp substrates in adverse conditions and also have antimicrobial, anti-adhesive, and antioxidant properties. Biosurfactants are in high demand as a potential product in industries like petroleum, cosmetics, detergents, agriculture, medicine, and food due to their beneficial properties. Biosurfactants are the significant natural biodegradable substances employed to replace the chemical surfactants on a global scale in order to make a cleaner and more sustainable environment.
Collapse
Affiliation(s)
- Dimple S. Pardhi
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakeshkumar R. Panchal
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Vikram H. Raval
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rushikesh G. Joshi
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Waleed H. Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Kiransinh N. Rajput
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
37
|
Mitra S, Dhar R, Sen R. Designer bacterial cell factories for improved production of commercially valuable non-ribosomal peptides. Biotechnol Adv 2022; 60:108023. [PMID: 35872292 DOI: 10.1016/j.biotechadv.2022.108023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
Abstract
Non-ribosomal peptides have gained significant attention as secondary metabolites of high commercial importance. This group houses a diverse range of bioactive compounds, ranging from biosurfactants to antimicrobial and cytotoxic agents. However, low yield of synthesis by bacteria and excessive losses during purification hinders the industrial-scale production of non-ribosomal peptides, and subsequently limits their widespread applicability. While isolation of efficient producer strains and optimization of bioprocesses have been extensively used to enhance yield, further improvement can be made by optimization of the microbial strain using the tools and techniques of metabolic engineering, synthetic biology, systems biology, and adaptive laboratory evolution. These techniques, which directly target the genome of producer strains, aim to redirect carbon and nitrogen fluxes of the metabolic network towards the desired product, bypass the feedback inhibition and repression mechanisms that limit the maximum productivity of the strain, and even extend the substrate range of the cell for synthesis of the target product. The present review takes a comprehensive look into the biosynthesis of bacterial NRPs, how the same is regulated by the cell, and dives deep into the strategies that have been undertaken for enhancing the yield of NRPs, while also providing a perspective on other potential strategies that can allow for further yield improvement. Furthermore, this review provides the reader with a holistic perspective on the design of cellular factories of NRP production, starting from general techniques performed in the laboratory to the computational techniques that help a biochemical engineer model and subsequently strategize the architectural plan.
Collapse
Affiliation(s)
- Sayak Mitra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Riddhiman Dhar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
38
|
Muthukumar B, Al Salhi MS, Narenkumar J, Devanesan S, Kim W, Rajasekar A. Characterization of two novel strains of Pseudomonas aeruginosa on biodegradation of crude oil and its enzyme activities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119223. [PMID: 35351596 DOI: 10.1016/j.envpol.2022.119223] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/03/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Crude oil contaminant is one of the major problem to environment and its removal process considered as most challenging tool currently across the world. In this degradation study, crude oil hydrocarbons are degraded on various pH optimization conditions (pH 2, 4,6,7,8 and 10) by using two biosurfactant producing bacterial strains Pseudomonas aeruginosa PP3 and Pseudomonas aeruginosa PP4. During crude oil biodegradation, degradative enzymes alkane hydroxylase and alcohol dehydrogenase were examined and found to be higher in PP4 than PP3. Biodegradation efficiency (BE) of crude oil by both PP3 and PP4 were analysed by gas chromatography mass spectroscopy (GCMS). Based on strain PP3, the highest BE was observed in pH 2 and pH 4 were found to be 62% and 69% than pH 6, 7, 8 and 10 (47%, 47%, 49% and 45%). It reveals that PP3 was survived effectively in acidic condition and utilized the crude oil hydrocarbons. In contrast, the highest BE of PP4 was observed in pH 7 (78%) than pH4 (68%) and pH's 2, 6, 8 and 10 (52%, 52%, 43% and 53%) respectively. FTIR spectra results revealed that the presence of different functional group of hydrocarbons (OH, -CH3, CO, C-H) in crude oil. GCMS results confirmed that both strains PP3 and PP4 were survived in acidic condition and utilized the crude oil hydrocarbons as sole carbon sources. This is the first observation on biodegradation of crude oil by the novel strains of Pseudomonas aeruginosa in acidic condition with higher BE. Overall, the extracellular enzymes and surface active compounds (biosurfactant) produced by bacterial strains were played a key role in crude oil biodegradation process.
Collapse
Affiliation(s)
- Balakrishnan Muthukumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Mohamad S Al Salhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Jayaraman Narenkumar
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu 600073. India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, South Korea
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India.
| |
Collapse
|
39
|
Sarvari R, Naghili B, Agbolaghi S, Abbaspoor S, Bannazadeh Baghi H, Poortahmasebi V, Sadrmohammadi M, Hosseini M. Organic/polymeric antibiofilm coatings for surface modification of medical devices. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2066668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Raana Sarvari
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sadrmohammadi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hosseini
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
40
|
A Simplified Techno-Economic Analysis for Sophorolipid Production in a Solid-State Fermentation Process. ENERGIES 2022. [DOI: 10.3390/en15114077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sophorolipids (SLs) are microbial biosurfactants with an important role in industry and a continuously growing market. This research addresses the use of sustainable resources as feedstock for bioproducts. Winterization oil cake (WOC) and molasses are suitable substrates for SLs via solid-state fermentation (SSF). The model proposed herein was established for annually processing 750 t of WOC and comparing three support materials: wheat straw (WS), rice husk (RH), and coconut fiber (CF). Production capacity ranged 325–414 t of SLs per year. Unit Production Cost was 5.1, 5.7, and 6.9 USD/kg SL for WS, RH, and CF production models, respectively, and was slightly lower with other substrates. Financial parameters were CAPEX 6.7 MM USD and OPEX 1.9 MM USD/y, with a NPV, IRR and payback time of 6.4 MM USD, 31% and 3.2 y, respectively. SLs recovery from the solid matrix was the major contributor to operating costs, while fermentation equipment shaped capital costs. Results show that the physical properties (bulk density, WHC) of substrates and supports define process costs beyond substrate purchase costs and process yields in SSF systems. To our knowledge, this is the first attempt to model SLs production via SSF at full scale for the economic valuation of the SSF process.
Collapse
|
41
|
Abo-zeid Y, Bakkar MR, Elkhouly GE, Raya NR, Zaafar D. Rhamnolipid Nano-Micelles versus Alcohol-Based Hand Sanitizer: A Comparative Study for Antibacterial Activity against Hospital-Acquired Infections and Toxicity Concerns. Antibiotics (Basel) 2022; 11:605. [PMID: 35625249 PMCID: PMC9137935 DOI: 10.3390/antibiotics11050605] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Hospital-acquired infections (HAIs) are considered to be a major global healthcare challenge, in large part because of the development of microbial resistance to currently approved antimicrobial drugs. HAIs are frequently preventable through infection prevention and control measures, with hand hygiene as a key activity. Improving hand hygiene was reported to reduce the transmission of healthcare-associated pathogens and HAIs. Alcohol-based hand sanitizers are commonly used due to their rapid action and broad spectrum of microbicidal activity, offering protection against bacteria and viruses. However, their frequent administration has been reported to be associated with many side effects, such as skin sensitivity, skin drying, and cracks, which promote further skin infections. Thus, there is an essential need to find alternative approaches to hand sanitation. Rhamnolipids are glycolipids produced by Pseudomonas aeruginosa, and were shown to have broad antimicrobial activity as biosurfactants. We have previously demonstrated the antimicrobial activity of rhamnolipid nano-micelles against selected drug-resistant Gram-negative (Salmonella Montevideo and Salmonella Typhimurium) and Gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumoniae). To the best of our knowledge, the antimicrobial activity of rhamnolipid nano-micelles in comparison to alcohol-based hand sanitizers against microorganisms commonly causing HAIs in Egypt-such as Acinetobacter baumannii and Staphylococcus aureus-has not yet been studied. In the present work, a comparative study of the antibacterial activity of rhamnolipid nano-micelles versus alcohol-based hand sanitizers was performed, and their safety profiles were also assessed. It was demonstrated that rhamnolipid nano-micelles had a comparable antibacterial activity to alcohol-based hand sanitizer, with a better safety profile, i.e., rhamnolipid nano-micelles are unlikely to cause any harmful effects on the skin. Thus, rhamnolipid nano-micelles could be recommended to replace alcohol-based hand sanitizers; however, they must still be tested by healthcare workers in healthcare settings to ascertain their antimicrobial activity and safety.
Collapse
Affiliation(s)
- Yasmin Abo-zeid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (G.E.E.); (N.R.R.)
- Helwan Nanotechnology Center, Helwan University, Cairo 11792, Egypt
| | - Marwa Reda Bakkar
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt;
| | - Gehad E. Elkhouly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (G.E.E.); (N.R.R.)
- Helwan Nanotechnology Center, Helwan University, Cairo 11792, Egypt
| | - Nermeen R. Raya
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (G.E.E.); (N.R.R.)
- Helwan Nanotechnology Center, Helwan University, Cairo 11792, Egypt
| | - Dalia Zaafar
- Pharmacology and Toxicology Department, Modern University for Technology and Information, Cairo 12055, Egypt;
| |
Collapse
|
42
|
Abstract
Oil–water emulsions are widely generated in industries, which may facilitate some processes (e.g., transportation of heavy oil, storage of milk, synthesis of chemicals or materials, etc.) or lead to serious upgrading or environmental issues (e.g., pipeline plugging, corrosions to equipment, water pollution, soil pollution, etc.). Herein, the sources, classification, formation, stabilization, and separation of oil–water emulsions are systematically summarized. The roles of different interfacially active materials–especially the fine particles–in stabilizing the emulsions have been discussed. The advanced development of micro force measurement technologies for oil–water emulsion investigation has also been presented. To provide insights for future industrial application, the separation of oil–water emulsions by different methods are summarized, as well as the introduction of some industrial equipment and advanced combined processes. The gaps between some demulsification processes and industrial applications are also touched upon. Finally, the development perspectives of oil–water treatment technology are discussed for the purpose of achieving high-efficiency, energy-saving, and multi-functional treatment. We hope this review could bring forward the challenges and opportunities for future research in the fields of petroleum production, coal production, iron making, and environmental protection, etc.
Collapse
|
43
|
Effect of bacteria on oil/water interfacial tension in asphaltenic oil reservoirs. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Péquin B, Cai Q, Lee K, Greer CW. Natural attenuation of oil in marine environments: A review. MARINE POLLUTION BULLETIN 2022; 176:113464. [PMID: 35231783 DOI: 10.1016/j.marpolbul.2022.113464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Natural attenuation is an important process for oil spill management in marine environments. Natural attenuation affects the fate of oil by physical, chemical, and biological processes, which include evaporation, dispersion, dissolution, photo-oxidation, emulsification, oil particle aggregation, and biodegradation. This review examines the cumulative knowledge regarding these natural attenuation processes as well as their simulation and prediction using modelling approaches. An in-depth discussion is provided on how oil type, microbial community and environmental factors contribute to the biodegradation process. It describes how our understanding of the structure and function of indigenous oil degrading microbial communities in the marine environment has been advanced by the application of next generation sequencing tools. The synergetic and/or antagonist effects of oil spill countermeasures such as the application of chemical dispersants, in-situ burning and nutrient enrichment on natural attenuation were explored. Several knowledge gaps were identified regarding the synergetic and/or antagonistic effects of active response countermeasures on the natural attenuation/biodegradation process. This review highlighted the need for field data on both the effectiveness and potential detrimental effects of oil spill response options to support modelling and decision-making on their selection and application.
Collapse
Affiliation(s)
- Bérangère Péquin
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada.
| | - Qinhong Cai
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, Ontario, Canada
| | - Charles W Greer
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada; Energy, Mining and Environment Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| |
Collapse
|
45
|
Riccardi C, D'Angelo C, Calvanese M, Ricciardelli A, Tutino ML, Parrilli E, Fondi M. Genome analysis of a new biosurfactants source: The Antarctic bacterium Psychrobacter sp. TAE2020. Mar Genomics 2022; 61:100922. [DOI: 10.1016/j.margen.2021.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
|
46
|
Li X, Sui K, Zhang J, Liu X, Xu Q, Wang D, Yang Q. Revealing the mechanisms of rhamnolipid enhanced hydrogen production from dark fermentation of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150347. [PMID: 34563898 DOI: 10.1016/j.scitotenv.2021.150347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Rhamnolipid (RL), as an environmentally compatible biosurfactant, has been used to enhance waste activated sludge (WAS) fermentation. However, the effect of RL on hydrogen accumulation in anaerobic fermentation remains unclear. Therefore, this work targets to investigate the mechanism of RL-based dark fermentation system on hydrogen production of WAS. It was found that the maximum yield of hydrogen increased from 1.76 ± 0.26 to 11.01 ± 0.30 mL/g VSS (volatile suspended solids), when RL concentration increased from 0 to 0.10 g/g TSS (total suspended solids). Further enhancement of RL level to 0.12 g/g TSS slightly reduced the production to 10.80 ± 0.28 mL/g VSS. Experimental findings revealed that although RL could be degraded to generate hydrogen, it did not play a major role in enhancing hydrogen accumulation. Mechanism analysis suggested that RL decreased the surface tension between sludge liquid and hydrophobic compounds, thus accelerating the solubilization of WAS, improving the proportion of biodegradable substances which could be used for subsequent hydrogen production. Regardless of the fact that adding RL suppressed all the fermentation processes, the inhibition effect of processes associated with hydrogen consumption was much severer than that of hydrogen production. Further investigations of microbial community revealed that RL enriched the relative abundance of hydrogen producers e.g., Romboutsia but reduced that of hydrogen consumers like Desulfobulbus and Caldisericum.
Collapse
Affiliation(s)
- Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Kexin Sui
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiamin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
47
|
Sarubbo LA, Silva MDGC, Durval IJB, Bezerra KGO, Ribeiro BG, Silva IA, Twigg MS, Banat IM. Biosurfactants: Production, Properties, Applications, Trends, and General Perspectives. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108377] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Satapute P, Jogaiah S. A biogenic microbial biosurfactin that degrades difenoconazole fungicide with potential antimicrobial and oil displacement properties. CHEMOSPHERE 2022; 286:131694. [PMID: 34346344 DOI: 10.1016/j.chemosphere.2021.131694] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/15/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Surfactin is a bacterial lipopeptide and an influential biosurfactant mainly known for excellent surfactant ability. The amphiphilic nature of surfactin helps it to sustain under hydrophobic and hydrophilic conditions. In this investigation, a bacterium strain (BTKU3) that produces biosurfactant were isolated from oil-contaminated soil. Based on the blue agar plate (Bap) assay, the BTKU3 strain was found to be promising for biosurfactant production. This strain was later identified as a Lysinibacillus sp. by 16S rRNA sequencing. The characteristics of extracted bacterial surfactin were evidenced by FTIR with the presence of amine, C-H, CO, CC, esters, thiocarbonyl and asymmetric aliphatic C-H stretch molecular structural groups. Further, the extracted bacterial biosurfactant material was subjected to Liquid Chromatography-Mass Spectroscopy (LCMS), and it was identified and confirmed as surfactin with an elution time of 3.1 min and m/z value of 1034. The emulsification and oil displacement tests further proved the surfactin ability with 83% of coconut oil emulsion index and 80 % oil displacement ability with diesel, respectively. Lysinibacillus sp. BTKU3 strain also proved its efficacy in the degradation of difenoconazole by utilizing a capacity of 9.1 μg ml-1. Thus, it is inferred that the Lysinibacillus sp. BTKU3 strain plays a significant role in the production of surfactin, which positively acts as an antimicrobial agent and reduces contaminants in polluted sites.
Collapse
Affiliation(s)
- Praveen Satapute
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, 580003, India.
| |
Collapse
|
49
|
Umar A, Zafar A, Wali H, Siddique MP, Qazi MA, Naeem AH, Malik ZA, Ahmed S. Low-cost production and application of lipopeptide for bioremediation and plant growth by Bacillus subtilis SNW3. AMB Express 2021; 11:165. [PMID: 34894306 PMCID: PMC8665955 DOI: 10.1186/s13568-021-01327-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022] Open
Abstract
At present time, every nation is absolutely concern about increasing agricultural production and bioremediation of petroleum-contaminated soil. Hence, with this intention in the current study potent natural surfactants characterized as lipopeptides were evaluated for low-cost production by Bacillus subtilis SNW3, previously isolated from the Fimkessar oil field, Chakwal Pakistan. The significant results were obtained by using substrates in combination (white beans powder (6% w/v) + waste frying oil (1.5% w/v) and (0.1% w/v) urea) with lipopeptides yield of about 1.17 g/L contributing 99% reduction in cost required for medium preparation. To the best of our knowledge, no single report is presently describing lipopeptide production by Bacillus subtilis using white beans powder as a culture medium. Additionally, produced lipopeptides display great physicochemical properties of surface tension reduction value (SFT = 28.8 mN/m), significant oil displacement activity (ODA = 4.9 cm), excessive emulsification ability (E24 = 69.8%), and attains critical micelle concentration (CMC) value at 0.58 mg/mL. Furthermore, biosurfactants produced exhibit excellent stability over an extensive range of pH (1-11), salinity (1-8%), temperature (20-121°C), and even after autoclaving. Subsequently, produced lipopeptides are proved suitable for bioremediation of crude oil (86%) and as potent plant growth-promoting agent that significantly (P < 0.05) increase seed germination and plant growth promotion of chili pepper, lettuce, tomato, and pea maximum at a concentration of (0.7 g/100 mL), showed as a potential agent for agriculture and bioremediation processes by lowering economic and environmental stress.
Collapse
|
50
|
Gidudu B, Chirwa EM. Electrokinetic extraction and recovery of biosurfactants using rhamnolipids as a model biosurfactant. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|