1
|
Li L, Yin S, Zhou J, Zhang L, Teng Z, Qiao L, Wang Y, Yu J, Zang H, Ding Y, Liu X, Sun S, Guo H. Spike 1 trimer, a nanoparticle vaccine against porcine epidemic diarrhea virus induces protective immunity challenge in piglets. Front Microbiol 2024; 15:1386136. [PMID: 38650887 PMCID: PMC11033347 DOI: 10.3389/fmicb.2024.1386136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is considered the cause for porcine epidemic diarrhea (PED) outbreaks and hefty losses in pig farming. However, no effective commercial vaccines against PEDV mutant strains are available nowadays. Here, we constructed three native-like trimeric candidate nanovaccines, i.e., spike 1 trimer (S1-Trimer), collagenase equivalent domain trimer (COE-Trimer), and receptor-binding domain trimer (RBD-Trimer) for PEDV based on Trimer-Tag technology. And evaluated its physical properties and immune efficacy. The result showed that the candidate nanovaccines were safe for mice and pregnant sows, and no animal death or miscarriage occurred in our study. S1-Trimer showed stable physical properties, high cell uptake rate and receptor affinity. In the mouse, sow and piglet models, immunization of S1-Trimer induced high-level of humoral immunity containing PEDV-specific IgG and IgA. S1-Trimer-driven mucosal IgA responses and systemic IgG responses exhibited high titers of virus neutralizing antibodies (NAbs) in vitro. S1-Trimer induced Th1-biased cellular immune responses in mice. Moreover, the piglets from the S1-Trimer and inactivated vaccine groups displayed significantly fewer microscopic lesions in the intestinal tissue, with only one and two piglets showing mild diarrhea. The viral load in feces and intestines from the S1-Trimer and inactivated vaccine groups were significantly lower than those of the PBS group. For the first time, our data demonstrated the protective efficacy of Trimer-Tag-based nanovaccines used for PEDV. The S1-Trimer developed in this study was a competitive vaccine candidate, and Trimer-Tag may be an important platform for the rapid production of safe and effective subunit vaccines in the future.
Collapse
Affiliation(s)
- Linjie Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Shuanghui Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Jingjing Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zhidong Teng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Lu Qiao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yunhang Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Jiaxi Yu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Haoyue Zang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yaozhong Ding
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
2
|
Cheng Q, Wang T, Zhang J, Tian L, Zeng C, Meng Z, Zhang C, Meng Q. Multifunctional gene delivery vectors containing different liver-targeting fragments for specifically transfecting hepatocellular carcinoma (HCC) cells. J Mater Chem B 2023; 11:9721-9731. [PMID: 37791430 DOI: 10.1039/d3tb01866k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Gene therapy is a promising strategy for HCC treatment, but it commonly faces the problem of low specificity in gene transfection. In this study, we designed and synthesized a series of peptide-based gene delivery vectors (H-01 to H-18) containing varied HCC cell-targeting fragments for specifically binding different receptors highly expressed on HCC cell membranes. The physicochemical properties of peptide vectors or peptide/DNA complexes were characterized, and the gene delivery abilities of peptide vectors were evaluated in HepG2 cell lines. The results showed that peptide vectors H-02 and H-09, which contained targeted fragments for ACE2 and c-Met receptors, respectively, could specifically transfect HCC cells in a highly -efficient manner in vitro. Furthermore, the liver-targeting function in vivo of Cy5.5 labeled H-02 (H-17) and H-09 (H-18) was investigated by fluorescence imaging.
Collapse
Affiliation(s)
- Qin Cheng
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Key laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Taoran Wang
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Jing Zhang
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Key laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Long Tian
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Chunlan Zeng
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Zhao Meng
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Changhao Zhang
- Key laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Qingbin Meng
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
3
|
Jain D, Prajapati SK, Jain A, Singhal R. Nano-formulated siRNA-based therapeutic approaches for cancer therapy. NANO TRENDS 2023; 1:100006. [DOI: 10.1016/j.nwnano.2023.100006] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2025]
|
4
|
Coiled coil exposure and histidine tags drive function of an intracellular protein drug carrier. J Control Release 2021; 339:248-258. [PMID: 34563592 DOI: 10.1016/j.jconrel.2021.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023]
Abstract
In recent years, protein engineering efforts have yielded a diverse set of binding proteins that hold promise for various therapeutic applications. Despite this, their inability to reach intracellular targets limits their applications to cell surface or soluble targets. To address this challenge, we previously reported a protein carrier that binds antibodies and delivers them to therapeutic targets inside cancer cells. This carrier, known as the Hex carrier, is comprised of a self-assembling coiled coil hexamer at the core, with each alpha helix fused to a linker, an antibody binding domain, and a six Histidine-tag (His-tag). In this work, we designed different versions of the carrier to determine the role of each building block in cytosolic protein delivery. We found that increasing exposure of the Hex coiled coil on the carriers, through molecular design or removing antibodies, increased internalization, pointing to a role of the coiled coil in promoting endocytosis. We observed a clear increase in endosomal disruption events when His-tags were present on the carrier relative to when they were removed, due to an endosomal buffering effect. Finally, we found that the antibody binding domains of the Hex carrier could be replaced with monomeric ultra-stable GFP for intracellular delivery and endosomal escape. Our results demonstrate that the Hex coiled coil, in conjunction with His-tags, could be a generalizable vehicle for delivering small and large proteins to intracellular targets. This work also highlights new biological applications for oligomeric coiled coils and shows the direct and quantifiable impact of histidine residues on endosomal disruption. These findings could inform the design of future drug delivery vehicles in applications beyond intracellular protein delivery.
Collapse
|
5
|
Li Y, Sun Y, Dong W, Zhu C, Guan Y, Shang D. Acylation of antimicrobial peptide-plasmid DNA vectors formulation for efficient gene delivery in cancer therapy. Colloids Surf B Biointerfaces 2021; 208:112069. [PMID: 34478957 DOI: 10.1016/j.colsurfb.2021.112069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
Antimicrobial peptides/DNA complexes were designed based on AMPs chensinin-1b and its corresponding lipo-chensinin-1b conjugated with an aliphatic acid with different chain lengths and therapeutic genes. The main goal of such a complex includes two aspects: first, antimicrobial peptides deliver therapeutic genes to cancer cells and genes expressed in targeted tissue for cancer gene therapy, and, second, the antimicrobial peptide kills cancer cells when used alone as an anticancer agent. This study presents a model composed of chensinin-1b and its lipo-chensinin-1b and eGFP plasmids, which were used as reporter genes, and the final peptide/eGFP plasmid complexes were analyzed by TEM and DLS. The gene transfection efficiency of the complex was evaluated by a microplate reader, FACS and CLSM. Compared with Lipo2000, the antimicrobial peptide showed specific selectivity for transfection against cancer cells and mammalian cells. The peptides chensinin-1b and lipo-chensinin-1b binding with the eGFP plasmid displayed optimal transfection efficiencies at a mass ratio of 8. In addition, PA-C1b can deliver p53-eGFP plasmids into MCF-7 cancer cells, and the proliferation of cells was inhibited and even caused cell death. Overall, PA-C1b was screened and found to have the highest transfection efficiency for gene delivery and good cellular uptake capability. The in vivo transfection ability of PA-C1b was investigated using a tumor-bearing mouse model, and the transfection efficiency reflected by the fluorescence of expressed GFP was determined by in vivo imaging. Conclusively, the antimicrobial peptide PA-C1b could be used as the nonviral vector with high efficiency for cancer gene therapy.
Collapse
Affiliation(s)
- Yue Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Yue Sun
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Weibing Dong
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China.
| | - Chengdong Zhu
- School of Life Science, Liaoning Normal University, Dalian 116081, China; School of Physical Education, Liaoning Normal University, Dalian 116081, China
| | - Yue Guan
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
6
|
Tarvirdipour S, Skowicki M, Schoenenberger CA, Palivan CG. Peptide-Assisted Nucleic Acid Delivery Systems on the Rise. Int J Mol Sci 2021; 22:9092. [PMID: 34445799 PMCID: PMC8396486 DOI: 10.3390/ijms22169092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Concerns associated with nanocarriers' therapeutic efficacy and side effects have led to the development of strategies to advance them into targeted and responsive delivery systems. Owing to their bioactivity and biocompatibility, peptides play a key role in these strategies and, thus, have been extensively studied in nanomedicine. Peptide-based nanocarriers, in particular, have burgeoned with advances in purely peptidic structures and in combinations of peptides, both native and modified, with polymers, lipids, and inorganic nanoparticles. In this review, we summarize advances on peptides promoting gene delivery systems. The efficacy of nucleic acid therapies largely depends on cell internalization and the delivery to subcellular organelles. Hence, the review focuses on nanocarriers where peptides are pivotal in ferrying nucleic acids to their site of action, with a special emphasis on peptides that assist anionic, water-soluble nucleic acids in crossing the membrane barriers they encounter on their way to efficient function. In a second part, we address how peptides advance nanoassembly delivery tools, such that they navigate delivery barriers and release their nucleic acid cargo at specific sites in a controlled fashion.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- Department of Biosystem Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Michal Skowicki
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
7
|
Song J, Huang S, Ma P, Zhang B, Jia B, Zhang W. Improving NK1R-targeted gene delivery of stearyl-antimicrobial peptide CAMEL by conjugating it with substance P. Bioorg Med Chem Lett 2020; 30:127353. [PMID: 32631551 DOI: 10.1016/j.bmcl.2020.127353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
Specificity is a crucial condition that hampers the application of non-viral vectors for cancer gene therapy. In a previous study, we developed an efficient gene vector, stearyl-CAMEL, using N-terminal stearylation of the antimicrobial peptide CAMEL. Substance P (SP), an 11-residue neuropeptide, rapidly enters cells after binding to the neurokinin-1 receptor (NK1R), which is expressed in many cancer cell lines. In this study, the NK1R-targeted gene vector stearyl-CMSP was constructed by conjugating SP to the C-terminus of stearyl-CAMEL. Our results indicated that stearyl-CMSP displayed significant transfection specificity for NK1R-expressing cells compared with that shown by stearyl-CAMEL. Accordingly, the stearyl-CMSP/p53 plasmid complexes had significantly higher antiproliferative activity against HEK293-NK1R cells than they did against HEK293 cells, while the stearyl-CAMEL/p53 plasmid complexes did not show this specificity in antiproliferative activity. Consequently, conjugation of the NK1R-targeted ligand SP is a simple and successful strategy to construct efficient cancer-targeted non-viral gene vectors.
Collapse
Affiliation(s)
- Jingjing Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sujie Huang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Panpan Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bao Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bo Jia
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
8
|
Song J, Ma P, Huang S, Wang J, Xie H, Jia B, Zhang W. Acylation of the antimicrobial peptide CAMEL for cancer gene therapy. Drug Deliv 2020; 27:964-973. [PMID: 32611259 PMCID: PMC8216477 DOI: 10.1080/10717544.2020.1787556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obtaining ideal gene delivery vectors is still a major goal in cancer gene therapy. CAMEL, a short hybrid antimicrobial peptide, can kill cancer cells by membrane lysis. In this study, we constructed a series of non-viral vectors by attaching fatty acids with different chain lengths to the N-terminus of CAMEL. Our results showed that the cellular uptake and transfection efficiency of acyl-CAMEL started to significantly increase from a chain length of 12 carbons. C18-CAMEL was screened for gene delivery because it had the highest transfection efficiency. Surprisingly, C18-CAMEL/plasmid complexes displayed strong endosomal escape activity after entering cells via endocytosis. Importantly, C18-CAMEL could deliver p53 plasmids to cancer cells and significantly inhibited cell proliferation by the expression of p53. In addition, the C18-CAMEL/p53 plasmid complexes and the MDM2 inhibitor nutlin-3a showed significantly synergistic anticancer activity against MCF-7 cells expressing wild-type p53. Conclusively, our study demonstrated that conjugation of stearic acid to antimicrobial peptides is a simple and successful approach for constructing efficient and economical non-viral vectors for cancer gene therapy.
Collapse
Affiliation(s)
- Jingjing Song
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Panpan Ma
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Sujie Huang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Juanli Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Huan Xie
- The Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bo Jia
- Institute of Physiology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wei Zhang
- Institute of Physiology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 459] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
10
|
Switching cell penetrating and CXCR4-binding activities of nanoscale-organized arginine-rich peptides. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1777-1786. [DOI: 10.1016/j.nano.2018.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/25/2018] [Accepted: 05/04/2018] [Indexed: 11/19/2022]
|
11
|
Lino MM, Simões S, Vilaça A, Antunes H, Zonari A, Ferreira L. Modulation of Angiogenic Activity by Light-Activatable miRNA-Loaded Nanocarriers. ACS NANO 2018; 12:5207-5220. [PMID: 29870221 DOI: 10.1021/acsnano.7b07538] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The combinatorial delivery of miRNAs holds great promise to modulate cell activity in the context of angiogenesis. Yet, the delivery of multiple miRNAs with spatiotemporal control remains elusive. Here, we report a plasmonic nanocarrier to control the release of two microRNAs. The nanocarrier consists of gold nanorods modified with single-stranded DNA for hybridization with complementary DNA-conjugated microRNAs. DNA strands with distinct melting temperatures enable the independent release of each microRNA with a near-infrared laser using the same wavelength but different powers. Tests in human outgrowth endothelial cells (OECs) indicate that this system can be used to silence different targets sequentially and, by doing so, to modulate cell activity with spatiotemporal resolution. Finally, using an in vivo acute wound healing animal model, it is demonstrated that the order by which each miRNA was released in transplanted OECs significantly impacted the wound healing kinetics.
Collapse
Affiliation(s)
- Miguel M Lino
- Center for Neuroscience and Cell Biology , University of Coimbra , 3004-517 Coimbra , Portugal
- Faculty of Medicine , University of Coimbra , 3000-548 Coimbra , Portugal
| | - Susana Simões
- Center for Neuroscience and Cell Biology , University of Coimbra , 3004-517 Coimbra , Portugal
| | - Andreia Vilaça
- Center for Neuroscience and Cell Biology , University of Coimbra , 3004-517 Coimbra , Portugal
| | - Helena Antunes
- Center for Neuroscience and Cell Biology , University of Coimbra , 3004-517 Coimbra , Portugal
- Faculty of Medicine , University of Coimbra , 3000-548 Coimbra , Portugal
- Crioestaminal , 3060-197 Cantanhede , Portugal
| | - Alessandra Zonari
- Center for Neuroscience and Cell Biology , University of Coimbra , 3004-517 Coimbra , Portugal
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology , University of Coimbra , 3004-517 Coimbra , Portugal
- Faculty of Medicine , University of Coimbra , 3000-548 Coimbra , Portugal
| |
Collapse
|
12
|
Meng Z, Kang Z, Sun C, Yang S, Zhao B, Feng S, Meng Q, Liu K. Enhanced gene transfection efficiency by use of peptide vectors containing laminin receptor-targeting sequence YIGSR. NANOSCALE 2018; 10:1215-1227. [PMID: 29292451 DOI: 10.1039/c7nr05843h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study presents the design and evaluation of a series of multifunctional peptides and their gene delivery abilities. The peptide sequences contained a cell-penetrating segment, six continuous histidine residues, a stearyl moiety and a laminin receptor-targeting segment. The YIGSR segment promoted cellular uptake through the interaction with laminin receptors on the surface of cells, which resulted in a great improvement in gene transfection efficiency. The conformation, particle size and zeta potential of peptide/DNA complexes were characterized via circular dichroism and dynamic light scattering. Their gene transfection efficiency was investigated by fluorescence-activated cell sorting and confocal microscopy. The transfection efficiency of the designed peptide vectors was higher than that of Lipo 2000. The peptide TAT-H6-K(C18)-YIGSR displayed transfection efficiencies at N/P ratios of 6, which was 3.5 and 7 times higher than that of Lipo 2000 in B16F10 and 293T cells, respectively. All peptides exhibited lower cytotoxicity than Lipo 2000 in B16F10 and 293T cells. In summary, the designed YIGSR-containing multifunctional peptide gene vectors promoted cellular uptake and gene transfection. Their in vivo transfection ability was investigated in zebrafish, and the transfection efficiency was determined by confocal microscopy and bioluminescence imaging. The peptide vectors, owing to their relatively short sequences and ease of functionalization, offer a promising approach for gene delivery because of their low cytotoxicity and high transfection efficiency.
Collapse
Affiliation(s)
- Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lee J, Oh ET, Song J, Kim HG, Park HJ, Kim C. Stimulus-Induced Conformational Transformation of a Cyclic Peptide for Selective Cell-Targeting On-Off Gatekeeper for Mesoporous Nanocarriers. Chem Asian J 2017; 12:2813-2818. [DOI: 10.1002/asia.201701050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/11/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Jeonghun Lee
- Department of Polymer Science and Engineering; Inha University; Yonghyun-dong, Nam-gu Incheon 22212 Korea
| | - Eun-Taex Oh
- Department of Biomedical Sciences, School of Medicine; Inha University; Yonghyun-dong, Nam-gu Incheon 22212 Korea
| | - Jaehun Song
- Department of Polymer Science and Engineering; Inha University; Yonghyun-dong, Nam-gu Incheon 22212 Korea
| | - Ha Gyeong Kim
- Department of Microbiology, Hypoxia-related Disease Research Center, College of Medicine; Inha University; Yonghyun-dong, Nam-gu Incheon 22212 Korea
| | - Heon Joo Park
- Department of Microbiology, Hypoxia-related Disease Research Center, College of Medicine; Inha University; Yonghyun-dong, Nam-gu Incheon 22212 Korea
| | - Chulhee Kim
- Department of Polymer Science and Engineering; Inha University; Yonghyun-dong, Nam-gu Incheon 22212 Korea
| |
Collapse
|
14
|
Serna N, Sánchez-García L, Sánchez-Chardi A, Unzueta U, Roldán M, Mangues R, Vázquez E, Villaverde A. Protein-only, antimicrobial peptide-containing recombinant nanoparticles with inherent built-in antibacterial activity. Acta Biomater 2017; 60:256-263. [PMID: 28735028 DOI: 10.1016/j.actbio.2017.07.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 11/16/2022]
Abstract
The emergence of bacterial antibiotic resistances is a serious concern in human and animal health. In this context, naturally occurring cationic antimicrobial peptides (AMPs) might play a main role in a next generation of drugs against bacterial infections. Taking an innovative approach to design self-organizing functional proteins, we have generated here protein-only nanoparticles with intrinsic AMP microbicide activity. Using a recombinant version of the GWH1 antimicrobial peptide as building block, these materials show a wide antibacterial activity spectrum in absence of detectable toxicity on mammalian cells. The GWH1-based nanoparticles combine clinically appealing properties of nanoscale materials with full biocompatibility, structural and functional plasticity and biological efficacy exhibited by proteins. Because of the largely implemented biological fabrication of recombinant protein drugs, the protein-based platform presented here represents a novel and scalable strategy in antimicrobial drug design, that by solving some of the limitations of AMPs offers a promising alternative to conventional antibiotics. STATEMENT OF SIGNIFICANCE The low molecular weight antimicrobial peptide GWH1 has been engineered to oligomerize as self-assembling protein-only nanoparticles of around 50nm. In this form, the peptide exhibits potent and broad antibacterial activities against both Gram-positive and Gram-negative bacteria, without any harmful effect over mammalian cells. As a solid proof-of-concept, this finding strongly supports the design and biofabrication of nanoscale antimicrobial materials with in-built functionalities. The protein-based homogeneous composition offer advantages over alternative materials explored as antimicrobial agents, regarding biocompatibility, biodegradability and environmental suitability. Beyond the described prototype, this transversal engineering concept has wide applicability in the design of novel nanomedicines for advanced treatments of bacterial infections.
Collapse
Affiliation(s)
- Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Laura Sánchez-García
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | | | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Mónica Roldán
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
15
|
Lee J, Han S, Lee J, Choi M, Kim C. Stimuli-responsive α-helical peptide gatekeepers for mesoporous silica nanocarriers. NEW J CHEM 2017. [DOI: 10.1039/c7nj00124j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A stimuli-responsive α-helical peptide, as a gatekeeper on the surface of mesoporous silica nanoparticles, efficiently controlled the release of entrapped drugs through triggered conformational conversion and effectively disrupted lipid membranes.
Collapse
Affiliation(s)
- Jeonghun Lee
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| | - Seungjong Han
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| | - Jinyoung Lee
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| | - Minhyuek Choi
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| | - Chulhee Kim
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| |
Collapse
|
16
|
Peptidomic analysis of bioactive peptides in zebra blenny (Salaria basilisca) muscle protein hydrolysate exhibiting antimicrobial activity obtained by fermentation with Bacillus mojavensis A21. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.08.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Meng Z, Luan L, Kang Z, Feng S, Meng Q, Liu K. Histidine-enriched multifunctional peptide vectors with enhanced cellular uptake and endosomal escape for gene delivery. J Mater Chem B 2016; 5:74-84. [PMID: 32263436 DOI: 10.1039/c6tb02862d] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptide vectors offer a promising gene delivery approach because of their biocompatibility and ease of functionalization. This article describes the design and evaluation of a series of multifunctional peptides and their gene delivery abilities. The peptides were composed of a cell-penetrating segment, stearyl moiety, cationic amphiphilic α-helical segment, and cysteine and histidine residues. The proton sponge effect of histidine residues at low pH and the α-helical conformation should improve endosomal escape. Inclusion of d-type amino acids should improve proteolytic stability. The conformation, particle size and zeta potential of peptide/DNA complexes were characterized by circular dichroism and dynamic light scattering. Gene transfection efficiency was investigated by fluorescence-activated cell sorting and confocal microscopy. Transfection efficiencies of the designed peptide vectors were better than those of C18-C(LLKK)3C-TAT and Lipo2000. d-Type peptide C18-c(llhh)3c-tat showed three times higher transfection efficiency at N/P ratios of 6 and 8 than Lipo2000 in NIH-3T3 and 293T cells. All peptides showed lower cytotoxicity than Lipo2000 in NIH-3T3 and 293T cells. In the presence of trypsin or serum in vitro, d-type peptides showed better stability than l-type peptides. Overall, the designed histidine-enriched multifunctional peptide gene vectors promoted cellular uptake, endosomal escape and gene transfection.
Collapse
Affiliation(s)
- Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China.
| | | | | | | | | | | |
Collapse
|
18
|
Sessions JW, Skousen CS, Price KD, Hanks BW, Hope S, Alder JK, Jensen BD. CRISPR-Cas9 directed knock-out of a constitutively expressed gene using lance array nanoinjection. SPRINGERPLUS 2016; 5:1521. [PMID: 27652094 PMCID: PMC5017990 DOI: 10.1186/s40064-016-3037-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/10/2016] [Indexed: 11/23/2022]
Abstract
Background CRISPR-Cas9 genome editing and labeling has emerged as an important tool in biologic research, particularly in regards to potential transgenic and gene therapy applications. Delivery of CRISPR-Cas9 plasmids to target cells is typically done by non-viral methods (chemical, physical, and/or electrical), which are limited by low transfection efficiencies or with viral vectors, which are limited by safety and restricted volume size. In this work, a non-viral transfection technology, named lance array nanoinjection (LAN), utilizes a microfabricated silicon chip to physically and electrically deliver genetic material to large numbers of target cells. To demonstrate its utility, we used the CRISPR-Cas9 system to edit the genome of isogenic cells. Two variables related to the LAN process were tested which include the magnitude of current used during plasmid attraction to the silicon lance array (1.5, 4.5, or 6.0 mA) and the number of times cells were injected (one or three times). Results Results indicate that most successful genome editing occurred after injecting three times at a current control setting of 4.5 mA, reaching a median level of 93.77 % modification. Furthermore, we found that genome editing using LAN follows a non-linear injection-dose response, meaning samples injected three times had modification rates as high as nearly 12 times analogously treated single injected samples. Conclusions These findings demonstrate the LAN’s ability to deliver genetic material to cells and indicate that successful alteration of the genome is influenced by a serial injection method as well as the electrical current settings.
Collapse
Affiliation(s)
- John W Sessions
- Department of Mechanical Engineering, Brigham Young University, Provo, UT USA
| | - Craig S Skousen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT USA
| | - Kevin D Price
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT USA
| | - Brad W Hanks
- Department of Mechanical Engineering, Brigham Young University, Provo, UT USA
| | - Sandra Hope
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT USA
| | - Jonathan K Alder
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT USA
| | - Brian D Jensen
- Department of Mechanical Engineering, Brigham Young University, Provo, UT USA
| |
Collapse
|
19
|
Pierrat P, Casset A, Didier P, Kereselidze D, Lux M, Pons F, Lebeau L. Cationic DOPC-Detergent Conjugates for Safe and Efficient in Vitro and in Vivo Nucleic Acid Delivery. Chembiochem 2016; 17:1771-83. [PMID: 27380144 DOI: 10.1002/cbic.201600302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 01/19/2023]
Abstract
The ability of a nonviral nucleic acid carrier to deliver its cargo to cells with low associated toxicity is a critical issue for clinical applications of gene therapy. We describe biodegradable cationic DOPC-C12 E4 conjugates in which transfection efficiency is based on a Trojan horse strategy. In situ production of the detergent compound C12 E4 through conjugate hydrolysis within the acidic endosome compartment was expected to promote endosome membrane destabilization and subsequent release of the lipoplexes into cytosol. The transfection efficiency of the conjugates has been assessed in vitro, and associated cytotoxicity was determined. Cellular uptake and intracellular distribution of the lipoplexes have been investigated. The results show that direct conjugation of DOPC with C12 E4 produces a versatile carrier that can deliver both DNA and siRNA to cells in vitro with high efficiency and low cytotoxicity. SAR studies suggest that this compound might represent a reasonable compromise between the membrane activity of the released detergent and susceptibility of the conjugate to degradation enzymes in vitro. Although biodegradability of the conjugates had low impact on carrier efficiency in vitro, it proved critical in vivo. Significant improvement of transgene expression was obtained in the mouse lung tuning biodegradability of the carrier. Importantly, this also allowed reduction of the inflammatory response that invariably characterizes cationic-lipid-mediated gene transfer in animals.
Collapse
Affiliation(s)
- Philippe Pierrat
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, B. P. 60024, 67401, Illkirch, France
| | - Anne Casset
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, B. P. 60024, 67401, Illkirch, France
| | - Pascal Didier
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, B. P. 60024, 67401, Illkirch, France
| | - Dimitri Kereselidze
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, B. P. 60024, 67401, Illkirch, France
| | - Marie Lux
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, B. P. 60024, 67401, Illkirch, France
| | - Françoise Pons
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, B. P. 60024, 67401, Illkirch, France
| | - Luc Lebeau
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, B. P. 60024, 67401, Illkirch, France.
| |
Collapse
|
20
|
Kamaruzaman KA, Moyle PM, Toth I. Peptide-Based Multicomponent Oligonucleotide Delivery Systems: Optimisation of Poly-l-lysine Dendrons for Plasmid DNA Delivery. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9545-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Nepomnyashchikh TS, Antonets DV, Shchelkunov SN. Gene therapy of arthritis. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416050094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Galukhin A, Imatdinov I, Osin Y. p-tert-Butylthiacalix[4]arenes equipped with guanidinium fragments: aggregation, cytotoxicity, and DNA binding abilities. RSC Adv 2016. [DOI: 10.1039/c6ra04733e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thiacalix[4]arenes in 1,3-alternate conformation functionalized with guanidinium groups showed a strong dependence of the aggregation properties with the ratio of guanidinium/n-decyl fragments attached to phenolic groups.
Collapse
Affiliation(s)
- Andrey Galukhin
- Kazan Federal University
- Department of Physical Chemistry
- Kazan 420008
- Russian Federation
| | - Ilnaz Imatdinov
- State Science Institution National Research Institute of Veterinary Virology and Microbiology of Russian Academy of Agricultural Sciences
- Russian Federation
| | - Yuri Osin
- Kazan Federal University
- Department of Physical Chemistry
- Kazan 420008
- Russian Federation
| |
Collapse
|
23
|
Tian G, Zhang X, Gu Z, Zhao Y. Recent Advances in Upconversion Nanoparticles-Based Multifunctional Nanocomposites for Combined Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7692-712. [PMID: 26505885 DOI: 10.1002/adma.201503280] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/05/2015] [Indexed: 05/21/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) have the ability to generate ultraviolet or visible emissions under continuous-wave near-infrared (NIR) excitation. Utilizing this special luminescence property, UCNPs are approved as a new generation of contrast agents in optical imaging with deep tissue-penetration ability and high signal-to-noise ratio. The integration of UCNPs with other functional moieties can endow them with highly enriched functionalities for imaging-guided cancer therapy, which makes composites based on UCNPs emerge as a new class of theranostic agents in biomedicine. Here, recent progress in combined cancer therapy using functional nanocomposites based on UCNPs is reviewed. Combined therapy referring to the co-delivery of two or more therapeutic agents or a combination of different treatments is becoming more popular in clinical treatment of cancer because it generates synergistic anti-cancer effects, reduces individual drug-related toxicity and suppresses multi-drug resistance through different mechanisms of action. Here, the recent advances of combined therapy contributed by UCNPs-based nanocomposites on two main branches are reviewed: i) photodynamic therapy and ii) chemotherapy, which are the two most widely adopted therapies of UCNPs-based composites. The future prospects and challenges in this emerging field will be also discussed.
Collapse
Affiliation(s)
- Gan Tian
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences (CAS), Beijing, China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Gaotanyan 30, Chongqing, 400038, China
| | - Xiao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
24
|
Zhang Q, Gao H, He Q. Taming Cell Penetrating Peptides: Never Too Old To Teach Old Dogs New Tricks. Mol Pharm 2015; 12:3105-18. [PMID: 26237247 DOI: 10.1021/acs.molpharmaceut.5b00428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qianyu Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems,
West China School of Pharmacy, and State
Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy,
West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin
Road, Chengdu 610041, P. R. China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems,
West China School of Pharmacy, and State
Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy,
West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin
Road, Chengdu 610041, P. R. China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems,
West China School of Pharmacy, and State
Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy,
West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin
Road, Chengdu 610041, P. R. China
| |
Collapse
|
25
|
Peluffo H, Unzueta U, Negro-Demontel ML, Xu Z, Váquez E, Ferrer-Miralles N, Villaverde A. BBB-targeting, protein-based nanomedicines for drug and nucleic acid delivery to the CNS. Biotechnol Adv 2015; 33:277-87. [PMID: 25698504 DOI: 10.1016/j.biotechadv.2015.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 01/14/2015] [Accepted: 02/09/2015] [Indexed: 01/17/2023]
Abstract
The increasing incidence of diseases affecting the central nervous system (CNS) demands the urgent development of efficient drugs. While many of these medicines are already available, the Blood Brain Barrier and to a lesser extent, the Blood Spinal Cord Barrier pose physical and biological limitations to their diffusion to reach target tissues. Therefore, efforts are needed not only to address drug development but specially to design suitable vehicles for delivery into the CNS through systemic administration. In the context of the functional and structural versatility of proteins, recent advances in their biological fabrication and a better comprehension of the physiology of the CNS offer a plethora of opportunities for the construction and tailoring of plain nanoconjugates and of more complex nanosized vehicles able to cross these barriers. We revise here how the engineering of functional proteins offers drug delivery tools for specific CNS diseases and more transversally, how proteins can be engineered into smart nanoparticles or 'artificial viruses' to afford therapeutic requirements through alternative administration routes.
Collapse
Affiliation(s)
- Hugo Peluffo
- Neuroinflammation Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - María Luciana Negro-Demontel
- Neuroinflammation Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Zhikun Xu
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Esther Váquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
26
|
Luan L, Meng Q, Xu L, Meng Z, Yan H, Liu K. Peptide amphiphiles with multifunctional fragments promoting cellular uptake and endosomal escape as efficient gene vectors. J Mater Chem B 2015; 3:1068-1078. [DOI: 10.1039/c4tb01353k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A series of peptides containing multiple functional fragments were designed as gene-delivery vectors with transfection efficiency comparable to Lipofectamine 2000.
Collapse
Affiliation(s)
- Liang Luan
- Beijing Institute of Pharmacology & Toxicology
- Beijing
- P. R. China
| | - Qingbin Meng
- Beijing Institute of Pharmacology & Toxicology
- Beijing
- P. R. China
| | - Liang Xu
- Beijing Institute of Pharmacology & Toxicology
- Beijing
- P. R. China
| | - Zhao Meng
- Beijing Institute of Pharmacology & Toxicology
- Beijing
- P. R. China
| | - Husheng Yan
- Key Laboratory of Functional Polymer Materials (Ministry of Education) and Institute of Polymer Chemistry
- Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin 300071
- P. R. China
| | - Keliang Liu
- Beijing Institute of Pharmacology & Toxicology
- Beijing
- P. R. China
| |
Collapse
|
27
|
Galukhin A, Erokhin A, Imatdinov I, Osin Y. Investigation of DNA binding abilities of solid lipid nanoparticles based on p-tert-butylthiacalix[4]arene platform. RSC Adv 2015. [DOI: 10.1039/c5ra03814f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amphiphilic thiacalix[4]arene functionalized with guanidinium groups forms stable solid lipid nanoparticles (SLNs) with high binding affinity to double-stranded DNA.
Collapse
Affiliation(s)
- Andrey Galukhin
- Kazan Federal University
- Department of Physical Chemistry
- Kazan 420008
- Russian Federation
| | - Anton Erokhin
- Kazan Federal University
- Department of Physical Chemistry
- Kazan 420008
- Russian Federation
| | - Ilnaz Imatdinov
- State Science Institution National Research Institute of Veterinary Virology and Microbiology of Russian Academy of Agricultural Sciences
- Russian Federation
| | - Yuri Osin
- Kazan Federal University
- Interdisciplinary Center for Analytical Microscopy
- Kazan 420008
- Russian Federation
| |
Collapse
|
28
|
Kehr NS, Atay S, Ergün B. Self-assembled Monolayers and Nanocomposite Hydrogels of Functional Nanomaterials for Tissue Engineering Applications. Macromol Biosci 2014; 15:445-63. [DOI: 10.1002/mabi.201400363] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nermin Seda Kehr
- Physikalisches Institut and Center for Nanotechnology; Westfälische Wilhelms-Universität Münster; Heisenbergstrasse 11 D-48149 Münster Germany
| | - Seda Atay
- Department of Nanotechnology and Nanomedicine; Hacettepe University; 06800 Ankara Turkey
| | - Bahar Ergün
- Department of Chemistry; Biochemistry Division; Hacettepe University; 06800 Ankara Turkey
| |
Collapse
|
29
|
Negro-Demontel ML, Saccardo P, Giacomini C, Yáñez-Muñoz RJ, Ferrer-Miralles N, Vazquez E, Villaverde A, Peluffo H. Comparative analysis of lentiviral vectors and modular protein nanovectors for traumatic brain injury gene therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14047. [PMID: 26015985 PMCID: PMC4362363 DOI: 10.1038/mtm.2014.47] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/25/2014] [Accepted: 08/28/2014] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury (TBI) remains as one of the leading causes of mortality and morbidity worldwide and there are no effective treatments currently available. Gene therapy applications have emerged as important alternatives for the treatment of diverse nervous system injuries. New strategies are evolving with the notion that each particular pathological condition may require a specific vector. Moreover, the lack of detailed comparative studies between different vectors under similar conditions hampers the selection of an ideal vector for a given pathological condition. The potential use of lentiviral vectors versus several modular protein-based nanovectors was compared using a controlled cortical impact model of TBI under the same gene therapy conditions. We show that variables such as protein/DNA ratio, incubation volume, and presence of serum or chloroquine in the transfection medium impact on both nanovector formation and transfection efficiency in vitro. While lentiviral vectors showed GFP protein 1 day after TBI and increased expression at 14 days, nanovectors showed stable and lower GFP transgene expression from 1 to 14 days. No toxicity after TBI by any of the vectors was observed as determined by resulting levels of IL-1β or using neurological sticky tape test. In fact, both vector types induced functional improvement per se.
Collapse
Affiliation(s)
- María Luciana Negro-Demontel
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo , Montevideo, Uruguay ; Departmento de Histología y Embriología, Facultad de Medicina, UDELAR , Montevideo, Uruguay
| | - Paolo Saccardo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , Barcelona, Spain ; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona , Barcelona, Spain ; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Barcelona, Spain
| | - Cecilia Giacomini
- Cátedra de Bioquímica, Departamento de Biociencias, Facultad de Química, UDELAR , Montevideo, Uruguay
| | | | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , Barcelona, Spain ; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona , Barcelona, Spain ; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Barcelona, Spain
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , Barcelona, Spain ; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona , Barcelona, Spain ; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , Barcelona, Spain ; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona , Barcelona, Spain ; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Barcelona, Spain
| | - Hugo Peluffo
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo , Montevideo, Uruguay ; Departmento de Histología y Embriología, Facultad de Medicina, UDELAR , Montevideo, Uruguay
| |
Collapse
|
30
|
Intracellular targeting of CD44+ cells with self-assembling, protein only nanoparticles. Int J Pharm 2014; 473:286-95. [DOI: 10.1016/j.ijpharm.2014.07.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 02/07/2023]
|
31
|
Chitosan nanoparticles as non-viral gene delivery systems: Determination of loading efficiency. Biomed Pharmacother 2014; 68:775-83. [DOI: 10.1016/j.biopha.2014.07.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/08/2014] [Indexed: 11/22/2022] Open
|
32
|
Jayakumar MKG, Bansal A, Huang K, Yao R, Li BN, Zhang Y. Near-infrared-light-based nano-platform boosts endosomal escape and controls gene knockdown in vivo. ACS NANO 2014; 8:4848-4858. [PMID: 24730360 DOI: 10.1021/nn500777n] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Current nanoparticle-based gene delivery techniques face two major limitations, namely, endosomal degradation and poor cytosolic release of the nanoparticles and nonspecificity of treatment. These limitations can be overcome with certain light-based techniques, such as photochemical internalization to enable endosomal escape of the delivered nanoparticles and light-controlled gene expression to overcome the nonspecific effects. However, these techniques require UV/visible light, which is either phototoxic and/or has low tissue penetration capabilities, thus preventing their use in deep tissues in a clinical setting. In an effort to overcome these barriers, we have successfully demonstrated a light-based gene delivery system that significantly boosts cytosolic gene delivery, with precise control over gene expression and the potential for use in nonsuperficial tissues. Core-shell fluorescent upconversion nanoparticles excited by highly penetrating near-infrared radiation and emitting simultaneously in the ultraviolet and visible ranges were synthesized and used as remote nanotransducers to simultaneously activate endosomal escape and gene knockdown. Gene knockdown using photomorpholinos was enhanced as much as 30% in vitro compared to the control without endosomal escape facilitation. A similar trend was seen in vivo in a murine melanoma model, demonstrating the enormous clinical potential of this system.
Collapse
|
33
|
Liang K, Richardson JJ, Ejima H, Such GK, Cui J, Caruso F. Peptide-tunable drug cytotoxicity via one-step assembled polymer nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:2398-2402. [PMID: 24375889 DOI: 10.1002/adma.201305002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/20/2013] [Indexed: 06/03/2023]
Abstract
A novel class of nanoparticles is developed for the co-delivery of a short cell penetrating peptide and a chemotherapeutic drug to achieve enhanced cytotoxicity. Tunable cytotoxicity is achieved through non-toxic peptide-facilitated gating. The strategy relies on a one-step blending process from polymer building blocks to form monodisperse, PEGylated particles that are sensitive to cellular pH variations. By varying the amount of peptide loading, the chemotherapeutic effects can be enhanced by up to 30-fold.
Collapse
Affiliation(s)
- Kang Liang
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | | | |
Collapse
|
34
|
Mishra D, Kang HC, Cho H, Bae YH. Dexamethasone-loaded reconstitutable charged polymeric (PLGA)n -b-bPEI micelles for enhanced nuclear delivery of gene therapeutics. Macromol Biosci 2014; 14:831-41. [PMID: 24550091 DOI: 10.1002/mabi.201300432] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/09/2014] [Indexed: 11/06/2022]
Abstract
This study investigates the potential of dexamethasone (Dex) to enhance the nuclear accumulation and subsequent gene expression of plasmid DNA (pDNA) delivered using a charged polymeric micelle-based gene delivery system. (PLGA)n -b-bPEI25kDa block copolymers are synthesized and used to prepare Dex-loaded cationic micelles (DexCM). After preparing DexCM/pDNA complexes, bPEI1.8kDa is coated on the complexes using a Layer-by-Layer (LbL) technique to construct DexCM/pDNA/bPEI1.8kDa complexes (i.e., LbL-DexCM polyplexes) that are 100-180 nm in diameter and have a zeta potential of 30-40 mV. In MCF7 cells, LbL-DexCM polyplexes cause 3-13-fold higher transfection efficiencies compared to LbL-CM polyplexes and show negligible cytotoxicity. LbL-DexCM3 polyplexes induce much higher nuclear delivery of pDNA compared to LbL-CM3 polyplexes. These results suggest that Dex-loaded polyplexes could be used in gene and drug delivery applications to increase nuclear accumulation of therapeutic payloads, further leading to a decrease in the dose of the drug and gene necessary to achieve equivalent therapeutic effects.
Collapse
Affiliation(s)
- Deepa Mishra
- Department of Bioengineering, The University of Utah, 20 S. 2030 E., Rm. 108, Salt Lake City, Utah, 84112, USA
| | | | | | | |
Collapse
|
35
|
Benson K, Galla HJ, Kehr NS. Cell adhesion behavior in 3D hydrogel scaffolds functionalized with D- or L-aminoacids. Macromol Biosci 2014; 14:793-8. [PMID: 24515547 DOI: 10.1002/mabi.201300485] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/06/2014] [Indexed: 01/17/2023]
Abstract
Alginate hydrogels functionalized with D-, or L-penicillamine (D-, L-PEN-Alg) are used as new 3D scaffolds for cell adhesion studies. The cells recognize and show different adhesion properties in the respective 3D hydrogel scaffolds. C-6-glioma and endothelial cells show higher affinity to the D-PEN than to the L-PEN functionalized 3D alginate hydrogel scaffold. The cultivated cells are harvested from the hydrogel and are reused, for example, for cell growth experiments on 2D surfaces to prove their viability as well.
Collapse
Affiliation(s)
- Kathrin Benson
- Institut für Biochemie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, D-48149, Münster, Germany
| | | | | |
Collapse
|
36
|
Favaro MTP, de Toledo MAS, Alves RF, Santos CA, Beloti LL, Janissen R, de la Torre LG, Souza AP, Azzoni AR. Development of a non-viral gene delivery vector based on the dynein light chain Rp3 and the TAT peptide. J Biotechnol 2014; 173:10-8. [PMID: 24417903 DOI: 10.1016/j.jbiotec.2014.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/20/2013] [Accepted: 01/02/2014] [Indexed: 02/02/2023]
Abstract
Gene therapy and DNA vaccination trials are limited by the lack of gene delivery vectors that combine efficiency and safety. Hence, the development of modular recombinant proteins able to mimic mechanisms used by viruses for intracellular trafficking and nuclear delivery is an important strategy. We designed a modular protein (named T-Rp3) composed of the recombinant human dynein light chain Rp3 fused to an N-terminal DNA-binding domain and a C-terminal membrane active peptide, TAT. The T-Rp3 protein was successfully expressed in Escherichia coli and interacted with the dynein intermediate chain in vitro. It was also proven to efficiently interact and condense plasmid DNA, forming a stable, small (∼100nm) and positively charged (+28.6mV) complex. Transfection of HeLa cells using T-Rp3 revealed that the vector is highly dependent on microtubule polarization, being 400 times more efficient than protamine, and only 13 times less efficient than Lipofectamine 2000™, but with a lower cytotoxicity. Confocal laser scanning microcopy studies revealed perinuclear accumulation of the vector, most likely as a result of transport via microtubules. This study contributes to the development of more efficient and less cytotoxic proteins for non-viral gene delivery.
Collapse
Affiliation(s)
- M T P Favaro
- Laboratório de Análise Genética e Molecular, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - M A S de Toledo
- Laboratório de Análise Genética e Molecular, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - R F Alves
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
| | - C A Santos
- Laboratório de Análise Genética e Molecular, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - L L Beloti
- Laboratório de Análise Genética e Molecular, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - R Janissen
- Instituto de Física Aplicada "Gleb Wataghin", Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - L G de la Torre
- Faculdade de Engenharia Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - A P Souza
- Laboratório de Análise Genética e Molecular, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - A R Azzoni
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
37
|
Unzueta U, Saccardo P, Domingo-Espín J, Cedano J, Conchillo-Solé O, García-Fruitós E, Céspedes MV, Corchero JL, Daura X, Mangues R, Ferrer-Miralles N, Villaverde A, Vázquez E. Sheltering DNA in self-organizing, protein-only nano-shells as artificial viruses for gene delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:535-41. [PMID: 24269989 DOI: 10.1016/j.nano.2013.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/23/2013] [Accepted: 11/11/2013] [Indexed: 12/31/2022]
Abstract
UNLABELLED By recruiting functional domains supporting DNA condensation, cell binding, internalization, endosomal escape and nuclear transport, modular single-chain polypeptides can be tailored to associate with cargo DNA for cell-targeted gene therapy. Recently, an emerging architectonic principle at the nanoscale has permitted tagging protein monomers for self-organization as protein-only nanoparticles. We have studied here the accommodation of plasmid DNA into protein nanoparticles assembled with the synergistic assistance of end terminal poly-arginines (R9) and poly-histidines (H6). Data indicate a virus-like organization of the complexes, in which a DNA core is surrounded by a solvent-exposed protein layer. This finding validates end-terminal cationic peptides as pleiotropic tags in protein building blocks for the mimicry of viral architecture in artificial viruses, representing a promising alternative to the conventional use of viruses and virus-like particles for nanomedicine and gene therapy. FROM THE CLINICAL EDITOR Finding efficient gene delivery methods still represents a challenge and is one of the bottlenecks to the more widespread application of gene therapy. The findings presented in this paper validate the application of end-terminal cationic peptides as pleiotropic tags in protein building blocks for "viral architecture mimicking" in artificial viruses, representing a promising alternative to the use of viruses and virus-like particles for gene delivery.
Collapse
Affiliation(s)
- Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Paolo Saccardo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Joan Domingo-Espín
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Juan Cedano
- Laboratory of Immunology, Regional Norte, Universidad de la República,, Salto, Uruguay
| | - Oscar Conchillo-Solé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Elena García-Fruitós
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - María Virtudes Céspedes
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain; Grup d'Oncogènesi i Antitumorals, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain; Grup d'Oncogènesi i Antitumorals, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain.
| |
Collapse
|
38
|
Zhang W, Song J, Liang R, Zheng X, Chen J, Li G, Zhang B, Yan X, Wang R. Stearylated Antimicrobial Peptide Melittin and Its Retro Isomer for Efficient Gene Transfection. Bioconjug Chem 2013; 24:1805-12. [DOI: 10.1021/bc400053b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wei Zhang
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences, Institute of Biochemistry and Molecular
Biology, School of Life Sciences, , Lanzhou University, Lanzhou 730000, China
| | - Jingjing Song
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences, Institute of Biochemistry and Molecular
Biology, School of Life Sciences, , Lanzhou University, Lanzhou 730000, China
| | - Ranran Liang
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences, Institute of Biochemistry and Molecular
Biology, School of Life Sciences, , Lanzhou University, Lanzhou 730000, China
| | - Xin Zheng
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences, Institute of Biochemistry and Molecular
Biology, School of Life Sciences, , Lanzhou University, Lanzhou 730000, China
| | - Jianbo Chen
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences, Institute of Biochemistry and Molecular
Biology, School of Life Sciences, , Lanzhou University, Lanzhou 730000, China
| | - Guolin Li
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences, Institute of Biochemistry and Molecular
Biology, School of Life Sciences, , Lanzhou University, Lanzhou 730000, China
| | - Bangzhi Zhang
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences, Institute of Biochemistry and Molecular
Biology, School of Life Sciences, , Lanzhou University, Lanzhou 730000, China
| | - Xiang Yan
- The
First Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences, Institute of Biochemistry and Molecular
Biology, School of Life Sciences, , Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
39
|
Ferrer-Miralles N, Rodríguez-Carmona E, Corchero JL, García-Fruitós E, Vázquez E, Villaverde A. Engineering protein self-assembling in protein-based nanomedicines for drug delivery and gene therapy. Crit Rev Biotechnol 2013; 35:209-21. [DOI: 10.3109/07388551.2013.833163] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Unzueta U, Saccardo P, Ferrer-Miralles N, García-Fruitós E, Vazquez E, Villaverde A, Cortés F, Mangues R. Improved performance of protein-based recombinant gene therapy vehicles by tuning downstream procedures. Biotechnol Prog 2013; 29:1458-63. [DOI: 10.1002/btpr.1798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/06/2013] [Indexed: 01/24/2023]
Affiliation(s)
- Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra; 08193 Barcelona Spain
- Department de Genètica i de Microbiologia; Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
| | - Paolo Saccardo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra; 08193 Barcelona Spain
- Department de Genètica i de Microbiologia; Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra; 08193 Barcelona Spain
- Department de Genètica i de Microbiologia; Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
| | - Elena García-Fruitós
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra; 08193 Barcelona Spain
- Department de Genètica i de Microbiologia; Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra; 08193 Barcelona Spain
- Department de Genètica i de Microbiologia; Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra; 08193 Barcelona Spain
- Department de Genètica i de Microbiologia; Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
| | - Francisco Cortés
- Servei de Cultius Cel·lulars, Producció d'Anticossos i Citometria, (SCAC), Universitat Autònoma de Barcelona, Bellaterra; 08193 Barcelona Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra; 08193 Barcelona Spain
- Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau (IIB-SantPau), Hospital de la Santa Creu i Sant Pau; C/Sant Antoni Maria Claret, 167 08025 Barcelona Spain
| |
Collapse
|
41
|
Chen YC, Huang XC, Luo YL, Chang YC, Hsieh YZ, Hsu HY. Non-metallic nanomaterials in cancer theranostics: a review of silica- and carbon-based drug delivery systems. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2013; 14:044407. [PMID: 27877592 PMCID: PMC5090318 DOI: 10.1088/1468-6996/14/4/044407] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/16/2013] [Indexed: 05/19/2023]
Abstract
The rapid development in nanomaterials has brought great opportunities to cancer theranostics, which aims to combine diagnostics and therapy for cancer treatment and thereby improve the healthcare of patients. In this review we focus on the recent progress of several cancer theranostic strategies using mesoporous silica nanoparticles and carbon-based nanomaterials. Silicon and carbon are both group IV elements; they have been the most abundant and significant non-metallic substances in human life. Their intrinsic physical/chemical properties are of critical importance in the fabrication of multifunctional drug delivery systems. Responsive nanocarriers constructed using these nanomaterials have been promising in cancer-specific theranostics during the past decade. In all cases, either a controlled texture or the chemical functionalization is coupled with adaptive properties, such as pH-, light-, redox- and magnetic field- triggered responses. Several studies in cells and mice models have implied their underlying therapeutic efficacy; however, detailed and long-term in vivo clinical evaluations are certainly required to make these bench-made materials compatible in real bedside circumstances.
Collapse
Affiliation(s)
- Yu-Cheng Chen
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University, Tin-Ka-Pin Building R615B, No. 1001, Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Xin-Chun Huang
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University, Tin-Ka-Pin Building R615B, No. 1001, Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Yun-Ling Luo
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University, Tin-Ka-Pin Building R615B, No. 1001, Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Yung-Chen Chang
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University, Tin-Ka-Pin Building R615B, No. 1001, Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - You-Zung Hsieh
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University, Tin-Ka-Pin Building R615B, No. 1001, Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Hsin-Yun Hsu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University, Tin-Ka-Pin Building R615B, No. 1001, Ta-Hsueh Road, Hsinchu 30010, Taiwan
- Institute of Molecular Science, National Chiao-Tung University, No. 1001, Ta-Hsueh Road, Hsinchu 30010, Taiwan
| |
Collapse
|
42
|
Zhang W, Song J, Liang R, Zheng X, Chen J, Li G, Zhang B, Wang K, Yan X, Wang R. Stearylated antimicrobial peptide [D]-K6L9 with cell penetrating property for efficient gene transfer. Peptides 2013; 46:33-9. [PMID: 23727033 DOI: 10.1016/j.peptides.2013.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 11/18/2022]
Abstract
Stearyl-cell penetrating peptides (CPPs) have been proved to be efficient nonviral gene vectors. Due to the similarities between antimicrobial peptides and CPPs, we constructed a novel type of gene vectors by introducing stearyl moiety to the N-terminus of antimicrobial peptide [D]-K6L9. In this study, stearyl-[D]-K6L9 delivered plasmids into cells by clathrin- and caveolin-mediated endocytosis. Gratifyingly, stearyl-[D]-K6L9 exhibited high transfection efficiency and almost reached the level of Lipofectamine 2000. Taken together, the combination of the stearyl moiety with [D]-K6L9 provides a novel framework for the development of excellent nonviral gene vectors.
Collapse
Affiliation(s)
- Wei Zhang
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Vectofusin-1, a new viral entry enhancer, strongly promotes lentiviral transduction of human hematopoietic stem cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e90. [PMID: 23653154 PMCID: PMC4817938 DOI: 10.1038/mtna.2013.17] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gene transfer into hCD34+ hematopoietic stem/progenitor cells (HSCs) using human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors (LVs) has several promising therapeutic applications. Yet, efficiency, safety, and cost of LV gene therapy could be ameliorated by enhancing target cell transduction levels and reducing the amount of LV used on the cells. Several transduction enhancers already exist such as fibronectin fragments and cationic compounds, but all present limitations. In this study, we describe a new transduction enhancer called Vectofusin-1, which is a short cationic peptide, active on several LV pseudotypes. Vectofusin-1 is used as a soluble additive to safely increase the frequency of transduced HSCs and to augment the level of transduction to one or two copies of vector per cell in a vector dose-dependent manner. Vectofusin-1 acts at the entry step by promoting the adhesion and the fusion between viral and cellular membranes. Vectofusin-1 is therefore a promising additive that could significantly ameliorate hCD34+ cell-based gene therapy.
Collapse
|
44
|
Qu W, Chen S, Ren S, Jiang XJ, Zhuo RX, Zhang XZ. A bioreducible polypeptide for efficient gene transfection both in vitro and in vivo. CHINESE JOURNAL OF POLYMER SCIENCE 2013. [DOI: 10.1007/s10118-013-1270-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
45
|
Qu W, Ren S, Kuang Y, Jiang XJ, Zhuo RX, Zhang XZ. Mimicking the biological ligand-receptor principle for universal target gene delivery mediated by avidin-biotin interaction. Adv Healthc Mater 2013. [PMID: 23184873 DOI: 10.1002/adhm.201200206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A facile and flexible targeting gene-delivery strategy is reported by mimicking the biological ligand-receptor principle based on avidin-biotin interaction. In vitro and in vivo investigations demonstrate that this strategy provides a simple, but universal alternative for potential target gene delivery as well as drug delivery.
Collapse
Affiliation(s)
- Wei Qu
- Key Laboratory of Biomedical Polymers of Ministry of Education, & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | | | | | | | | | | |
Collapse
|
46
|
DNA delivery via cationic solid lipid nanoparticles (SLNs). Eur J Pharm Sci 2013; 49:157-65. [PMID: 23454134 DOI: 10.1016/j.ejps.2013.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 01/17/2013] [Accepted: 02/04/2013] [Indexed: 12/26/2022]
Abstract
In recent years the use of solid lipid nanoparticles (SLNs) as transport systems for the delivery of drugs and biomolecules has become particularly important. The use of cationic SLNs developed by the technique of microemulsion, which are complexed with DNA in order to study their application as non-viral vectors in gene therapy, is reported. The nanoparticles are characterized by scanning electron microscopy and transmission electron microscopy (SEM and TEM), atomic force microscopy (AFM) and differential scanning calorimetry (DSC). Furthermore, the process of lyophilization of the samples and their stability was studied. The nanoparticles obtained presented a particle size of 340 nm with a positive surface charge of 44 mV and the capability of forming lipoplexes with DNA plasmids was stated.
Collapse
|
47
|
Mornet E, Carmoy N, Lainé C, Lemiègre L, Le Gall T, Laurent I, Marianowski R, Férec C, Lehn P, Benvegnu T, Montier T. Folate-equipped nanolipoplexes mediated efficient gene transfer into human epithelial cells. Int J Mol Sci 2013; 14:1477-501. [PMID: 23344053 PMCID: PMC3565331 DOI: 10.3390/ijms14011477] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 12/31/2012] [Accepted: 01/06/2013] [Indexed: 11/16/2022] Open
Abstract
Since recombinant viral vectors have been associated with serious side effects, such as immunogenicity and oncogenicity, synthetic delivery systems represent a realistic alternative for achieving efficacy in gene therapy. A major challenge for non-viral nanocarriers is the optimization of transgene expression in the targeted cells. This goal can be achieved by fine-tuning the chemical carriers and the adding specific motifs to promote cellular penetration. Our study focuses on the development of novel folate-based complexes that contain varying quantities of folate motifs. After controlling for their physical properties, neutral folate-modified lipid formulations were compared in vitro to lipoplexes leading to comparable expression levels. In addition, no cytotoxicity was detected, unlike what was observed in the cationic controls. Mechanistically, the delivery of the transgene appeared to be, in part, due to endocytosis mediated by folate receptor targeting. This mechanism was further validated by the observation that adding free folate into the medium decreased luciferase expression by 50%. In vivo transfection with the folate-modified MM18 lipid, containing the highest amount of FA-PEG(570)-diether co-lipid (w:w; 90:10), at a neutral charge ratio, gave luciferase transgene expression. These studies indicate that modification of lipids with folate residues could enhance non-toxic, cell-specific gene delivery.
Collapse
Affiliation(s)
- Emmanuel Mornet
- INSERM U1078, IFR 148 ScInBIoS, Université de Bretagne Occidentale, 46 rue Félix Le Dantec, CS 51819, 29218 Brest Cedex 2, France; E-Mails: (E.M.); (N.C.); (T.L.G.); (C.F.); (P.L.)
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France; E-Mails: (C.L.); (L.L.); (I.L.); (T.B.)
- Service d’ORL et de chirurgie cervico-faciale, CHU de BREST hôpital Morvan, 2 avenue du maréchal Foch 29609 Brest, France; E-Mail:
| | - Nathalie Carmoy
- INSERM U1078, IFR 148 ScInBIoS, Université de Bretagne Occidentale, 46 rue Félix Le Dantec, CS 51819, 29218 Brest Cedex 2, France; E-Mails: (E.M.); (N.C.); (T.L.G.); (C.F.); (P.L.)
- IBiSA “SynNanoVect” platform, IFR 148 ScInBIoS, Faculté de Médecine, Université de Bretagne Occidentale, 22 avenue Camille Desmoulins, CS 93837–29238 Brest cedex, France
| | - Céline Lainé
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France; E-Mails: (C.L.); (L.L.); (I.L.); (T.B.)
| | - Loïc Lemiègre
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France; E-Mails: (C.L.); (L.L.); (I.L.); (T.B.)
- IBiSA “SynNanoVect” platform, IFR 148 ScInBIoS, Faculté de Médecine, Université de Bretagne Occidentale, 22 avenue Camille Desmoulins, CS 93837–29238 Brest cedex, France
| | - Tony Le Gall
- INSERM U1078, IFR 148 ScInBIoS, Université de Bretagne Occidentale, 46 rue Félix Le Dantec, CS 51819, 29218 Brest Cedex 2, France; E-Mails: (E.M.); (N.C.); (T.L.G.); (C.F.); (P.L.)
- IBiSA “SynNanoVect” platform, IFR 148 ScInBIoS, Faculté de Médecine, Université de Bretagne Occidentale, 22 avenue Camille Desmoulins, CS 93837–29238 Brest cedex, France
| | - Isabelle Laurent
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France; E-Mails: (C.L.); (L.L.); (I.L.); (T.B.)
| | - Remi Marianowski
- Service d’ORL et de chirurgie cervico-faciale, CHU de BREST hôpital Morvan, 2 avenue du maréchal Foch 29609 Brest, France; E-Mail:
| | - Claude Férec
- INSERM U1078, IFR 148 ScInBIoS, Université de Bretagne Occidentale, 46 rue Félix Le Dantec, CS 51819, 29218 Brest Cedex 2, France; E-Mails: (E.M.); (N.C.); (T.L.G.); (C.F.); (P.L.)
| | - Pierre Lehn
- INSERM U1078, IFR 148 ScInBIoS, Université de Bretagne Occidentale, 46 rue Félix Le Dantec, CS 51819, 29218 Brest Cedex 2, France; E-Mails: (E.M.); (N.C.); (T.L.G.); (C.F.); (P.L.)
| | - Thierry Benvegnu
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France; E-Mails: (C.L.); (L.L.); (I.L.); (T.B.)
- IBiSA “SynNanoVect” platform, IFR 148 ScInBIoS, Faculté de Médecine, Université de Bretagne Occidentale, 22 avenue Camille Desmoulins, CS 93837–29238 Brest cedex, France
| | - Tristan Montier
- INSERM U1078, IFR 148 ScInBIoS, Université de Bretagne Occidentale, 46 rue Félix Le Dantec, CS 51819, 29218 Brest Cedex 2, France; E-Mails: (E.M.); (N.C.); (T.L.G.); (C.F.); (P.L.)
- IBiSA “SynNanoVect” platform, IFR 148 ScInBIoS, Faculté de Médecine, Université de Bretagne Occidentale, 22 avenue Camille Desmoulins, CS 93837–29238 Brest cedex, France
- DUMG – Faculté de médecine, Université de Bretagne Occidentale, 22 avenue Camille Desmoulins, CS 93837–29238 Brest cedex, France
- CHRU de Brest, hôpital Morvan, 2 avenue du maréchal Foch 29609 Brest, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-2-98-01-80-80; Fax: +33-2-98-01-83-42
| |
Collapse
|
48
|
Levine RM, Scott CM, Kokkoli E. Peptide functionalized nanoparticles for nonviral gene delivery. SOFT MATTER 2013; 9:985-1004. [DOI: 10.1039/c2sm26633d] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
49
|
Unzueta U, Ferrer-Miralles N, Cedano J, Zikung X, Pesarrodona M, Saccardo P, García-Fruitós E, Domingo-Espín J, Kumar P, Gupta KC, Mangues R, Villaverde A, Vazquez E. Non-amyloidogenic peptide tags for the regulatable self-assembling of protein-only nanoparticles. Biomaterials 2012; 33:8714-22. [PMID: 22954515 DOI: 10.1016/j.biomaterials.2012.08.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/15/2012] [Indexed: 01/11/2023]
Abstract
Controlling the self-assembling of building blocks as nanoscale entities is a requisite for the generation of bio-inspired vehicles for nanomedicines. A wide spectrum of functional peptides has been incorporated to different types of nanoparticles for the delivery of conventional drugs and nucleic acids, enabling receptor-specific cell binding and internalization, endosomal escape, cytosolic trafficking, nuclear targeting and DNA condensation. However, the development of architectonic tags to induce the self-assembling of functionalized monomers has been essentially neglected. We have examined here the nanoscale architectonic capabilities of arginine-rich cationic peptides, that when displayed on His-tagged proteins, promote their self-assembling as monodisperse, protein-only nanoparticles. The scrutiny of the cross-molecular interactivity cooperatively conferred by poly-arginines and poly-histidines has identified regulatable electrostatic interactions between building blocks that can also be engineered to encapsulate cargo DNA. The combined use of cationic peptides and poly-histidine tags offers an unusually versatile approach for the tailored design and biofabrication of protein-based nano-therapeutics, beyond the more limited spectrum of possibilities so far offered by self-assembling amyloidogenic peptides.
Collapse
Affiliation(s)
- Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Unzueta U, Céspedes MV, Ferrer-Miralles N, Casanova I, Cedano J, Corchero JL, Domingo-Espín J, Villaverde A, Mangues R, Vázquez E. Intracellular CXCR4⁺ cell targeting with T22-empowered protein-only nanoparticles. Int J Nanomedicine 2012; 7:4533-44. [PMID: 22923991 PMCID: PMC3423154 DOI: 10.2147/ijn.s34450] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4) is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing. RESULTS Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4⁺ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer. CONCLUSION Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles, and imaging agents.
Collapse
Affiliation(s)
- Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- Departamento de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona
| | - María Virtudes Céspedes
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona
- Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- Departamento de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona
| | - Isolda Casanova
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona
- Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Juan Cedano
- Laboratory of Immunology, Regional Norte, Universidad de la Republica, Salto, Uruguay
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- Departamento de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona
| | - Joan Domingo-Espín
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- Departamento de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- Departamento de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona
| | - Ramón Mangues
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona
- Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- Departamento de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona
| |
Collapse
|