1
|
Khalid H, Mohamed H, Eltoukhy A, Saeed MT, Song Y. Harnessing marine resources for Alzheimer's therapy: A review integrating bioactivity and molecular docking. Eur J Pharmacol 2025; 997:177611. [PMID: 40216183 DOI: 10.1016/j.ejphar.2025.177611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition resulting in cognitive impairment and the formation of neurofibrillary tangles and plaques in the brain. The drivers of AD's molecular progression and pathology include the accumulation of amyloid β protein (Aβ); thus, Aβ is an intervention target. However, the limitations in clinical trials of Aβ-targeted medicine and the failure to intervene in disease progression have raised concerns about the use of this drug and its veracious route. In particular, we comprehensively reviewed the potential effect of marine compounds and the mechanism of isolation and extraction from marine organisms resulting in the optimization of AD treatment. Furthermore, the hub compounds were docked with Beta-secretase receptors to strengthen the extrapolation of mechanistic interactions thus inhibiting the activity of an enzyme. An extensive review revealed that marine aquaculture and its byproducts are a promising source and isolated with green methods or less investment, ensuring their sustainability. MNPs harbor specific pharmacological features that enable them to exert neuroprotective effects by minimizing events such as Aβ peptide formation and reactive oxygen species (ROS) generation.
Collapse
Affiliation(s)
- Hina Khalid
- Colin Ratledge Center of Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
| | - Hassan Mohamed
- Colin Ratledge Center of Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt.
| | - Adel Eltoukhy
- Colin Ratledge Center of Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt.
| | - Muhammad Tariq Saeed
- Colin Ratledge Center of Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Department of Diet and Nutritional Sciences, Ibadat International University, Islamabad, 45750, Pakistan.
| | - Yuanda Song
- Colin Ratledge Center of Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; School of Basic Medicine, Qilu Medical University, Renmin West Road No. 1678, University Town, Zibo 255300, Shandong, China.
| |
Collapse
|
2
|
García-Estrada DA, Selem-Mojica N, Martínez-Hernández A, Lara-Reyna J, Dávila-Ramos S, Verdel-Aranda K. Diversity of bacterial communities in wetlands of Calakmul Biosphere Reserve: a comparative analysis between conserved and semi-urbanized zones in pre-Mayan Train era. BMC Microbiol 2024; 24:376. [PMID: 39342129 PMCID: PMC11437969 DOI: 10.1186/s12866-024-03523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The Calakmul Biosphere Reserve (CBR) is known for its rich animal and plant biodiversity, yet its microbial communities remain largely unknown. The reserve does not possess permanent bodies of water; nevertheless, seasonal depressions associated with fractures create wetlands, known locally as aguadas. Given the recent construction of the Maya train that crosses the CRB, it is essential to assess the biodiversity of its microorganisms and recognize their potential as a valuable source of goods. This evaluation is pivotal in mitigating potential mismanagement of the forest ecosystem. To enhance comprehension of microbial communities, we characterized the microbiota in three different wetlands. Ag-UD1 and Ag-UD2 wetlands are located in a zone without human disturbances, while the third, Ag-SU3, is in a semi-urbanized zone. Sampling was carried out over three years (2017, 2018, and 2019), enabling the monitoring of spatiotemporal variations in bacterial community diversity. The characterization of microbiome composition was conducted using 16S rRNA metabarcoding. Concurrently, the genomic potential of select samples was examined through shotgun metagenomics. RESULTS Statistical analysis of alpha and beta diversity indices showed significant differences among the bacterial communities found in undisturbed sites Ag-UD1 and Ag-UD2 compared to Ag-SU3. However, no significant differences were observed among sites belonging to the undisturbed area. Furthermore, a comparative analysis at the zone level reveals substantial divergence among the communities, indicating that the geographic location of the samples significantly influences these patterns. The bacterial communities in the CBR wetlands predominantly consist of genera from phyla Actinobacteria, Acidobacteria, and Proteobacteria. CONCLUSION This characterization has identified the composition of microbial communities and provided the initial overview of the metabolic capacities of the microbiomes inhabiting the aguadas across diverse conservation zones. The three sites exhibit distinct microbial compositions, suggesting that variables such as chemical composition, natural and anthropogenic disturbances, vegetation, and fauna may play a pivotal role in determining the microbial structure of the aguadas. This study establishes a foundational baseline for evaluating the impact of climatic factors and human interventions on critical environments such as wetlands.
Collapse
Affiliation(s)
- David Alberto García-Estrada
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico
| | - Nelly Selem-Mojica
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México (UNAM), Morelia, Michoacán, Mexico
| | | | - Joel Lara-Reyna
- Colegio de Postgraduados Campus Campeche, Sihochac, Champotón, Campeche, Mexico.
| | - Sonia Dávila-Ramos
- Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico
| | - Karina Verdel-Aranda
- Conahcyt-Colegio de Postgraduados Campus Campeche, Sihochac, Champotón, Campeche, Mexico.
- Present address: Tecnológico Nacional de México-Instituto Tecnológico de Chiná, Chiná, Campeche, Mexico.
| |
Collapse
|
3
|
Regmi R, Penton CR, Anderson J, Gupta VVSR. Do small RNAs unlock the below ground microbiome-plant interaction mystery? Front Mol Biosci 2022; 9:1017392. [PMID: 36406267 PMCID: PMC9670543 DOI: 10.3389/fmolb.2022.1017392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/18/2022] [Indexed: 11/02/2023] Open
Abstract
Over the past few decades, regulatory RNAs, such as small RNAs (sRNAs), have received increasing attention in the context of host-microbe interactions due to their diverse roles in controlling various biological processes in eukaryotes. In addition, studies have identified an increasing number of sRNAs with novel functions across a wide range of bacteria. What is not well understood is why cells regulate gene expression through post-transcriptional mechanisms rather than at the initiation of transcription. The finding of a multitude of sRNAs and their identified associated targets has allowed further investigation into the role of sRNAs in mediating gene regulation. These foundational data allow for further development of hypotheses concerning how a precise control of gene activity is accomplished through the combination of transcriptional and post-transcriptional regulation. Recently, sRNAs have been reported to participate in interkingdom communication and signalling where sRNAs originating from one kingdom are able to target or control gene expression in another kingdom. For example, small RNAs of fungal pathogens that silence plant genes and vice-versa plant sRNAs that mediate bacterial gene expression. However, there is currently a lack of evidence regarding sRNA-based inter-kingdom signalling across more than two interacting organisms. A habitat that provides an excellent opportunity to investigate interconnectivity is the plant rhizosphere, a multifaceted ecosystem where plants and associated soil microbes are known to interact. In this paper, we discuss how the interconnectivity of bacteria, fungi, and plants within the rhizosphere may be mediated by bacterial sRNAs with a particular focus on disease suppressive and non-suppressive soils. We discuss the potential roles sRNAs may play in the below-ground world and identify potential areas of future research, particularly in reference to the regulation of plant immunity genes by bacterial and fungal communities in disease-suppressive and non-disease-suppressive soils.
Collapse
Affiliation(s)
- Roshan Regmi
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
| | - C. Ryan Penton
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, United States
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Jonathan Anderson
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Canberra, SA, Australia
| | - Vadakattu V. S. R. Gupta
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
| |
Collapse
|
4
|
Mendes IV, Garcia MB, Bitencourt ACA, Santana RH, Lins PDC, Silveira R, Simmons BA, Gladden JM, Kruger RH, Quirino BF. Bacterial diversity dynamics in microbial consortia selected for lignin utilization. PLoS One 2021; 16:e0255083. [PMID: 34516585 PMCID: PMC8437272 DOI: 10.1371/journal.pone.0255083] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 07/10/2021] [Indexed: 01/23/2023] Open
Abstract
Lignin is nature's largest source of phenolic compounds. Its recalcitrance to enzymatic conversion is still a limiting step to increase the value of lignin. Although bacteria are able to degrade lignin in nature, most studies have focused on lignin degradation by fungi. To understand which bacteria are able to use lignin as the sole carbon source, natural selection over time was used to obtain enriched microbial consortia over a 12-week period. The source of microorganisms to establish these microbial consortia were commercial and backyard compost soils. Cultivation occurred at two different temperatures, 30°C and 37°C, in defined culture media containing either Kraft lignin or alkaline-extracted lignin as carbon source. iTag DNA sequencing of bacterial 16S rDNA gene was performed for each of the consortia at six timepoints (passages). The initial bacterial richness and diversity of backyard compost soil consortia was greater than that of commercial soil consortia, and both parameters decreased after the enrichment protocol, corroborating that selection was occurring. Bacterial consortia composition tended to stabilize from the fourth passage on. After the enrichment protocol, Firmicutes phylum bacteria were predominant when lignin extracted by alkaline method was used as a carbon source, whereas Proteobacteria were predominant when Kraft lignin was used. Bray-Curtis dissimilarity calculations at genus level, visualized using NMDS plots, showed that the type of lignin used as a carbon source contributed more to differentiate the bacterial consortia than the variable temperature. The main known bacterial genera selected to use lignin as a carbon source were Altererythrobacter, Aminobacter, Bacillus, Burkholderia, Lysinibacillus, Microvirga, Mycobacterium, Ochrobactrum, Paenibacillus, Pseudomonas, Pseudoxanthomonas, Rhizobiales and Sphingobium. These selected bacterial genera can be of particular interest for studying lignin degradation and utilization, as well as for lignin-related biotechnology applications.
Collapse
Affiliation(s)
- Isis Viana Mendes
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), PqEB s/n, Brasília, DF, Brazil
- Universidade de Brasília, Brasília, DF, Brazil
| | - Mariana Botelho Garcia
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), PqEB s/n, Brasília, DF, Brazil
- Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Ana Carolina Araújo Bitencourt
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), PqEB s/n, Brasília, DF, Brazil
- Universidade de Brasília, Brasília, DF, Brazil
| | | | - Philippe de Castro Lins
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), PqEB s/n, Brasília, DF, Brazil
- Universidade de Brasília, Brasília, DF, Brazil
| | | | - Blake A. Simmons
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California, United States of America
| | - John M. Gladden
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California, United States of America
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, California, United States of America
| | | | - Betania Ferraz Quirino
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), PqEB s/n, Brasília, DF, Brazil
- Universidade de Brasília, Brasília, DF, Brazil
- Universidade Católica de Brasília, Brasília, DF, Brazil
- * E-mail: ,
| |
Collapse
|
5
|
Silva M, Seijas P, Otero P. Exploitation of Marine Molecules to Manage Alzheimer's Disease. Mar Drugs 2021; 19:md19070373. [PMID: 34203244 PMCID: PMC8307759 DOI: 10.3390/md19070373] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases are sociosanitary challenges of today, as a result of increased average life expectancy, with Alzheimer’s disease being one of the most prevalent. This pathology is characterized by brain impairment linked to a neurodegenerative process culminating in cognitive decline and behavioral disorders. Though the etiology of this pathology is still unknown, it is usually associated with the appearance of senile plaques and neurofibrillary tangles. The most used prophylaxis relies on anticholinesterase drugs and NMDA receptor antagonists, whose main action is to relieve symptoms and not to treat or prevent the disease. Currently, the scientific community is gathering efforts to disclose new natural compounds effective against Alzheimer’s disease and other neurodegenerative pathologies. Marine natural products have been shown to be promising candidates, and some have been proven to exert a high neuroprotection effect, constituting a large reservoir of potential drugs and nutraceutical agents. The present article attempts to describe the processes of extraction and isolation of bioactive compounds derived from sponges, algae, marine bacteria, invertebrates, crustaceans, and tunicates as drug candidates against AD, with a focus on the success of pharmacological activity in the process of finding new and effective drug compounds.
Collapse
Affiliation(s)
- Marisa Silva
- MARE—Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal;
- Department of Plant Biology, Faculty of Science, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Paula Seijas
- Department of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Paz Otero
- Department of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence UAM+CSIC, 28049 Madrid, Spain
- Nutrition and Bromatology Group, CITACA, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
- Correspondence: or
| |
Collapse
|
6
|
Priya P, Aneesh B, Harikrishnan K. Genomics as a potential tool to unravel the rhizosphere microbiome interactions on plant health. J Microbiol Methods 2021; 185:106215. [PMID: 33839214 DOI: 10.1016/j.mimet.2021.106215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Intense agricultural practices to meet rising food demands have caused ecosystem perturbations. For sustainable crop production, biological agents are gaining attention, but exploring their functional potential on a multi-layered complex ecosystem like the rhizosphere is challenging. This review explains the significance of genomics as a culture-independent molecular tool to understand the diversity and functional significance of the rhizosphere microbiome for sustainable agriculture. It discusses the recent significant studies in the rhizosphere environment carried out using evolving techniques like metagenomics, metatranscriptomics, and metaproteomics, their challenges, constraints infield application, and prospective solutions. The recent advances in techniques such as nanotechnology for the development of bioformulations and visualization techniques contemplating environmental safety were also discussed. The need for development of metagenomic data sets of regionally important crops, their plant microbial interactions and agricultural practices for narrowing down significant data from huge databases have been suggested. The role of taxonomical and functional diversity of soil microbiota in understanding soil suppression and part played by the microbial metabolites in the process have been analyzed and discussed in the context of 'omics' approach. 'Omics' studies have revealed important information about microbial diversity, their responses to various biotic and abiotic stimuli, and the physiology of disease suppression. This can be translated to crop sustainability and combinational approaches with advancing visualization and analysis methodologies fix the existing knowledge gap to a huge extend. With improved data processing and standardization of the methods, details of plant-microbe interactions can be successfully decoded to develop sustainable agricultural practices.
Collapse
Affiliation(s)
- P Priya
- Environmental Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | - B Aneesh
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences Cochin University of Science and Technology, Cochin, Kerala, India.
| | - K Harikrishnan
- Environmental Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
7
|
Colagiero M, Rosso LC, Catalano D, Schena L, Ciancio A. Response of Tomato Rhizosphere Bacteria to Root-Knot Nematodes, Fenamiphos and Sampling Time Shows Differential Effects on Low Level Taxa. Front Microbiol 2020; 11:390. [PMID: 32265860 PMCID: PMC7100632 DOI: 10.3389/fmicb.2020.00390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/25/2020] [Indexed: 12/03/2022] Open
Abstract
A factorial taxonomic metabarcoding study was carried out to determine the effect of root-knot nematodes (Meloidogyne incognita, RKN) and the nematocide fenamiphos on the rhizosphere microbiome of tomato. Plants inoculated (or not) with RKN second-stage juveniles (J2), and treated (or not) with the nematocide, were tested in a 6 months greenhouse assay using a RKN-free soil proceeding from an organic crop. Rhizosphere soil was sampled at J2 inoculation, 3 months later (before the second nematocidal treatment), and again after 3 months. At each sampling, the RNAs were extracted and the 16S rRNA V4 regions sequenced with a Next Generation Sequencing (NGS) protocol. Changes in bacteria metagenomic profiles showed an effect of the treatments applied, with different representations of taxa in samples receiving nematodes and fenamiphos, at the two sampling times. In general, a tendence was observed toward an increase number of OTUs at 6 months, in all treatments. β-Proteobacteria were the most abundant class, for all treatments and times. When compared to soil before transplanting, the presence of tomato roots increased frequency of Actinobacteria and Thermoleophilia, reducing abundance of Solibacteres. At lowest taxonomic levels the samples clustered in groups congruent with the treatments applied, with OTUs differentially represented in relation to RKN and/or fenamiphos applications. Bacillus, Corynebacterium, Streptococcus, and Staphylococcus were more represented at 6 months in samples inoculated with RKN. The nematodes with the nematocide application increased the emergence of rare OTUs or reduced/enhanced the abundance of other taxa, from different lineages.
Collapse
Affiliation(s)
- Mariantonietta Colagiero
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Laura Cristina Rosso
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Domenico Catalano
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Leonardo Schena
- Department of Agriculture, Università degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - Aurelio Ciancio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| |
Collapse
|
8
|
Raimundo I, Silva SG, Costa R, Keller-Costa T. Bioactive Secondary Metabolites from Octocoral-Associated Microbes-New Chances for Blue Growth. Mar Drugs 2018; 16:E485. [PMID: 30518125 PMCID: PMC6316421 DOI: 10.3390/md16120485] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Octocorals (Cnidaria, Anthozoa Octocorallia) are magnificent repositories of natural products with fascinating and unusual chemical structures and bioactivities of interest to medicine and biotechnology. However, mechanistic understanding of the contribution of microbial symbionts to the chemical diversity of octocorals is yet to be achieved. This review inventories the natural products so-far described for octocoral-derived bacteria and fungi, uncovering a true chemical arsenal of terpenes, steroids, alkaloids, and polyketides with antibacterial, antifungal, antiviral, antifouling, anticancer, anti-inflammatory, and antimalarial activities of enormous potential for blue growth. Genome mining of 15 bacterial associates (spanning 12 genera) cultivated from Eunicella spp. resulted in the identification of 440 putative and classifiable secondary metabolite biosynthetic gene clusters (BGCs), encompassing varied terpene-, polyketide-, bacteriocin-, and nonribosomal peptide-synthase BGCs. This points towards a widespread yet uncharted capacity of octocoral-associated bacteria to synthetize a broad range of natural products. However, to extend our knowledge and foster the near-future laboratory production of bioactive compounds from (cultivatable and currently uncultivatable) octocoral symbionts, optimal blending between targeted metagenomics, DNA recombinant technologies, improved symbiont cultivation, functional genomics, and analytical chemistry are required. Such a multidisciplinary undertaking is key to achieving a sustainable response to the urgent industrial demand for novel drugs and enzyme varieties.
Collapse
Affiliation(s)
- Inês Raimundo
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal.
| | - Sandra G Silva
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal.
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal.
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal.
| |
Collapse
|
9
|
Baveye PC, Otten W, Kravchenko A, Balseiro-Romero M, Beckers É, Chalhoub M, Darnault C, Eickhorst T, Garnier P, Hapca S, Kiranyaz S, Monga O, Mueller CW, Nunan N, Pot V, Schlüter S, Schmidt H, Vogel HJ. Emergent Properties of Microbial Activity in Heterogeneous Soil Microenvironments: Different Research Approaches Are Slowly Converging, Yet Major Challenges Remain. Front Microbiol 2018; 9:1929. [PMID: 30210462 PMCID: PMC6119716 DOI: 10.3389/fmicb.2018.01929] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/30/2018] [Indexed: 01/17/2023] Open
Abstract
Over the last 60 years, soil microbiologists have accumulated a wealth of experimental data showing that the bulk, macroscopic parameters (e.g., granulometry, pH, soil organic matter, and biomass contents) commonly used to characterize soils provide insufficient information to describe quantitatively the activity of soil microorganisms and some of its outcomes, like the emission of greenhouse gasses. Clearly, new, more appropriate macroscopic parameters are needed, which reflect better the spatial heterogeneity of soils at the microscale (i.e., the pore scale) that is commensurate with the habitat of many microorganisms. For a long time, spectroscopic and microscopic tools were lacking to quantify processes at that scale, but major technological advances over the last 15 years have made suitable equipment available to researchers. In this context, the objective of the present article is to review progress achieved to date in the significant research program that has ensued. This program can be rationalized as a sequence of steps, namely the quantification and modeling of the physical-, (bio)chemical-, and microbiological properties of soils, the integration of these different perspectives into a unified theory, its upscaling to the macroscopic scale, and, eventually, the development of new approaches to measure macroscopic soil characteristics. At this stage, significant progress has been achieved on the physical front, and to a lesser extent on the (bio)chemical one as well, both in terms of experiments and modeling. With regard to the microbial aspects, although a lot of work has been devoted to the modeling of bacterial and fungal activity in soils at the pore scale, the appropriateness of model assumptions cannot be readily assessed because of the scarcity of relevant experimental data. For significant progress to be made, it is crucial to make sure that research on the microbial components of soil systems does not keep lagging behind the work on the physical and (bio)chemical characteristics. Concerning the subsequent steps in the program, very little integration of the various disciplinary perspectives has occurred so far, and, as a result, researchers have not yet been able to tackle the scaling up to the macroscopic level. Many challenges, some of them daunting, remain on the path ahead. Fortunately, a number of these challenges may be resolved by brand new measuring equipment that will become commercially available in the very near future.
Collapse
Affiliation(s)
- Philippe C. Baveye
- UMR ECOSYS, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, rance
| | - Wilfred Otten
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Alexandra Kravchenko
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - María Balseiro-Romero
- UMR ECOSYS, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, rance
- Department of Soil Science and Agricultural Chemistry, Centre for Research in Environmental Technologies, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Éléonore Beckers
- Soil–Water–Plant Exchanges, Terra Research Centre, BIOSE, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Maha Chalhoub
- UMR ECOSYS, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | - Christophe Darnault
- Laboratory of Hydrogeoscience and Biological Engineering, L.G. Rich Environmental Laboratory, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, United States
| | - Thilo Eickhorst
- Faculty 2 Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Patricia Garnier
- UMR ECOSYS, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | - Simona Hapca
- Dundee Epidemiology and Biostatistics Unit, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Serkan Kiranyaz
- Department of Electrical Engineering, Qatar University, Doha, Qatar
| | - Olivier Monga
- Institut de Recherche pour le Développement, Bondy, France
| | - Carsten W. Mueller
- Lehrstuhl für Bodenkunde, Technical University of Munich, Freising, Germany
| | - Naoise Nunan
- Institute of Ecology and Environmental Sciences – Paris, Sorbonne Universités, CNRS, IRD, INRA, P7, UPEC, Paris, France
| | - Valérie Pot
- UMR ECOSYS, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | - Steffen Schlüter
- Soil System Science, Helmholtz-Zentrum für Umweltforschung GmbH – UFZ, Leipzig, Germany
| | - Hannes Schmidt
- Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry meets Microbiology’, University of Vienna, Vienna, Austria
| | - Hans-Jörg Vogel
- Soil System Science, Helmholtz-Zentrum für Umweltforschung GmbH – UFZ, Leipzig, Germany
- Institute of Soil Science and Plant Nutrition, Martin Luther University of Halle-Wittenberg, Halle, Germany
| |
Collapse
|
10
|
Gómez Expósito R, de Bruijn I, Postma J, Raaijmakers JM. Current Insights into the Role of Rhizosphere Bacteria in Disease Suppressive Soils. Front Microbiol 2017; 8:2529. [PMID: 29326674 PMCID: PMC5741648 DOI: 10.3389/fmicb.2017.02529] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 12/05/2017] [Indexed: 01/22/2023] Open
Abstract
Disease suppressive soils offer effective protection to plants against infection by soil-borne pathogens, including fungi, oomycetes, bacteria, and nematodes. The specific disease suppression that operates in these soils is, in most cases, microbial in origin. Therefore, suppressive soils are considered as a rich resource for the discovery of beneficial microorganisms with novel antimicrobial and other plant protective traits. To date, several microbial genera have been proposed as key players in disease suppressiveness of soils, but the complexity of the microbial interactions as well as the underlying mechanisms and microbial traits remain elusive for most disease suppressive soils. Recent developments in next generation sequencing and other 'omics' technologies have provided new insights into the microbial ecology of disease suppressive soils and the identification of microbial consortia and traits involved in disease suppressiveness. Here, we review the results of recent 'omics'-based studies on the microbial basis of disease suppressive soils, with specific emphasis on the role of rhizosphere bacteria in this intriguing microbiological phenomenon.
Collapse
Affiliation(s)
- Ruth Gómez Expósito
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, Netherlands
| | - Irene de Bruijn
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Joeke Postma
- Biointeractions and Plant Health, Plant Research International, Wageningen University and Research, Wageningen, Netherlands
| | - Jos M. Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
- Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
11
|
Czerwonka G, Konieczna I, Żarnowiec P, Zieliński A, Malinowska-Gniewosz A, Gałuszka A, Migaszewski Z, Kaca W. Characterization of Microbial Communities in Acidified, Sulfur Containing Soils. Pol J Microbiol 2017; 66:509-517. [PMID: 29319522 DOI: 10.5604/01.3001.0010.7043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over a period of three years, microbial communities in acidified soil with high sulfur content were analyzed. In soil water extracts ureolytic, proteolytic, oxidoreductive, and lipolytic activity were detected. The presented results indicate that the enzymatic activity of soil microbial communities varied considerably over time. Isolated 26 (80%) bacterial strains belonged to genus Bacillus sp. and were identified by cultivation and 16S rRNA methods. The commercially available procedures for bacterial DNA isolation from acidified soil failed, therefore a new, specific DNA isolation method was established. Ureolytic activity, detected in soil extracts as well as in isolated Bacillus sp. strains may be considered as a tool for the bioremediation of acidified soils with high sulfate content.
Collapse
Affiliation(s)
- Grzegorz Czerwonka
- Department of Microbiology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Iwona Konieczna
- Department of Microbiology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Paulina Żarnowiec
- Department of Microbiology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Artur Zieliński
- Department of Geomorphology, Geoarchaeology and Environmental Management, Institute of Geography, Jan Kochanowski University, Kielce, Poland
| | | | | | | | - Wiesław Kaca
- Department of Microbiology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
12
|
Hill P, Heberlig GW, Boddy CN. Sampling Terrestrial Environments for Bacterial Polyketides. Molecules 2017; 22:E707. [PMID: 28468277 PMCID: PMC6154731 DOI: 10.3390/molecules22050707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 12/17/2022] Open
Abstract
Bacterial polyketides are highly biologically active molecules that are frequently used as drugs, particularly as antibiotics and anticancer agents, thus the discovery of new polyketides is of major interest. Since the 1980s discovery of polyketides has slowed dramatically due in large part to the repeated rediscovery of known compounds. While recent scientific and technical advances have improved our ability to discover new polyketides, one key area has been under addressed, namely the distribution of polyketide-producing bacteria in the environment. Identifying environments where producing bacteria are abundant and diverse should improve our ability to discover (bioprospect) new polyketides. This review summarizes for the bioprospector the state-of-the-field in terrestrial microbial ecology. It provides insight into the scientific and technical challenges limiting the application of microbial ecology discoveries for bioprospecting and summarizes key developments in the field that will enable more effective bioprospecting. The major recent efforts by researchers to sample new environments for polyketide discovery is also reviewed and key emerging environments such as insect associated bacteria, desert soils, disease suppressive soils, and caves are highlighted. Finally strategies for taking and characterizing terrestrial samples to help maximize discovery efforts are proposed and the inclusion of non-actinomycetal bacteria in any terrestrial discovery strategy is recommended.
Collapse
Affiliation(s)
- Patrick Hill
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Graham W Heberlig
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Christopher N Boddy
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
13
|
Bouhajja E, McGuire M, Liles MR, Bataille G, Agathos SN, George IF. Identification of novel toluene monooxygenase genes in a hydrocarbon-polluted sediment using sequence- and function-based screening of metagenomic libraries. Appl Microbiol Biotechnol 2016; 101:797-808. [PMID: 27785541 DOI: 10.1007/s00253-016-7934-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 11/25/2022]
Abstract
The microbial potential for toluene degradation within sediments from a tar oil-contaminated site in Flingern, Germany, was assessed using a metagenomic approach. High molecular weight environmental DNA from contaminated sediments was extracted, purified, and cloned into fosmid and BAC vectors and transformed into Escherichia coli. The fosmid library was screened by hybridization with a PCR amplicon of the α-subunit of the toluene 4-monooxygenase gene to identify genes and pathways encoding toluene degradation. Fourteen clones were recovered from the fosmid library, among which 13 were highly divergent from known tmoA genes and several had the closest relatives among Acinetobacter species. The BAC library was transferred to the heterologous hosts Cupriavidus metallidurans (phylum Proteobacteria) and Edaphobacter aggregans (phylum Acidobacteria). The resulting libraries were screened for expression of toluene degradation in the non-degradative hosts. From expression in C. metallidurans, three novel toluene monooxygenase-encoding operons were identified that were located on IncP1 plasmids. The E. aggregans-hosted BAC library led to the isolation of a cloned genetic locus putatively derived from an Acidobacteria taxon that contained genes involved in aerobic and anaerobic toluene degradation. These data suggest the important role of plasmids in the spread of toluene degradative capacity and indicate putative novel tmoA genes present in this hydrocarbon-polluted environment.
Collapse
Affiliation(s)
- E Bouhajja
- Earth and Life Institute, Laboratoire de Génie Biologique, Université catholique de Louvain, Place Croix du Sud 2, boite L7.05.19, 1348, Louvain-la-Neuve, Belgium
| | - M McGuire
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, Alabama, 36849, USA
| | - M R Liles
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, Alabama, 36849, USA
| | - G Bataille
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Place Croix du Sud 4-5, Bte L.7.07.04, 1348, Louvain-la-Neuve, Belgium
| | - S N Agathos
- Earth and Life Institute, Laboratoire de Génie Biologique, Université catholique de Louvain, Place Croix du Sud 2, boite L7.05.19, 1348, Louvain-la-Neuve, Belgium.,School of Life Sciences and Biotechnology, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - I F George
- Laboratoire d'Ecologie des Systèmes Aquatiques, Université libre de Bruxelles, Campus de la Plaine CP 221, Boulevard du Triomphe, 1050, Brussels, Belgium.
| |
Collapse
|
14
|
Valverde JR, Gullón S, Pérez Mellado R. Looking for Rhizobacterial Ecological Indicators in Agricultural Soils Using 16S rRNA metagenomic Amplicon Data. PLoS One 2016; 11:e0165204. [PMID: 27780257 PMCID: PMC5079562 DOI: 10.1371/journal.pone.0165204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/07/2016] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Biological communities present in soil are essential to sustainable and productive agricultural practices; however, an accurate determination of the ecological status of agricultural soils remains to date an elusive task. An ideal indicator should be pervasive, play a relevant role in the ecosystem, show a rapid and proportional answer to external perturbations and be easily and economically measurable. Rhizobacteria play a major role in determining soil properties, becoming an attractive candidate for the detection of ecological indicators. The application of massive sequencing technologies to metagenomic analysis is providing an increasingly more precise view of the structure and composition of soil communities. In this work, we analyse soil rhizobacterial composition under various stress levels to search for potential ecological indicators. GENERAL BIODIVERSITY INDICATORS Our results suggest that the Shannon index requires observation of a relatively large number of individuals to be representative of the true population diversity, and that the Simpson index may underestimate rare taxa in rhizobacterial environments. TAXONOMICAL CLASSIFICATION METHODS Detection of indicator taxa requires comparison of taxonomical classification of sequences. We have compared RDP classifier, RTAX and similarity-based taxonomical classification and selected the latter for taxonomical assignment because it provides larger detail. TAXONOMY-BASED ECOLOGICAL INDICATORS The study of significant variations in common, clearly identified, taxa, using paired datasets allows minimization of non-treatment effects and avoidance of false positives. We have identified taxa associated to specific perturbations as well as taxa generally affected in treated soils. Changes in these taxa, or combinations of them, may be used as ecological indicators of soil health. The overall number and magnitude of changes detected in taxonomic groups does also increase with stress. These changes constitute an alternative indicator to measuring specific taxa, although their determination requires large sample sizes, better obtained by massive sequencing. SUMMARY The main ecological indicators available are the Shannon index, OTU counts and estimators, overall detection of the number and proportion of changes, and changes of specific indicator taxa. Massive sequencing remains the most accurate tool to measure rhizobacterial ecological indicators. When massive sequencing is not an option, various cultivable taxonomic groups, such as specific groups in the Actinobacteria tree, are attractive as potential indicators of large disruptions to the rhizobiome.
Collapse
Affiliation(s)
- José R. Valverde
- Centro Nacional de Biotecnología, CSIC. c/Darwin, Madrid, Spain
- * E-mail:
| | - Sonia Gullón
- Centro Nacional de Biotecnología, CSIC. c/Darwin, Madrid, Spain
| | | |
Collapse
|
15
|
Yucatán in black and red: Linking edaphic analysis and pyrosequencing-based assessment of bacterial and fungal community structures in the two main kinds of soil of Yucatán State. Microbiol Res 2016; 188-189:23-33. [PMID: 27296959 DOI: 10.1016/j.micres.2016.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/16/2016] [Accepted: 04/21/2016] [Indexed: 12/11/2022]
Abstract
Yucatán State is dominated by two kinds of soil, named "Black Leptosol" and "Red Leptosol", which are interwoven across the State. In this work, we analyzed the relation between the edaphic characteristics and the bacterial and fungal community structures in these two kinds of Leptosol. The results revealed that Black Leptosol (BlaS) had a higher content of calcium carbonates, organic matter, nitrogen, and phosphorus than Red Leptosol (RedS). The most outstanding difference in the bacterial community structure between BlaS and RedS was that while in BlaS Actinobacteria was the most abundant phylum (43.7%), followed by Acidobacteria (26.9%) and Proteobacteria (23.6%), in RedS the bacterial community was strongly dominated by Acidobacteria (83%). Two fungal phyla were identified in both kinds of soil; Ascomycota, with 77% in BlaS and 56% in RedS, and Basidiomycota, with 22% in RedS and only 0.67% in BlaS. The most relevant difference between the two fungal communities was that excepting for Fusarium sp., all the species they had were different. Thus, in contrast with bacterial communities, where most of the major OTUs were present in both kinds of soil, fungal communities appeared to be unique to each kind of Leptosol.
Collapse
|
16
|
O'Mahony MM, Henneberger R, Selvin J, Kennedy J, Doohan F, Marchesi JR, Dobson ADW. Inhibition of the growth of Bacillus subtilis DSM10 by a newly discovered antibacterial protein from the soil metagenome. Bioengineered 2016; 6:89-98. [PMID: 25692994 PMCID: PMC4601227 DOI: 10.1080/21655979.2015.1018493] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A functional metagenomics based approach exploiting the microbiota of suppressive soils from an organic field site has succeeded in the identification of a clone with the ability to inhibit the growth of Bacillus subtilis DSM10. Sequencing of the fosmid identified a putative β-lactamase-like gene abgT. Transposon mutagenesis of the abgT gene resulted in a loss in ability to inhibit the growth of B. subtilis DSM10. Further analysis of the deduced amino acid sequence of AbgT revealed moderate homology to esterases, suggesting that the protein may possess hydrolytic activity. Weak lipolytic activity was detected; however the clone did not appear to produce any β-lactamase activity. Phylogenetic analysis revealed the protein is a member of the family VIII group of lipase/esterases and clusters with a number of proteins of metagenomic origin. The abgT gene was sub-cloned into a protein expression vector and when introduced into the abgT transposon mutant clones restored the ability of the clones to inhibit the growth of B. subtilis DSM10, clearly indicating that the abgT gene is involved in the antibacterial activity. While the precise role of this protein has yet to fully elucidated, it may be involved in the generation of free fatty acid with antibacterial properties. Thus functional metagenomic approaches continue to provide a significant resource for the discovery of novel functional proteins and it is clear that hydrolytic enzymes, such as AbgT, may be a potential source for the development of future antimicrobial therapies.
Collapse
Affiliation(s)
- Mark M O'Mahony
- a School of Microbiology and Marine Biotechnology Center; Environmental Research Institute; University College Cork ; Cork , Ireland
| | | | | | | | | | | | | |
Collapse
|
17
|
Vida C, Bonilla N, de Vicente A, Cazorla FM. Microbial Profiling of a Suppressiveness-Induced Agricultural Soil Amended with Composted Almond Shells. Front Microbiol 2016; 7:4. [PMID: 26834725 PMCID: PMC4722121 DOI: 10.3389/fmicb.2016.00004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022] Open
Abstract
This study focused on the microbial profile present in an agricultural soil that becomes suppressive after the application of composted almond shells (AS) as organic amendments. For this purpose, we analyzed the functions and composition of the complex communities present in an experimental orchard of 40-year-old avocado trees, many of them historically amended with composted almond shells. The role of microbes in the suppression of Rosellinia necatrix, the causative agent of avocado white root rot, was determined after heat-treatment and complementation experiments with different types of soil. Bacterial and fungal profiles obtained from natural soil samples based on the 16S rRNA gene and ITS sequencing revealed slight differences among the amended (AS) and unamended (CT) soils. When the soil was under the influence of composted almond shells as organic amendments, an increase in Proteobacteria and Ascomycota groups was observed, as well as a reduction in Acidobacteria and Mortierellales. Complementary to these findings, functional analysis by GeoChip 4.6 confirmed these subtle differences, mainly present in the relative abundance of genes involved in the carbon cycle. Interestingly, a group of specific probes included in the "soil benefit" category was present only in AS-amended soils, corresponding to specific microorganisms previously described as potential biocontrol agents, such as Pseudomonas spp., Burkholderia spp., or Actinobacteria. Considering the results of both analyses, we determined that AS-amendments to the soil led to an increase in some orders of Gammaproteobacteria, Betaproteobacteria, and Dothideomycetes, as well as a reduction in the abundance of Xylariales fungi (where R. necatrix is allocated). The combination of microbial action and substrate properties of suppressiveness are discussed.
Collapse
Affiliation(s)
| | | | | | - Francisco M. Cazorla
- Departamento de Microbiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones CientíficasMálaga, Spain
| |
Collapse
|
18
|
Ufarté L, Potocki-Veronese G, Laville É. Discovery of new protein families and functions: new challenges in functional metagenomics for biotechnologies and microbial ecology. Front Microbiol 2015; 6:563. [PMID: 26097471 PMCID: PMC4456863 DOI: 10.3389/fmicb.2015.00563] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/21/2015] [Indexed: 12/30/2022] Open
Abstract
The rapid expansion of new sequencing technologies has enabled large-scale functional exploration of numerous microbial ecosystems, by establishing catalogs of functional genes and by comparing their prevalence in various microbiota. However, sequence similarity does not necessarily reflect functional conservation, since just a few modifications in a gene sequence can have a strong impact on the activity and the specificity of the corresponding enzyme or the recognition for a sensor. Similarly, some microorganisms harbor certain identified functions yet do not have the expected related genes in their genome. Finally, there are simply too many protein families whose function is not yet known, even though they are highly abundant in certain ecosystems. In this context, the discovery of new protein functions, using either sequence-based or activity-based approaches, is of crucial importance for the discovery of new enzymes and for improving the quality of annotation in public databases. This paper lists and explores the latest advances in this field, along with the challenges to be addressed, particularly where microfluidic technologies are concerned.
Collapse
Affiliation(s)
- Lisa Ufarté
- Université de Toulouse, Institut National des Sciences Appliquées (INSA), Université Paul Sabatier (UPS), Institut National Polytechnique (INP), Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP) , Toulouse, France ; INRA - UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse, France ; CNRS, UMR5504 , Toulouse, France
| | - Gabrielle Potocki-Veronese
- Université de Toulouse, Institut National des Sciences Appliquées (INSA), Université Paul Sabatier (UPS), Institut National Polytechnique (INP), Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP) , Toulouse, France ; INRA - UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse, France ; CNRS, UMR5504 , Toulouse, France
| | - Élisabeth Laville
- Université de Toulouse, Institut National des Sciences Appliquées (INSA), Université Paul Sabatier (UPS), Institut National Polytechnique (INP), Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP) , Toulouse, France ; INRA - UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse, France ; CNRS, UMR5504 , Toulouse, France
| |
Collapse
|
19
|
Nunes da Rocha U, Cadillo-Quiroz H, Karaoz U, Rajeev L, Klitgord N, Dunn S, Truong V, Buenrostro M, Bowen BP, Garcia-Pichel F, Mukhopadhyay A, Northen TR, Brodie EL. Isolation of a significant fraction of non-phototroph diversity from a desert Biological Soil Crust. Front Microbiol 2015; 6:277. [PMID: 25926821 PMCID: PMC4396413 DOI: 10.3389/fmicb.2015.00277] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/19/2015] [Indexed: 01/10/2023] Open
Abstract
Biological Soil Crusts (BSCs) are organosedimentary assemblages comprised of microbes and minerals in topsoil of terrestrial environments. BSCs strongly impact soil quality in dryland ecosystems (e.g., soil structure and nutrient yields) due to pioneer species such as Microcoleus vaginatus; phototrophs that produce filaments that bind the soil together, and support an array of heterotrophic microorganisms. These microorganisms in turn contribute to soil stability and biogeochemistry of BSCs. Non-cyanobacterial populations of BSCs are less well known than cyanobacterial populations. Therefore, we attempted to isolate a broad range of numerically significant and phylogenetically representative BSC aerobic heterotrophs. Combining simple pre-treatments (hydration of BSCs under dark and light) and isolation strategies (media with varying nutrient availability and protection from oxidative stress) we recovered 402 bacterial and one fungal isolate in axenic culture, which comprised 116 phylotypes (at 97% 16S rRNA gene sequence homology), 115 bacterial and one fungal. Each medium enriched a mostly distinct subset of phylotypes, and cultivated phylotypes varied due to the BSC pre-treatment. The fraction of the total phylotype diversity isolated, weighted by relative abundance in the community, was determined by the overlap between isolate sequences and OTUs reconstructed from metagenome or metatranscriptome reads. Together, more than 8% of relative abundance of OTUs in the metagenome was represented by our isolates, a cultivation efficiency much larger than typically expected from most soils. We conclude that simple cultivation procedures combined with specific pre-treatment of samples afford a significant reduction in the culturability gap, enabling physiological and metabolic assays that rely on ecologically relevant axenic cultures.
Collapse
Affiliation(s)
- Ulisses Nunes da Rocha
- Lawrence Berkeley National Laboratory, Earth Sciences Division Berkeley, CA, USA ; Quantitative Microbial Ecology Group, Department of Molecular and Cell Physiology, Faculty of Earth and Life Sciences, VU Amsterdam Amsterdam, Netherlands
| | - Hinsby Cadillo-Quiroz
- Faculty of Genomics, Evolution and Bioinformatics, School of Life Sciences, Arizona State University Tucson, AZ, USA
| | - Ulas Karaoz
- Lawrence Berkeley National Laboratory, Earth Sciences Division Berkeley, CA, USA
| | - Lara Rajeev
- Lawrence Berkeley National Laboratory, Physical Biosciences Division Berkeley, CA, USA
| | - Niels Klitgord
- Lawrence Berkeley National Laboratory, Life Sciences Division Berkeley, CA, USA
| | - Sean Dunn
- Faculty of Genomics, Evolution and Bioinformatics, School of Life Sciences, Arizona State University Tucson, AZ, USA
| | - Viet Truong
- Faculty of Genomics, Evolution and Bioinformatics, School of Life Sciences, Arizona State University Tucson, AZ, USA
| | - Mayra Buenrostro
- Faculty of Genomics, Evolution and Bioinformatics, School of Life Sciences, Arizona State University Tucson, AZ, USA
| | - Benjamin P Bowen
- Lawrence Berkeley National Laboratory, Life Sciences Division Berkeley, CA, USA
| | - Ferran Garcia-Pichel
- Faculty of Genomics, Evolution and Bioinformatics, School of Life Sciences, Arizona State University Tucson, AZ, USA ; Lawrence Berkeley National Laboratory, Life Sciences Division Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Lawrence Berkeley National Laboratory, Physical Biosciences Division Berkeley, CA, USA
| | - Trent R Northen
- Lawrence Berkeley National Laboratory, Life Sciences Division Berkeley, CA, USA
| | - Eoin L Brodie
- Lawrence Berkeley National Laboratory, Earth Sciences Division Berkeley, CA, USA ; Department of Environmental Science, Policy and Management, University of California, Berkeley Berkeley, CA, USA
| |
Collapse
|
20
|
Campisano A, Antonielli L, Pancher M, Yousaf S, Pindo M, Pertot I. Bacterial endophytic communities in the grapevine depend on pest management. PLoS One 2014; 9:e112763. [PMID: 25387008 PMCID: PMC4227848 DOI: 10.1371/journal.pone.0112763] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 10/16/2014] [Indexed: 01/26/2023] Open
Abstract
Microbial plant endophytes are receiving ever-increasing attention as a result of compelling evidence regarding functional interaction with the host plant. Microbial communities in plants were recently reported to be influenced by numerous environmental and anthropogenic factors, including soil and pest management. In this study we used automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and pyrosequencing of 16S rDNA to assess the effect of organic production and integrated pest management (IPM) on bacterial endophytic communities in two widespread grapevines cultivars (Merlot and Chardonnay). High levels of the dominant Ralstonia, Burkholderia and Pseudomonas genera were detected in all the samples We found differences in the composition of endophytic communities in grapevines cultivated using organic production and IPM. Operational taxonomic units (OTUs) assigned to the Mesorhizobium, Caulobacter and Staphylococcus genera were relatively more abundant in plants from organic vineyards, while Ralstonia, Burkholderia and Stenotrophomonas were more abundant in grapevines from IPM vineyards. Minor differences in bacterial endophytic communities were also found in the grapevines of the two cultivars.
Collapse
Affiliation(s)
- Andrea Campisano
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige (TN), Italy
- * E-mail:
| | - Livio Antonielli
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige (TN), Italy
- Austrian Institute of Technology GmbH, Department of Health & Environment, Bioresources Unit, Tulln, Austria
| | - Michael Pancher
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige (TN), Italy
| | - Sohail Yousaf
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige (TN), Italy
- Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige (TN), Italy
| | - Ilaria Pertot
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige (TN), Italy
| |
Collapse
|
21
|
Prestat E, David MM, Hultman J, Taş N, Lamendella R, Dvornik J, Mackelprang R, Myrold DD, Jumpponen A, Tringe SG, Holman E, Mavromatis K, Jansson JK. FOAM (Functional Ontology Assignments for Metagenomes): a Hidden Markov Model (HMM) database with environmental focus. Nucleic Acids Res 2014; 42:e145. [PMID: 25260589 PMCID: PMC4231724 DOI: 10.1093/nar/gku702] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 07/11/2014] [Accepted: 07/21/2014] [Indexed: 11/13/2022] Open
Abstract
A new functional gene database, FOAM (Functional Ontology Assignments for Metagenomes), was developed to screen environmental metagenomic sequence datasets. FOAM provides a new functional ontology dedicated to classify gene functions relevant to environmental microorganisms based on Hidden Markov Models (HMMs). Sets of aligned protein sequences (i.e. 'profiles') were tailored to a large group of target KEGG Orthologs (KOs) from which HMMs were trained. The alignments were checked and curated to make them specific to the targeted KO. Within this process, sequence profiles were enriched with the most abundant sequences available to maximize the yield of accurate classifier models. An associated functional ontology was built to describe the functional groups and hierarchy. FOAM allows the user to select the target search space before HMM-based comparison steps and to easily organize the results into different functional categories and subcategories. FOAM is publicly available at http://portal.nersc.gov/project/m1317/FOAM/.
Collapse
Affiliation(s)
- Emmanuel Prestat
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Maude M David
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jenni Hultman
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Neslihan Taş
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Regina Lamendella
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jill Dvornik
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rachel Mackelprang
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - David D Myrold
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | | | - Elizabeth Holman
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Janet K Jansson
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA DOE Joint Genome Institute, Walnut Creek, CA 94598, USA DOE Joint Bioenergy Institute, Emeryville, CA 94608, USA Department of Plant and Microbial Biology, University of California, Berkeley 94720, USA Center for Permafrost (CENPERM), University of Copenhagen, Copenhagen 1017, Denmark
| |
Collapse
|
22
|
Kyselková M, Almario J, Kopecký J, Ságová-Marečková M, Haurat J, Muller D, Grundmann GL, Moënne-Loccoz Y. Evaluation of rhizobacterial indicators of tobacco black root rot suppressiveness in farmers' fields. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:346-53. [PMID: 24992533 DOI: 10.1111/1758-2229.12131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/21/2013] [Indexed: 06/03/2023]
Abstract
Very few soil quality indicators include disease-suppressiveness criteria. We assessed whether 64 16S rRNA microarray probes whose signals correlated with tobacco black root rot suppressiveness in greenhouse analysis could also discriminate suppressive from conducive soils under field conditions. Rhizobacterial communities of tobacco and wheat sampled in 2 years from four farmers' fields of contrasted suppressiveness status were compared. The 64 previously identified indicator probes correctly classified 72% of 29 field samples, with nine probes for Azospirillum, Gluconacetobacter, Sphingomonadaceae, Planctomycetes, Mycoplasma, Lactobacillus crispatus and Thermodesulforhabdus providing the best prediction. The whole probe set (1033 probes) revealed strong effects of plant, field location and year on rhizobacterial community composition, and a smaller (7% variance) but significant effect of soil suppressiveness status. Seventeen additional probes correlating with suppressiveness status in the field (noticeably for Agrobacterium, Methylobacterium, Ochrobactrum) were selected, and combined with the nine others, they improved correct sample classification from 72% to 79% (100% tobacco and 63% wheat samples). Pseudomonas probes were not informative in the field, even those targeting biocontrol pseudomonads producing 2,4-diacetylphloroglucinol, nor was quantitative polymerase chain reaction for 2,4-diacetylphloroglucinol-synthesis gene phlD. This study shows that a subset of 16S rRNA probes targeting diverse rhizobacteria can be useful as suppressiveness indicators under field conditions.
Collapse
Affiliation(s)
- Martina Kyselková
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, Ecologie Microbienne, UMR5557, Villeurbanne, France; Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Soil Biology, České Budějovice, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Penton CR, Gupta VVSR, Tiedje JM, Neate SM, Ophel-Keller K, Gillings M, Harvey P, Pham A, Roget DK. Fungal community structure in disease suppressive soils assessed by 28S LSU gene sequencing. PLoS One 2014; 9:e93893. [PMID: 24699870 PMCID: PMC3974846 DOI: 10.1371/journal.pone.0093893] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 03/11/2014] [Indexed: 01/09/2023] Open
Abstract
Natural biological suppression of soil-borne diseases is a function of the activity and composition of soil microbial communities. Soil microbe and phytopathogen interactions can occur prior to crop sowing and/or in the rhizosphere, subsequently influencing both plant growth and productivity. Research on suppressive microbial communities has concentrated on bacteria although fungi can also influence soil-borne disease. Fungi were analyzed in co-located soils 'suppressive' or 'non-suppressive' for disease caused by Rhizoctonia solani AG 8 at two sites in South Australia using 454 pyrosequencing targeting the fungal 28S LSU rRNA gene. DNA was extracted from a minimum of 125 g of soil per replicate to reduce the micro-scale community variability, and from soil samples taken at sowing and from the rhizosphere at 7 weeks to cover the peak Rhizoctonia infection period. A total of ∼ 994,000 reads were classified into 917 genera covering 54% of the RDP Fungal Classifier database, a high diversity for an alkaline, low organic matter soil. Statistical analyses and community ordinations revealed significant differences in fungal community composition between suppressive and non-suppressive soil and between soil type/location. The majority of differences associated with suppressive soils were attributed to less than 40 genera including a number of endophytic species with plant pathogen suppression potentials and mycoparasites such as Xylaria spp. Non-suppressive soils were dominated by Alternaria, Gibberella and Penicillum. Pyrosequencing generated a detailed description of fungal community structure and identified candidate taxa that may influence pathogen-plant interactions in stable disease suppression.
Collapse
Affiliation(s)
- C. Ryan Penton
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | | | - James M. Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - Stephen M. Neate
- Department of Agriculture, Fisheries and Forestry, Queensland, Leslie Research Centre, Towoomba, Queensland, Australia
| | | | - Michael Gillings
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Paul Harvey
- CSIRO Ecosystem Sciences, Glen Osmond, South Australia, Australia
| | - Amanda Pham
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - David K. Roget
- CSIRO Ecosystem Sciences, Glen Osmond, South Australia, Australia
| |
Collapse
|
24
|
Jørgensen TS, Xu Z, Hansen MA, Sørensen SJ, Hansen LH. Hundreds of circular novel plasmids and DNA elements identified in a rat cecum metamobilome. PLoS One 2014; 9:e87924. [PMID: 24503942 PMCID: PMC3913684 DOI: 10.1371/journal.pone.0087924] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/30/2013] [Indexed: 01/09/2023] Open
Abstract
Metagenomic approaches are widespread in microbiological research, but so far, the knowledge on extrachromosomal DNA diversity and composition has largely remained dependant on cultivating host organisms. Even with the emergence of metagenomics, complete circular sequences are rarely identified, and have required manual curation. We propose a robust in silico procedure for identifying complete small plasmids in metagenomic datasets from whole genome shotgun sequencing. From one very pure and exhaustively sequenced metamobilome from rat cecum, we identified a total of 616 circular sequences, 160 of which were carrying a gene with plasmid replication domain. Further homology analyses indicated that the majority of these plasmid sequences are novel. We confirmed the circularity of the complete plasmid candidates using an inverse-type PCR approach on a subset of sequences with 95% success, confirming the existence and length of discrete sequences. The implication of these findings is a broadened understanding of the traits of circular elements in nature and the possibility of massive data mining in existing metagenomic datasets to discover novel pools of complete plasmids thus vastly expanding the current plasmid database.
Collapse
Affiliation(s)
| | - Zhuofei Xu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Lars Hestbjerg Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Science, Aarhus Universitet, Roskilde, Denmark
- * E-mail: (SJS); (LHH)
| |
Collapse
|
25
|
Chakravarty S, Saikia D, Sharma P, Adhikary NC, Thakur D, Sarma NS. A supramolecular nanobiological hybrid as a PET sensor for bacterial DNA isolated from Streptomyces sanglieri. Analyst 2014; 139:6502-10. [DOI: 10.1039/c4an01611d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A ‘turn on–off–on’ sensor for highly sensitive detection of ds DNA with an excellent ‘limit of detection’ is reported.
Collapse
Affiliation(s)
- Sudesna Chakravarty
- Polymer Laboratory
- Physical Sciences Division
- Institute of Advanced Study in Science and Technology
- Guwahati-781035, India
| | - Dilip Saikia
- Plasma Section
- Physical Sciences Division
- Institute of Advanced Study in Science and Technology
- Guwahati-781035, India
| | - Priyanka Sharma
- Microbial Biotechnology Laboratory
- Life Sciences Division
- Institute of Advanced Study in Science and Technology
- Guwahati-781035, India
| | - Nirab Chandra Adhikary
- Plasma Section
- Physical Sciences Division
- Institute of Advanced Study in Science and Technology
- Guwahati-781035, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory
- Life Sciences Division
- Institute of Advanced Study in Science and Technology
- Guwahati-781035, India
| | - Neelotpal Sen Sarma
- Polymer Laboratory
- Physical Sciences Division
- Institute of Advanced Study in Science and Technology
- Guwahati-781035, India
| |
Collapse
|
26
|
Dighton J. Introduction: Soils and Their Promotion of Plant Growth. INTERACTIONS IN SOIL: PROMOTING PLANT GROWTH 2014. [DOI: 10.1007/978-94-017-8890-8_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Parsons AJ, Thornley JHM, Newton PCD, Rasmussen S, Rowarth JS. Soil carbon dynamics: the effects of nitrogen input, intake demand and off-take by animals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 465:205-15. [PMID: 23465429 DOI: 10.1016/j.scitotenv.2013.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/24/2013] [Accepted: 02/06/2013] [Indexed: 05/20/2023]
Abstract
Elucidation of the drivers of soil carbon (C) change is required to enable decisions to be made on how to achieve soil C sequestration. Interactions between different components in the ecosystem in combination with feedback mechanisms mean that identifying drivers through conventional experimental approaches or by retro-fitting models to data are unlikely to result in the insights needed for the future. This paper explains soil C dynamics by using a process-based model. Drivers considered in the model include nitrogen (N) fertiliser inputs, intake demand, and off-take of animal products. The effect of the grazing animal in uncoupling the C and N cycles is explained, plus the implications of the farming system ('drystock' versus milk). The model enables depiction of the dynamic equilibrium achieved with time when a proposed change in the drivers is sustained. The results show that soil C loss under lactating cows is a result of N, rather than C, being removed in milk. Counter-intuitively, at the same intake demand, N loss under 'milk' is less than under 'dry-stock', as is C loss in animal respiration. Possibilities for changing the longevity of C in the soil are discussed, and the compromise between food production, N loss and C sequestration is considered.
Collapse
Affiliation(s)
- A J Parsons
- Institute of Agriculture and Environment, Massey University, PB 11001, Palmerston North, 4021, New Zealand.
| | | | | | | | | |
Collapse
|
28
|
Nyyssönen M, Tran HM, Karaoz U, Weihe C, Hadi MZ, Martiny JBH, Martiny AC, Brodie EL. Coupled high-throughput functional screening and next generation sequencing for identification of plant polymer decomposing enzymes in metagenomic libraries. Front Microbiol 2013; 4:282. [PMID: 24069019 PMCID: PMC3779933 DOI: 10.3389/fmicb.2013.00282] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/02/2013] [Indexed: 12/13/2022] Open
Abstract
Recent advances in sequencing technologies generate new predictions and hypotheses about the functional roles of environmental microorganisms. Yet, until we can test these predictions at a scale that matches our ability to generate them, most of them will remain as hypotheses. Function-based mining of metagenomic libraries can provide direct linkages between genes, metabolic traits and microbial taxa and thus bridge this gap between sequence data generation and functional predictions. Here we developed high-throughput screening assays for function-based characterization of activities involved in plant polymer decomposition from environmental metagenomic libraries. The multiplexed assays use fluorogenic and chromogenic substrates, combine automated liquid handling and use a genetically modified expression host to enable simultaneous screening of 12,160 clones for 14 activities in a total of 170,240 reactions. Using this platform we identified 374 (0.26%) cellulose, hemicellulose, chitin, starch, phosphate and protein hydrolyzing clones from fosmid libraries prepared from decomposing leaf litter. Sequencing on the Illumina MiSeq platform, followed by assembly and gene prediction of a subset of 95 fosmid clones, identified a broad range of bacterial phyla, including Actinobacteria, Bacteroidetes, multiple Proteobacteria sub-phyla in addition to some Fungi. Carbohydrate-active enzyme genes from 20 different glycoside hydrolase (GH) families were detected. Using tetranucleotide frequency (TNF) binning of fosmid sequences, multiple enzyme activities from distinct fosmids were linked, demonstrating how biochemically-confirmed functional traits in environmental metagenomes may be attributed to groups of specific organisms. Overall, our results demonstrate how functional screening of metagenomic libraries can be used to connect microbial functionality to community composition and, as a result, complement large-scale metagenomic sequencing efforts.
Collapse
Affiliation(s)
- Mari Nyyssönen
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Nakano M, Niwa M, Nishimura N. Specific and sensitive detection of Alcaligenes species from an agricultural environment. Microbiol Immunol 2013; 57:240-5. [PMID: 23489084 DOI: 10.1111/1348-0421.12026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/05/2012] [Accepted: 12/26/2012] [Indexed: 11/28/2022]
Abstract
A quantitative real-time PCR assay to specifically detect and quantify the genus Alcaligenes in samples from the agricultural environment, such as vegetables and farming soils, was developed. The minimum detection sensitivity was 106 fg of pure culture DNA, corresponding to DNA extracted from two cells of Alcaligenes faecalis. To evaluate the detection limit of A. faecalis, serially diluted genomic DNA from this organism was mixed with DNA extracted from soil and vegetables and then a standard curve was constructed. It was found that Alcaligenes species are present in the plant phytosphere at levels 10(2)-10(4) times lower than those in soil. The approach presented here will be useful for tracking or quantifying species of the genus Alcaligenes in the agricultural environment.
Collapse
Affiliation(s)
- Miyo Nakano
- Department of Translational Medical Science and Molecular and Cellular Pharmacology, Pharmacogenomics, and Pharmacoinformatics, Mie University Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | | | | |
Collapse
|
30
|
Klein E, Ofek M, Katan J, Minz D, Gamliel A. Soil suppressiveness to fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization. PHYTOPATHOLOGY 2013; 103:23-33. [PMID: 22950737 DOI: 10.1094/phyto-12-11-0349] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Soil suppressiveness to Fusarium disease was induced by incubating sandy soil with debris of wild rocket (WR; Diplotaxis tenuifolia) under field conditions. We studied microbial dynamics in the roots of cucumber seedlings following transplantation into WR-amended or nonamended soil, as influenced by inoculation with Fusarium oxysporum f. sp. radicis-cucumerinum. Disease symptoms initiated in nonamended soil 6 days after inoculation, compared with 14 days in WR-amended soil. Root infection by F. oxysporum f. sp. radicis-cucumerinum was quantified using real-time polymerase chain reaction (PCR). Target numbers were similar 3 days after inoculation for both WR-amended and nonamended soils, and were significantly lower (66%) 6 days after inoculation and transplanting into the suppressive (WR-amended) soil. This decrease in root colonization was correlated with a reduction in disease (60%) 21 days after inoculation and transplanting into the suppressive soil. Fungal community composition on cucumber roots was assessed using mass sequencing of fungal internal transcribed spacer gene fragments. Sequences related to F. oxysporum, Fusarium sp. 14005, Chaetomium sp. 15003, and an unclassified Ascomycota composed 96% of the total fungal sequences in all samples. The relative abundances of these major groups were highly affected by root inoculation with F. oxysporum f. sp. radicis-cucumerinum, with a 10-fold increase in F. oxysporum sequences, but were not affected by the WR amendment. Quantitative analysis and mass-sequencing methods indicated a qualitative shift in the root's bacterial community composition in suppressive soil, rather than a change in bacterial numbers. A sharp reduction in the size and root dominance of the Massilia population in suppressive soil was accompanied by a significant increase in the relative abundance of specific populations; namely, Rhizobium, Bacillus, Paenibacillus, and Streptomyces spp. Composition of the Streptomyces community shifted significantly, as determined by PCR denaturing gradient gel electrophoresis, resulting in an increase in the dominance of a specific population in suppressive soils after only 3 days. This shift was related mainly to the increase in Streptomyces humidus, a group previously described as antagonistic to phytopathogenic fungi. Thus, suitable soil amendment resulted in a shift in the root's bacterial communities, and infection by a virulent pathogen was contained by the root microbiome, leading to a reduced disease rate.
Collapse
Affiliation(s)
- Eyal Klein
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
31
|
Enhancing Soil Quality and Plant Health Through Suppressive Organic Amendments. DIVERSITY-BASEL 2012. [DOI: 10.3390/d4040475] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
32
|
|
33
|
Garmendia L, Hernandez A, Sanchez MB, Martinez JL. Metagenomics and antibiotics. Clin Microbiol Infect 2012; 18 Suppl 4:27-31. [PMID: 22647044 DOI: 10.1111/j.1469-0691.2012.03868.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most of the bacterial species that form part of the biosphere have never been cultivated. In this situation, a comprehensive study of bacterial communities requires the utilization of non-culture-based methods, which have been named metagenomics. In this paper we review the use of different metagenomic techniques for understanding the effect of antibiotics on microbial communities, to synthesize new antimicrobial compounds and to analyse the distribution of antibiotic resistance genes in different ecosystems. These techniques include functional metagenomics, which serves to find new antibiotics or new antibiotic resistance genes, and descriptive metagenomics, which serves to analyse changes in the composition of the microbiota and to track the presence and abundance of already known antibiotic resistance genes in different ecosystems.
Collapse
Affiliation(s)
- L Garmendia
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, CIBERESP, Madrid, Spain
| | | | | | | |
Collapse
|
34
|
Abstract
Metagenomics is revolutionizing the field of microbial ecology through techniques that eliminate the prerequisite of culturing. Metagenomic studies of microbial populations in different environments reveal the incredible diversity and adaptive capabilities of these organisms. With the advent of cheaper, high-throughput sequencing technologies, these studies are also producing vast amounts of sequence data. Here, we discuss the different components of a metagenomic study including sample collection, DNA extraction, sequencing, and informatics. We highlight their issues and challenges, and review the solutions that are currently in use. We conclude with examples of metagenomic studies conducted on environments of varying complexities.
Collapse
|
35
|
Ekkers DM, Cretoiu MS, Kielak AM, van Elsas JD. The great screen anomaly--a new frontier in product discovery through functional metagenomics. Appl Microbiol Biotechnol 2011; 93:1005-20. [PMID: 22189864 PMCID: PMC3264863 DOI: 10.1007/s00253-011-3804-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/27/2011] [Accepted: 11/29/2011] [Indexed: 11/25/2022]
Abstract
Functional metagenomics, the study of the collective genome of a microbial community by expressing it in a foreign host, is an emerging field in biotechnology. Over the past years, the possibility of novel product discovery through metagenomics has developed rapidly. Thus, metagenomics has been heralded as a promising mining strategy of resources for the biotechnological and pharmaceutical industry. However, in spite of innovative work in the field of functional genomics in recent years, yields from function-based metagenomics studies still fall short of producing significant amounts of new products that are valuable for biotechnological processes. Thus, a new set of strategies is required with respect to fostering gene expression in comparison to the traditional work. These new strategies should address a major issue, that is, how to successfully express a set of unknown genes of unknown origin in a foreign host in high throughput. This article is an opinionating review of functional metagenomic screening of natural microbial communities, with a focus on the optimization of new product discovery. It first summarizes current major bottlenecks in functional metagenomics and then provides an overview of the general metagenomic assessment strategies, with a focus on the challenges that are met in the screening for, and selection of, target genes in metagenomic libraries. To identify possible screening limitations, strategies to achieve optimal gene expression are reviewed, examining the molecular events all the way from the transcription level through to the secretion of the target gene product.
Collapse
Affiliation(s)
- David Matthias Ekkers
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Mariana Silvia Cretoiu
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Anna Maria Kielak
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
36
|
Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T. Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci U S A 2011; 108:14288-93. [PMID: 21825123 PMCID: PMC3161577 DOI: 10.1073/pnas.1101591108] [Citation(s) in RCA: 500] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The principles underlying the assembly and structure of complex microbial communities are an issue of long-standing concern to the field of microbial ecology. We previously analyzed the community membership of bacterial communities associated with the green macroalga Ulva australis, and proposed a competitive lottery model for colonization of the algal surface in an attempt to explain the surprising lack of similarity in species composition across different algal samples. Here we extend the previous study by investigating the link between community structure and function in these communities, using metagenomic sequence analysis. Despite the high phylogenetic variability in microbial species composition on different U. australis (only 15% similarity between samples), similarity in functional composition was high (70%), and a core of functional genes present across all algal-associated communities was identified that were consistent with the ecology of surface- and host-associated bacteria. These functions were distributed widely across a variety of taxa or phylogenetic groups. This observation of similarity in habitat (niche) use with respect to functional genes, but not species, together with the relative ease with which bacteria share genetic material, suggests that the key level at which to address the assembly and structure of bacterial communities may not be "species" (by means of rRNA taxonomy), but rather the more functional level of genes.
Collapse
Affiliation(s)
- Catherine Burke
- School of Biotechnology and Biomolecular Sciences
- The iThree Institute, University of Technology, Ultimo, New South Wales 2007, Australia
| | - Peter Steinberg
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation, University of New South Wales, Sydney, New South Wales 2052, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales 2088, Australia
| | - Doug Rusch
- The J. Craig Venter Institute, Rockville, MD 20850; and
| | - Staffan Kjelleberg
- School of Biotechnology and Biomolecular Sciences
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | | |
Collapse
|
37
|
Lombard N, Prestat E, van Elsas JD, Simonet P. Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbiol Ecol 2011; 78:31-49. [PMID: 21631545 DOI: 10.1111/j.1574-6941.2011.01140.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Metagenomics approaches represent an important way to acquire information on the microbial communities present in complex environments like soil. However, to what extent do these approaches provide us with a true picture of soil microbial diversity? Soil is a challenging environment to work with. Its physicochemical properties affect microbial distributions inside the soil matrix, metagenome extraction and its subsequent analyses. To better understand the bias inherent to soil metagenome 'processing', we focus on soil physicochemical properties and their effects on the perceived bacterial distribution. In the light of this information, each step of soil metagenome processing is then discussed, with an emphasis on strategies for optimal soil sampling. Then, the interaction of cells and DNA with the soil matrix and the consequences for microbial DNA extraction are examined. Soil DNA extraction methods are compared and the veracity of the microbial profiles obtained is discussed. Finally, soil metagenomic sequence analysis and exploitation methods are reviewed.
Collapse
Affiliation(s)
- Nathalie Lombard
- Department of Marine Biotechnology, Institute of Marine Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA.
| | | | | | | |
Collapse
|
38
|
Metagenomic exploration of antibiotic resistance in soil. Curr Opin Microbiol 2011; 14:229-35. [DOI: 10.1016/j.mib.2011.04.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/08/2011] [Accepted: 04/12/2011] [Indexed: 11/23/2022]
|
39
|
Delmont TO, Robe P, Cecillon S, Clark IM, Constancias F, Simonet P, Hirsch PR, Vogel TM. Accessing the soil metagenome for studies of microbial diversity. Appl Environ Microbiol 2011; 77:1315-24. [PMID: 21183646 PMCID: PMC3067229 DOI: 10.1128/aem.01526-10] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 12/13/2010] [Indexed: 11/20/2022] Open
Abstract
Soil microbial communities contain the highest level of prokaryotic diversity of any environment, and metagenomic approaches involving the extraction of DNA from soil can improve our access to these communities. Most analyses of soil biodiversity and function assume that the DNA extracted represents the microbial community in the soil, but subsequent interpretations are limited by the DNA recovered from the soil. Unfortunately, extraction methods do not provide a uniform and unbiased subsample of metagenomic DNA, and as a consequence, accurate species distributions cannot be determined. Moreover, any bias will propagate errors in estimations of overall microbial diversity and may exclude some microbial classes from study and exploitation. To improve metagenomic approaches, investigate DNA extraction biases, and provide tools for assessing the relative abundances of different groups, we explored the biodiversity of the accessible community DNA by fractioning the metagenomic DNA as a function of (i) vertical soil sampling, (ii) density gradients (cell separation), (iii) cell lysis stringency, and (iv) DNA fragment size distribution. Each fraction had a unique genetic diversity, with different predominant and rare species (based on ribosomal intergenic spacer analysis [RISA] fingerprinting and phylochips). All fractions contributed to the number of bacterial groups uncovered in the metagenome, thus increasing the DNA pool for further applications. Indeed, we were able to access a more genetically diverse proportion of the metagenome (a gain of more than 80% compared to the best single extraction method), limit the predominance of a few genomes, and increase the species richness per sequencing effort. This work stresses the difference between extracted DNA pools and the currently inaccessible complete soil metagenome.
Collapse
Affiliation(s)
- Tom O. Delmont
- Environmental Microbial Genomics Group, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France, LibraGen, 3 Rue des Satellites, 31400 Toulouse, France, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Patrick Robe
- Environmental Microbial Genomics Group, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France, LibraGen, 3 Rue des Satellites, 31400 Toulouse, France, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Sébastien Cecillon
- Environmental Microbial Genomics Group, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France, LibraGen, 3 Rue des Satellites, 31400 Toulouse, France, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Ian M. Clark
- Environmental Microbial Genomics Group, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France, LibraGen, 3 Rue des Satellites, 31400 Toulouse, France, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Florentin Constancias
- Environmental Microbial Genomics Group, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France, LibraGen, 3 Rue des Satellites, 31400 Toulouse, France, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Pascal Simonet
- Environmental Microbial Genomics Group, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France, LibraGen, 3 Rue des Satellites, 31400 Toulouse, France, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Penny R. Hirsch
- Environmental Microbial Genomics Group, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France, LibraGen, 3 Rue des Satellites, 31400 Toulouse, France, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Timothy M. Vogel
- Environmental Microbial Genomics Group, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France, LibraGen, 3 Rue des Satellites, 31400 Toulouse, France, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| |
Collapse
|
40
|
da Rocha UN, van Elsas JD, van Overbeek LS. Real-time PCR detection of Holophagae (Acidobacteria) and Verrucomicrobia subdivision 1 groups in bulk and leek (Allium porrum) rhizosphere soils. J Microbiol Methods 2010; 83:141-8. [PMID: 20801169 DOI: 10.1016/j.mimet.2010.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/02/2010] [Accepted: 08/06/2010] [Indexed: 11/19/2022]
Abstract
In the light of the poor culturability of Acidobacteria and Verrucomicrobia species, group-specific real-time (qPCR) systems were developed based on the 16S rRNA gene sequences from culturable representatives of both groups. The number of DNA targets from three different groups, i.e. Holophagae (Acidobacteria group 8) and Luteolibacter/Prosthecobacter and unclassified Verrucomicrobiaceae subdivision 1, was determined in DNA extracts from different leek (Allium porrum) rhizosphere soil compartments and from bulk soil with the aim to determine the distribution of the three bacterial groups in the plant-soil ecosystem. The specificity of the designed primers was evaluated in three steps. First, in silico tests were performed which demonstrated that all designed primers 100% matched with database sequences of their respective groups, whereas lower matches with other non-target bacterial groups were found. Second, PCR amplification with the different primer sets was performed on genomic DNA extracts from target and from non-target bacteria. This test demonstrated specificity of the designed primers for the target groups, as single amplicons of expected sizes were found only for the target bacteria. Third, the qPCR systems were tested for specific amplifications from soil DNA extracts and 48 amplicons from each primer system were sequenced. All sequences were >97% similar to database sequences of the respective target groups. Estimated cell numbers based on Holophagae-, Luteolibacter/Prosthecobacter- and unclassified Verrucomicrobiaceae subdivision 1-specific qPCRs from leek rhizosphere compartments and bulk soils demonstrated higher preference for one or both rhizosphere compartments above bulk soil for all three bacterial groups.
Collapse
Affiliation(s)
- Ulisses Nunes da Rocha
- Plant Research International, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | |
Collapse
|
41
|
Mocali S, Benedetti A. Exploring research frontiers in microbiology: the challenge of metagenomics in soil microbiology. Res Microbiol 2010; 161:497-505. [PMID: 20452420 DOI: 10.1016/j.resmic.2010.04.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 04/13/2010] [Accepted: 04/13/2010] [Indexed: 11/28/2022]
Abstract
Soil is one of the most complex and challenging environments for microbiologists. In fact, although it contains the largest microbial diversity on the planet, the majority of these microbes are still uncharacterized and represent an enormous unexplored reservoir of genetic and metabolic diversity. Metagenomics, the study of the entire genome of soil biota, currently represents a powerful tool for assessing the diversity of complex microbial communities, providing access to a number of new species, genes or novel molecules that are relevant for biotechnology and agricultural applications. In this paper, the onset of new high-throughput metagenomic approaches and new perspectives in soil microbial ecology and data handling are discussed.
Collapse
Affiliation(s)
- Stefano Mocali
- CRA- Centro di Ricerca per lo Studio delle relazioni tra Pianta e Suolo, Via della Navicella, 2/4, 00184 Roma, Italy.
| | | |
Collapse
|
42
|
Zhang K, He J, Yang M, Yen M, Yin J. Identifying natural product biosynthetic genes from a soil metagenome by using T7 phage selection. Chembiochem 2010; 10:2599-606. [PMID: 19780075 DOI: 10.1002/cbic.200900297] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Keya Zhang
- Department of Chemistry, The University of Chicago, 929 E. 57th Street, GCIS E505A, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
43
|
Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V. Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 2009; 12:2165-79. [PMID: 21966911 DOI: 10.1111/j.1462-2920.2009.02099.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The biodiversity of arbuscular mycorrhizal fungi (AMF) communities present in five Sardinian soils (Italy) subjected to different land-use (tilled vineyard, covered vineyard, pasture, managed meadow and cork-oak formation) was analysed using a pyrosequencing-based approach for the first time. Two regions of the 18S ribosomal RNA gene were considered as molecular target. The pyrosequencing produced a total of 10924 sequences: 6799 from the first and 4125 from the second target region. Among these sequences, 3189 and 1003 were selected to generate operational taxonomic units (OTUs) and to evaluate the AMF community richness and similarity: 117 (37 of which were singletons) and 28 (nine of which were singletons) unique AMF OTUs were detected respectively. Within the Glomeromycota OTUs, those belonging to the Glomerales order were dominant in all the soils. Diversisporales OTUs were always detected, even though less frequently, while Archaeosporales and Paraglomerales OTUs were exclusive of the pasture soil. Eleven OTUs were shared by all the soils, but each of the five AMF communities showed particular features, suggesting a meaningful dissimilarity among the Glomeromycota populations. The environments with low inputs (pasture and covered vineyard) showed a higher AMF biodiversity than those subjected to human input (managed meadow and tilled vineyard). A reduction in AMF was found in the cork-oak formation because other mycorrhizal fungal species, more likely associated to trees and shrubs, were detected. These findings reinforce the view that AMF biodiversity is influenced by both human input and ecological traits, illustrating a gradient of AMF communities which mirror the land-use gradient. The high number of sequences obtained by the pyrosequencing strategy has provided detailed information on the soil AMF assemblages, thus offering a source of light to shine on this crucial soil microbial group.
Collapse
Affiliation(s)
- Erica Lumini
- Istituto per Protezione delle Piante - Sez. di Torino - CNR, Viale Mattioli 25, 10125, Italy
| | | | | | | | | |
Collapse
|
44
|
Advantages of the metagenomic approach for soil exploration: reply from Vogel et al. Nat Rev Microbiol 2009. [DOI: 10.1038/nrmicro2119-c3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on developing new anti-cancer agents. Chem Rev 2009; 109:3012-43. [PMID: 19422222 DOI: 10.1021/cr900019j] [Citation(s) in RCA: 913] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Gordon M Cragg
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, NCI-Frederick, Fairview Center, Suite 206, P.O. Box B, Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
46
|
Singh J, Behal A, Singla N, Joshi A, Birbian N, Singh S, Bali V, Batra N. Metagenomics: Concept, methodology, ecological inference and recent advances. Biotechnol J 2009; 4:480-94. [PMID: 19288513 DOI: 10.1002/biot.200800201] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microorganisms constitute two third of the Earth's biological diversity. As many as 99% of the microorganisms present in certain environments cannot be cultured by standard techniques. Culture-independent methods are required to understand the genetic diversity, population structure and ecological roles of the majority of organisms. Metagenomics is the genomic analysis of microorganisms by direct extraction and cloning of DNA from their natural environment. Protocols have been developed to capture unexplored microbial diversity to overcome the existing barriers in estimation of diversity. New screening methods have been designed to select specific functional genes within metagenomic libraries to detect novel biocatalysts as well as bioactive molecules applicable to mankind. To study the complete gene or operon clusters, various vectors including cosmid, fosmid or bacterial artificial chromosomes are being developed. Bioinformatics tools and databases have added much to the study of microbial diversity. This review describes the various methodologies and tools developed to understand the biology of uncultured microbes including bacteria, archaea and viruses through metagenomic analysis.
Collapse
Affiliation(s)
- Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | | | | | | | | | | | | | | |
Collapse
|