1
|
Nesterova OV, Bondarenko OE, Pombeiro AJL, Nesterov DS. Phenoxazinone Synthase-Like Catalytic Activity of Bi- and Trinuclear Copper(II) Complexes with 2-Benzylethanolamine: Experimental and Theoretical Investigations. Chempluschem 2025; 90:e202400613. [PMID: 39928710 DOI: 10.1002/cplu.202400613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/12/2025]
Abstract
The self-assembly reaction of 2-benzylaminoethanol (Hbae) with CuCl2 or Cu(NO3)2 leads to the formation of binuclear [Cu2(bae)2(Cl)2] (1) and [Cu2(Hbae)2(bae)2](NO3)2 (2) complexes, while the trinuclear [Cu3(Hbae)2(bae)2(dmba)2](NO3)2 (3) compound was obtained using the auxiliar bulky substituted 2,2-dimethylbutyric acid (Hdmba). Crystallographic studies reveal the molecular structures of 1 and 2 based on the similar {Cu2(μ-O)2} core, while the structure of 3 features the {Cu3(μ-O)2} core with consecutive arranement of the metal centres, supported by the additional carboxylate bridges. The strong intermolecular hydrogen bonds join the molecular structures into 1D (for 1 and 3) or 2D (for 2) architectures. All three compounds act as catalysts for the aerobic oxidation of 2-aminophenol to the phenoxazinone chromophore (phenoxazinone synthase-like activity) with the maximum reaction rates up to 2.3×10-8 M s-1. The substrate scope involves methyl-, nitro- and chloro-substituted 2-aminophenols, disclosing the negligible activity of nitro-derivatives, while the 6-amino-m-cresol substrate shows the highest activity with the initial reaction rate of 5.8×10-8 M s-1. The mechanism of the rate-limiting reaction step (copper-catalysed formation of 2-aminophenoxyl radicals) was investigated at the DFT level. The combined DFT and CASSCF studies of the copper superoxo CuII-OO⋅ radical species as possible unconventional reaction intermediates resulted in a rational mechanism of H-atom abstraction, where the activation energies follow the experimental reactivity of substituted 2-aminophenols. The TDDFT and STEOM-DLPNO-CCSD theoretical calculations of the absorption spectra of substrates, phenoxazinone chromophores and putative polynuclear species containing 2-aminophenoxo ligand are reported.
Collapse
Affiliation(s)
- Oksana V Nesterova
- Centro de Estudos de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007, Lisboa, Portugal
| | - Olena E Bondarenko
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Dmytro S Nesterov
- Centro de Estudos de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007, Lisboa, Portugal
| |
Collapse
|
2
|
Jiang L, Huang P, Li A, Fen B, Zhong Y, Tang C, Wu G, Wang W, Chen Y, Pan J, Tang G, Pu H. Discovery of phenoxazine congeners as novel α-glucosidase inhibitors and identification of their biosynthetic gene cluster from Streptomyces sp. CB00316. Arch Microbiol 2025; 207:132. [PMID: 40299064 DOI: 10.1007/s00203-025-04337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
α-Glucosidase is considered an ideal target for the treatment of type 2 diabetes mellitus. Streptomyces species are known to produce a plethora of bioactive metabolites. On the basis of genomic information, the one strain many compounds (OSMAC) strategy and various chromatographic separation techniques, two compounds, bezerramycin A (1) and elloxazinone A (2), were identified from among Streptomyces sp. CB00316 metabolites. The α-glucosidase inhibitory activities of the isolated compounds were evaluated and compound 2 showed the strongest activity, with an IC50 value of 74.31 ± 3.74 µM. In silico molecular docking and molecular dynamics simulations confirmed the in vitro activities of these α-glucosidase inhibitors. In addition, we investigated the biosynthetic gene clusters and metabolic pathways of compounds 1 and 2. These findings highlight the potential of phenoxazines as lead compounds to combat the development of type 2 diabetes.
Collapse
Affiliation(s)
- Lin Jiang
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, 410013, China
- Changsha Concord Herbs Cultivation Technology Co., Ltd, Changsha, 410221, China
| | - Pingzhi Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, China‑Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, 418000, China
| | - Aijie Li
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, China‑Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, 418000, China
| | - Bin Fen
- Huaihua Hospital of Traditional Chinese Medicine, Huaihua, 418000, China
| | - Yani Zhong
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, China‑Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, 418000, China
| | - Caijun Tang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, China‑Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, 418000, China
| | - Guangling Wu
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, China‑Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, 418000, China
| | - Wenlei Wang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, China‑Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, 418000, China
| | - Yuhan Chen
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, China‑Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, 418000, China
| | - Jian Pan
- College of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, 410004, China.
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, 410013, China.
| | - Genyun Tang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, China‑Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, 418000, China.
| | - Hong Pu
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, China‑Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, 418000, China.
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
3
|
Yang S, Williams SJ, Courtney M, Burchill L. Warfare under the waves: a review of bacteria-derived algaecidal natural products. Nat Prod Rep 2025; 42:681-719. [PMID: 39749862 DOI: 10.1039/d4np00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Covering: 1960s to 2024Harmful algal blooms pose a major threat to aquatic ecosystems and can impact human health. The frequency and intensity of these blooms has increased over recent decades, driven primarily by climate change and an increase in nutrient runoff. Algal blooms often produce toxins that contaminate water sources, disrupt fisheries, and harm human health. These blooms may also result in oxygen-deprived environments leading to mass fish deaths that threaten the survival of other aquatic life. In freshwater and estuarine ecosystems, traditional chemical strategies to mitigate algal blooms include the use of herbicides, metal salts, or oxidants. Though effective, these agents are non-selective, toxic to other species, and cause loss of biodiversity. They can persist in ecosystems, contaminating the food web and providing an impetus for cost-effective, targeted algal-control methods that protect ecosystems. In marine ecosystems, harmful algal blooms are even more challenging to treat due to the lack of scalable solutions and the challenge of dispersal of algal control agents in open ocean settings. Natural products derived from algae-bacteria interactions have led to the evolution of diverse bacteria-derived algaecidal natural products, which are highly potent, species specific and have potential for combating harmful algal blooms. They provide valuable starting points for the development of eco-friendly algae control methods. This review provides a comprehensive overview of all bacterial algaecides and their activities, categorized into two major groups: (1) algaecides produced in ecologically significant associations between bacteria and algae, and (2) algaecides with potentially coincidental activity but without an ecological role in specific bacteria-algae interactions. This review contributes to a better understanding of the chemical ecology of parasitic algal-bacterial interactions, "the warfare under the waves", and highlights the potential applications of bacteria-derived algaecides to provide solutions to harmful algal blooms.
Collapse
Affiliation(s)
- Shuxin Yang
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Myles Courtney
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Laura Burchill
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
4
|
Pretzler M, Rompel A. Beyond Phenolics: Alternative Substrates for Type III Copper Enzymes. Chembiochem 2025; 26:e202400982. [PMID: 39963820 PMCID: PMC12002105 DOI: 10.1002/cbic.202400982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/24/2025] [Indexed: 04/17/2025]
Abstract
The type III copper enzyme family of tyrosinases (TYRs) catalyzes the ortho-hydroxylation and oxidation of phenols as well as the two-electron oxidation of catechols to ortho-quinones. TYRs use copper ions as their tightly bound cofactors and utilize molecular oxygen as their cosubstrate. They are responsible for physiologically important reactions like the formation of melanin, the primary pigment animals apply for protection against UV light. While the reactivity of TYRs on substrates containing aromatic hydroxy groups (i. e. phenols) is well recognized, reports clearly demonstrating that TYRs are active on aromatic amines as well have gone largely unnoticed. In this perspective we aim to bring together the sparse data on non-phenolic TYR substrates to illustrate the potential of TYRs for the oxidation of aminophenols and anilines. The activity of TYRs on aromatic amines extends the substance classes amenable to biotechnological production with TYRs from catechols to N-phenyl imines and phenoxazinone derivates and calls for the inclusion of TYRs among the candidates for oxidative modification of aromatic amines in metabolic pathways.
Collapse
Affiliation(s)
- Matthias Pretzler
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieJosef-Holaubek-Platz 21090WienAustria
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieJosef-Holaubek-Platz 21090WienAustria
| |
Collapse
|
5
|
Mohammed TP, Velusamy M, Sankaralingam M. Bioinspired copper(II) complexes catalyzed oxidative coupling of aminophenols with broader substrate scope. J Inorg Biochem 2025; 270:112906. [PMID: 40239303 DOI: 10.1016/j.jinorgbio.2025.112906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025]
Abstract
The strategic selection of ligand systems in metal complexes has demonstrated a profound impact on the efficiency and specificity of biomimetic reactions. In this work, we introduce a series of aminoquinoline-based copper(II) complexes (1-4) distinguished by systematic variation in terminal amine substituents: di-n-methyl (L1(H)), di-n-ethyl (L2(H)), di-n-propyl (L3(H)), and di-n-butyl (L4(H)). These complexes are synthesized, characterized, and evaluated as the catalyst for the oxidative coupling of different aminophenol derivatives. Remarkably, complex 1, featuring a methyl substituent, exhibited unparalleled catalytic performance, achieving an 86 % (Kcat - 9.7 × 104 h-1) conversion of o-aminophenol to the desired product, 2-amino-phenoxazin-3-one, alongside water and hydrogen peroxide as byproducts. Notably, complex 1 demonstrated exceptional versatility, extending its catalytic activity to other substrates with remarkable activity. Mechanistic investigations, supported by mass-spectrometric analysis, revealed the formation of a complex-substrate adduct with all substrates, enabling us to propose a detailed reaction pathway. The work highlights the benefits of ligand design in improving catalytic performance and sets a new standard for aminoquinoline-based copper(II) complexes in oxidative coupling reactions. To the best of our knowledge, this work is the first to report a wider substrate scope for PHS activity with copper(II) complexes.
Collapse
Affiliation(s)
- Thasnim P Mohammed
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Marappan Velusamy
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India.
| |
Collapse
|
6
|
Guo NY, Cheng XY, Dong XD, Peng CE, Zhang C, Han YP, Peng LZ. New synthetic approaches for the construction of 2-aminophenoxazinone architectures. RSC Adv 2025; 15:9479-9509. [PMID: 40161528 PMCID: PMC11951111 DOI: 10.1039/d5ra00604j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Elaborated molecular architectures, specifically those containing a 2-aminophenoxazinone scaffold, belong to one of the most ubiquitous and prominent classes of heterocyclic frameworks, going from natural products to biologically active pharmaceutical molecules and from agrochemicals to functional materials and polymers. Therefore, efficient synthetic strategies for the assembly of 2-aminophenoxazinone frameworks are always in demand and have gained attention in academic and industrial communities. Methodologies that involve cascade reactions generally catalyzed by transition metal complexes, such as iron, cobalt, manganese, copper, and zinc complexes, have stood out as a representative approach. Over the past few decades, a great deal of versatile, atom-economic, and straightforward protocols have been reported for the generation of value-added 2-aminophenoxazinone frameworks in a sustainable, powerful, and applicable manner. The state-of-the-art methodologies toward the construction of 2-aminophenoxazinone skeletons are summarized in this review, which could be divided into four categories: (1) construction of 2-aminophenoxazinone compounds catalyzed by transition metal complexes; (2) construction of 2-aminophenoxazinone compounds catalyzed by biosynthetic enzymes; (3) synthetic process routes of 2-aminophenoxazinone compounds; and (4) construction of 2-aminophenoxazinone compounds via other innovative methods.
Collapse
Affiliation(s)
- Ning-Yu Guo
- School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences Jinan China
| | - Xiao-Yi Cheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan China
| | - Xiao-Dan Dong
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences Jinan China
| | - Chun-E Peng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences Jinan China
| | - Chun Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China
| | - Li-Zeng Peng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences Jinan China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan China
| |
Collapse
|
7
|
Jana NC, Escuer A, Brandão P, Panja A. Exploring structural, magnetic, and catalytic diversity in tetranuclear {Cu 4O 4} cubane cores and a dinuclear complex derived from closely related ligand systems. Dalton Trans 2025; 54:3000-3012. [PMID: 39812336 DOI: 10.1039/d4dt03283g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The coordination compounds featuring a {Cu4O4} core, typically bridged by hydroxo or alkoxo groups, are particularly intriguing due to their notable magnetic properties and catalytic activity. In this study, we explored the synthesis and characterization of four new Schiff base ligands and their subsequent complexation with CuII salts, which resulted in the formation of three tetranuclear complexes: [Cu4(L1)4]·2H2O (1), [Cu4(L2)2(HL2)2](Cl)(NO3)·5H2O (2), and [Cu4(L3)4] (3), as well as one dinuclear complex: [Cu2(L4)2] (4). These tetranuclear complexes all feature a {Cu4O4} core, but with differing coordination environments around the CuII centers. For instance, complex 1 exhibits μ3-phenoxido bridges and a distorted octahedral geometry, while complex 3 features μ3-alkoxido bridges and a square pyramidal geometry. Complex 2 displays an open cubane core with mixed μ2-phenoxido and μ3-alkoxido bridges, with both square planar (CuNO4) and octahedral (CuNO5) geometries. In addition, dinuclear complex 4 was synthesized, featuring square planar CuII centers linked by μ2-alkoxido bridges. The magnetic studies revealed that 1 and 2 exhibit strong antiferromagnetic coupling, which is attributed to their larger Cu-O-Cu bond angles, while complex 3 demonstrates moderate ferromagnetic behavior, associated with smaller bond angles. Literature reports indicate that {Cu4O4} cubane cores generally show ferromagnetic interactions at bond angles near 104°, but in complex 3, we observed moderate ferromagnetic interactions with a Cu-O-Cu bridging angle of 108.41(9)°, making it one of the highest bond angles observed for ferromagnetic interactions in a {Cu4O4} cubane-like system. The planar dinuclear complex 4 exhibits extremely strong antiferromagnetic coupling, which is attributed to the ideal Cu-O-Cu bridging angles and the planar Cu-O-O-Cu core. Additionally, EPR measurements of complex 3 at 4 K reveal a well-isolated S = 2 ground state, separated by a gap of 65.8 cm-1 from the three closest degenerate spin levels (S = 0, 1, and 1). Finally, all four complexes were used as catalysts for the aerobic oxidation of 2-aminophenol, and the mechanism of the oxidation process was elucidated by EPR spectroscopy.
Collapse
Affiliation(s)
- Narayan Ch Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India.
| | - Albert Escuer
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Marti i Franques 1-11, Barcelona-08028, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona-08028, Spain
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Anangamohan Panja
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India.
- Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, India
| |
Collapse
|
8
|
Wild U, Engels E, Hübner O, Kaifer E, Himmel HJ. Redox-Induced Aromatic Substitution: A Study on Guanidino-Functionalized Aromatics. Chemistry 2024; 30:e202403080. [PMID: 39387154 DOI: 10.1002/chem.202403080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
Aromatic substitution of redox-active aromatic compounds could be initiated by a preceding redox step. We report on the different reaction pathways of such redox-induced substitution (RIAS) reactions between a redox-active guanidino-functionalized aromatic molecule (GFA) and an amine or guanidine. Oxidation of the GFA leads to an umpolung of the guanidine from a nucleophile to an electrophile and thereby enables addition of the amine or guanidine. Several examples are given, demonstrating the use of redox substitution in synthetic chemistry, e. g. for the convenient synthesis of novel N-heteropolycyclic molecules and unsymmetrically-substituted aromatics.
Collapse
Affiliation(s)
- Ute Wild
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Eliane Engels
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Olaf Hübner
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Elisabeth Kaifer
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hans-Jörg Himmel
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
9
|
Mohammed TP, George A, Sivaramakrishnan MP, Vadivelu P, Balasubramanian S, Sankaralingam M. Deciphering the effect of amine versus imine ligands of copper(II) complexes in 2-aminophenol oxidation. J Inorg Biochem 2023; 247:112309. [PMID: 37451084 DOI: 10.1016/j.jinorgbio.2023.112309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
A series of amine (1-6) and imine (5',6') based copper(II) complexes with tridentate (NNO) ligand donors were synthesized and characterized using modern analytical techniques. All the complexes were subjected to 2-aminophenol (OAP) oxidation to form 2-aminophenoxazin-3-one, as a functional analogue of an enzyme, phenoxazinone synthase. In addition, a critical comparison of the reactivity using the amine-based complexes with their respective imine counterparts was achieved in both experimental as well as theoretical studies. For instance, the kinetic measurement revealed that the imine-based copper(II) complexes (kcat, 2.4 × 105-6.2 × 106 h-1) are better than amine-based (kcat, 6.3 × 104-3.9 × 105 h-1) complexes. The complex-substrate adducts [Cu(L3)(OAP)] (7) and [Cu(L3')(OAP)] (7') were characterized for both systems by mass spectrometry. Further, the DFT study was performed with amine- (3) and imine- (3') based copper(II) complexes, to compare their efficacy in the oxidation of OAP. The mechanistic investigations reveal that the key elementary step to determine the reactivity of 3 and 3' is the proton-coupled electron transfer (PCET) step occurring from the intermediates 7/7'. Further, the computed HOMO-LUMO energy gap of 7' was smaller than 7 by 0.8 eV, which indicates the facile PCET compared to that of 7. Moreover, the coupling of the OAP moiety using imine-complexes (ΔGR.E = -5.8 kcal/mol) was found to be thermodynamically more favorable than amine complexes (ΔGR.E = +3.3 kcal/mol). Overall, the theoretical findings are in good agreement with the experimental results.
Collapse
Affiliation(s)
- Thasnim P Mohammed
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Akhila George
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | | | - Prabha Vadivelu
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Sridhar Balasubramanian
- Centre for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India.
| |
Collapse
|
10
|
Belcour A, Got J, Aite M, Delage L, Collén J, Frioux C, Leblanc C, Dittami SM, Blanquart S, Markov GV, Siegel A. Inferring and comparing metabolism across heterogeneous sets of annotated genomes using AuCoMe. Genome Res 2023; 33:972-987. [PMID: 37468308 PMCID: PMC10629481 DOI: 10.1101/gr.277056.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 05/23/2023] [Indexed: 07/21/2023]
Abstract
Comparative analysis of genome-scale metabolic networks (GSMNs) may yield important information on the biology, evolution, and adaptation of species. However, it is impeded by the high heterogeneity of the quality and completeness of structural and functional genome annotations, which may bias the results of such comparisons. To address this issue, we developed AuCoMe, a pipeline to automatically reconstruct homogeneous GSMNs from a heterogeneous set of annotated genomes without discarding available manual annotations. We tested AuCoMe with three data sets, one bacterial, one fungal, and one algal, and showed that it successfully reduces technical biases while capturing the metabolic specificities of each organism. Our results also point out shared and divergent metabolic traits among evolutionarily distant algae, underlining the potential of AuCoMe to accelerate the broad exploration of metabolic evolution across the tree of life.
Collapse
Affiliation(s)
- Arnaud Belcour
- Univ Rennes, Inria, CNRS, IRISA, F-35000 Rennes, France;
| | - Jeanne Got
- Univ Rennes, Inria, CNRS, IRISA, F-35000 Rennes, France
| | - Méziane Aite
- Univ Rennes, Inria, CNRS, IRISA, F-35000 Rennes, France
| | - Ludovic Delage
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Jonas Collén
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | | | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Simon M Dittami
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | | | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Anne Siegel
- Univ Rennes, Inria, CNRS, IRISA, F-35000 Rennes, France;
| |
Collapse
|
11
|
Haji N, Faizi M, Koutentis PA, Carty MP, Aldabbagh F. Heterocyclic Iminoquinones and Quinones from the National Cancer Institute (NCI, USA) COMPARE Analysis. Molecules 2023; 28:5202. [PMID: 37446864 DOI: 10.3390/molecules28135202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
This review uses the National Cancer Institute (NCI) COMPARE program to establish an extensive list of heterocyclic iminoquinones and quinones with similarities in differential growth inhibition patterns across the 60-cell line panel of the NCI Developmental Therapeutics Program (DTP). Many natural products and synthetic analogues are revealed as potential NAD(P)H:quinone oxidoreductase 1 (NQO1) substrates, through correlations to dipyridoimidazo[5,4-f]benzimidazoleiminoquinone (DPIQ), and as potential thioredoxin reductase (TrxR) inhibitors, through correlations to benzo[1,2,4]triazin-7-ones and pleurotin. The strong correlation to NQO1 infers the enzyme has a major influence on the amount of the active compound with benzo[e]perimidines, phenoxazinones, benz[f]pyrido[1,2-a]indole-6,11-quinones, seriniquinones, kalasinamide, indolequinones, and furano[2,3-b]naphthoquinones, hypothesised as prodrugs. Compounds with very strong correlations to known TrxR inhibitors had inverse correlations to the expression of both reductase enzymes, NQO1 and TrxR, including naphtho[2,3-b][1,4]oxazepane-6,11-diones, benzo[a]carbazole-1,4-diones, pyranonaphthoquinones (including kalafungin, nanaomycin A, and analogues of griseusin A), and discorhabdin C. Quinoline-5,8-dione scaffolds based on streptonigrin and lavendamycin can correlate to either reductase. Inhibitors of TrxR are not necessarily (imino)quinones, e.g., parthenolides, while oxidising moieties are essential for correlations to NQO1, as with the mitosenes. Herein, an overview of synthetic methods and biological activity of each family of heterocyclic imino(quinone) is provided.
Collapse
Affiliation(s)
- Naemah Haji
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| | - Masoma Faizi
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| | | | - Michael P Carty
- School of Biological and Chemical Sciences, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Fawaz Aldabbagh
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| |
Collapse
|
12
|
Ye S, Molloy B, Pérez-Victoria I, Montero I, Braña AF, Olano C, Arca S, Martín J, Reyes F, Salas JA, Méndez C. Uncovering the Cryptic Gene Cluster ahb for 3-amino-4-hydroxybenzoate Derived Ahbamycins, by Searching SARP Regulator Encoding Genes in the Streptomyces argillaceus Genome. Int J Mol Sci 2023; 24:ijms24098197. [PMID: 37175904 PMCID: PMC10179220 DOI: 10.3390/ijms24098197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Genome mining using standard bioinformatics tools has allowed for the uncovering of hidden biosynthesis gene clusters for specialized metabolites in Streptomyces genomes. In this work, we have used an alternative approach consisting in seeking "Streptomyces Antibiotic Regulatory Proteins" (SARP) encoding genes and analyzing their surrounding DNA region to unearth cryptic gene clusters that cannot be identified using standard bioinformatics tools. This strategy has allowed the unveiling of the new ahb cluster in Streptomyces argillaceus, which had not been retrieved before using antiSMASH. The ahb cluster is highly preserved in other Streptomyces strains, which suggests a role for their encoding compounds in specific environmental conditions. By combining overexpression of three regulatory genes and generation of different mutants, we were able to activate the ahb cluster, and to identify and chemically characterize the encoded compounds that we have named ahbamycins (AHBs). These constitute a new family of metabolites derived from 3-amino-4-hydroxybenzoate (3,4-AHBA) known for having antibiotic and antitumor activity. Additionally, by overexpressing three genes of the cluster (ahbH, ahbI, and ahbL2) for the synthesis and activation of 3,4-AHBA, a new hybrid compound, AHB18, was identified which had been produced from a metabolic crosstalk between the AHB and the argimycin P pathways. The identification of this new BGC opens the possibility to generate new compounds by combinatorial biosynthesis.
Collapse
Affiliation(s)
- Suhui Ye
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Brian Molloy
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, 18016 Granada, Spain
| | - Ignacio Montero
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alfredo F Braña
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Sonia Arca
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, 18016 Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, 18016 Granada, Spain
| | - José A Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
13
|
Sun LJ, Yuan H, Xu JK, Luo J, Lang JJ, Wen GB, Tan X, Lin YW. Phenoxazinone Synthase-like Activity of Rationally Designed Heme Enzymes Based on Myoglobin. Biochemistry 2023; 62:369-377. [PMID: 34665595 DOI: 10.1021/acs.biochem.1c00554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The design of functional metalloenzymes is attractive for the biosynthesis of biologically important compounds, such as phenoxazinones and phenazines catalyzed by native phenoxazinone synthase (PHS). To design functional heme enzymes, we used myoglobin (Mb) as a model protein and introduced an artificial CXXC motif into the heme distal pocket by F46C and L49C mutations, which forms a de novo disulfide bond, as confirmed by the X-ray crystal structure. We further introduced a catalytic Tyr43 into the heme distal pocket and found that the F43Y/F46C/L49C Mb triple mutant and the previously designed F43Y/F46S Mb exhibit PHS-like activity (80-98% yields in 5-15 min), with the catalytic efficiency exceeding those of natural metalloenzymes, including o-aminophenol oxidase, laccase, and dye-decolorizing peroxidase. Moreover, we showed that the oxidative coupling product of 1,6-disulfonic-2,7-diaminophenazine is a potential pH indicator, with the orange-magenta color change at pH 4-5 (pKa = 4.40). Therefore, this study indicates that functional heme enzymes can be rationally designed by structural modifications of Mb, exhibiting the functionality of the native PHS for green biosynthesis.
Collapse
Affiliation(s)
- Li-Juan Sun
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hong Yuan
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Jia-Kun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jie Luo
- Lab of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Jia-Jia Lang
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ge-Bo Wen
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiangshi Tan
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Ying-Wu Lin
- Hengyang Medical School, University of South China, Hengyang 421001, China.,Lab of Protein Structure and Function, University of South China, Hengyang 421001, China
| |
Collapse
|
14
|
Lewis-Luján LM, Rosas-Burgos EC, Ezquerra-Brauer JM, Burboa-Zazueta MG, Assanga SBI, del Castillo-Castro T, Penton G, Plascencia-Jatomea M. Inhibition of Pathogenic Bacteria and Fungi by Natural Phenoxazinone from Octopus Ommochrome Pigments. J Microbiol Biotechnol 2022; 32:989-1002. [PMID: 35909165 PMCID: PMC9628961 DOI: 10.4014/jmb.2206.06043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022]
Abstract
Cephalopods, in particular octopus (Octopus vulgaris), have the ability to alter their appearance or body pattern by showing a wide range of camouflage by virtue of their chromatophores, which contain nanostructured granules of ommochrome pigments. Recently, the antioxidant and antimicrobial activities of ommochromes have become of great interest; therefore, in this study, the pH-dependent redox effect of the extraction solvent on the antioxidant potential and the structural characterization of the pigments were evaluated. Cell viability was determined by the microdilution method in broth by turbidity, MTT, resazurin, as well as fluorescence microscopy kit assays. A Live/Dead Double Staining Kit and an ROS Kit were used to elucidate the possible inhibitory mechanisms of ommochromes against bacterial and fungal strains. The results obtained revealed that the redox state alters the color changes of the ommochromes and is dependent on the pH in the extraction solvent. Natural phenoxazinone (ommochromes) is moderately toxic to the pathogens Staphylococcus aureus, Bacillus subtilis, Salmonella Typhimurium and Candida albicans, while the species Pseudomonas aeruginosa and Pseudomonas fluorescens, and the filamentous fungi Aspergillus parasiticus, Alternaria spp. and Fusarium verticillioides, were tolerant to these pigments. UV/visible spectral scanning and Fourier- transform infrared spectroscopy (FTIR) suggest the presence of reduced ommatin in methanol/ HCl extract with high intrinsic fluorescence.
Collapse
Affiliation(s)
- Lidianys María Lewis-Luján
- Laboratorio de Microbiología y Micotoxinas, Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico
| | - Ema Carina Rosas-Burgos
- Laboratorio de Microbiología y Micotoxinas, Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico
| | - Josafat Marina Ezquerra-Brauer
- Laboratorio de Microbiología y Micotoxinas, Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico
| | - María Guadalupe Burboa-Zazueta
- Departamento de Investigaciones Científicas y Tecnológicas, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, México
| | - Simon Bernard Iloki Assanga
- Department of Biological Chemical Sciences. Sonora University, Blvd. Luis Encinas y Rosales. Col. Centro, 83000 Hermosillo, Sonora, México
| | - Teresa del Castillo-Castro
- Department of Research on Polymers and Materials, Sonora University. Blvd. Luis Encinas y Rosales. Col. Centro, 83000 Hermosillo, Sonora, México
| | - Giselle Penton
- Centro de Ingeniería Genética y Biotecnología, Ave 31 entre 158 y 190, Cubanacán, Playa, Habana, CP 6162, Cuba
| | - Maribel Plascencia-Jatomea
- Laboratorio de Microbiología y Micotoxinas, Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico,Corresponding author Phone/Fax: +52-662-259-2207 E-mail:
| |
Collapse
|
15
|
Guo S, Hu H, Wang W, Bilal M, Zhang X. Production of Antibacterial Questiomycin A in Metabolically Engineered Pseudomonas chlororaphis HT66. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7742-7750. [PMID: 35708224 DOI: 10.1021/acs.jafc.2c03216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pseudomonas chlororaphis has been demonstrated as a valuable source of antimicrobial metabolites for plant disease biocontrol and biopesticide development. Although phenazine-1-carboxylic acid (PCA) secreted by P. chlororaphis has been commercialized as an antifungal biopesticide, it shows poor antibacterial activity. Questiomycin A, with versatile antibacterial activities, is mainly discovered in some well-known phenazine-producing strains but not in Pseudomonas. Its low titer hinders practical applications. In this work, a metabolite was first identified as Questiomycin A in P. chlororaphis-derived strain HT66ΔphzBΔNat. Subsequently, Questiomycin A has been elucidated to share the same biosynthesis process with PCA by gene deletion and in vitro assays. Through rational metabolic engineering, heterologous phenoxazinone synthase introduction, and medium optimization, the titer reached 589.78 mg/L in P. chlororaphis, the highest production reported to date. This work contributes to a better understanding of Questiomycin A biosynthesis and demonstrates a promising approach to developing a new antibacterial biopesticide in Pseudomonas.
Collapse
Affiliation(s)
- Shuqi Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Eberhard FE, Klimpel S, Guarneri AA, Tobias NJ. Exposure to Trypanosoma parasites induces changes in the microbiome of the Chagas disease vector Rhodnius prolixus. MICROBIOME 2022; 10:45. [PMID: 35272716 PMCID: PMC8908696 DOI: 10.1186/s40168-022-01240-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/31/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND The causative agent of Chagas disease, Trypanosoma cruzi, and its nonpathogenic relative, Trypanosoma rangeli, are transmitted by haematophagous triatomines and undergo a crucial ontogenetic phase in the insect's intestine. In the process, the parasites interfere with the host immune system as well as the microbiome present in the digestive tract potentially establishing an environment advantageous for development. However, the coherent interactions between host, pathogen and microbiota have not yet been elucidated in detail. We applied a metagenome shotgun sequencing approach to study the alterations in the microbiota of Rhodnius prolixus, a major vector of Chagas disease, after exposure to T. cruzi and T. rangeli focusing also on the functional capacities present in the intestinal microbiome of the insect. RESULTS The intestinal microbiota of R. prolixus was dominated by the bacterial orders Enterobacterales, Corynebacteriales, Lactobacillales, Clostridiales and Chlamydiales, whereas the latter conceivably originated from the blood used for pathogen exposure. The anterior and posterior midgut samples of the exposed insects showed a reduced overall number of organisms compared to the control group. However, we also found enriched bacterial groups after exposure to T. cruzi as well as T rangeli. While the relative abundance of Enterobacterales and Corynebacteriales decreased considerably, the Lactobacillales, mainly composed of the genus Enterococcus, developed as the most abundant taxonomic group. This applies in particular to vectors challenged with T. rangeli and at early timepoints after exposure to vectors challenged with T. cruzi. Furthermore, we were able to reconstruct four metagenome-assembled genomes from the intestinal samples and elucidate their unique metabolic functionalities within the triatomine microbiome, including the genome of a recently described insect symbiont, Candidatus Symbiopectobacterium, and the secondary metabolites producing bacteria Kocuria spp. CONCLUSIONS Our results facilitate a deeper understanding of the processes that take place in the intestinal tract of triatomine vectors during colonisation by trypanosomal parasites and highlight the influential aspects of pathogen-microbiota interactions. In particular, the mostly unexplored metabolic capacities of the insect vector's microbiome are clearer, underlining its role in the transmission of Chagas disease. Video Abstract.
Collapse
Affiliation(s)
- Fanny E. Eberhard
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Biologicum Campus Riedberg, Max-von-Laue-Str. 13, 60439 Frankfurt/Main, Germany
| | - Sven Klimpel
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Biologicum Campus Riedberg, Max-von-Laue-Str. 13, 60439 Frankfurt/Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt/Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt/Main, Germany
| | - Alessandra A. Guarneri
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou, Avenida Augusto de Lima,1715, Belo Horizonte, MG CEP 30190-009 Brazil
| | - Nicholas J. Tobias
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt/Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt/Main, Germany
| |
Collapse
|
17
|
Fathy AM, Hessien MM, Ibrahim MM, Ramadan AEMM. Anionic ligands tune the structural and catalytic properties of quinoxaline-based copper(II) complexes as mimetics of copper-containing oxidase protein. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Thennarasu AS, Mohammed TP, Sankaralingam M. Mononuclear copper( ii) Schiff base complexes as effective models for phenoxazinone synthase. NEW J CHEM 2022. [DOI: 10.1039/d2nj03934f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Copper(ii) complexes of tridentate (N2O) Schiff base ligands as efficient catalysts for 2-aminophenol oxidation to 2-aminophenoxazin-3-one with excellent reaction rates.
Collapse
Affiliation(s)
- Abinaya Sushana Thennarasu
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Thasnim P Mohammed
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| |
Collapse
|
19
|
Hemkemeyer M, Schwalb SA, Heinze S, Joergensen RG, Wichern F. Functions of elements in soil microorganisms. Microbiol Res 2021; 252:126832. [PMID: 34508963 DOI: 10.1016/j.micres.2021.126832] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
The soil microbial community fulfils various functions, such as nutrient cycling and carbon (C) sequestration, therefore contributing to maintenance of soil fertility and mitigation of global warming. In this context, a major focus of research has been on C, nitrogen (N) and phosphorus (P) cycling. However, from aquatic and other environments, it is well known that other elements beyond C, N, and P are essential for microbial functioning. Nonetheless, for soil microorganisms this knowledge has not yet been synthesised. To gain a better mechanistic understanding of microbial processes in soil systems, we aimed at summarising the current knowledge on the function of a range of essential or beneficial elements, which may affect the efficiency of microbial processes in soil. This knowledge is discussed in the context of microbial driven nutrient and C cycling. Our findings may support future investigations and data evaluation, where other elements than C, N, and P affect microbial processes.
Collapse
Affiliation(s)
- Michael Hemkemeyer
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany.
| | - Sanja A Schwalb
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| | - Stefanie Heinze
- Department of Soil Science & Soil Ecology, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Rainer Georg Joergensen
- Department of Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Florian Wichern
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| |
Collapse
|
20
|
Disruption of kynurenine pathway reveals physiological importance of tryptophan catabolism in Henosepilachna vigintioctopunctata. Amino Acids 2021; 53:1091-1104. [PMID: 34089391 DOI: 10.1007/s00726-021-03009-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/22/2021] [Indexed: 10/21/2022]
Abstract
Kynurenine pathway is critically important to catabolize tryptophan, to produce eye chromes, and to protect nervous system in insects. However, several issues related to tryptophan degradation remain to be clarified. In the present paper, we identified three genes (karmoisin, vermilion and cardinal) involved in kynurenine pathway in Henosepilachna vigintioctopunctata. The karmoisin and cardinal were highly expressed in the pupae and adults having compound eyes. Consistently, high-performance liquid chromatography result showed that three ommochrome peaks were present in adult heads rather than bodies (thoraces, legs, wings and abdomens). RNA interference (RNAi)-aided knockdown of vermilion caused accumulation of tryptophan in both adult heads and bodies, disappearance of ommochromes in the heads and a complete loss of eye color in both pupae and adults. Depletion of cardinal brought about excess of 3-hydroxykynurenine and insufficient ommochromes in the heads and decolored eyes. RNAi of karmoisin resulted in a decrease in ommochromes in the heads, and a partial loss of eye color. Moreover, a portion of karmoisin-, vermilion- or cardinal-silenced adults exhibited negative phototaxis, whereas control beetles showed positive phototaxis. Furthermore, dysfunctions of tryptophan catabolism impaired climbing ability. Our findings clearly illustrated several issues related to kynurenine pathway and provided a new insight into the physiological importance of tryptophan catabolism in H. vigintioctopunctata.
Collapse
|
21
|
Ibrahim MM, Fathy AM, Al‐Harbi SA, Ramadan AEM. Triazole based copper(
II
) complexes: Synthesis, spectroscopic characterization, Density Function Theory study, and biomimicking of copper containing oxidase proteins. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohamed M. Ibrahim
- Chemistry Department, College of Science Taif University Taif Saudi Arabia
| | - Ahmad M. Fathy
- Chemistry Department, Faculty of Science Zagazig University Zagazig Egypt
| | - Sami A. Al‐Harbi
- Chemistry Department, University College in Al‐Jamoum Umm Al‐Qura University Makkah Saudi Arabia
| | | |
Collapse
|
22
|
Duan W, Li W, Tang Q, Zhao Y, Guo X, Yang G. Laccase‐Mimicking Syntheses of Phenoxazinones by Aerobic Oxidative Homo‐ and Hetero‐Dimerizations of Aminophenols. ChemistrySelect 2021. [DOI: 10.1002/slct.202100725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenxue Duan
- Green Catalysis Center College of Chemistry. Zhengzhou University Zhengzhou Henan 450001 China
| | - Wenhao Li
- Green Catalysis Center College of Chemistry. Zhengzhou University Zhengzhou Henan 450001 China
| | - Qingxuan Tang
- Green Catalysis Center College of Chemistry. Zhengzhou University Zhengzhou Henan 450001 China
| | - Yiyang Zhao
- Henan Experimental Middle School Zhengzhou Zhengzhou Shi 450001 China
| | - Xianji Guo
- Green Catalysis Center College of Chemistry. Zhengzhou University Zhengzhou Henan 450001 China
| | - Guanyu Yang
- Green Catalysis Center College of Chemistry. Zhengzhou University Zhengzhou Henan 450001 China
| |
Collapse
|
23
|
Sohtun WP, Muthuramalingam S, Sankaralingam M, Velusamy M, Mayilmurugan R. Copper(II) complexes of tripodal ligand scaffold (N 3O) as functional models for phenoxazinone synthase. J Inorg Biochem 2020; 216:111313. [PMID: 33277049 DOI: 10.1016/j.jinorgbio.2020.111313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 11/30/2022]
Abstract
The copper(II) complexes [Cu(L)NO3] (1-9) of newer N3O ligands (L1-L9) have been synthesized and characterized. The molecular structure of 1, 4, and 7 exhibited nearly a perfect square pyramidal geometry (τ, 0.04-0.11). The Cu-OPhenolate bonds (~ 1.91 Å) are shorter than the Cu-N bonds (~ 2.06 Å) due to the stronger coordination of anionic phenolate oxygen. The Cu(II)/Cu(I) redox potentials of 1-9 appeared around -0.102 to -0.428 V versus Ag/Ag+ in water. The electronic spectra of the complexes showed the d-d transitions around 643-735 nm and axial EPR parameter (g||, 2.243-2.270; A||, 164-179 × 10-4 cm-1) that corresponds to square pyramidal geometry. The bonding parameters α2, 0.760-0.825; β2, 0.761-0.994; γ2, 0.504-0.856 and K||, 0.698-0.954 and K⊥, 0.383-0.820 calculated from EPR spectra and energies of d-d transitions. The complexes catalyzed the conversion of substrate 2-aminophenol into 2-aminophenoxazine-3-one using molecular oxygen in the water and exhibited the yields of 41-61%. The formation of the product is accomplished by the appearance of a new absorption band at 430 nm and the rates of formation were calculated as 6.98-15.65 × 10-3 s-1 in water. The reaction follows Michaelis-Menten enzymatic reaction kinetics with turnover numbers (kcat) 9.11 × 105 h-1 for 1 and 4.66 × 105 h-1 for 9 in water. The spectral, redox and kinetic studies were performed in water to mimic the enzymatic oxidation reaction conditions.
Collapse
Affiliation(s)
- Winaki P Sohtun
- Department of Chemistry, North Eastern Hill University, Shillong 793022, India
| | - Sethuraman Muthuramalingam
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong 793022, India.
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India.
| |
Collapse
|
24
|
Agrawal K, Shankar J, Kumar R, Verma P. Insight into multicopper oxidase laccase from Myrothecium verrucaria ITCC-8447: a case study using in silico and experimental analysis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:1048-1060. [PMID: 32877269 DOI: 10.1080/03601234.2020.1812334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The oxidation activity of multicopper-oxidases overlaps with different substrates of laccases and bilirubin oxidases, thus in the present study an integrated approach of bioinformatics using homology modeling, docking, and experimental validation was used to confirm the type of multicopper-oxidase in Myrothecium verrucaria ITCC-8447. The result of peptide sequence of M. verrucaria ITCC-8447 enabled to predict the 3 D-structure of multicopper-oxidase. It was overlapped with the structure of laccase and root mean square deviation (RMSD) was 1.53 Å for 533 and, 171 residues. The low binding energy with azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) (-5.64) as compared to bilirubin (-4.39) suggested that M. verrucaria ITCC-8447 have laccase-like activity. The experimental analysis confirmed high activity with laccase specific substrates, phenol (18.3 U/L), ampyrone (172.4 U/L) and, ampyrone phenol coupling (50 U/L) as compared to bilirubin oxidase substrate bilirubin (16.6 U/L). In addition, lowest binding energy with ABTS (-5.64), syringaldazine SYZ (-4.83), guaiacol GCL (-4.42), and 2,6-dimethoxyphenol DMP (-4.41) confirmed the presence of laccase. Further, complete remediation of two hazardous model pollutants i.e., phenol and resorcinol (1.5 mM) after 12 h of incubation and low binding energy of -4.32 and, -4.85 respectively confirmed its removal by laccase. The results confirmed the presence of laccase in M. verrucaria ITCC-8447 and its effective bioremediation potential.
Collapse
Affiliation(s)
- Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, India
| | - Jata Shankar
- Genomics Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Raj Kumar
- Genomics Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
25
|
Figon F, Munsch T, Croix C, Viaud-Massuard MC, Lanoue A, Casas J. Uncyclized xanthommatin is a key ommochrome intermediate in invertebrate coloration. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 124:103403. [PMID: 32574597 DOI: 10.1016/j.ibmb.2020.103403] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Ommochromes are widespread pigments that mediate multiple functions in invertebrates. The two main families of ommochromes are ommatins and ommins, which both originate from the kynurenine pathway but differ in their backbone, thereby in their coloration and function. Despite its broad significance, how the structural diversity of ommochromes arises in vivo has remained an open question since their first description. In this study, we combined organic synthesis, analytical chemistry and organelle purification to address this issue. From a set of synthesized ommatins, we derived a fragmentation pattern that helped elucidating the structure of new ommochromes. We identified uncyclized xanthommatin as the elusive biological intermediate that links the kynurenine pathway to the ommatin pathway within ommochromasomes, the ommochrome-producing organelles. Due to its unique structure, we propose that uncyclized xanthommatin functions as a key branching metabolite in the biosynthesis and structural diversification of ommatins and ommins, from insects to cephalopods.
Collapse
Affiliation(s)
- Florent Figon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université de Tours, 37200, Tours, France.
| | - Thibaut Munsch
- Biomolécules et Biotechnologies Végétales, EA 2106, Université de Tours, 37200, Tours, France
| | - Cécile Croix
- Génétique, Immunothérapie, Chimie et Cancer, UMR CNRS 7292, Université de Tours, 37200, Tours, France
| | | | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, EA 2106, Université de Tours, 37200, Tours, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université de Tours, 37200, Tours, France
| |
Collapse
|
26
|
Nesterova OV, Bondarenko OE, Pombeiro AJL, Nesterov DS. Phenoxazinone synthase-like catalytic activity of novel mono- and tetranuclear copper(ii) complexes with 2-benzylaminoethanol. Dalton Trans 2020; 49:4710-4724. [PMID: 32207490 DOI: 10.1039/d0dt00222d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Three novel coordination compounds, [Cu(ca)2(Hbae)2] (1), [Cu(va)2(Hbae)2] (2) and [Cu4(va)4(bae)4]·H2O (3), have been prepared by self-assembly reactions of copper(ii) chloride (1 and 2) or tetrafluoroborate (3) and CH3OH (1 and 3) or CH3CN (2) solution of 2-benzylaminoethanol (Hbae) and cinnamic (Hca, 1) or valeric (Hva, 2 and 3) acid. Crystallographic analysis revealed that both 1 and 2 have mononuclear crystal structures, wherein the complex molecules are H-bonded forming extended supramolecular chains. The tetranuclear structure of 3 is based on the {Cu4(μ3-O)4} core, wherein the metal atoms are bound together by μ3 oxygen bridges from 2-benzylaminoethanol forming an overall cubane-like configuration. The strong hydrogen bonding in 1-3 leads to the joining of the neighbouring molecules into 1D chains. Concentration-dependent ESI-MS studies disclosed the equilibria between di-, tri- and tetranuclear species in solutions of 1-3. All three compounds act as catalysts for the aerobic oxidation of o-aminophenol to the phenoxazinone chromophore (phenoxazinone synthase-like activity), with the maximum reaction rates of 4.0 × 10-7, 2.5 × 10-7 and 2.1 × 10-7 M s-1 for 1, 2 and 3, respectively, supported by the quantitative yield of the product after 24 h. The dependence of the reaction rates on catalyst concentrations is evidence of reaction orders higher than one relative to the catalyst. Kinetic and ESI-MS data allowed us to assume that the tetranuclear species, originating from 1, 2 and 3 in solution, possess considerably higher activity than the species of lower nuclearity. Mechanistic and isotopic 18O-labelling experiments suggested that o-aminophenol coordinates to CuII species with the formation of reactive intermediates, while the oxygen from 18O2 is not incorporated into the phenoxazinone chromophore.
Collapse
Affiliation(s)
- Oksana V Nesterova
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Olena E Bondarenko
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Dmytro S Nesterov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. and Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., Moscow 117198, Russia
| |
Collapse
|
27
|
Ramadan AEM, Shaban SY, Ibrahim MM, Eissa H, Al‐Saidi HM, Fathy AM. Catechol oxidase and phenoxazinone synthase mimicking activity, X‐ray diffraction and density function theory study of pyridine and phenolate‐based manganese(II) and iron(III) complexes: Synthesis and spectroscopic characterization. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Shaban Y. Shaban
- Chemistry Department, Faculty of ScienceKafr El‐Sheikh University Egypt
| | - Mohamed M. Ibrahim
- Chemistry Department, Faculty of ScienceKafr El‐Sheikh University Egypt
- Chemistry Department, Faculty of ScienceTaif University Taif Saudi Arabia
| | - Hatem Eissa
- Chemistry Department, Faculty of ScienceKafr El‐Sheikh University Egypt
| | - Hamed M. Al‐Saidi
- Chemistry Department, University College in Al‐JamoumUmm Al‐Qura University Makkah Saudi Arabia
| | - Ahmad M. Fathy
- Chemistry Department, Faculty of ScienceZagazig University Zagazig Egypt
| |
Collapse
|
28
|
Lin W, Jia G, Sun H, Sun T, Hou D. Genome sequence of the fungus Pycnoporus sanguineus, which produces cinnabarinic acid and pH- and thermo- stable laccases. Gene 2020; 742:144586. [PMID: 32179171 DOI: 10.1016/j.gene.2020.144586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 01/27/2023]
Abstract
Pycnoporus sanguineus, an edible mushroom, produces antimicrobial and antitumor bioactive compounds and pH- and thermo- stable laccases that have multiple potential biotechnological applications. Here we reported the complete genome of the species Pycnoporus sanguineus ACCC 51,180 by using the combination of Illumina HiSeq X Ten and the PacBio sequencing technology. The represented genome is 36.6 Mb composed of 59 scaffolds with 12,086 functionally annotated protein-coding genes. The genome of Pycnoporus sanguineus encodes at least 19 biosynthetic gene clusters for secondary metabolites, including a terpene cluster for biosynthesis of the antitumor clavaric acid. Seven laccases were identified, while 22 genes were found to be involved in the kynurenine pathway in which the intermediate metabolite 3-hydroxyanthranilic acid were catalyzed by laccases into cinnabarinic acid. This study represented the third genome of the genus Pycnoporus, and wound facilitate the exploration of useful sources from Pycnoporus sanguineus for future industrial applications.
Collapse
Affiliation(s)
- Weiping Lin
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China; Key Laboratory of Biological Medicines in Universities of Shandong Province; Engineering Laboratory of Protein and Peptide Drugs, Shandong Province
| | - Guangtao Jia
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China; Key Laboratory of Biological Medicines in Universities of Shandong Province; Engineering Laboratory of Protein and Peptide Drugs, Shandong Province
| | - Hengyi Sun
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Tongyi Sun
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China; Key Laboratory of Biological Medicines in Universities of Shandong Province; Engineering Laboratory of Protein and Peptide Drugs, Shandong Province.
| | - Dianhai Hou
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China; Key Laboratory of Biological Medicines in Universities of Shandong Province; Engineering Laboratory of Protein and Peptide Drugs, Shandong Province.
| |
Collapse
|
29
|
Schandry N, Becker C. Allelopathic Plants: Models for Studying Plant-Interkingdom Interactions. TRENDS IN PLANT SCIENCE 2020; 25:176-185. [PMID: 31837955 DOI: 10.1016/j.tplants.2019.11.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/29/2019] [Accepted: 11/18/2019] [Indexed: 05/24/2023]
Abstract
Allelopathy is a biochemical interaction between plants in which a donor plant releases secondary metabolites, allelochemicals, that are detrimental to the growth of its neighbours. Traditionally considered as bilateral interactions between two plants, allelopathy has recently emerged as a cross-kingdom process that can influence and be modulated by the other organisms in the plant's environment. Here, we review the current knowledge on plant-interkingdom interactions, with a particular focus on benzoxazinoids. We highlight how allelochemical-producing plants influence not only their plant neighbours but also insects, fungi, and bacteria that live on or around them. We discuss challenges that need to be overcome to study chemical plant-interkingdom interactions, and we propose experimental approaches to address how biotic and chemical processes impact plant health.
Collapse
Affiliation(s)
- Niklas Schandry
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Institute of Genetics, Faculty of Biology, Biocenter Martinsried, LMU Munich, 82152 Martinsried-Planegg, Germany.
| |
Collapse
|
30
|
Ramadan AEMM, Shaban SY, Ibrahim MM, Abdel-Rahman AAH, Sallam SA, Al-Harbi SA, Omar W. Synthesis and spectroscopic characterization of ternary copper(ii) complexes containing nitrogen and oxygen donors as functional mimics of catechol oxidase and phenoxazinone synthase. NEW J CHEM 2020. [DOI: 10.1039/c9nj06131b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two ternary copper(ii) complexes 1 [(Cu2Me4en)4(EDTA)] and 2 [(CuMe4en)2(MIDA)] containing the mixed ligand system of 1,1′,4,4′-tetramethylethylenediamine (Me4en) (L) and N-methyliminodiacetic (MIDAH2) (L′) or ethylenediaminetetraacetic acid (EDTAH4) (L′) were synthesized.
Collapse
Affiliation(s)
| | - Shaban Y. Shaban
- Department of Chemistry
- Faculty of Science
- Kafr El-Sheikh University
- Kafr El-Sheikh
- Egypt
| | - Mohamed M. Ibrahim
- Department of Chemistry
- Faculty of Science
- Kafr El-Sheikh University
- Kafr El-Sheikh
- Egypt
| | | | - Shehab A. Sallam
- Department of Chemistry
- Faculty of Science
- Suez Canal University
- Ismailia
- Egypt
| | - Sami A. Al-Harbi
- Department of Chemistry
- University College in Al-Jamoum
- Umm Al-Qura University
- Makkah
- Saudi Arabia
| | - Walid Omar
- Department of Chemistry
- Faculty of Science
- Kafr El-Sheikh University
- Kafr El-Sheikh
- Egypt
| |
Collapse
|
31
|
Yue S, Song C, Li S, Huang P, Guo S, Hu H, Wang W, Zhang X. Synthesis of cinnabarinic acid by metabolically engineeredPseudomonas chlororaphisGP72. Biotechnol Bioeng 2019; 116:3072-3083. [DOI: 10.1002/bit.27118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Sheng‐Jie Yue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong University Shanghai China
| | - Chen Song
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong University Shanghai China
| | - Song Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong University Shanghai China
| | - Peng Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong University Shanghai China
| | - Shu‐Qi Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong University Shanghai China
| | - Hong‐Bo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong University Shanghai China
- National Experimental Teaching Center for Life Sciences and BiotechnologyShanghai Jiao Tong University Shanghai China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong University Shanghai China
| | - Xue‐Hong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong University Shanghai China
| |
Collapse
|
32
|
Ahn S, Yoon JA, Han YT. The First Synthesis of Baphicacanthin A, a Natural Phenoxazinone Alkaloid Derived from
Baphicacanthus cusia. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sungwan Ahn
- College of PharmacyDankook University Cheonan 31116 South Korea
| | - Jeong A Yoon
- College of PharmacyDankook University Cheonan 31116 South Korea
| | - Young Taek Han
- College of PharmacyDankook University Cheonan 31116 South Korea
| |
Collapse
|
33
|
Jana NC, Patra M, Brandão P, Panja A. Biomimetic catalytic activity and structural diversity of cobalt complexes with N3O-donor Schiff base ligand. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Figon F, Casas J. Ommochromes in invertebrates: biochemistry and cell biology. Biol Rev Camb Philos Soc 2019; 94:156-183. [PMID: 29989284 DOI: 10.1111/brv.12441] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 01/24/2023]
Abstract
Ommochromes are widely occurring coloured molecules of invertebrates, arising from tryptophan catabolism through the so-called Tryptophan → Ommochrome pathway. They are mainly known to mediate compound eye vision, as well as reversible and irreversible colour patterning. Ommochromes might also be involved in cell homeostasis by detoxifying free tryptophan and buffering oxidative stress. These biological functions are directly linked to their unique chromophore, the phenoxazine/phenothiazine system. The most recent reviews on ommochrome biochemistry were published more than 30 years ago, since when new results on the enzymes of the ommochrome pathway, on ommochrome photochemistry as well as on their antiradical capacities have been obtained. Ommochromasomes are the organelles where ommochromes are synthesised and stored. Hence, they play an important role in mediating ommochrome functions. Ommochromasomes are part of the lysosome-related organelles (LROs) family, which includes other pigmented organelles such as vertebrate melanosomes. Ommochromasomes are unique because they are the only LRO for which a recycling process during reversible colour change has been described. Herein, we provide an update on ommochrome biochemistry, photoreactivity and antiradical capacities to explain their diversity and behaviour both in vivo and in vitro. We also highlight new biochemical techniques, such as quantum chemistry, metabolomics and crystallography, which could lead to major advances in their chemical and functional characterisation. We then focus on ommochromasome structure and formation by drawing parallels with the well-characterised melanosomes of vertebrates. The biochemical, genetic, cellular and microscopic tools that have been applied to melanosomes should provide important information on the ommochromasome life cycle. We propose LRO-based models for ommochromasome biogenesis and recycling that could be tested in the future. Using the context of insect compound eyes, we finally emphasise the importance of an integrated approach in understanding the biological functions of ommochromes.
Collapse
Affiliation(s)
- Florent Figon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université de Tours, 37200 Tours, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université de Tours, 37200 Tours, France
| |
Collapse
|
35
|
Zhuravlev AV, Vetrovoy OV, Savvateeva-Popova EV. Enzymatic and non-enzymatic pathways of kynurenines' dimerization: the molecular factors for oxidative stress development. PLoS Comput Biol 2018; 14:e1006672. [PMID: 30532237 PMCID: PMC6301705 DOI: 10.1371/journal.pcbi.1006672] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/20/2018] [Accepted: 11/26/2018] [Indexed: 11/19/2022] Open
Abstract
Kynurenines, the products of tryptophan oxidative degradation, are involved in multiple neuropathologies, such as Huntington's chorea, Parkinson's disease, senile dementia, etc. The major cause for hydroxykynurenines's neurotoxicity is the oxidative stress induced by the reactive oxygen species (ROS), the by-products of L-3-hydroxykynurenine (L-3HOK) and 3-hydroxyanthranilic acid (3HAA) oxidative self-dimerization. 2-aminophenol (2AP), a structural precursor of L-3HOK and 3HAA, undergoes the oxidative conjugation to form 2-aminophenoxazinone. There are several modes of 2AP dimerization, including both enzymatic and non-enzymatic stages. In this study, the free energies for 2AP, L-3HOK and 3HAA dimerization stages have been calculated at B3LYP/6-311G(d,p)//6-311+(O)+G(d) level, both in the gas phase and in heptane or water solution. For the intermediates, ionization potentials and electron affinities were calculated, as well as free energy and kinetics of molecular oxygen interaction with several non-enzymatically formed dimers. H-atom donating power of the intermediates increases upon the progress of the oxidation, making possible generation of hydroperoxyl radical or hydrogen peroxide from O2 at the last stages. Among the dimerization intermediates, 2-aminophenoxazinole derivatives have the lowest ionization potential and can reduce O2 to superoxide anion. The rate for O-H homolytic bond dissociation is significantly higher than that for C-H bond in non-enzymatic quinoneimine conjugate. However, the last reaction passes irreversibly, reducing O2 to hydroperoxyl radical. The inorganic ferrous iron and the heme group of Drosophila phenoxazinone synthase significantly reduce the energy cost of 2AP H-atom abstraction by O2. We have also shown experimentally that total antioxidant capacity decreases in Drosophila mutant cardinal with L-3HOK excess relative to the wild type Canton-S, and lipid peroxidation decreases in aged cardinal. Taken together, our data supports the conception of hydroxykynurenines' dual role in neurotoxicity: serving as antioxidants themselves, blocking lipid peroxidation by H-atom donation, they also can easily generate ROS upon dimerization, leading to the oxidative stress development.
Collapse
Affiliation(s)
- Aleksandr V. Zhuravlev
- Laboratory of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint-Petersburg, Russia
- * E-mail:
| | - Oleg V. Vetrovoy
- Laboratory of Regulation of the Brain Neuronal Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint-Petersburg, Russia
- Department of Biochemistry, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Elena V. Savvateeva-Popova
- Laboratory of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
36
|
Synthesis and structure of a cobalt(III) complex containing pendant Schiff base ligand: Exploration of its catechol oxidase and phenoxazinone synthase like activity. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
A new crystal form of Aspergillus oryzae catechol oxidase and evaluation of copper site structures in coupled binuclear copper enzymes. PLoS One 2018; 13:e0196691. [PMID: 29715329 PMCID: PMC5929527 DOI: 10.1371/journal.pone.0196691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/17/2018] [Indexed: 11/19/2022] Open
Abstract
Coupled binuclear copper (CBC) enzymes have a conserved type 3 copper site that binds molecular oxygen to oxidize various mono- and diphenolic compounds. In this study, we found a new crystal form of catechol oxidase from Aspergillus oryzae (AoCO4) and solved two new structures from two different crystals at 1.8-Å and at 2.5-Å resolutions. These structures showed different copper site forms (met/deoxy and deoxy) and also differed from the copper site observed in the previously solved structure of AoCO4. We also analysed the electron density maps of all of the 56 CBC enzyme structures available in the protein data bank (PDB) and found that many of the published structures have vague copper sites. Some of the copper sites were then re-refined to find a better fit to the observed electron density. General problems in the refinement of metalloproteins and metal centres are discussed.
Collapse
|
38
|
Mahato M, Van Hecke K, Nayek HP. Two mononuclear cobalt(III) complexes exhibiting phenoxazinone synthase activity. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mamata Mahato
- Department of Applied Chemistry; Indian Institute of Technology (Indian School of Mines); Dhanbad 826004 Jharkhand India
| | - Kristof Van Hecke
- XStruct, Department of Chemistry; Ghent University; Krijgslaan 281-S3 B-9000 Ghent Belgium
| | - Hari Pada Nayek
- Department of Applied Chemistry; Indian Institute of Technology (Indian School of Mines); Dhanbad 826004 Jharkhand India
| |
Collapse
|
39
|
Watkins OC, Sharpe ML, Perry NB, Krause KL. New Zealand glowworm (Arachnocampa luminosa) bioluminescence is produced by a firefly-like luciferase but an entirely new luciferin. Sci Rep 2018; 8:3278. [PMID: 29459729 PMCID: PMC5818473 DOI: 10.1038/s41598-018-21298-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/01/2018] [Indexed: 01/07/2023] Open
Abstract
The New Zealand glowworm, Arachnocampa luminosa, is well-known for displays of blue-green bioluminescence, but details of its bioluminescent chemistry have been elusive. The glowworm is evolutionarily distant from other bioluminescent creatures studied in detail, including the firefly. We have isolated and characterised the molecular components of the glowworm luciferase-luciferin system using chromatography, mass spectrometry and 1H NMR spectroscopy. The purified luciferase enzyme is in the same protein family as firefly luciferase (31% sequence identity). However, the luciferin substrate of this enzyme is produced from xanthurenic acid and tyrosine, and is entirely different to that of the firefly and known luciferins of other glowing creatures. A candidate luciferin structure is proposed, which needs to be confirmed by chemical synthesis and bioluminescence assays. These findings show that luciferases can evolve independently from the same family of enzymes to produce light using structurally different luciferins.
Collapse
Affiliation(s)
- Oliver C Watkins
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- New Zealand Institute for Plant and Food Research Ltd., Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Miriam L Sharpe
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nigel B Perry
- New Zealand Institute for Plant and Food Research Ltd., Department of Chemistry, University of Otago, Dunedin, New Zealand.
| | - Kurt L Krause
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
40
|
Wąsińska-Kałwa M, Giurg M, Boratyński PJ, Skarżewski J. Expansion of the aromatic part of Cinchona alkaloids. Annulation of quinolines with phenoxazine motifs. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.11.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Muthusami R, Moorthy M, Irena K, Govindaraj A, Manickam C, Rangappan R. Designing a biomimetic catalyst for phenoxazinone synthase activity using a mesoporous Schiff base copper complex with a novel double-helix morphology. NEW J CHEM 2018. [DOI: 10.1039/c8nj03638a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mesoporous copper complex was synthesized with a novel double helix morphology and successfully utilized as a biomimetic catalyst for phenoxazinone synthase activity.
Collapse
Affiliation(s)
| | | | - Kostova Irena
- Department of Chemistry
- Faculty of Pharmacy
- Medical University
- Sofia 1000
- Bulgaria
| | | | | | | |
Collapse
|
42
|
Ghosh K, Banerjee A, Bauzá A, Frontera A, Chattopadhyay S. One pot synthesis of two cobalt(iii) Schiff base complexes with chelating pyridyltetrazolate and exploration of their bio-relevant catalytic activities. RSC Adv 2018; 8:28216-28237. [PMID: 35542722 PMCID: PMC9084250 DOI: 10.1039/c8ra03035a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/16/2018] [Indexed: 11/22/2022] Open
Abstract
Two new cobalt(iii) tetrazolato complexes [Co(L1)(PTZ)(N3)] (1) and [Co(L2)(PTZ)(N3)] (2) {where H2L1 = 2((3-(methylamino)propylimino)methyl)-6-methoxyphenol, H2L2 = 2((3-(dimethylamino)propylimino)methyl)-6-ethoxyphenol and HPTZ = 5-(2-pyridyl)tetrazole}, have been synthesized via in situ 1,3-dipolar cycloaddition reaction of 2-cyanopyridine and sodium azide in the presence of cobalt(ii) nitrate hexahydrate and respective Schiff bases in the open atmosphere. The structures of both complexes have been confirmed by single crystal X-ray diffraction studies. Features of noncovalent interactions in the solid state of both complexes have been studied by means of DFT and MEP calculations and characterized using Bader's theory of “atoms in molecules” (AIM). These complexes act as biomimetic catalysts promoting the aerobic oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to the corresponding o-benzoquinone at room temperature. The reaction follows Michaelis–Menten enzymatic reaction kinetics with turnover numbers of ∼0.030 s−1 in an acetonitrile–methanol (2 : 1) mixture. Both complexes are also reactive towards aerobic oxidation of o-aminophenol in acetonitrile–methanol (2 : 1) with turnover numbers ∼0.095 s−1. Two cobalt(iii) tetrazolato complexes have been synthesized and characterized. Noncovalent interactions have been analysed by DFT and MEP calculations and characterized using Bader's theory of AIM. Both complexes catalyze the aerial oxidation of 3,5-DTBC and OAPH.![]()
Collapse
Affiliation(s)
- Kousik Ghosh
- Department of Chemistry
- Inorganic Section
- Jadavpur University
- Kolkata
- India
| | - Abhisek Banerjee
- Department of Chemistry
- Inorganic Section
- Jadavpur University
- Kolkata
- India
| | - Antonio Bauzá
- Departament de Química
- Universitat de les IllesBalears
- 07122 Palma (Baleares)
- Spain
| | - Antonio Frontera
- Departament de Química
- Universitat de les IllesBalears
- 07122 Palma (Baleares)
- Spain
| | | |
Collapse
|
43
|
|
44
|
Ghosh K, Harms K, Chattopadhyay S. Two Cobalt(III) Schiff Base Complexes of the Type [Co(ABC)(DE)X]: Facile Synthesis, Characterization, Catechol Oxidase and Phenoxazinone Synthase Mimicking Activity. ChemistrySelect 2017. [DOI: 10.1002/slct.201701536] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kousik Ghosh
- Department of Chemistry, Inorganic Section; Jadavpur University; Kolkata 700 032 India
| | - Klaus Harms
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Strasse D-35032 Marburg Germany
| | - Shouvik Chattopadhyay
- Department of Chemistry, Inorganic Section; Jadavpur University; Kolkata 700 032 India
| |
Collapse
|
45
|
D'Argenio V, Petrillo M, Pasanisi D, Pagliarulo C, Colicchio R, Talà A, de Biase MS, Zanfardino M, Scolamiero E, Pagliuca C, Gaballo A, Cicatiello AG, Cantiello P, Postiglione I, Naso B, Boccia A, Durante M, Cozzuto L, Salvatore P, Paolella G, Salvatore F, Alifano P. The complete 12 Mb genome and transcriptome of Nonomuraea gerenzanensis with new insights into its duplicated "magic" RNA polymerase. Sci Rep 2016; 6:18. [PMID: 28442708 PMCID: PMC5431353 DOI: 10.1038/s41598-016-0025-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/02/2016] [Indexed: 11/09/2022] Open
Abstract
In contrast to the widely accepted consensus of the existence of a single RNA polymerase in bacteria, several actinomycetes have been recently shown to possess two forms of RNA polymerases due the to co-existence of two rpoB paralogs in their genome. However, the biological significance of the rpoB duplication is obscure. In this study we have determined the genome sequence of the lipoglycopeptide antibiotic A40926 producer Nonomuraea gerenzanensis ATCC 39727, an actinomycete with a large genome and two rpoB genes, i.e. rpoB(S) (the wild-type gene) and rpoB(R) (the mutant-type gene). We next analyzed the transcriptional and metabolite profiles in the wild-type gene and in two derivative strains over-expressing either rpoB(R) or a mutated form of this gene to explore the physiological role and biotechnological potential of the "mutant-type" RNA polymerase. We show that rpoB(R) controls antibiotic production and a wide range of metabolic adaptive behaviors in response to environmental pH. This may give interesting perspectives also with regard to biotechnological applications.
Collapse
Affiliation(s)
- Valeria D'Argenio
- CEINGE-Biotecnologie Avanzate, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy
| | - Mauro Petrillo
- CEINGE-Biotecnologie Avanzate, Naples, Italy.,European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Daniela Pasanisi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Caterina Pagliarulo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy
| | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Maria Stella de Biase
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy
| | - Mario Zanfardino
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy
| | | | - Chiara Pagliuca
- CEINGE-Biotecnologie Avanzate, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy
| | - Antonio Gaballo
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.,CNR NANOTEC - Institute of Nanotechnology, Center of Nanotechnology c/o Campus Ecotekne, Lecce, Italy
| | | | | | | | | | | | - Miriana Durante
- CNR - Institute of Sciences of Food Production (ISPA), Operative Unit of Lecce, Lecce, Italy
| | | | - Paola Salvatore
- CEINGE-Biotecnologie Avanzate, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy
| | - Giovanni Paolella
- CEINGE-Biotecnologie Avanzate, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate, Naples, Italy. .,Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy.
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
| |
Collapse
|
46
|
Antioxidant Properties of Kynurenines: Density Functional Theory Calculations. PLoS Comput Biol 2016; 12:e1005213. [PMID: 27861556 PMCID: PMC5115656 DOI: 10.1371/journal.pcbi.1005213] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/14/2016] [Indexed: 02/08/2023] Open
Abstract
Kynurenines, the main products of tryptophan catabolism, possess both prooxidant and anioxidant effects. Having multiple neuroactive properties, kynurenines are implicated in the development of neurological and cognitive disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Autoxidation of 3-hydroxykynurenine (3HOK) and its derivatives, 3-hydroxyanthranilic acid (3HAA) and xanthommatin (XAN), leads to the hyperproduction of reactive oxygen species (ROS) which damage cell structures. At the same time, 3HOK and 3HAA have been shown to be powerful ROS scavengers. Their ability to quench free radicals is believed to result from the presence of the aromatic hydroxyl group which is able to easily abstract an electron and H-atom. In this study, the redox properties for kynurenines and several natural and synthetic antioxidants have been calculated at different levels of density functional theory in the gas phase and water solution. Hydroxyl bond dissociation enthalpy (BDE) and ionization potential (IP) for 3HOK and 3HAA appear to be lower than for xanthurenic acid (XAA), several phenolic antioxidants, and ascorbic acid. BDE and IP for the compounds with aromatic hydroxyl group are lower than for their precursors without hydroxyl group. The reaction rate for H donation to *O-atom of phenoxyl radical (Ph-O*) and methyl peroxy radical (Met-OO*) decreases in the following rankings: 3HOK ~ 3HAA > XAAOXO > XAAENOL. The enthalpy absolute value for Met-OO* addition to the aromatic ring of the antioxidant radical increases in the following rankings: 3HAA* < 3HOK* < XAAOXO* < XAAENOL*. Thus, the high free radical scavenging activity of 3HAA and 3HOK can be explained by the easiness of H-atom abstraction and transfer to O-atom of the free radical, rather than by Met-OO* addition to the kynurenine radical. Kynurenines, the tryptophan metabolites with multiple biological activities, regulate the production of reactive oxygen species (ROS) during several neurodegenerative diseases. Many experiments show that kynurenines can be both prooxidants and antioxidants depending on their concentration, mode of action, and cell redox potential. However, there is lack of computational studies of kynurenines properties which could help us better understand the biophysical mechanism of their antioxidant activity. We performed the computations of kynurenines' hydrogen and electron donating power, both in the gas phase and in water solution. We found that aromatic hydroxyl group facilitates hydrogen and electron abstraction by kynurenines, in agreement with experimental data and computations earlier performed for phenolic antioxidants. We revealed the correlations of kynurenines' antioxidant power with their electronic structure, charge, and surroundings. We also found that 3-hydroxykynurenine and 3-hydroxyanthranilic acid can fastly quench free radicals by hydrogen atom donation. Hence both of them are potent antioxidants. The therapeutic strategy may be to inhibit their oxidative dimerization leading to ROS production.
Collapse
|
47
|
Jia H, Gao Z, Ma Y, Zhong C, Wang C, Zhou H, Wei P. Preparation and characterization of a highly stable phenoxazinone synthase nanogel. Chem Cent J 2016; 10:34. [PMID: 27239225 PMCID: PMC4884384 DOI: 10.1186/s13065-016-0178-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 05/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phenoxazinone synthase (PHS) is a laccase-like multicopper oxidase originating from Streptomyces with great industrial application potential. In this paper, we prepared the PHS nanogel retaining 82 % of its initial activity by aqueous in situ polymerization at pH 9.3. RESULTS The average diameter of the PHS nanogel was 50.8 nm based on dynamic light scattering (DLS) analysis. Fluorescence analysis indicated the impressive preservation of the enzyme molecular structure upon modification. The PHS nanogel exhibited the most activity at pH 4.0-4.5 and 50 °C while the corresponding values were pH 4.5 and 40 °C for the native PHS. The K m and V max of the PHS nanogel were found to be 0.052 mM and 0.018 mM/min, whereas those of the native PHS were 0.077 mM and 0.021 mM/min, respectively. In addition, the PHS nanogel possessed higher thermal and storage stability and solvent tolerance compared with the native one. The half-life of the PHS nanogel was 1.71 h and multiplied around ninefold compared to 0.19 h for the native one. CONCLUSION In summary, the PHS nanogel could be a promising biocatalyst in industry.
Collapse
Affiliation(s)
- Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Zhen Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Yingying Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Chao Zhong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Chunming Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Hua Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| |
Collapse
|
48
|
Polak J, Jarosz-Wilkołazka A, Szałapata K, Grąz M, Osińska-Jaroszuk M. Laccase-mediated synthesis of a phenoxazine compound with antioxidative and dyeing properties--the optimisation process. N Biotechnol 2015; 33:255-62. [PMID: 26493406 DOI: 10.1016/j.nbt.2015.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 09/08/2015] [Accepted: 09/17/2015] [Indexed: 10/22/2022]
Abstract
This study demonstrates the optimisation of the main parameters of the laccase-mediated biosynthesis of high-intensity-coloured orange phenoxazine compound, 2-amino-3-oxo-3H-phenoxazine-8-sulfonic acid, and the antioxidative and dyeing properties. Among optimised parameters were the pH value, the activity of laccase, and the high concentration of the precursor as the necessary step in terms of dye synthesis scale-up. The high concentration of the precursor of ca. 10 g/L can be transformed totally by laccase at the activity of 30 U/g during 12 hours, in an optimised and standardised process in nearly 100% yield of synthesis. The obtained dye exhibited good dyeing properties determined according to the ISO standards. Antioxidative activities were detected for phenoxazinone dye using two independent methods, the chemiluminescence assay and the ABTS free radical-scavenging test, with the values of EC50 for the tested phenoxazine dye amounting 189.8 μg/mL and 1428 μg/mL, respectively. Despite the presence of the phenoxazine core in the structure of this dye, no antibacterial capacity was noted.
Collapse
Affiliation(s)
- Jolanta Polak
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19, Lublin 20-031, Poland.
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19, Lublin 20-031, Poland
| | - Katarzyna Szałapata
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19, Lublin 20-031, Poland
| | - Marcin Grąz
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19, Lublin 20-031, Poland
| | - Monika Osińska-Jaroszuk
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19, Lublin 20-031, Poland
| |
Collapse
|
49
|
Göçenoğlu Sarıkaya A, Osman B, Kara A, Pazarlioglu N, Beşirli N. Adsorption of cinnabarinic acid from culture fluid with magnetic microbeads. Biomed Chromatogr 2015; 30:88-96. [PMID: 25994378 DOI: 10.1002/bmc.3514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/05/2015] [Accepted: 05/14/2015] [Indexed: 11/11/2022]
Abstract
In this study, antimicrobial pigment cinnabarinic acid (CA) was produced from Pycnoporus cinnabarinus in laboratory-scale batch cultures. Magnetic poly(ethylene glycol dimethacrylate-N-methacryloyl-l-tryptophan methyl ester) [m-poly(EGDMA-MATrp)] beads (average diameter = 53-103 µm) were synthesized by copolymerizing of N-methacryloyl-l-tryptophan methyl ester (MATrp) with ethylene glycol dimethacrylate (EGDMA) in the presence of magnetite (Fe3O4) and used for the adsorption of CA. The m-poly(EGDMA-MATrp) beads were characterized by N2 adsorption/desorption isotherms (Brunauer Emmet Teller), X-ray photoelecron spectroscopy, scanning electron microscopy, infrared spectroscopy, thermal gravimetric analysis, electron spin resonance and swelling studies. The efficiency of m-poly(EGDMA-MATrp) beads for separation of CA from culture fluid was evaluated. The effects of pH, initial concentration, contact time and temperature on adsorption were analyzed. The maximum CA adsorption capacity of the m-poly(EGDMA-MATrp) beads was 272.9 mg g(-1) at pH 7.0, 25 °C. All the isotherm data can be fitted with the Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The adsorption process obeyed pseudo-second-order kinetic model. Thermodynamic parameters ΔH = 5.056 kJ mol(-1), ΔS = 52.44 J K(-1) mol(-1) and ΔG = -9.424 kJ mol-(1) to -11.27 kJ mol-(1) with the rise in temperature from 4 to 40 °C indicated that the adsorption process was endothermic and spontaneous.
Collapse
Affiliation(s)
| | - Bilgen Osman
- Department of Chemistry, Uludag University, Bursa, Turkey
| | - Ali Kara
- Department of Chemistry, Uludag University, Bursa, Turkey
| | | | - Necati Beşirli
- Department of Chemistry, Uludag University, Bursa, Turkey
| |
Collapse
|
50
|
Barnes EC, Bezerra-Gomes P, Nett M, Hertweck C. Dandamycin and chandrananimycin E, benzoxazines from Streptomyces griseus. J Antibiot (Tokyo) 2015; 68:463-8. [PMID: 25690358 DOI: 10.1038/ja.2015.10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/05/2015] [Accepted: 01/19/2015] [Indexed: 01/27/2023]
Abstract
Two new benzoxazines were isolated from Streptomyces griseus (HKI 0545) and assigned as chandrananimycin E (1) and dandamycin (2). Although a number of phenoxazinone-type compounds have been reported from nature, phenoxazines are rarer, and carbon substitution at N-10 such as in 1 is unprecedented. The cyclopentene-containing ring structure of dandamycin (2) is also unique. Chandrananimycin E (1) was found to possess moderate antiproliferative activity against HUVEC cells (GI50 35.3 μM) and weak cytotoxic activity towards HeLa cells (CC50 56.9 μM). Dandamycin showed neither antiproliferative activity nor cytotoxicity towards these cell lines. Structure activity comparisons with phenoxazinones isolated from S. griseus HKI 0545 suggested that the alteration of the core ring systems in 1 and 2 diminishes their activity. Natural products 1 and 2 are interesting additions to the rich secondary metabolome of S. griseus and constitute an important addition to the body of knowledge on phenoxazinone-derived metabolites.
Collapse
Affiliation(s)
- Emma C Barnes
- Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | | | - Markus Nett
- Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Christian Hertweck
- 1] Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany [2] Chair for Natural Product Chemistry, Friedrich Schiller University, Jena, Germany
| |
Collapse
|