1
|
Ishizawa H, Tashiro Y, Okada T, Inoue D, Ike M, Futamata H. Uncovering the causal relationships in plant-microbe ecosystems: A time series analysis of the duckweed cultivation system for biomass production and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177717. [PMID: 39615172 DOI: 10.1016/j.scitotenv.2024.177717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024]
Abstract
The complex interplay among plants, microbes, and the environment strongly affects productivity of vegetation ecosystems; however, determining causal relationships among various factors in these systems remains challenging. To address this issue, this study aimed to evaluate the potential of a data analytical framework called empirical dynamic modeling, which identifies causal links and directions solely from time series data. By cultivating duckweed, a promising aquatic plant for biomass production and wastewater treatment, we obtained a 63-day time series data of plant productivity, microbial community structure, wastewater treatment performance, and environmental factors. We confirmed that empirical dynamic modeling can identify the correct causal directions among temperature, light intensity and plant growth, solely from time series data. Extending the analysis to microbial community data suggested that the bacterial family Comamonadaceae positively affects host duckweed growth and nitrogen removal. Additionally, the predicted abundance of bacterial genes relevant to xenobiotics biodegradation was shown to have a positive effect on organic pollutant removal, supporting the significant role of bacterial metabolism in phytoremediation performance. These results demonstrate the effectiveness of empirical dynamic modeling in uncovering causal relationships within vegetation ecosystems, which are difficult to examine comprehensively through conventional experiment-based approaches.
Collapse
Affiliation(s)
- Hidehiro Ishizawa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan; Research Institute of Green Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan.
| | - Yosuke Tashiro
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan; Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
| | - Takashi Okada
- Institution for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0821, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0821, Japan
| | - Hiroyuki Futamata
- Research Institute of Green Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan; Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan; Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
| |
Collapse
|
2
|
Laishram B, Devi OR, Dutta R, Senthilkumar T, Goyal G, Paliwal DK, Panotra N, Rasool A. Plant-microbe interactions: PGPM as microbial inoculants/biofertilizers for sustaining crop productivity and soil fertility. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100333. [PMID: 39835267 PMCID: PMC11743900 DOI: 10.1016/j.crmicr.2024.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Plant-microbe interactions play pivotal roles in sustaining crop productivity and soil fertility, offering promising avenues for sustainable agricultural practices. This review paper explores the multifaceted interactions between plants and various microorganisms, highlighting their significance in enhancing crop productivity, combating pathogens, and promoting soil health. Understanding these interactions is crucial for harnessing their potential in agricultural systems to address challenges such as food security and environmental sustainability. Therefore, the introduction of beneficial microbes into agricultural ecosystems by bio-augmentation reduces the negative effects of intensive, non-sustainable agriculture on the environment, society, and economy, into the mechanisms underlying the application of plant growth promoting microbes as microbial inoculants/biofertilizers; their interactions, the factors influencing their dynamics, and the implications for agricultural practices, emerging technologies and strategies that leverage plant-microbe interactions for improving crop yields, soil fertility, and overall agricultural sustainability.
Collapse
Affiliation(s)
- Bibek Laishram
- Department of Agronomy, Assam Agricultural University, Jorhat 785013, Assam, India
| | - Okram Ricky Devi
- Department of Agronomy, Assam Agricultural University, Jorhat 785013, Assam, India
| | - Rinjumoni Dutta
- Department of Agronomy, Assam Agricultural University, Jorhat 785013, Assam, India
| | | | - Girish Goyal
- Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya, India
| | | | - Narinder Panotra
- Institute of Biotechnology, SKUAST Jammu, Jammu and Kashmir 180009, India
| | - Akhtar Rasool
- Research Center for Chemistry - National Research and Innovation Agency (BRIN), KST BJ Habibie, Building 452, Setu, Tangerang Selatan 15314, Indonesia
- Department of Biotechnology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| |
Collapse
|
3
|
Deng Y, Xiao W, Xiong Z, Sha A, Luo Y, Chen X, Li Q. Assembly Mechanism of Rhizosphere Fungi in Plant Restoration in Lead Zinc Mining Areas. Genes (Basel) 2024; 15:1398. [PMID: 39596598 PMCID: PMC11593579 DOI: 10.3390/genes15111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND So far, the assembly and response mechanism of soil fungi in the ecological restoration process of lead zinc mines is still unclear. METHODS In this study, we selected three plants for the ecological restoration of abandoned lead zinc mining areas and explored the community assembly mechanism by which soil fungi assist plants in adapting to the environment during the ecological restoration process. RESULTS The results revealed that the mining of lead zinc mines led to a significant decrease in soil fungal diversity, whereas the planting of three plants significantly increased the diversity of rhizosphere fungi. Mining activities significantly reduced the abundance of soil Fusarium, Macroventuria, Cladosporium, and Solicocozyma and increased the abundance of soil Helvella. After three ecologically restored plants were planted, the abundances of Fusarium and Cladosporium increased significantly, whereas the abundance of Helvella decreased significantly. In addition, Capronia was significantly enriched in the rhizosphere soils of three plant species in the mining area. β diversity and fungal guild analysis revealed that mining activities had a great impact on fungal communities and guilds. The ecological restoration of plants changed the guilds of rhizosphere fungi, making them closer to those of the control sample. In addition, the endophyte guild was significantly enriched in the rhizosphere soil of three ecologically restored plants, increasing their adaptability. CONCLUSIONS The results provide a reference for screening lead zinc mine bioremediation strains and developing fungal plant joint remediation strategies.
Collapse
Affiliation(s)
- Yue Deng
- School of China Alcoholic Drinks, Luzhou Vocational and Technology College, Luzhou 646000, China;
| | - Wenqi Xiao
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| | - Zhuang Xiong
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| | - Ajia Sha
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| | - Yingyong Luo
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| | - Xiaodie Chen
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| |
Collapse
|
4
|
Wang S, Liu J, Liu Y, Tian C. Application of rhizobium inoculation in regulating heavy metals in legumes: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173923. [PMID: 38880144 DOI: 10.1016/j.scitotenv.2024.173923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
Rhizobium inoculation has been widely applied to alleviate heavy metal (HM) stress in legumes grown in contaminated soils, but it has generated inconsistent results with regard to HM accumulation in plant tissues. Here, we conducted a meta-analysis to assess the performance of Rhizobium inoculation for regulating HM in legumes and reveal the general influencing factors and processes. The meta-analysis showed that Rhizobium inoculation in legumes primarily increased the total HM uptake by stimulating plant biomass growth rather than HM phytoavailability. Inoculation had no significant effect on the average shoot HM concentration (p > 0.05); however, it significantly increased root HM uptake by 61 % and root HM concentration by 7 % (p < 0.05), indicating safe agricultural production while facilitating HM phytostabilisation. Inoculation decreased shoot HM concentrations and increased root HM uptake in Vicia, Medicago and Glycine, whereas it increased shoot HM concentrations in Sulla, Cicer and Vigna. The effects of inoculation on shoot biomass were suppressed by nitrogen fertiliser and native microorganisms, and the effect on shoot HM concentration was enhanced by high soil pH, organic matter content, and phosphorous content. Inoculation-boosted shoot nutrient concentration was positively correlated with increased shoot biomass, whereas the changes in pH and organic matter content were insufficient to significantly affect accumulation outcomes. Nitrogen content changes in the soil were positively correlated with changes in root HM concentration and uptake, whereas nitrogen translocation changes in the tissues were positively correlated with changes in HM translocation. Phosphorus solubilisation could improve HM phytoavailability at the expense of slight biomass promotion. These results suggest that the diverse growth-promoting characteristics of Rhizobia influence the trade-off between biomass-HM phytoavailability and HM translocation, impacting HM accumulation outcomes. Our findings can assist in optimising the utilisation of legume-Rhizobium systems in HM-contaminated soils.
Collapse
Affiliation(s)
- Shiqi Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinbiao Liu
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing 163317, China
| | - Yalan Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changyan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi 830011, China.
| |
Collapse
|
5
|
Khan S, Galstyan H, Abbas M, Wenjing X. Advanced biotechnology strategies for detoxification of persistent organic pollutants and toxic elements in soil. CHEMOSPHERE 2023; 345:140519. [PMID: 37871876 DOI: 10.1016/j.chemosphere.2023.140519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
This paper aims to comprehensively examine and present the current state of persistent organic pollutants (POPs) and toxic elements (TEs) in soil. Additionally, it seeks to assess the viability of employing advanced biotechnology, specifically phytoremediation with potent microbial formulations, as a means of detoxifying POPs and TEs. In the context of the "global treaty," which is known as the Stockholm Convention, we analyzed the 3D chemical structures of POPs and its prospects for living organisms which have not been reviewed up to date. The obstacles associated with the phytoremediation strategy in biotechnology, including issues like slow plant growth and limited efficiency in contaminant uptake, have also been discussed and demonstrated. While biotechnology is recognized as a promising method for detoxifying persistent organic pollutants (POPs) and facilitating the restoration of contaminated and degraded lands, its full potential in the field is constrained by various factors. Recent advances in biotechnology, such as microbial enzymes, designer plants, composting, and nanobiotechnology techniques, have opened up new avenues for mitigating persistent organic pollutants (POPs) and toxic elements (TEs). The insights gained from this review can contribute to the development of innovative, practical, and economically viable approaches for remediating and restoring soils contaminated with persistent organic pollutants (POPs) and toxic elements (TEs). The ultimate aim is to reduce the risks to both human and environmental health.
Collapse
Affiliation(s)
- Shamshad Khan
- School of Geography and Resources Science, Neijiang Normal University, Neijiang, 641100, China.
| | - Hrachuhi Galstyan
- School of Geography and Resources Science, Neijiang Normal University, Neijiang, 641100, China
| | - Mohsin Abbas
- College of Engineering, University of Technology Bahrain, Salmabad, Kingdom of Bahrain
| | - Xiang Wenjing
- Department of International Exchange and Cooperation, Neijiang Normal University, Neijiang, 641100, China
| |
Collapse
|
6
|
Li J, Ge L, Liu P, Huang Z, Tan S, Wu W, Chen T, Xi J, Huang X, Yi K, Chen H. Exploring cadmium stress responses in sisal roots: Insights from biochemical and transcriptome analysis. PLoS One 2023; 18:e0288476. [PMID: 38019757 PMCID: PMC10686430 DOI: 10.1371/journal.pone.0288476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/27/2023] [Indexed: 12/01/2023] Open
Abstract
Sisal is a leaf fiber crop with a high integrated value and a wide range of uses in the application of soil remediation of heavy metal contamination. This study provides a preliminary understanding of how sisal responds to Cd stress and presents a theoretical basis for exploring the potential of sisal in the remediation of Cd-contaminated soils. In this work, the activities of the antioxidant enzymes (SOD, POD, and CAT) of sisal were measured by hydroponics with the addition of CdCl2·2.5H2O and different concentrations of Cd stress. Whole transcriptome sequencing (RNA-Seq) analysis was performed with lllumina sequencing technology, and qRT-PCR was conducted to verify the differential genes. The results obtained were as follows: (1) Short-term low concentration of Cd stress (20 mg/kg) had a transient promotion effect on the growth of sisal roots, but Cd showed a significant inhibitory effect on the growth of sisal roots over time. (2) Under different concentrations of Cd stress, the Cd content in sisal root was greater than that in sisal leaf, and Cd accumulated mainly in sisal roots. (3) With the increase of Cd stress concentration, the antioxidant enzyme catalase activity increased, peroxidase activity showed a decreasing trend, and superoxide dismutase showed a trend of increasing and then decreasing. (4) Transcriptome sequencing analysis detected 123 differentially expressed genes (DEGs), among which 85 genes were up-regulated and 38 genes were down-regulated. The DEGs were mainly concentrated in flavonoid biosynthesis and glutathione metabolism, and both processes had some regulatory effects on the Cd tolerance characteristics of sisal. This study elucidated the physiological, biochemical and transcriptomic responses of sisal under cadmium stress, and provided a theoretical basis for the ecological restoration function of sisal.
Collapse
Affiliation(s)
- Jing Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan, PR China
| | - Lifang Ge
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan, PR China
| | - Ping Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan, PR China
| | - Zhaoxue Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan, PR China
| | - Shibei Tan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan, PR China
| | - Weihuai Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan, PR China
| | - Tao Chen
- Guangxi Subtropical Crops Research Institute, Nanning, PR China
| | - Jingen Xi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan, PR China
| | - Xing Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan, PR China
| | - Kexian Yi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan, PR China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Helong Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan, PR China
| |
Collapse
|
7
|
Naqvi SNH, Bibi I, Niazi NK, Tahseen R, Al-Misned F, Shahid M, Naqvi SA, Ashraf W, Shabir G, Iqbal S, Ali F, Afzal M. Exploring the potential of bacterial-augmented floating treatment wetlands for the remediation of detergent-contaminated water. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:882-893. [PMID: 37933838 DOI: 10.1080/15226514.2023.2275725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Due to industrialization and urbanization, the use of detergents inadvertently led to contamination of aquatic environments, thus posing potential threat to aquatic organisms and human health. One of the main components of detergents is linear alkylbenzene sulfonate (LAS), which can cause toxic effects on living organisms, particularly aquatic life in the environment. In this study, floating treatment wetlands (FTWs) mesocosms were developed and augmented with LAS-degrading bacteria. The plant species, Brachiaria mutica (Para grass), was vegetated to establish FTWs and bacterial consortium (1:1:1:1) of Pseudomonas aeruginosa strain PJRS20, Bacillus sp. BRRH60, Acinetobacter sp. strain CYRH21, and Burkholderia phytofirmans Ps.JN was augmented (free or immobilized) in these mesocosms. Results revealed that the FTWs removed LAS from the contaminated water and their augmentation with bacteria slightly increased LAS removal during course of the experiment. Maximum reduction in LAS concentration (94%), chemical oxygen demand (91%), biochemical oxygen demand (93%), and total organic carbon (91%) was observed in the contaminated water having FTWs augmented with bacterial consortium immobilized on polystyrene sheet. This study highlights that the FTWs supported with immobilized bacteria on polystyrene sheets can provide an eco-friendly and sustainable solution for the remediation of LAS-bearing water, especially for developing countries like Pakistan.
Collapse
Affiliation(s)
- Syed Najaf Hasan Naqvi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C PIEAS), Faisalabad, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Razia Tahseen
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C PIEAS), Faisalabad, Pakistan
| | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | | | | | - Ghulam Shabir
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C PIEAS), Faisalabad, Pakistan
| | - Samina Iqbal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C PIEAS), Faisalabad, Pakistan
| | - Fawad Ali
- Centre for Planetary Health and Food Security, Griffith University, Nathan Campus (4111), Brisbane, QLD, Australia
- Queensland Department of Agriculture and Fisheries, Mareeba (4880), QLD, Australia
| | - Muhammad Afzal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C PIEAS), Faisalabad, Pakistan
| |
Collapse
|
8
|
Cheng Y, Chen X, Liu W, Yang L, Wu J, Wang Y, Yu W, Zhou J, Fayyaz P, Luo ZB, Deng S, Shi W. Homolog of Human placenta-specific gene 8, PcPLAC8-10, enhances cadmium uptake by Populus roots. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132349. [PMID: 37657324 DOI: 10.1016/j.jhazmat.2023.132349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
Cadmium (Cd) pollution of soil occurs worldwide. Phytoremediation is an effective approach for cleaning up Cd polluted soil. Fast growing Populus species with high Cd uptake capacities are desirable for phytoremediation. Thus, it is important to elucidate the molecular functions of genes involved in Cd uptake by poplars. In this study, PcPLAC8-10, a homolog of Human placenta-specific gene 8 (PLAC8) implicated in Cd transport was functionally characterized in Populus × canescens. PcPLAC8-10 was transcriptionally induced in Cd-treated roots and it encoded a plasma membrane-localized transporter. PcPLAC8-10 exhibited Cd uptake activity when expressed in yeast cells. No difference in growth was observed between wild type (WT) and PcPLAC8-10-overexpressing poplars. PcPLAC8-10-overexpressing poplars exhibited increases in net Cd2+ influxes by 192% and Cd accumulation by 57% in the roots. However, similar reductions in biomass were found in WT and transgenic poplars when exposed to Cd. The complete motif of CCXXXXCPC in PcPLAC8-10 was essential for its Cd transport activity. These results suggest that PcPLAC8-10 is a plasma membrane-localized transporter responsible for Cd uptake in the roots and the complete CCXXXXCPC motif of PcPLAC8-10 plays a key role in its Cd transport activity in poplars.
Collapse
Affiliation(s)
- Yao Cheng
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Xin Chen
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Wenzhe Liu
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Lingyu Yang
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Jiangting Wu
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Yang Wang
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Wenjian Yu
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Jing Zhou
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Payam Fayyaz
- Forest, Range and Watershed Management Department, Agriculture and Natural Resources Faculty, Yasouj University, Yasuj 75919 63179, Islamic Republic of Iran
| | - Zhi-Bin Luo
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China; Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, PR China; Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying, Shandong Province 257000, PR China.
| | - Shurong Deng
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Wenguang Shi
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China.
| |
Collapse
|
9
|
Gao J, Li Z, Zhu B, Wang L, Xu J, Wang B, Fu X, Han H, Zhang W, Deng Y, Wang Y, Zuo Z, Peng R, Tian Y, Yao Q. Creation of Environmentally Friendly Super "Dinitrotoluene Scavenger" Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303785. [PMID: 37715295 PMCID: PMC10602510 DOI: 10.1002/advs.202303785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/15/2023] [Indexed: 09/17/2023]
Abstract
Pervasive environmental contamination due to the uncontrolled dispersal of 2,4-dinitrotoluene (2,4-DNT) represents a substantial global health risk, demanding urgent intervention for the removal of this detrimental compound from affected sites and the promotion of ecological restoration. Conventional methodologies, however, are energy-intensive, susceptible to secondary pollution, and may inadvertently increase carbon emissions. In this study, a 2,4-DNT degradation module is designed, assembled, and validated in rice plants. Consequently, the modified rice plants acquire the ability to counteract the phytotoxicity of 2,4-DNT. The most significant finding of this study is that these modified rice plants can completely degrade 2,4-DNT into innocuous substances and subsequently introduce them into the tricarboxylic acid cycle. Further, research reveals that the modified rice plants enable the rapid phytoremediation of 2,4-DNT-contaminated soil. This innovative, eco-friendly phytoremediation approach for dinitrotoluene-contaminated soil and water demonstrates significant potential across diverse regions, substantially contributing to carbon neutrality and sustainable development objectives by repurposing carbon and energy from organic contaminants.
Collapse
|
10
|
Zheng K, Liu Z, Liu C, Liu J, Zhuang J. Enhancing remediation potential of heavy metal contaminated soils through synergistic application of microbial inoculants and legumes. Front Microbiol 2023; 14:1272591. [PMID: 37840744 PMCID: PMC10571051 DOI: 10.3389/fmicb.2023.1272591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Soil microorganisms play a crucial role in remediating contaminated soils in modern ecosystems. However, the potential of combining microorganisms with legumes to enhance the remediation of heavy metal-contaminated soils remains unexplored. To investigate this, we isolated and purified a highly efficient cadmium and lead-tolerant strain. Through soil-cultivated pot experiments with two leguminous plants (Robinia pseudoacacia L. and Sophora xanthantha), we studied the effects of applying this microbial agent on plant nutrient uptake of soil nutrients, heavy metal accumulation, and the dynamics of heavy metal content. Additionally, we examined the response characteristics of inter-root microbial and bacterial communities. The results demonstrated that microorganisms screened from heavy metal-contaminated soil environments exhibited strong survival and adaptability in heavy metal solutions. The use of the Serratia marcescens WZ14 strain-phytoremediation significantly increased the soil's ammonium nitrogen (AN) and organic carbon (OC) contents compared to monoculture. In addition, the lead (Pb) and cadmium (Cd) contents of the soil significantly decreased after combined remediation than those of the soil before potting. However, the remediation effects on Pb- and Cd-contaminated soils differed between the two legumes following the Serratia marcescens WZ14 inoculation. The combined restoration altered the composition of the plant inter-rhizosphere bacterial community, with the increase in the relative abundance of both Proteobacteria and Firmicutes. Overall, the combined remediation using the tolerant strain WZ14 with legumes proved advantageous. It effectively reduced the heavy metal content of the soil, minimized the risk of heavy metal migration, and enhanced heavy metal uptake, accumulation, and translocation in the legumes of S. xanthantha and R. pseudoacacia. Additionally, it improved the adaptability and resistance of both legumes, leading to an overall improvement in the soil's environmental quality. These studies can offer primary data and technical support for remediating and treating Cd and Pb in soils, as well as rehabilitating mining sites.
Collapse
Affiliation(s)
| | | | | | | | - Jiayao Zhuang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
11
|
Giri A, Pant D, Chandra Srivastava V, Kumar M, Kumar A, Goswami M. Plant -microbe assisted emerging contaminants (ECs) removal and carbon cycling. BIORESOURCE TECHNOLOGY 2023:129395. [PMID: 37380038 DOI: 10.1016/j.biortech.2023.129395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Continuous increase in the level of atmospheric CO2 and environmental contaminates has aggravated various threats resulting from environmental pollution and climate change. Research into plant -microbe interaction has been a central concern of ecology for over the year. However, despite the clear contribution of plant -microbe to the global carbon cycle, the role of plant -microbe interaction in carbon pools, fluxes and emerging contaminants (ECs) removal are still a poorly understood. The use of plant and microbes in ECs removal and carbon cycling is an attractive strategy because microbes operate as biocatalysts to remove contaminants and plant roots offer a rich niche for their growth and carbon cycling. However, bio-mitigation of CO2 and removal of ECs is still under research phase because of the CO2 capture and fixation efficiency is too low for industrial purposes and cutting-edge removal methods have not been created for such emerging contaminants.
Collapse
Affiliation(s)
- Anand Giri
- School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Deepak Pant
- Departments of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala 176215, India.
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttrakhand 247667, India
| | - Manoj Kumar
- Indian Oil Corporation R&D Centre, Sector 13, Faridabad, India
| | - Ashok Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, India
| | - Meera Goswami
- Department of Zoology and Environmental Science, Gurukul Kangri (Deemed to Be University), Haridwar 249404, Uttarakhand, India
| |
Collapse
|
12
|
Dhawi F. The Role of Plant Growth-Promoting Microorganisms (PGPMs) and Their Feasibility in Hydroponics and Vertical Farming. Metabolites 2023; 13:metabo13020247. [PMID: 36837866 PMCID: PMC9964210 DOI: 10.3390/metabo13020247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023] Open
Abstract
There are many reasons for the increase in hydroponics/soil-free systems in agriculture, and these systems have now advanced to the form of vertical farming. The sustainable use of space, the reduction in water use compared to soil-based agriculture, the lack of pesticides, the ability to control nutrient inputs, and the implementation of user-friendly technology for environmental control and harvesting are all factors that have made the global market for vertical farming predicted to reach more than USD 10.02 billion by 2027. By comparison, soil-based agriculture consumes 20 times more water, and some agricultural practices promote soil deterioration and cause environmental pollution. Plant growth-promoting microorganisms (PGPMs) have been used extensively in traditional agriculture to enhance plant growth, environmental stress tolerance, and the efficacy of phytoremediation in soil-based farming. Due to the controlled atmosphere in hydroponics and vertical farms, there is strong potential to maximize the use of PGPMs. Here, we review the leveraging of plant growth-promoting microorganism mechanisms in hydroponics and vertical farming. We recommend a synchronized PGPM treatment using a biostimulant extract added to the hydroponic medium while also pre-treating seeds or seedlings with a microbial suspension for aquaponic and aeroponic systems.
Collapse
Affiliation(s)
- Faten Dhawi
- Agricultural Biotechnology Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
13
|
Qu B, Yuan Y, Wang L, Liu Y, Chen X, Shao M, Xu Y. Effects of different water conditions on the cadmium hyperaccumulation efficiency of Rorippa sylvestris (L.) Besser and Rorippa amphibia Besser. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20970-20979. [PMID: 36264464 DOI: 10.1007/s11356-022-23531-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Increasing the translocation and accumulation of cadmium (Cd) in Cd hyperaccumulator is an important technology to improve the phytoremediation efficiency of Cd-contaminated soil. In order to investigate the effects of different water conditions on the growth and Cd accumulation ability of Cd hyperaccumulators Rorippa sylvestris (L.) Besser and Rorippa amphibia Besser in Cd-polluted soil, clone seedlings of them were transplanted into pots filled with 50 mg kg-1 Cd-contaminated soil and cultured with water conditions of soil relative water content (RWC) 35%, 55%, 75%, 95%, and flooding respectively. The results showed the following: with the increase of RWC, the height of R. sylvestris and R. amphibia increased gradually, the dry biomass of shoot and whole plant increased and reached the maximum in 95% and then decreased in flooding; the Cd concentrations in shoots of R. sylvestris and R. amphibia were more than 100 mg kg-1 except for 35% and flooding; Cd bioconcentration factors (BCFs) of R. amphibia reached the maximum of 3.8870 in 75% and R. sylvestris reached the maximum of 3.2330 in 95%; sufficient water resulted in the decrease of photosynthetic rate due to more Cd accumulation. However, under flooding condition, because of the decrease of Cd bioavailability in soil, the accumulation of Cd in shoots declined and the net photosynthetic rate (Pn) enhanced slightly.
Collapse
Affiliation(s)
- Bo Qu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yunning Yuan
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, 110866, China
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Linyu Wang
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, 110866, China
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yinuo Liu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xuhui Chen
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Meini Shao
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yufeng Xu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
14
|
Signaling and Detoxification Strategies in Plant-Microbes Symbiosis under Heavy Metal Stress: A Mechanistic Understanding. Microorganisms 2022; 11:microorganisms11010069. [PMID: 36677361 PMCID: PMC9865731 DOI: 10.3390/microorganisms11010069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Plants typically interact with a variety of microorganisms, including bacteria, mycorrhizal fungi, and other organisms, in their above- and below-ground parts. In the biosphere, the interactions of plants with diverse microbes enable them to acquire a wide range of symbiotic advantages, resulting in enhanced plant growth and development and stress tolerance to toxic metals (TMs). Recent studies have shown that certain microorganisms can reduce the accumulation of TMs in plants through various mechanisms and can reduce the bioavailability of TMs in soil. However, relevant progress is lacking in summarization. This review mechanistically summarizes the common mediating pathways, detoxification strategies, and homeostatic mechanisms based on the research progress of the joint prevention and control of TMs by arbuscular mycorrhizal fungi (AMF)-plant and Rhizobium-plant interactions. Given the importance of tripartite mutualism in the plant-microbe system, it is necessary to further explore key signaling molecules to understand the role of plant-microbe mutualism in improving plant tolerance under heavy metal stress in the contaminated soil environments. It is hoped that our findings will be useful in studying plant stress tolerance under a broad range of environmental conditions and will help in developing new technologies for ensuring crop health and performance in future.
Collapse
|
15
|
Afridi MS, Javed MA, Ali S, De Medeiros FHV, Ali B, Salam A, Sumaira, Marc RA, Alkhalifah DHM, Selim S, Santoyo G. New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:899464. [PMID: 36186071 PMCID: PMC9524194 DOI: 10.3389/fpls.2022.899464] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/08/2022] [Indexed: 07/30/2023]
Abstract
Plant microbiome (or phytomicrobiome) engineering (PME) is an anticipated untapped alternative strategy that could be exploited for plant growth, health and productivity under different environmental conditions. It has been proven that the phytomicrobiome has crucial contributions to plant health, pathogen control and tolerance under drastic environmental (a)biotic constraints. Consistent with plant health and safety, in this article we address the fundamental role of plant microbiome and its insights in plant health and productivity. We also explore the potential of plant microbiome under environmental restrictions and the proposition of improving microbial functions that can be supportive for better plant growth and production. Understanding the crucial role of plant associated microbial communities, we propose how the associated microbial actions could be enhanced to improve plant growth-promoting mechanisms, with a particular emphasis on plant beneficial fungi. Additionally, we suggest the possible plant strategies to adapt to a harsh environment by manipulating plant microbiomes. However, our current understanding of the microbiome is still in its infancy, and the major perturbations, such as anthropocentric actions, are not fully understood. Therefore, this work highlights the importance of manipulating the beneficial plant microbiome to create more sustainable agriculture, particularly under different environmental stressors.
Collapse
Affiliation(s)
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Sher Ali
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), São Paulo, Brazil
| | | | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Salam
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sumaira
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
16
|
Qiu Z, Paungfoo-Lonhienne C, Ye J, Garcia AG, Petersen I, Di Bella L, Hobbs R, Ibanez M, Heenan M, Wang W, Reeves S, Schmidt S. Biofertilizers can enhance nitrogen use efficiency of sugarcane. Environ Microbiol 2022; 24:3655-3671. [PMID: 35506306 PMCID: PMC9544788 DOI: 10.1111/1462-2920.16027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/21/2022] [Indexed: 12/01/2022]
Abstract
Fertilizers are costly inputs into crop systems. To compensate for inefficiencies and losses from soil, farmers apply on average double the amount of nitrogen (N) fertilizer acquired by crops. We explored if N efficiency improves with biofertilizers formulated with organic waste, mineral N or plant growth-promoting rhizobacteria (PGPR). We compared treatments receiving mineral N fertilizer or biofertilizers at industry-recommended (100%) or lower (60%) N rates at two commercial sugarcane farms. Biofertilizer at the 60% N-rate generated promising results at one farm with significantly higher biomass and sugar yield than the no-N control, which matched the 100% mineral N treatment. This yield difference was accompanied by a shift in microbial diversity and composition. Correlation analysis confirmed that shifts in microbial communities were strongly linked to soil mineral N levels, as well as crop productivity and yield. Microbial co-occurrence networks further revealed that biofertilizer, including treatments with an added PGPR, can enhance bacterial associations, especially in the context of complex fungal networks. Collectively, the results confirm that biofertilizers have quantifiable effects on soil microbial communities in a crop system setting, which underscores the opportunities for biofertilizers to promote N use efficiency and the circular N economy.
Collapse
Affiliation(s)
- Zhiguang Qiu
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia.,School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Jun Ye
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Axa Gonzalez Garcia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Ian Petersen
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Lawrence Di Bella
- Herbert Cane Productivity Services Ltd., Ingham, Qld, 4850, Australia
| | - Richard Hobbs
- Herbert Cane Productivity Services Ltd., Ingham, Qld, 4850, Australia
| | - Minka Ibanez
- Herbert Cane Productivity Services Ltd., Ingham, Qld, 4850, Australia
| | - Marijke Heenan
- Department of Environment and Science, Brisbane, Qld, 4001, Australia
| | - Weijin Wang
- Department of Environment and Science, Brisbane, Qld, 4001, Australia
| | - Steven Reeves
- Department of Environment and Science, Brisbane, Qld, 4001, Australia
| | - Susanne Schmidt
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| |
Collapse
|
17
|
Delangiz N, Aliyar S, Pashapoor N, Nobaharan K, Asgari Lajayer B, Rodríguez-Couto S. Can polymer-degrading microorganisms solve the bottleneck of plastics' environmental challenges? CHEMOSPHERE 2022; 294:133709. [PMID: 35074325 DOI: 10.1016/j.chemosphere.2022.133709] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/27/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Increasing world population and industrial activities have enhanced anthropogenic pollution, plastic pollution being especially alarming. So, plastics should be recycled and/or make them biodegradable. Chemical and physical remediating methods are usually energy consuming and costly. In addition, they are not ecofriendly and usually produce toxic byproducts. Bioremediation is a proper option as it is cost-efficient and environmentally friendly. Plastic production and consumption are increasing daily, and, as a consequence, more microorganisms are exposed to these nonbiodegradable polymers. Therefore, investigating new efficient microorganisms and increasing the knowledge about their biology can pave the way for efficient and feasible plastic bioremediation processes. In this sense, omics, systems biology and bioinformatics are three important fields to analyze the biodegradation pathways in microorganisms. Based on the above-mentioned technologies, researchers can engineer microorganisms with specific desired properties to make bioremediation more efficient.
Collapse
Affiliation(s)
- Nasser Delangiz
- Department of Plant Biotechnology and Breeding, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Sajad Aliyar
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Neda Pashapoor
- Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Susana Rodríguez-Couto
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
18
|
Utilization of Legume-Nodule Bacterial Symbiosis in Phytoremediation of Heavy Metal-Contaminated Soils. BIOLOGY 2022; 11:biology11050676. [PMID: 35625404 PMCID: PMC9138774 DOI: 10.3390/biology11050676] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary The legume–rhizobium symbiosis is one of the most beneficial interactions with high importance in agriculture, as it delivers nitrogen to plants and soil, thereby enhancing plant growth. Currently, this symbiosis is increasingly being exploited in phytoremediation of metal contaminated soil to improve soil fertility and simultaneously metal extraction or stabilization. Rhizobia increase phytoremediation directly by nitrogen fixation, protection of plants from pathogens, and production of plant growth-promoting factors and phytohormones. Abstract With the increasing industrial activity of the growing human population, the accumulation of various contaminants in soil, including heavy metals, has increased rapidly. Heavy metals as non-biodegradable elements persist in the soil environment and may pollute crop plants, further accumulating in the human body causing serious conditions. Hence, phytoremediation of land contamination as an environmental restoration technology is desirable for both human health and broad-sense ecology. Legumes (Fabaceae), which play a special role in nitrogen cycling, are dominant plants in contaminated areas. Therefore, the use of legumes and associated nitrogen-fixing rhizobia to reduce the concentrations or toxic effects of contaminants in the soil is environmentally friendly and becomes a promising strategy for phytoremediation and phytostabilization. Rhizobia, which have such plant growth-promoting (PGP) features as phosphorus solubilization, phytohormone synthesis, siderophore release, production of beneficial compounds for plants, and most of all nitrogen fixation, may promote legume growth while diminishing metal toxicity. The aim of the present review is to provide a comprehensive description of the main effects of metal contaminants in nitrogen-fixing leguminous plants and the benefits of using the legume–rhizobium symbiosis with both wild-type and genetically modified plants and bacteria to enhance an efficient recovery of contaminated lands.
Collapse
|
19
|
Oleńska E, Małek W, Sujkowska-Rybkowska M, Szopa S, Włostowski T, Aleksandrowicz O, Swiecicka I, Wójcik M, Thijs S, Vangronsveld J. An Alliance of Trifolium repens—Rhizobium leguminosarum bv. trifolii—Mycorrhizal Fungi From an Old Zn-Pb-Cd Rich Waste Heap as a Promising Tripartite System for Phytostabilization of Metal Polluted Soils. Front Microbiol 2022; 13:853407. [PMID: 35495712 PMCID: PMC9051510 DOI: 10.3389/fmicb.2022.853407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
The Bolesław waste heap in South Poland, with total soil Zn concentrations higher than 50,000 mg kg–1, 5,000 mg Pb kg–1, and 500 mg Cd kg–1, is a unique habitat for metallicolous plants, such as Trifolium repens L. The purpose of this study was to characterize the association between T. repens and its microbial symbionts, i.e., Rhizobium leguminosarum bv. trifolii and mycorrhizal fungi and to evaluate its applicability for phytostabilization of metal-polluted soils. Rhizobia originating from the nutrient-poor waste heap area showed to be efficient in plant nodulation and nitrogen fixation. They demonstrated not only potential plant growth promotion traits in vitro, but they also improved the growth of T. repens plants to a similar extent as strains from a non-polluted reference area. Our results revealed that the adaptations of T. repens to high Zn-Pb-Cd concentrations are related to the storage of metals predominantly in the roots (excluder strategy) due to nodule apoplast modifications (i.e., thickening and suberization of cell walls, vacuolar storage), and symbiosis with arbuscular mycorrhizal fungi of a substantial genetic diversity. As a result, the rhizobia-mycorrhizal fungi-T. repens association appears to be a promising tool for phytostabilization of Zn-Pb-Cd-polluted soils.
Collapse
Affiliation(s)
- Ewa Oleńska
- Faculty of Biology, University of Bialystok, Bialystok, Poland
- *Correspondence: Ewa Oleńska,
| | - Wanda Małek
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | | | | | | | | | - Izabela Swiecicka
- Faculty of Biology, University of Bialystok, Bialystok, Poland
- Laboratory of Applied Microbiology, University of Bialystok, Bialystok, Poland
| | - Małgorzata Wójcik
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
20
|
Subsurface Flow Phytoremediation Using Barley Plants for Water Recovery from Kerosene-Contaminated Water: Effect of Kerosene Concentration and Removal Kinetics. WATER 2022. [DOI: 10.3390/w14050687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsurface flow phytoremediation system would have great potential for the reclamation of kerosene-contaminated water.
Collapse
|
21
|
Bio- and phytoremediation: plants and microbes to the rescue of heavy metal polluted soils. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-021-04911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
AbstractBio- and phytoremediation, being encouraging terms implying the use of biological systems for cleansing purposes, have risen a worthy venture toward environmental restoration in discouraging scenarios, such as the augmentation of indestructible heavy metals. Hyperaccumulating plants and heavy metal resistant microbes own mechanisms embedded in their metabolism, proteins, and genes that confer them with “super characteristics” allowing them to assimilate heavy metals in order to amend polluted soils, and when combined in a symbiotic system, these super features could complement each other and be enhanced to overpower the exposure to toxic environments. Though xenobiotic pollution has been an object of concern for decades and physicochemical procedures are commonly carried out to offset this purpose, a “live” remediation is rather chosen and looked upon for promising results. A variety of benefits have been registered from symbiotic relationships, including plants teaming up with microbes to cope down with non-biodegradable elements such as heavy metals; but a carefully maneuvered interaction might signify a greater insight toward the application of bioremediation systems. These manipulations could consist of genetic engineering and/or additional supplementation of molecules and microbes. In the present study, a contemporary connection between plants and microbes involving their controlled management is summarized in a visionary display.
Collapse
|
22
|
Rane NR, Tapase S, Kanojia A, Watharkar A, Salama ES, Jang M, Kumar Yadav K, Amin MA, Cabral-Pinto MMS, Jadhav JP, Jeon BH. Molecular insights into plant-microbe interactions for sustainable remediation of contaminated environment. BIORESOURCE TECHNOLOGY 2022; 344:126246. [PMID: 34743992 DOI: 10.1016/j.biortech.2021.126246] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The widespread distribution of organic and inorganic pollutants in water resources have increased due to rapid industrialization. Rhizospheric zone-associated bacteria along with endophytic bacteria show a significant role in remediation of various pollutants. Metaomics technologies are gaining an advantage over traditional methods because of their capability to obtain detailed information on exclusive microbial communities in rhizosphere of the plant including the unculturable microorganisms. Transcriptomics, proteomics, and metabolomics are functional methodologies that help to reveal the mechanisms of plant-microbe interactions and their synergistic roles in remediation of pollutants. Intensive analysis of metaomics data can be useful to understand the interrelationships of various metabolic activities between plants and microbes. This review comprehensively discusses recent advances in omics applications made hitherto to understand the mechanisms of plant-microbe interactions during phytoremediation. It extends the delivery of the insightful information on plant-microbiomes communications with an emphasis on their genetic, biochemical, physical, metabolic, and environmental interactions.
Collapse
Affiliation(s)
- Niraj R Rane
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Savita Tapase
- Department of Biotechnology, Shivaji University, Kolhapur 416004, India
| | - Aakansha Kanojia
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Anuprita Watharkar
- Amity Institute of Biotechnology, Amity University, Bhatan, Panvel, Mumbai, India
| | - El-Sayed Salama
- Occupational and Environmental Health Department, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, People's Republic of China
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Marina M S Cabral-Pinto
- Geobiotec Research Centre, Department of Geoscience, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jyoti P Jadhav
- Department of Biochemistry, Shivaji University, Kolhapur 416004, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
23
|
Supreeth M. Enhanced remediation of pollutants by microorganisms-plant combination. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2022; 19:4587-4598. [PMID: 34122578 PMCID: PMC8183586 DOI: 10.1007/s13762-021-03354-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/06/2021] [Accepted: 04/22/2021] [Indexed: 05/02/2023]
Abstract
The pollutants have become ubiquitous in the total environment (water, soil and air) due to human activities and they are hazardous to all forms of life on the earth. This problem has made scientists focus on mitigating or complete reduction in pollutants by several means. Microorganism and plants are known to scavenge pollutants. Both are studied enormously in reducing, refining, and removing pollutants from the environment successfully. But, their slow process for removal is disadvantage. However, according to recent advancements in the abatement of pollutants, a combined system of both microorganisms and plant has shown to enhance the remediation of pollutants to an efficient level. In a nutrient-depleted pollutant-rich environment, when suitable plant and microorganisms are introduced, the plant interacts with the rhizosphere and root associate with microorganisms to survive in toxic conditions. The chemicals released by plants signal the microorganisms for interactions. This interaction leads in higher germination efficiency and enhanced root elongation which results in enhanced degradation of pollutants in both rhizosphere and phyllosphere. In this background, the current review article provides an overview of the recent advancement in microorganisms plant combined systems in enhanced removal of several recalcitrant pollutants. The conclusion highlights the challenges and future perspectives in this area of research.
Collapse
Affiliation(s)
- M. Supreeth
- Department of Microbiology, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, 570015 India
| |
Collapse
|
24
|
Abstract
Conservation research has historically been conducted at the macro level, focusing on animals and plants and their role in the wider ecosystem. However, there is a growing appreciation of the importance of microbial communities in conservation. Most microbiome research in conservation thus far has used amplicon sequencing methods to assess the taxonomic composition of microbial communities and inferred functional capabilities from these data. However, as manipulation of the microbiome as a conservation tool becomes more and more feasible, there is a growing need to understand the direct functional consequences of shifts in microbiome composition. This review outlines the latest advances in microbiome research from a functional perspective and how these data can be used to inform conservation strategies. This review will also consider some of the challenges faced when studying the microbiomes of wild animals and how they can be overcome by careful study design and sampling methods. Environmental changes brought about by climate change or direct human actions have the potential to alter the taxonomic composition of microbiomes in wild populations. Understanding how taxonomic shifts affect the function of microbial communities is important for identifying species most threatened by potential disruption to their microbiome. Preservation or even restoration of these functions has the potential to be a powerful tool in conservation biology and a shift towards functional characterisation of gut microbiome diversity will be an important first step.
Collapse
|
25
|
Ferrarini A, Fracasso A, Spini G, Fornasier F, Taskin E, Fontanella MC, Beone GM, Amaducci S, Puglisi E. Bioaugmented Phytoremediation of Metal-Contaminated Soils and Sediments by Hemp and Giant Reed. Front Microbiol 2021; 12:645893. [PMID: 33959108 PMCID: PMC8096354 DOI: 10.3389/fmicb.2021.645893] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
We assessed the effects of EDTA and selected plant growth-promoting rhizobacteria (PGPR) on the phytoremediation of soils and sediments historically contaminated by Cr, Ni, and Cu. A total of 42 bacterial strains resistant to these heavy metals (HMs) were isolated and screened for PGP traits and metal bioaccumulation, and two Enterobacter spp. strains were finally selected. Phytoremediation pot experiments of 2 months duration were carried out with hemp (Cannabis sativa L.) and giant reed (Arundo donax L.) grown on soils and sediments respectively, comparing in both cases the effects of bioaugmentation with a single PGPR and EDTA addition on plant and root growth, plant HM uptake, HM leaching, as well as the changes that occurred in soil microbial communities (structure, biomass, and activity). Good removal percentages on a dry mass basis of Cr (0.4%), Ni (0.6%), and Cu (0.9%) were observed in giant reed while negligible values (<100‰) in hemp. In giant reed, HMs accumulated differentially in plant (rhizomes > > roots > leaves > stems) with largest quantities in rhizomes (Cr 0.6, Ni 3.7, and Cu 2.2 g plant–1). EDTA increased Ni and Cu translocation to aerial parts in both crops, despite that in sediments high HM concentrations in leachates were measured. PGPR did not impact fine root diameter distribution of both crops compared with control while EDTA negatively affected root diameter class length (DCL) distribution. Under HM contamination, giant reed roots become shorter (from 5.2 to 2.3 mm cm–3) while hemp roots become shorter and thickened from 0.13 to 0.26 mm. A consistent indirect effect of HM levels on the soil microbiome (diversity and activity) mediated by plant response (root DCL distribution) was observed. Multivariate analysis of bacterial diversity and activity revealed not only significant effects of plant and soil type (rhizosphere vs. bulk) but also a clear and similar differentiation of communities between control, EDTA, and PGPR treatments. We propose root DCL distribution as a key plant trait to understand detrimental effect of HMs on microbial communities. Positive evidence of the soil-microbe-plant interactions occurring when bioaugmentation with PGPR is associated with deep-rooting perennial crops makes this combination preferable over the one with chelating agents. Such knowledge might help to yield better bioaugmented bioremediation results in contaminated sites.
Collapse
Affiliation(s)
- Andrea Ferrarini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessandra Fracasso
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giulia Spini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Flavio Fornasier
- CREA - Centro Viticoltura ed Enologia, Gorizia, Italy.,SOLIOMICS srl, Udine, Italy
| | - Eren Taskin
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Maria Chiara Fontanella
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gian Maria Beone
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Stefano Amaducci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
26
|
Restoring the Unrestored: Strategies for Restoring Global Land during the UN Decade on Ecosystem Restoration (UN-DER). LAND 2021. [DOI: 10.3390/land10020201] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Restoring the health of degraded land is critical for overall human development as land is a vital life-supporting system, directly or indirectly influencing the attainment of the UN Sustainable Development Goals (UN-SDGs). However, more than 33% of the global land is degraded and thereby affecting the livelihood of billions of people worldwide. Realizing this fact, the 73rd session of the UN Assembly has formally adopted a resolution to celebrate 2021–2030 as the UN Decade on Ecosystem Restoration (UN-DER), for preventing, halting, and reversing degradation of ecosystems worldwide. While this move is historic and beneficial for both people and the planet, restoration of degraded land at different scales and levels requires a paradigm shift in existing restoration approaches, fueled by the application of applied science to citizen/community-based science, and tapping of indigenous and local knowledge to advanced technological breakthroughs. In addition, there is a need of strong political will and positive behavioral changes to strengthen restoration initiatives at the grassroot level and involvement of people from all walks of life (i.e., from politicians to peasants and social workers to scientists) are essential for achieving the targets of the UN-DER. Similarly, financing restoration on the ground by the collective contribution of individuals (crowd funding) and institutions (institutional funding) are critical for maintaining the momentum. Private companies can earmark lion-share of their corporate social responsibility fund (CSR fund) exclusively for restoration. The adoption of suitable bioeconomy models is crucial for maintaining the perpetuity of the restoration by exploring co-benefits, and also for ensuring stakeholder involvements during and after the restoration. This review underpins various challenges and plausible solutions to avoid, reduce, and reverse global land degradation as envisioned during the UN-DER, while fulfilling the objectives of other ongoing initiatives like the Bonn Challenge and the UN-SDGs.
Collapse
|
27
|
Goh YK, Ting ASY. Microbial Biocontrol Agents for Agricultural Soil Remediation: Prospects and Application. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Gupta S, Kaur G, Nirwan J. Role of Endophytes in Plant-Associated Remediation and Plant Growth Promotion: A Deep Insight. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Shrestha A, Schikora A. AHL-priming for enhanced resistance as a tool in sustainable agriculture. FEMS Microbiol Ecol 2020; 96:5957528. [DOI: 10.1093/femsec/fiaa226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/04/2020] [Indexed: 01/28/2023] Open
Abstract
ABSTRACTBacteria communicate with each other through quorum sensing (QS) molecules. N-acyl homoserine lactones (AHL) are one of the most extensively studied groups of QS molecules. The role of AHL molecules is not limited to interactions between bacteria; they also mediate inter-kingdom interaction with eukaryotes. The perception mechanism of AHL is well-known in bacteria and several proteins have been proposed as putative receptors in mammalian cells. However, not much is known about the perception of AHL in plants. Plants generally respond to short-chained AHL with modification in growth, while long-chained AHL induce AHL-priming for enhanced resistance. Since plants may host several AHL-producing bacteria and encounter multiple AHL at once, a coordinated response is required. The effect of the AHL combination showed relatively low impact on growth but enhanced resistance. Microbial consortium of bacterial strains that produce different AHL could therefore be an interesting approach in sustainable agriculture. Here, we review the molecular and genetical basis required for AHL perception. We highlight recent advances in the field of AHL-priming. We also discuss the recent discoveries on the impact of combination(s) of multiple AHL on crop plants and the possible use of this knowledge in sustainable agriculture.
Collapse
Affiliation(s)
- Abhishek Shrestha
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Adam Schikora
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| |
Collapse
|
30
|
Mello IS, Targanski S, Pietro-Souza W, Frutuoso Stachack FF, Terezo AJ, Soares MA. Endophytic bacteria stimulate mercury phytoremediation by modulating its bioaccumulation and volatilization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110818. [PMID: 32590206 DOI: 10.1016/j.ecoenv.2020.110818] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 05/27/2023]
Abstract
The quantification, efficiency, and possible mechanisms of mercury phytoremediation by endophytic bacteria are poorly understood. Here we selected 8 out of 34 previously isolated endophytic bacterial strains with a broad resistance profile to metals and 11 antibiotics: Acinetobacter baumannii BacI43, Bacillus sp. BacI34, Enterobacter sp. BacI14, Klebsiella pneumoniae BacI20, Pantoea sp. BacI23, Pseudomonas sp. BacI7, Pseudomonas sp. BacI38, and Serratia marcescens BacI56. Except for Klebsiella pneumoniae BacI20, the other seven bacterial strains promoted maize growth on a mercury-contaminated substrate. Acinetobacter baumannii BacI43 and Bacillus sp. BacI34 increased total dry biomass by approximately 47%. The bacteria assisted mercury remediation by decreasing the metal amount in the substrate, possibly by promoting its volatilization. The plants inoculated with Serratia marcescens BacI56 and Pseudomonas sp. BacI38 increased mercury volatilization to 47.16% and 62.42%, respectively. Except for Bacillus sp. BacI34 and Pantoea sp. BacI23, the other six bacterial strains favored mercury bioaccumulation in plant tissues. Endophytic bacteria-assisted phytoremediation contributed to reduce the substrate toxicity assessed in different model organisms. The endophytic bacterial strains selected herein are potential candidates for assisted phytoremediation that shall help reduce environmental toxicity of mercury-contaminated soils.
Collapse
Affiliation(s)
- Ivani Souza Mello
- Laboratório de Biotecnologia e Ecologia Microbiana, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Sabrina Targanski
- Laboratório de Biotecnologia e Ecologia Microbiana, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - William Pietro-Souza
- Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | | | - Ailton Jose Terezo
- Central Analítica de Combustíveis, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Marcos Antônio Soares
- Laboratório de Biotecnologia e Ecologia Microbiana, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil.
| |
Collapse
|
31
|
Agronomic Approaches for Characterization, Remediation, and Monitoring of Contaminated Sites. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With a view to conserving or improving soil ecosystem services, environment-friendly techniques, such as bio- and phytoremediation, can effectively be used for the characterization, risk assessment, and remediation of contaminated agricultural sites. Polyannual vegetation (meadows, poplar, and cane stands) is widely considered the most efficient tool for remediation (extraction of bioavailable fraction of contaminants), for undertaking safety measures (reducing the mobility of contaminants towards other environmental compartments), and for restoring the ecosystem services of contaminated agricultural sites (biomass production, groundwater protection, C storage, landscape quality improvement, and cultural and educational services). The roles of agronomic approaches will be reviewed by focusing on the various steps in the whole remediation process: (i) detailed environmental characterization; (ii) phytoremediation for reducing risks for the environment and human health; (iii) agronomic management for improving efficiency of phytoremediation; and (iv) biomass recycling in the win-win perspective of the circular economy.
Collapse
|
32
|
Du J, Zhou Q, Wu J, Li G, Li G, Wu Y. Vegetation alleviate the negative effects of graphene oxide on benzo[a]pyrene dissipation and the associated soil bacterial community. CHEMOSPHERE 2020; 253:126725. [PMID: 32298916 DOI: 10.1016/j.chemosphere.2020.126725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 03/21/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Graphene oxide (GO) will enter the soil environment in increasing amounts. The effects of GO on the dissipation of benzo[a]pyrene (B[a]P) from contaminated soil and their phytoremediation system have been explored in this study. B[a]P is a ubiquitous soil pollutant used as a representative indicator of polycyclic aromatic hydrocarbons. A pot experiment was performed to investigate the effects of GO or/and vegetation (Tagetes patula) on B[a]P dissipation and the associated bacterial communities in soil. The bacterial communities in soil were investigated by Illumina sequencing analysis. The presence of vegetation significantly enhanced the dissipation of B[a]P from soil. The addition of GO (100 mg/kg) significantly decreased the B[a]P dissipation. When vegetation and GO coexisted, the inhibition effects of GO on B[a]P dissipation were alleviated by vegetation. Compared with the control treatment, the presence of GO or vegetation had no significant effects on the richness and diversity of bacterial communities in B[a]P-contaminated soil. Compared with the presence of only vegetation, the richness and diversity all significantly decreased when vegetation and GO coexisted. And, vegetation had a greater influence on the bacterial community composition than GO. Vegetation alleviated the inhibition effects of GO on B[a]P dissipation and had a greater influence on the associated bacterial communities than GO. This work helps to understand the interactive effects of GO and vegetation on B[a]P dissipation and the associated bacterial communities in contaminated soil.
Collapse
Affiliation(s)
- Junjie Du
- College of Food Science, Shanxi Normal University, Linfen, 041004, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Jianhu Wu
- College of Food Science, Shanxi Normal University, Linfen, 041004, China
| | - Guifeng Li
- College of Food Science, Shanxi Normal University, Linfen, 041004, China
| | - Guoqin Li
- College of Food Science, Shanxi Normal University, Linfen, 041004, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100022, China.
| |
Collapse
|
33
|
García Martín JF, González Caro MDC, López Barrera MDC, Torres García M, Barbin D, Mateos PÁ. Metal Accumulation by Jatropha curcas L. Adult Plants Grown on Heavy Metal-Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2020; 9:E418. [PMID: 32235440 PMCID: PMC7238061 DOI: 10.3390/plants9040418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/17/2022]
Abstract
Jatropha curcas has the ability to phytoextract high amounts of heavy metals during its first months just after seeding. Notwithstanding, there is scarce information about metal uptake by adult J. curcas plants. To shed light on this issue, 4-year-old J. curcas L. plants were planted in a soil mixture of peat moss and mining soil (high metals content), and the biomass growth and metal absorption during 90 days were compared with those of plants growing in peat moss. The main metal found in the mining soil was Fe (31985 mg kg-1) along with high amounts of As (23717 mg kg-1). After the 90-day phytoremediation, the plant removed 29% of Fe and 44% of As from the soil mixture. Results revealed that J. curcas L. translocated high amounts of metals to its aerial parts, so that translocation factors were much higher than 1. Because of the high translocation and bioaccumulation factors obtained, J. curcas L. can be regarded as a hyperaccumulator plant. Despite the great capacity of J. curcas L. to phytoremediate heavy-metal-contaminated soils, the main drawback is the subsequent handling of the metal-contaminated biomass, although some potential applications have been recently highlighted for this biomass.
Collapse
Affiliation(s)
- Juan Francisco García Martín
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, C/ Profesor García González, 1, 41012 Seville, Spain; (M.d.C.G.C.); (M.d.C.L.B.)
| | - María del Carmen González Caro
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, C/ Profesor García González, 1, 41012 Seville, Spain; (M.d.C.G.C.); (M.d.C.L.B.)
| | - María del Carmen López Barrera
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, C/ Profesor García González, 1, 41012 Seville, Spain; (M.d.C.G.C.); (M.d.C.L.B.)
| | - Miguel Torres García
- Departamento de Ingeniería Energética. E.T.S. de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos, s/n, 41092 Seville, Spain
| | - Douglas Barbin
- Department of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Cidade Universitária, Campinas-SP 13083-862, Brazil
| | - Paloma Álvarez Mateos
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, C/ Profesor García González, 1, 41012 Seville, Spain; (M.d.C.G.C.); (M.d.C.L.B.)
| |
Collapse
|
34
|
Wang C, Tan H, Li H, Xie Y, Liu H, Xu F, Xu H. Mechanism study of Chromium influenced soil remediated by an uptake-detoxification system using hyperaccumulator, resistant microbe consortium, and nano iron complex. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113558. [PMID: 31708284 DOI: 10.1016/j.envpol.2019.113558] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
A soil heavy metal decontamination system was developed based on the immobilization of bioavailable metal fraction by iron-biochar nano-complex (BC@Fe3O4) and the uptake by Chromium (Cr) hyperaccumulator Leersia hexandra (L. hexandra) under the assistance of metal resistant microbe consortium (MC). In this system, L. hexandra was able to accumulate 485.1-785.0 mg kg-1 in root and 147.5-297.2 mg kg-1 of Cr in its aerial part. With MC assistance, more Cr could be translocated to the aerial part of L. hexandra, which dramatically improved its remediation potential. Meanwhile, BC@Fe3O4 application decreased bioavailable Cr in soil and reduced soil toxicity, which contributed to soil microbial community adaption and L. hexandra performance under high level of Cr concentration (elevated microbial activity, decreased plant stress response, enhanced L. hexandra growth and accumulation) without negative influence on accumulation efficiency. Moreover, details of the possible mechanistic insight into metal removal were discussed, which indicated a negative correlation of the extractable Cr with soil microecology and hyperaccumulator performance. Furthermore, the resistant bacteria successfully altered soil microbial community, enhanced its diversity, which was in favor of the soil quality improvement.
Collapse
Affiliation(s)
- Can Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Hang Tan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Hao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yanluo Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Huakang Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Fei Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
35
|
Nouh FAA, Abo Nahas HH, Abdel-Azeem AM. Agriculturally Important Fungi: Plant–Microbe Association for Mutual Benefits. Fungal Biol 2020. [DOI: 10.1007/978-3-030-45971-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Smythers AL, Perry NL, Kolling DR. Chlorella vulgaris bioaccumulates excess manganese up to 55× under photomixotrophic conditions. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Le TT, Yoon H, Son MH, Kang YG, Chang YS. Treatability of hexabromocyclododecane using Pd/Fe nanoparticles in the soil-plant system: Effects of humic acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:444-450. [PMID: 31279191 DOI: 10.1016/j.scitotenv.2019.06.290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/29/2019] [Accepted: 06/19/2019] [Indexed: 05/24/2023]
Abstract
Hexabromocyclododecane (HBCD) is a persistent organic pollutant that accumulates in soil and sediments, however, it has been difficult to degrade HBCD with developed remediation technologies so far. In this study, degradation of HBCD by bimetallic iron-based nanoparticles (NPs) under both aqueous and soil conditions considering the effects of humic acids (HAs) and tobacco plant was investigated. In the aqueous solution, 99% of the total HBCD (15 mM) was transformed by Pd/nFe (1 g L-1) within 9 h of treatment and the HBCD debromination by Pd/nFe increased with the addition of HAs. In the soil system, 13%, 15%, 41% and 27% of the total HBCD were removed by treatments consisting of plant only, plant with HAs, plant with NPs and plant + NPs + HAs, respectively, compared to the HBCD removal in an unplanted soil. The 221-986 ng/g of HBCD were detected inside the plant after the treatments, and HAs showed considerable influence on the selective bioaccumulation of HBCD stereoisomers in the plant. Overall, this approach represents a meaningful attempt to develop an efficient and eco-friendly technology for HBCD removal, and it provides advantages for the sustainable remediation of recalcitrant emerging contaminants in soils.
Collapse
Affiliation(s)
- Thao Thanh Le
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hakwon Yoon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Min-Hui Son
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yu-Gyeong Kang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yoon-Seok Chang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
38
|
Rafique M, Ortas I, Rizwan M, Sultan T, Chaudhary HJ, Işik M, Aydin O. Effects of Rhizophagus clarus and biochar on growth, photosynthesis, nutrients, and cadmium (Cd) concentration of maize (Zea mays) grown in Cd-spiked soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20689-20700. [PMID: 31104234 DOI: 10.1007/s11356-019-05323-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/30/2019] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd) toxicity in agricultural crops is a widespread problem. Little is known about biochar and arbuscular mycorrhizal fungi (AMF) effect on Cd concentration in maize plant either applied separately or in combination. Current study was performed to demonstrate effects of biochar and Rhizophagus clarus on plant growth, photosynthesis activity, nutrients (P, Ca, Mg, Fe, Cu, and Mn), and Cd concentration in maize grown in Cd-spiked soil. The alkaline soil was spiked by Cd factor at three levels: 0 (Cd 0), 5 (Cd 5), and 10 (Cd 10) mg/kg; biochar factor at two levels: 0 and 1%; and mycorrhizal inoculum factor at two levels: MF0 and MF1 (R. clraus). Plants were harvested after 70 days of seed germination, and various morphological and physiological parameters, as well as elemental concentration and root colonization, were recorded. Addition of biochar increased plant biomass by 21% (Cd 5) and 93% (Cd 10), MF1 enhanced by 53% (Cd 0) and 69% (Cd 10), while biochar + MF1 enhanced dry plant biomass by 70% (Cd 0) and 94% (Cd 10). Results showed maximum increase of 94% (Cd 10) in plant biomass was observed in Cd-spiked soil. Root colonization decreased proportionally by increasing Cd concentration and at Cd 10, colonization was 36.7% and 31.7% for MF1 and biochar + MF1 treatments, respectively. Besides that, addition of biochar enhanced root attributes (root length, volume, and surface area) by 34-58% compared to control in Cd 10. The MF1 increased these attributes by 11-78% while biochar + MF1 enhanced by 32-61% in Cd-spiked soil. However, biochar + MF1 neutralized Cd stress in maize plant for gaseous attributes (assimilation rate, transpiration rate, intercellular CO2, and stomatal conductance). The MF1 enhanced Cd concentration in plant as it was 3.32 mg/kg in Cd 5 and 6.73 mg/kg in Cd 10 treatments while addition of biochar phytostabilized Cd and reduced its concentration in plants by 2.0 mg/kg in Cd 5 and 4.27 mg/kg in Cd 10. The biochar + MF1 had 2.9 mg/kg and 4.8 mg/kg Cd concentration in Cd 5 and Cd 10 plants, respectively. Phosphorus concentration was augmented in shoots (up to 26%) and roots (up to 20%) of maize plant in biochar-amended soil than control plants. In biochar + MF1, concentration of P was 1.01% and 0.73% in Cd 5 and Cd 10, respectively. It is concluded that biochar + MF1 treatment enhances plant biomass while addition of sole biochar reduced Cd uptake, slightly indifferent to earlier treatment.
Collapse
Affiliation(s)
- Mazhar Rafique
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Department of Soil Science and Plant Nutrition, Cukurova University, 1150, Adana, Turkey
| | - Ibrahim Ortas
- Department of Soil Science and Plant Nutrition, Cukurova University, 1150, Adana, Turkey
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan.
| | - Tariq Sultan
- Land Resources Research Institute, National Agricultural Research Centre, Islamabad, 44000, Pakistan
| | | | - Mehmet Işik
- Department of Soil Science and Plant Nutrition, Cukurova University, 1150, Adana, Turkey
| | - Oğuzhan Aydin
- Department of Soil Science and Plant Nutrition, Cukurova University, 1150, Adana, Turkey
| |
Collapse
|
39
|
Hasanuzzaman M, Alhaithloul HAS, Parvin K, Bhuyan MHMB, Tanveer M, Mohsin SM, Nahar K, Soliman MH, Mahmud JA, Fujita M. Polyamine Action under Metal/Metalloid Stress: Regulation of Biosynthesis, Metabolism, and Molecular Interactions. Int J Mol Sci 2019; 20:ijms20133215. [PMID: 31261998 PMCID: PMC6651247 DOI: 10.3390/ijms20133215] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/22/2019] [Accepted: 06/26/2019] [Indexed: 11/17/2022] Open
Abstract
Polyamines (PAs) are found in all living organisms and serve many vital physiological processes. In plants, PAs are ubiquitous in plant growth, physiology, reproduction, and yield. In the last decades, PAs have been studied widely for exploring their function in conferring abiotic stresses (salt, drought, and metal/metalloid toxicity) tolerance. The role of PAs in enhancing antioxidant defense mechanism and subsequent oxidative stress tolerance in plants is well-evident. However, the enzymatic regulation in PAs biosynthesis and metabolism is still under research and widely variable under various stresses and plant types. Recently, exogenous use of PAs, such as putrescine, spermidine, and spermine, was found to play a vital role in enhancing stress tolerance traits in plants. Polyamines also interact with other molecules like phytohormones, nitric oxides, trace elements, and other signaling molecules to providing coordinating actions towards stress tolerance. Due to the rapid industrialization metal/metalloid(s) contamination in the soil and subsequent uptake and toxicity in plants causes the most significant yield loss in cultivated plants, which also hamper food security. Finding the ways in enhancing tolerance and remediation mechanism is one of the critical tasks for plant biologists. In this review, we will focus the recent update on the roles of PAs in conferring metal/metalloid(s) tolerance in plants.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | | | - Khursheda Parvin
- Laboratory of Plant Stress Response, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - M H M Borhannuddin Bhuyan
- Laboratory of Plant Stress Response, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
- Citrus Research Station, Bangladesh Agricultural Research Institute, Jaintapur, Sylhet 3156, Bangladesh
| | - Mohsin Tanveer
- Stress Physiology Research Group, School of Land and Food, University of Tasmania, 7005 Hobart, Australia
| | - Sayed Mohammad Mohsin
- Laboratory of Plant Stress Response, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
- Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mona H Soliman
- Biology Department, Faculty of Science Yanbu, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu 46429, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Jubayer Al Mahmud
- Department of Agroforestry and Environmental Science, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Response, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| |
Collapse
|
40
|
Mishra R, Datta SP, Annapurna K, Meena MC, Dwivedi BS, Golui D, Bandyopadhyay K. Enhancing the effectiveness of zinc, cadmium, and lead phytoextraction in polluted soils by using amendments and microorganisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17224-17235. [PMID: 31012068 DOI: 10.1007/s11356-019-05143-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/08/2019] [Indexed: 05/22/2023]
Abstract
For remediating polluted soils, phytoextraction of metals received considerable attention in recent years, although slow removal of metals remained a major constraint in this approach. We, therefore, studied the effect of selected organic and inorganic amendments on the solubility of zinc (Zn), cadmium (Cd), and lead (Pb) in polluted soil and enhancing the efficacy of phytoextraction of these metals by Indian mustard (Brassica juncea cv. Pusa Vijay). For this purpose, a greenhouse experiment was conducted using a metal-polluted soil to evaluate the effect of amendments, viz. green manure (T2), EDTA (T3), sulfur (S)+S oxidizing bacteria (Thiobacillus spp.) (T4), metal-solubilizing bacteria (Pseudomonas spp.) (T5), and green manure + metal-solubilizing bacteria (T6), on solubility and bioavailability of Zn, Cd, and Pb. Distribution of metals in different soil fractions revealed that Cd content in water soluble + exchangeable fraction increased to the extent of 34.1, 523, 133, 123, and 75.8% in T2, T3, T4, T5, and T6 treatments, respectively, over control (T1). Cadmium concentrations in soil solution as extracted by Rhizon sampler were recorded as 3.78, 88.1, 11.2, 6.29, and 4.27 μg L-1in T2, T3, T4, T5, and T6, respectively, whereas soil solution concentration of Cd in T1 was 0.99 μg L-1. Activities of Cd (pCd2+) in Baker soil extract were 12.2, 10.9, 6.72, 7.74, 7.67, and 7.05 for T1, T2, T3, T4, T5, and T6, respectively. Cadmium contents in shoot were recorded as 2.74, 3.12, 4.03, 4.55, 4.68, and 4.63 mg kg-1 in T1, T2, T3, T4, T5, and T6 treatments, respectively. Similar trend in Zn and Pb content with different magnitude was also observed across the different amendments. Cadmium uptake by shoot of mustard was enhanced to the extent of 125, 62.5, 175, 175, and 212% grown on T2-, T3-, T4-, T5-, and T6-treated soil, respectively, over T1. By and large, free ion activity of metals as measured by Baker soil test proved to be the most effective index for predicting Zn, Cd, and Pb content in shoot of mustard, followed by EDTA and DTPA. Among the metal fractions, only water soluble + exchangeable metal contributed positively towards plant uptake, which explained the variation in shoot Zn, Cd, and Pb content to the extent of 74, 81, and 87%, respectively, along with other soil metal fractions. Risk to human health for intake of metals through the consumption of leafy vegetable (mustard) grown on polluted soil in terms of hazard quotient (HQ) ranged from 0.64 to 1.10 for Cd and 0.11 to 0.34 for Pb, thus rendering mustard unfit for the human consumption. Novelty of the study mainly consisted of the use of natural means and microorganisms for enhancing solubility of metals in soil with the ultimate aim of hastening the phytoremediation.
Collapse
Affiliation(s)
- Rahul Mishra
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Siba Prasad Datta
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| | - Kannepalli Annapurna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Mahesh Chand Meena
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Brahma Swaroop Dwivedi
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Debasis Golui
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Kalikinkar Bandyopadhyay
- Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| |
Collapse
|
41
|
Performance Analysis and Soil Quality Indexing for Dalbergia sissoo Roxb. Grown in Marginal and Degraded Land of Eastern Uttar Pradesh, India. LAND 2019. [DOI: 10.3390/land8040063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The successful utilization of marginal and degraded lands for biomass and bioenergy production depends upon various factors such as climatic conditions, the adaptive traits of the tree species and their growth rate and respective belowground responses. The present study was undertaken to evaluate the growth performance of a bioenergy tree (Dalbergia sissoo Roxb.) grown in marginal and degraded land of the Mirzapur district of Uttar Pradesh, India and to analyze the effect of D. sissoo plantations on soil quality improvement over the study years. For this, a soil quality index (SQI) was developed based on principal component analysis (PCA) to understand the effect of D. sissoo plantations on belowground responses. PCA results showed that among the studied soil variables, bulk density (BD), moisture content (MC), microbial biomass carbon (MBC) and soil urease activity (SUA) are the key variables critically influencing the growth of D. sissoo. The SQI was found in an increasing order with the growth period of D. sissoo. (i.e., from 0.419 during the first year to 0.579 in the fourth year). A strong correlation was also observed between the growth attributes (diameter at breast height, R2 = 0.870; and plant height, R2 = 0.861) and the soil quality (p < 0.01). Therefore, the developed SQI can be used as key indicator for monitoring the restoration potential of D. sissoo growing in marginal and degraded lands and also for adopting suitable interventions to further improve soil quality for multipurpose land restoration programs, thereby attaining land degradation neutrality and United Nations Sustainable Development Goals.
Collapse
|
42
|
Wu K, Dumat C, Li H, Xia H, Li Z, Wu J. Responses of soil microbial community and enzymes during plant-assisted biodegradation of di-(2-ethylhexyl) phthalate and pyrene. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:683-692. [PMID: 30924369 DOI: 10.1080/15226514.2018.1556586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A pot experiment was conducted to explore the plant-assisted degradation efficiency of di-(2-ethylhexyl) phthalate (DEHP) and pyrene. Three plant species: Ceylon spinach, sunflower, and leaf mustard were cultivated in co-contaminated soils under three contamination levels: control (T0), 20 mg kg-1 (T20), and 50 mg kg-1 (T50). The results showed that a higher DEHP and pyrene degradation efficiency was observed evidently in planted cases, increasing from 42 to 53-59% (T0), 61 to 65-76% (T20) and 52 to 68-78% (T50) for DEHP, and from 22 to 30-49% (T0), 58 to 62-72% (T20), and 54 to 57-70% (T50) for pyrene. Under T20 contamination level, soil phospholipid fatty-acid analysis depicted the increased microbial biomass in rhizosphere, especially the arbuscular mycorrhizal fungus that is effective for the degradation of organic pollutants. The study also revealed that the activities of dehydrogenase, acid phosphomonoesterase, urease, and phenol oxidase negatively correlated with pollutant concentration. In general, the removal rate of DEHP and pyrene was highest in the soil planted with leaf mustard for each contamination level considered. For soils at T20 level, sunflower and leaf mustard appeared as interesting phytoremediation plants due to the improved removal rates of organic pollutants and the soil microbial activity.
Collapse
Affiliation(s)
- Kejun Wu
- a College of Tourism, Leshan Normal University, Leshan, China
- b Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou , China
| | - Camille Dumat
- c Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044 Université J. Jaurès - Toulouse IIToulouse, Cedex, France
| | - Hanqing Li
- b Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou , China
| | - Hanping Xia
- b Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou , China
| | - Zhian Li
- b Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou , China
| | - Jingtao Wu
- a College of Tourism, Leshan Normal University, Leshan, China
- b Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou , China
| |
Collapse
|
43
|
Compant S, Samad A, Faist H, Sessitsch A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J Adv Res 2019; 19:29-37. [PMID: 31341667 PMCID: PMC6630030 DOI: 10.1016/j.jare.2019.03.004] [Citation(s) in RCA: 541] [Impact Index Per Article: 90.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 01/06/2023] Open
Abstract
Microbiota are important for plant growth, health and stress resilience. Inoculation with key microbiota members can improve plant traits. Tailored selection and delivery of microbial strains or consortia is required. Microbiome improvement may be achieved by appropriate agro-management practices. Plant breeding for improved interaction with microbiota will be of benefit.
Plants have evolved with a plethora of microorganisms having important roles for plant growth and health. A considerable amount of information is now available on the structure and dynamics of plant microbiota as well as on the functional capacities of isolated community members. Due to the interesting functional potential of plant microbiota as well as due to current challenges in crop production there is an urgent need to bring microbial innovations into practice. Different approaches for microbiome improvement exist. On the one hand microbial strains or strain combinations can be applied, however, field success is often variable and improvement is urgently required. Smart, knowledge-driven selection of microorganisms is needed as well as the use of suitable delivery approaches and formulations. On the other hand, farming practices or the plant genotype can influence plant microbiota and thus functioning. Therefore, selection of appropriate farming practices and plant breeding leading to improved plant-microbiome interactions are avenues to increase the benefit of plant microbiota. In conclusion, different avenues making use of a new generation of inoculants as well as the application of microbiome-based agro-management practices and improved plant lines could lead to a better use of the plant microbiome. This paper reviews the importance and functionalities of the bacterial plant microbiome and discusses challenges and concepts in regard to the application of plant-associated bacteria.
Collapse
Affiliation(s)
- Stéphane Compant
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Abdul Samad
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Hanna Faist
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Angela Sessitsch
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| |
Collapse
|
44
|
Panasiewicz K, Niewiadomska A, Sulewska H, Wolna-Maruwka A, Borowiak K, Budka A, Ratajczak K. The effect of sewage sludge and BAF inoculant on plant condition and yield as well as biochemical and microbial activity of soil in willow ( Salix viminalis L.) culture as an energy crop. PeerJ 2019; 7:e6434. [PMID: 30881760 PMCID: PMC6417457 DOI: 10.7717/peerj.6434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/11/2019] [Indexed: 11/25/2022] Open
Abstract
Excessive amounts of sewage sludge produced in sewage treatment plants along with the ban on its storage and dumping require rapid solutions to the problem of sewage sludge management. An example of a rational and environmentally viable method may be provided by its application in agriculture and environmental management. The optimal solution is to use sludge as a fertiliser for industrial plants, including energy crops, that is, those not used in food production. For environmental reasons it is essential to control soil quality and condition following sludge application. Analyses of the residual effect of sewage sludge and bacteria, actinobacteria, fungi microbial inoculant (BAF) on selected physiological parameters of plants and microbial activity of soil were conducted in the years 2013–2015 on experimental fields of the Poznan University of Life Sciences. The results indicate that the application of sewage sludge increased yields and improved selected photosynthesis activity and biometric traits of willow. Among the tested combinations the best results were obtained following the application of sewage sludge combined with the BAF medium microbial inoculant. Similar dependencies were observed when evaluating soil microbial activity.
Collapse
Affiliation(s)
| | - Alicja Niewiadomska
- Department of General and Environmental Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Hanna Sulewska
- Department of Agronomy, Poznań University of Life Sciences, Poznań, Poland
| | - Agnieszka Wolna-Maruwka
- Department of General and Environmental Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Klaudia Borowiak
- Department of Ecology and Environmental and Protection, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Budka
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
| | - Karolina Ratajczak
- Department of Agronomy, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
45
|
Álvarez-Mateos P, Alés-Álvarez FJ, García-Martín JF. Phytoremediation of highly contaminated mining soils by Jatropha curcas L. and production of catalytic carbons from the generated biomass. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:886-895. [PMID: 30419444 DOI: 10.1016/j.jenvman.2018.10.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/24/2018] [Accepted: 10/15/2018] [Indexed: 06/09/2023]
Abstract
This paper deals with the removal of heavy metals from marginal soil mixtures from the Cobre Las Cruces and Aznalcóllar mining areas containing high concentrations of metals (Cr, Fe, Ni, Cu, Zn, Cd, Hg, Pb and As) by means of phytoremediation using Jatropha curcas L., and the subsequent production of biocatalysts from the plant biomass. First, J. curcas L. was sowed in eight mixtures of these mining soils to study its adaption to these high-contaminated soils and its growth during 60 days in a greenhouse under conditions simulating the South of Spain's spring climate. Later, the most suitable soil mixtures for plant growth were used for 120-day phytoremediation under the same conditions. Heavy metal concentration in soils, roots, stems and leaves were measured by ICP-OES at the beginning, at the middle and at the end of the phytoremediation period, thus calculating the translocation and bioaccumulation factors. J. curcas L. was found to absorb great amounts of Fe (>3000 mg kg-1 plant) as well as notable amounts of Pb, Zn, Cu, Cr and Ni, and traces of As. Other metals with lower initial concentrations such as Cd, Hg and Sn were completely removed from soils. Finally, the plant biomass was subjected to pyrolysis to obtain catalytic biocarbons, assessing the optimal temperature for the pyrolytic process by means of thermogravimetric analysis and Raman spectroscopy.
Collapse
Affiliation(s)
- Paloma Álvarez-Mateos
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, C/ Profesor García González, 1, 41012, Seville, Spain
| | - Francisco-Javier Alés-Álvarez
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, C/ Profesor García González, 1, 41012, Seville, Spain
| | - Juan Francisco García-Martín
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, C/ Profesor García González, 1, 41012, Seville, Spain.
| |
Collapse
|
46
|
Asemoloye MD, Jonathan SG, Ahmad R. Synergistic plant-microbes interactions in the rhizosphere: a potential headway for the remediation of hydrocarbon polluted soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:71-83. [PMID: 30656951 DOI: 10.1080/15226514.2018.1474437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Soil pollution is an unavoidable evil; many crude-oil exploring communities have been identified to be the most ecologically impacted regions around the world due to hydrocarbon pollution and their concurrent health risks. Several clean-up technologies have been reported on the removal of hydrocarbons in polluted soils but most of them are either very expensive, require the integration of advanced mechanization and/or cannot be implemented in small scale. However, "Bioremediation" has been reported as an efficient, cost-effective and environment-friendly technology for clean-up of hydrocarbon"s contaminated soils. Here, we suggest the implementation of synergistic mechanism of bioremediation such as the use of rhizosphere mechanism which involves the actions of plant and microorganisms, which involves the exploitation of plant and microorganisms for effective and speedy remediation of hydrocarbon"s contaminated soils. In this mechanism, plant"s action is synergized with the soil microorganisms through the root rhizosphere to promote soil remediation. The microorganisms benefit from the root metabolites (exudates) and the plant in turn benefits from the microbial recycling/solubilizing of mineral nutrients. Harnessing the abilities of plants and microorganisms is a potential headway for cost-effective clean-up of hydrocarbon"s polluted sites; such technology could be very important in countries with great oil producing activities/records over many years but still developing.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- a Department of Botany, Mycology and Fungal Biotechnology Unit , University of Ibadan , Ibadan , Nigeria
| | - Segun Gbolagade Jonathan
- a Department of Botany, Mycology and Fungal Biotechnology Unit , University of Ibadan , Ibadan , Nigeria
| | - Rafiq Ahmad
- b Department of Environmental Sciences , COMSATS Institute of Information Technology , Abbottabad , Pakistan
| |
Collapse
|
47
|
Cheng L, Zhou Q, Yu B. Responses and roles of roots, microbes, and degrading genes in rhizosphere during phytoremediation of petroleum hydrocarbons contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1161-1169. [PMID: 31099253 DOI: 10.1080/15226514.2019.1612841] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Rhizodegradation performed by plant roots and the associated bacteria is one of the major mechanisms that contribute to removal of petroleum hydrocarbons (PHCs) during phytoremediation. In this study, the pot-culture experiment using wild ornamental Hylotelephium spectabile (Boreau) H. Ohba was designed to explore responses and roles of roots, microbes, and degrading genes in the rhizodegradation process. Results showed that PHCs degradation rate by phytoremediation was up to 37.6-53.3% while phytoaccumulation accounted for a low proportion, just at 0.3-13.3%. A total of 37 phyla were classified through the high throughput sequencing, among which Proteobacteria, Actinobacteria, and Acidobacteria were the three most dominant phyla, accounting for >60% of the phylum frequency. The selective enrichment of PHC degraders with high salt-tolerance, including Alcanivorax and Bacteroidetes, was induced. Generally, relative abundance of the PHC degrading genes increased significantly with an increase in PHCs concentrations, and the gene copy number in the phytoremediation group was 1.46-14.44 times as much as that in the unplanted controls. Overall, the presence of PHCs and plant roots showed a stimulating effect on the development of specific degraders containing PHC degrading genes, and correspondingly, a biodegradation-beneficial community structure had been constructed to contribute to PHCs degradation in the rhizosphere.
Collapse
Affiliation(s)
- Lijuan Cheng
- Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Ministry of Education, College of Environmental Science and Engineering, Nankai University , Tianjin , China
- College of Geography and Tourism, Chongqing Normal University , Chongqing , China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Ministry of Education, College of Environmental Science and Engineering, Nankai University , Tianjin , China
| | - Binbin Yu
- College of Environmental Science and Engineering, Yangzhou University , Yangzhou , China
| |
Collapse
|
48
|
Green Synthesis of Zinc Oxide Nanoparticles by Pseudomonas aeruginosa and their Broad-Spectrum Antimicrobial Effects. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.50] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
49
|
Parmar S, Li Q, Wu Y, Li X, Yan J, Sharma VK, Wei Y, Li H. Endophytic fungal community of Dysphania ambrosioides from two heavy metal-contaminated sites: evaluated by culture-dependent and culture-independent approaches. Microb Biotechnol 2018; 11:1170-1183. [PMID: 30256529 PMCID: PMC6196397 DOI: 10.1111/1751-7915.13308] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 01/26/2023] Open
Abstract
Endophytic fungal communities of Dysphania ambrosioides, a hyperaccumulator growing at two Pb-Zn-contaminated sites, were investigated through culture-dependent and culture-independent approaches. A total of 237 culturable endophytic fungi (EF) were isolated from 368 tissue (shoot and roots) segments, and the colonization rate (CR) ranged from 9.64% to 65.98%. The isolates were identified to 43 taxa based on morphological characteristics and rDNA ITS sequence analysis. Among them, 13 taxa (30.23%) were common in plant tissues from both sites; however, dominant EF were dissimilar. In culture-dependent study, 1989 OTUs were obtained through Illumina Miseq sequencing, and dominant EF were almost same in plant tissues from both sites. However, some culturable EF were not observed in total endophytic communities. We suggest that combination of both culture-dependent and culture-independent methods will provide more chances for the precise estimation of endophytic fungal community than using either of them. The tissue had more influence on the culturable fungal community structure, whereas the location had more influence on the total fungal community structure (including culturable and unculturable). Both culture-dependent and culture-independent studies illustrated that endophytic fungal communities of D. ambrosioides varied across the sites, which suggested that HM concentration of the soil may have some influence on endophytic fungal diversity.
Collapse
Affiliation(s)
- Shobhika Parmar
- Medical School of Kunming University of Science and TechnologyKunming650500China
| | - Qiaohong Li
- The First People's Hospital of Yunnan ProvinceKunming650032China
- The Affiliated Hospital of Kunming University of Science and TechnologyKunming650500China
| | - Ying Wu
- The First People's Hospital of Yunnan ProvinceKunming650032China
- The Affiliated Hospital of Kunming University of Science and TechnologyKunming650500China
| | - Xinya Li
- Medical School of Kunming University of Science and TechnologyKunming650500China
| | - Jinping Yan
- Medical School of Kunming University of Science and TechnologyKunming650500China
| | - Vijay K. Sharma
- Medical School of Kunming University of Science and TechnologyKunming650500China
| | - Yunlin Wei
- Medical School of Kunming University of Science and TechnologyKunming650500China
| | - Haiyan Li
- Medical School of Kunming University of Science and TechnologyKunming650500China
| |
Collapse
|
50
|
Rai PK, Kumar V, Lee S, Raza N, Kim KH, Ok YS, Tsang DCW. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. ENVIRONMENT INTERNATIONAL 2018; 119:1-19. [PMID: 29909166 DOI: 10.1016/j.envint.2018.06.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/24/2018] [Accepted: 06/09/2018] [Indexed: 05/25/2023]
Abstract
In the recent techno-scientific revolution, nanotechnology has gained popularity at a rapid pace in different sectors and disciplines, specifically environmental, sensing, bioenergy, and agricultural systems. Controlled, easy, economical, and safe synthesis of nanomaterials is desired for the development of new-age nanotechnology. In general, nanomaterial synthesis techniques, such as chemical synthesis, are not completely safe or environmentally friendly due to harmful chemicals used or to toxic by-products produced. Moreover, a few nanomaterials are present as by-product during washing process, which may accumulate in water, air, and soil system to pose serious threats to plants, animals, and microbes. In contrast, using plants for nanomaterial (especially nanoparticle) synthesis has proven to be environmentally safe and economical. The role of plants as a source of nanoparticles is also likely to expand the number of options for sustainable green renewable energy, especially in biorefineries. Despite several advantages of nanotechnology, the nano-revolution has aroused concerns in terms of the fate of nanoparticles in the environment because of the potential health impacts caused by nanotoxicity upon their release. In the present panoramic review, we discuss the possibility that a multitudinous array of nanoparticles may find applications convergent with human welfare based on the synthesis of diverse nanoparticles from plants and their extracts. The significance of plant-nanoparticle interactions has been elucidated further for nanoparticle synthesis, applications of nanoparticles, and the disadvantages of using plants for synthesizing nanoparticles. Finally, we discuss future prospects of plant-nanoparticle interactions in relation to the environment, energy, and agriculture with implications in nanotechnology.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab 140306, India
| | - SangSoo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Nadeem Raza
- Govt. Emerson College, affiliated with Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|