1
|
Tao D, Xie C, Jaffrezic-Renault N, Guo Z. Flexible and wearable electrochemical sensors for health and safety monitoring. Talanta 2025; 291:127863. [PMID: 40043375 DOI: 10.1016/j.talanta.2025.127863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025]
Abstract
Environmental safety monitoring is a crucial process that involves continuous and systematic observation and analysis of various pollutants in the environment to ensure its quality and safety. This monitoring encompasses a wide range of areas, including physical indicator monitoring (pertaining to parameters such as temperature, humidity, and wind speed), chemical indicator monitoring (focused on detecting harmful substances in environmental media such as air, water, and soil), and ecosystem monitoring (including biodiversity assessments and judgments on the health status of ecosystems). This review delves deeply into the significant advancements achieved in the field of flexible and wearable electrochemical sensors (FWESs) over the past fifteen years (from 2010 to 2024). It emphasizes the broad application of these sensors in health and environmental safety monitoring, with health monitoring primarily focusing on exhaled breath and sweat, and environmental monitoring covering temperature, humidity, and pollutants in air and water. By seamlessly integrating electrochemical principles, advanced sensor manufacturing technologies, and sensor functionalization, FWESs have opened up new avenues for non-invasive real-time monitoring of human health and environmental safety. This review highlights key developments in sensor structures, including flexible substrates, printed electrodes, and active materials. It also underscores the remarkable progress made in healthcare and environmental monitoring through the utilization of FWES. Despite these promising advancements, this emerging field still faces numerous challenges, such as improving sensor accuracy, enhancing durability, and reducing costs. The review concludes by discussing the future directions in this field, including ongoing research efforts aimed at overcoming these challenges and expanding the applications of FWESs in various sectors.
Collapse
Affiliation(s)
- Dan Tao
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou, 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 561113, China
| | - Chun Xie
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou, 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 561113, China
| | | | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
2
|
Verma D, Yadav AK, Kumar Gupta K, Solanki PR. Sustainable synthesis of a PtNPs@rGO nanohybrid for detection of toxic fluoride ions using hand-made screen-printed electrodes in aqueous medium. J Mater Chem B 2025; 13:5070-5084. [PMID: 40214664 DOI: 10.1039/d4tb02115k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
High fluoride (F-) concentrations in groundwater affect over 200 million people across 25 countries, making accurate detection and quantification of fluoride in water essential for safety assessment. There is a growing demand for advanced water quality testing systems that provide real-time, location-specific data without requiring specialized expertise. This study presents the development of a simple, eco-friendly, and cost-effective nanosensor for electrochemical F- detection in environmental water samples. To our knowledge, this is the first report on the green synthesis of platinum nanoparticles (PtNPs) using Ficus religiosa (sacred fig) leaf extract via a co-precipitation method. Additionally, PtNPs were synthesized ex situ and decorated on reduced graphene oxide (rGO) to form a nanohybrid using ultrasonication. The PtNPs@rGO nanohybrid was then deposited on a disposable screen-printed carbon electrode (SPCE) to fabricate the PtNPs@rGO/SPCE nanosensor using a drop-casting technique. This approach enhances the specificity and sensitivity of the sensor, addressing current analytical challenges. The PtNPs@rGO nanohybrid was characterized by Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis, contact angle (CA) measurement, and electrochemical techniques such as differential pulse voltammetry (DPV) and cyclic voltammetry (CV). The PtNPs@rGO/SPCE nanosensor exhibited a wide linear range from 0.001 to 160 μM for F- concentrations, with a limit of detection of 10 nM and a limit of quantification of 0.036 μM. The sensitivity was 4.126 μA μM-1 cm-2. The sensor demonstrated excellent reproducibility and strong anti-interference properties. It was successfully applied for F- detection in tap, drain, and tube well water samples, yielding satisfactory recoveries, and its performance surpasses those of previously reported sensors for aqueous F- sensing.
Collapse
Affiliation(s)
- Damini Verma
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Amit K Yadav
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Kunal Kumar Gupta
- Department of Biotechnology, Vinoba Bhave University, Hazaribagh, Jharkhand 825301, India
| | - Pratima R Solanki
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
3
|
Ghahramani Y, Tabibi SS, Khan MMR, Asadi A, Mohammadi E, Khaksar E, Khaksar E, Kalashgrani MY, Rahman MM, Chiang WH, Mousavi SM. Recent advances in bioactive materials: Future perspectives and opportunities in oral cancer biosensing. Talanta 2025; 286:127494. [PMID: 39799882 DOI: 10.1016/j.talanta.2024.127494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/16/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
Bioactive materials and biosensing technologies are emerging as pivotal tools in the early detection and management of oral cancer, a disease characterized by high morbidity and mortality rates. Recent advancements in nanotechnology have facilitated the development of innovative biosensors that utilize bioactive materials for non-invasive diagnostics, particularly through salivary analysis. These biosensors, including electrochemical, optical, and molecular types, target specific biomarkers such as DNA, RNA, and proteins associated with oral cancer. For instance, metal oxide nanoparticles and gold nanoparticles have shown promise in enhancing the sensitivity and specificity of these diagnostic tools. The integration of these nanomaterials allows for real-time monitoring of biomarker levels in saliva, providing a rapid and accurate means of detecting oral cancer at its nascent stages. Furthermore, the utilization of biosensors can circumvent the limitations of traditional biopsy methods, which are often invasive and time-consuming. By focusing on salivary diagnostics, researchers aim to develop point-of-care testing devices that can be used in various settings, thus improving accessibility to early screening for at-risk populations. This innovative approach not only enhances diagnostic accuracy but also holds potential for personalized treatment strategies by enabling continuous monitoring of disease progression and response to therapy. As research continues to evolve, the combination of bioactive materials with advanced biosensing technologies promises to revolutionize oral cancer diagnostics, ultimately leading to improved patient outcomes through earlier intervention and tailored therapeutic approaches.
Collapse
Affiliation(s)
- Yasamin Ghahramani
- Oral and Dental Disease Research Center, Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Sara Tabibi
- Orthodintic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mizanur Rahman Khan
- Research Center for Green Energy Systems, Department of Mechanical Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, Republic of Korea, 13120
| | | | | | - Ehsan Khaksar
- Cyprus Health and Social Sciences University, Guzelyurt, Cyprus
| | - Erfan Khaksar
- Cyprus Health and Social Sciences University, Guzelyurt, Cyprus
| | | | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O.Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| |
Collapse
|
4
|
Zhu X, Xiong C, Zhou H, Wang J, Wu Y. Single-atom nanozymes for enhanced electrochemical biosensing: A review. Talanta 2025; 294:128179. [PMID: 40286743 DOI: 10.1016/j.talanta.2025.128179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/30/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Enzyme-based electrochemical biosensors have broad and significant applications in biomedical, environmental monitoring, and food safety fields. However, the application of natural enzymes is limited due to issues such as poor stability, complex preparation, and high cost. Single-atom nanozymes (SAzymes), with their unique catalytic properties and efficient enzyme-like activities, present a promising alternative in the field of electrochemical biosensing. Compared to traditional enzymes, SAzyme offer enhanced stability and controllability, making them particularly effective in complex detection environments. This work presents the first systematic review of the progress made since 2018 in the use of SAzymes as alternatives to natural enzymes in electrochemical biosensors, and presents the latest advancements in this area. The review begins with a discussion of various enzyme-like activities of single-atom materials, including peroxidase (POD)-like, oxidase (OXD)-like, catalase (CAT)-like, and superoxide dismutase (SOD)-like activities. It then explores the advantages of SAzymes in improving the performance of electrochemical biosensors from multiple perspectives. The review also summarizes the applications of SAzyme-based electrochemical sensors for reactive oxygen species (ROS), metabolites, neurotransmitters, and other analytes, highlighting specific examples to elucidate underlying catalytic mechanisms and understand fundamental structure-performance relationships. In the final section, the challenges faced by SAzyme-based electrochemical biosensing are discussed, along with potential solutions.
Collapse
Affiliation(s)
- Xiaofei Zhu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China; Key Laboratory of Precision and Intelligent/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Can Xiong
- Key Laboratory of Precision and Intelligent/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Huang Zhou
- Key Laboratory of Precision and Intelligent/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Jin Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China.
| | - Yuen Wu
- Key Laboratory of Precision and Intelligent/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China; Deep Space Exploration Laboratory/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
5
|
Shi X, Pu H, Shi LL, He TC, Chen J. Advancing transistor-based point-of-care (POC) biosensors: additive manufacturing technologies and device integration strategies for real-life sensing. NANOSCALE 2025; 17:9804-9833. [PMID: 40171618 DOI: 10.1039/d4nr04441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Infectious pathogens pose a significant threat to public health and healthcare systems, making the development of a point-of-care (POC) detection platform for their early identification a key focus in recent decades. Among the numerous biosensors developed over the years, transistor-based biosensors, particularly those incorporating nanomaterials, have emerged as promising candidates for POC detection, given their unique electronic characteristics, compact size, broad dynamic range, and real-time biological detection capabilities with limits of detection (LODs) down to zeptomolar levels. However, the translation of laboratory-based biosensors into practical applications faces two primary challenges: the cost-effective and scalable fabrication of high-quality transistor sensors and functional device integration. This review is structured into two main parts. The first part examines recent advancements in additive manufacturing technologies-namely in screen printing, inkjet printing, aerosol jet printing, and digital light processing-and evaluates their applications in the mass production of transistor-based biosensors. While additive manufacturing offers significant advantages, such as high quality, cost-effectiveness, rapid prototyping, less instrument reliance, less material waste, and adaptability to diverse surfaces, challenges related to uniformity and yield remain to be addressed before these technologies can be widely adopted for large-scale production. The second part focuses on various functional integration strategies to enhance the practical applicability of these biosensors, which is essential for their successful translation from laboratory research to commercialization. Specifically, it provides a comprehensive review of current miniaturized lab-on-a-chip systems, microfluidic manipulation, simultaneous sampling and detection, wearable implementation, and integration with the Internet of Things (IoT).
Collapse
Affiliation(s)
- Xiaoao Shi
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Haihui Pu
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Lewis L Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation, Chicago, Illinois 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation, Chicago, Illinois 60637, USA
| | - Junhong Chen
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
6
|
Kang S, Davis JJ. Leveraging microfluidic confinement to boost assay sensitivity and selectivity. Chem Sci 2025; 16:6965-6974. [PMID: 40134656 PMCID: PMC11931431 DOI: 10.1039/d5sc00199d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
The native and tunable microscale fluid manipulation accessible within 3D-printed configurations can be a transformative tool in biosensing, promoting mass transport and sample mixing to boost assay performance. In this study, we demonstrate that channel height restrictions can support a 2000% acceleration in target recruitment kinetics, a notable 600% improvement in target response magnitude, and a 300% enhancement in assay selectivity within an entirely reagentless format that requires neither catalytic amplification nor the employment of specialized nanomaterials. This highly accessible experimental configuration supports robust target detection from serum at simple, untreated, and un-passivated sensor surfaces. The underlying operational principles have been elucidated through a combination of theoretical analysis and COMSOL simulation; the enhanced analyte flux leveraged by channel confinement is directly responsible for these effects, which also scale with both bioreceptor surface density and target binding affinity. The operational simplicity of this assay format with its resolved channel and flux promoted assay performance, holds significant value not only for biosensing but also for broader microfluidic-integrated applications, such as biosynthesis and catalysis.
Collapse
Affiliation(s)
- Shaoyu Kang
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK +44(0) 1865272690 +44(0) 1865275914
| | - Jason J Davis
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK +44(0) 1865272690 +44(0) 1865275914
| |
Collapse
|
7
|
Khan R, Lee YJ. Optimized growth of dendritic Au nanostructures with multi-cross-linked glucose oxidase for highly catalytic activity of salivary glucose. Int J Biol Macromol 2025; 302:140509. [PMID: 39894107 DOI: 10.1016/j.ijbiomac.2025.140509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
We aim to develop a system that prominently features glucose oxidase (GOx) as the catalyst, integrated with a dendritic Au nanostructures electrode as the core component. The dendritic Au (DenAu) nanostructures are optimally electro-deposited on a flexible substrate without the use of any surfactant, template, or stabilizer, demonstrating their potential through highly sensitive flexible glucose sensor application. To determine the optimal condition for the growth of dendritic Au nanostructures, we meticulously investigated the concentration of the precursor, deposition potential/time, and stirring rate. Subsequently, the glucose oxidase (GOx) was immobilized on the fabricated sensor with dendritic Au nanostructures. Due to the effective high loading of GOx onto the dendritic Au and its high catalytic activity, the fabricated flexible glucose sensor was capable of detecting glucose over an ultra-wide dynamic range from 0.001 to 10,000 μM without any mediator. It exhibited an exceptionally high sensitivity of 678 μAmM-1 cm-2 and a low limit of detection of 0.1 μM, surpassing the performance of the sensor with bare Au. Furthermore, the fabricated flexible sensor with dendritic Au nanostructure showed practical feasibility and possibility for the detection of salivary glucose, which was evidenced by a strong correlation coefficient of 0.9935 in artificial saliva.
Collapse
Affiliation(s)
- Rashid Khan
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science & Technology (UST), Seoul 02792, Republic of Korea
| | - Yi Jae Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science & Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
8
|
Jiao C, Yang A, Zhao H, Yi R, Gou S, Sha Y, Wen W, Jiao L, Skubic M. Self-Supervised, Non-Contact Heartbeat Detection Based on Ballistocardiograms Utilizing Physiological Information Guidance. IEEE J Biomed Health Inform 2025; 29:2589-2602. [PMID: 40030671 DOI: 10.1109/jbhi.2024.3509875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Ballistocardiograms (BCG) is a passive, non-contact heart rate detection technology that requires no action on the part of the individual. However, during the BCG signal acquisition process, the surface pressure generated by cardiac contraction is easily disturbed by external factors, and as people's health deteriorates, the j-peak (the main peak of the BCG signal) is no longer prominent. Our aim is to establish a non-contact, self-supervised heart rate detection method based on physiological information, to improve the accuracy and robustness of BCG heart rate detection under wider and more adverse conditions. The algorithm is guided by the heart rate estimation based on BCG itself, thereby reconstructing a signal with physiological significance. We also propose a heartbeat mapping algorithm based on Bidirectional Long Short-Term Memory Network (BiLSTM) for extracting global deep features, achieving real-time heartbeat prediction, and eliminating local deviations brought about by reconstruction. To verify the effectiveness of the proposed method, this paper evaluated 40 young subjects and 4 elderly subjects. Compared with the existing state-of-the-art methods, beat-to-beat heart rate estimation and heartbeat detection both performed excellently, surpassing most methods using precise labels. The experimental results show that the proposed method achieves effective heartbeat detection, demonstrating robustness and effectiveness in the face of unavoidable noise and variations.
Collapse
|
9
|
Ren J, Li Q, Feng K, Gong J, Li Z, Liu X, Yang L, Zhang J. A wearable sensor based on janus fabric upon an electrochemical analysis platform for sweat glucose detection. Talanta 2025; 284:127236. [PMID: 39581105 DOI: 10.1016/j.talanta.2024.127236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/09/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Wearable sweat sensing devices have drawn much attention due to their noninvasive and portable properties, which is emerging as a promising technology in daily healthiness assessment issues. A sweat sensor based on Janus fabric and electrochemical analysis is proposed in this work. Unidirectional moisture transported behavior of the Janus fabric serves as the quick-drying component directly contacting skin to transfer sweat toward the detection site. The working electrode was treated by repeated activation of Prussian blue followed by chitosan/single-wall carbon nano tubes/glucose oxidase deposition, ensuring the high electrochemical activity and sensitivity to detect the sweat glucose level. A detection system was established based on the electrochemical analysis of this sweat sensor, which can provide accurate glucose level in the testing samples. The limit of detection (LOD) of the sensor for glucose was 15.32 μM (S/N = 3) and the sensitivity was 3.35 μA/mM. One male subject wears this sensor for intermittent intensity training, outputting the real-time changes in sweat glucose levels, which is consistent with the energy consumption and metabolic status during human exercise. And the sweat glucose level for different subjects was tested to be 35-135 μM, which is coincident with the distribution range of normal human sweat glucose levels.
Collapse
Affiliation(s)
- Jianing Ren
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Qiujin Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong 271000, China.
| | - Kexin Feng
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Jixian Gong
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Zheng Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Xiuming Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Li Yang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China.
| | - Jianfei Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong 271000, China; Collaborative Innovation Center for Eco-Textiles of Shandong Province, Shandong, Qingdao 266071, China
| |
Collapse
|
10
|
Clemente-Suárez VJ, Martín-Rodríguez A, Curiel-Regueros A, Rubio-Zarapuz A, Tornero-Aguilera JF. Neuro-Nutrition and Exercise Synergy: Exploring the Bioengineering of Cognitive Enhancement and Mental Health Optimization. Bioengineering (Basel) 2025; 12:208. [PMID: 40001727 PMCID: PMC11851474 DOI: 10.3390/bioengineering12020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The interplay between nutrition, physical activity, and mental health has emerged as a frontier in bioengineering research, offering innovative pathways for enhancing cognitive function and psychological resilience. This review explores the neurobiological mechanisms underlying the synergistic effects of tailored nutritional strategies and exercise interventions on brain health and mental well-being. Key topics include the role of micronutrients and macronutrients in modulating neurogenesis and synaptic plasticity, the impact of exercise-induced myokines and neurotrophins on cognitive enhancement, and the integration of wearable bioelectronics for personalized monitoring and optimization. By bridging the disciplines of nutrition, psychology, and sports science with cutting-edge bioengineering, this review highlights translational opportunities for developing targeted interventions that advance mental health outcomes. These insights are particularly relevant for addressing global challenges such as stress, anxiety, and neurodegenerative diseases. The article concludes with a roadmap for future research, emphasizing the potential of bioengineered solutions to revolutionize preventive and therapeutic strategies in mental health care.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (V.J.C.-S.); (A.M.-R.); (A.C.-R.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Alexandra Martín-Rodríguez
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (V.J.C.-S.); (A.M.-R.); (A.C.-R.)
- Faculty of Applied Social Sciences and Communications, UNIE, 28015 Madrid, Spain
| | - Agustín Curiel-Regueros
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (V.J.C.-S.); (A.M.-R.); (A.C.-R.)
| | - Alejandro Rubio-Zarapuz
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (V.J.C.-S.); (A.M.-R.); (A.C.-R.)
| | | |
Collapse
|
11
|
Richard W, Moga A, Genain G, Amalric N, Eveillard M, Shourick J, Le Tanneur S, Funck-Brentano E, Skayem C, Vandier S, Duong TA. Electrochemistry to Monitor Skin Barrier: A Proof-of-Concept Study on Skin Differentiation Compared with Corneometry, Transepidermal Water Loss Measurement, and High-Performance Liquid Chromatography. J Invest Dermatol 2025:S0022-202X(25)00091-0. [PMID: 39922454 DOI: 10.1016/j.jid.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/26/2024] [Accepted: 11/12/2024] [Indexed: 02/10/2025]
Affiliation(s)
- William Richard
- QIMA Life Sciences, QIMA Bioalternatives SAS, Labège, France
| | - Alain Moga
- QIMA Life Sciences, QIMA Bioalternatives SAS, Labège, France
| | | | - Nicolas Amalric
- QIMA Life Sciences, QIMA Bioalternatives SAS, Labège, France
| | - Mélissa Eveillard
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, GHU Paris-Saclay AP-HP, Boulogne-Billancourt, France
| | - Jason Shourick
- Department of Clinical Epidemiology and Public Health, Toulouse University Hospital, Toulouse, France
| | | | - Elisa Funck-Brentano
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, GHU Paris-Saclay AP-HP, Boulogne-Billancourt, France; Research Unit EA4340 "Biomarkers in cancerology and in hemato-oncology," Université Versailles-St-Quentin-en -Yvelines-Paris-Saclay, Versailles, France
| | - Charbel Skayem
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, GHU Paris-Saclay AP-HP, Boulogne-Billancourt, France
| | | | - Tu Anh Duong
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, GHU Paris-Saclay AP-HP, Boulogne-Billancourt, France; Laboratoire de Génie Industriel, CentraleSupelec, Université Paris-Saclay, Gif-sur-Yvette, France; Chaire Avenir Santé Numérique, Equipe 8 IMRB, Inserm, Paris-East Créteil University, Créteil, France.
| |
Collapse
|
12
|
Park T, Leem JW, Kim YL, Lee CH. Photonic Nanomaterials for Wearable Health Solutions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418705. [PMID: 39901482 DOI: 10.1002/adma.202418705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/13/2025] [Indexed: 02/05/2025]
Abstract
This review underscores the transformative potential of photonic nanomaterials in wearable health technologies, driven by increasing demands for personalized health monitoring. Their unique optical and physical properties enable rapid, precise, and sensitive real-time monitoring, outperforming conventional electrical-based sensors. Integrated into ultra-thin, flexible, and stretchable formats, these materials enhance compatibility with the human body, enabling prolonged wear, improved efficiency, and reduced power consumption. A comprehensive exploration is provided of the integration of photonic nanomaterials into wearable devices, addressing material selection, light-matter interaction principles, and device assembly strategies. The review highlights critical elements such as device form factors, sensing modalities, and power and data communication, with representative examples in skin patches and contact lenses. These devices enable precise monitoring and management of biomarkers of diseases or biological responses. Furthermore, advancements in materials and integration approaches have paved the way for continuum of care systems combining multifunctional sensors with therapeutic drug delivery mechanisms. To overcome existing barriers, this review outlines strategies of material design, device engineering, system integration, and machine learning to inspire innovation and accelerate the adoption of photonic nanomaterials for next-generation of wearable health, showcasing their versatility and transformative potential for digital health applications.
Collapse
Affiliation(s)
- Taewoong Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Cancer Research, Regenstrief Center for Healthcare Engineering, Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, 47907, USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- School of Mechanical Engineering, School of Materials Engineering, Elmore Family School of Electrical and Computer Engineering, Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
13
|
Kondrakhova D, Unger M, Stadler H, Zakuťanská K, Tomašovičová N, Tomečková V, Horák J, Kimákova T, Komanický V. Determination diabetes mellitus disease markers in tear fluid by photothermal AFM-IR analysis. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 64:102803. [PMID: 39788273 DOI: 10.1016/j.nano.2025.102803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025]
Abstract
The tear fluids from three healthy individuals and three patients with diabetes mellitus were examined using atomic force microscopy-infrared spectroscopy (AFM-IR) and Fourier transform infrared spectroscopy (FTIR). The dried tear samples showed different surface morphologies: the control sample had a dense network of heart-shaped dendrites, while the diabetic sample had fern-shaped dendrites. By using the AFM-IR technique we identified spatial distribution of constituents, indicating how diabetes affects the structural characteristics of dried tears. FTIR showed that the dendritic structures gradually disappeared over time due to glucose-induced lysozyme damage. The tear fluid from diabetes mellitus patients has a higher concentration of glucose, which accelerates the breakdown of lysozyme and, as a result, the quick loss of the dendritic structure. Our study shows that analysis of dry tear fluid can be promising technique for the detection of glycated proteins that reveal long lasting hyperglycemia and diabetes mellitus.
Collapse
Affiliation(s)
- Daria Kondrakhova
- Institute of Physics, Department of Condensed Matter Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, Košice 041 54, Slovakia
| | - Miriam Unger
- Bruker Nano Surfaces & Metrology, Östliche Rheinbrückenstrasse 49, 76187 Karlsruhe, Germany
| | - Hartmut Stadler
- Bruker Nano Surfaces & Metrology, Östliche Rheinbrückenstrasse 49, 76187 Karlsruhe, Germany
| | - Katarína Zakuťanská
- Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Košice 040 01, Slovakia
| | - Natália Tomašovičová
- Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Košice 040 01, Slovakia
| | - Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Jakub Horák
- Měřicí technika Morava s.r.o., Babická 619, 664 84 Zastávka, Czech Republic
| | - Tatiana Kimákova
- Department of Public Health and Hygiene, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Šrobárová 2, Košice 041 80, Slovakia
| | - Vladimír Komanický
- Institute of Physics, Department of Condensed Matter Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, Košice 041 54, Slovakia.
| |
Collapse
|
14
|
Dissanayake M, Somerville SV, Soda Y, Yao Y, Duong HTK, Tilley RD, Gooding JJ. An Array of Glucose Nanozymes That Can Selectively Detect Glucose in Whole Blood. ACS Sens 2025; 10:545-552. [PMID: 39749524 DOI: 10.1021/acssensors.4c03106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Achieving sensors that can sensitively and selectively quantify levels of analytes in complex biofluids such as blood remains a significant challenge. To address this, we synthesized an array of isolated carbon nanochannels on a flat gold electrode that function as molecular sieves to prevent protein fouling and eliminate the need for antifouling layers. Utilizing a two-step pulsed technique, a reductive pulse expels negative interferences and fouling molecules followed by an oxidative pulse that oxidizes glucose at the bottom of the channel and on the gold surface. The nanoconfined environment created by the top carbon nanochannel layer (6 nm diameter, 21 nm length confirmed by TEM and SEM), with redox pulses enabled the gold catalytic center to generate hydroxide ions, fostering a higher pH environment favorable for glucose oxidation. The nonenzymatic approach to detecting glucose was shown to give equivalent data directly in whole blood to that achieved by using an enzyme blood glucose meter determined using a Clark Error Grid. This simplified sensor design, suitable for wearable systems, offers a solution for glucose monitoring in complex biofluids with a far greater stability over time.
Collapse
Affiliation(s)
- Manusha Dissanayake
- School of Chemistry, Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Samuel V Somerville
- School of Chemistry, Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Yoshiki Soda
- School of Chemistry, Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Yin Yao
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - H T Kim Duong
- School of Chemistry, Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard D Tilley
- School of Chemistry, Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - J Justin Gooding
- School of Chemistry, Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
15
|
Sheraz M, Sun XF, Siddiqui A, Wang Y, Hu S, Sun R. Cellulose-Based Electrochemical Sensors. SENSORS (BASEL, SWITZERLAND) 2025; 25:645. [PMID: 39943284 PMCID: PMC11820603 DOI: 10.3390/s25030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
Among the most promising areas of research, cellulose-based electrochemical sensors stand out for their intrinsic properties such as abundance, biocompatibility, and versatility. This review is concerned with the integration and application of cellulose-derived materials in electrochemical sensors, pointing out improvements in sensitivity, selectivity, stability, and functionality for a wide variety of applications. The most relevant developments on cellulose-based sensors have been concentrated on nanocellulose composite synthesis, advanced cellulose modification, and the successful embedding in wearable technologies, medical diagnostics, and environmental monitoring. Considering these, it is worth mentioning that significant challenges still need to be overcome regarding the scalability of production, selectivity improvement, and long-term stability under real operational conditions. Future research efforts will concern the union of cellulose-based sensors with the Internet of Things (IoT) and artificial intelligence (AI) toward wiser and more sustainable health and environmental solutions. Correspondingly, this work puts cellulose in the front line among the most perspective materials for enabling the development of eco-friendly and high-performance sensing technologies.
Collapse
Affiliation(s)
| | - Xiao-Feng Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China; (M.S.); (A.S.); (Y.W.); (S.H.)
| | | | | | | | | |
Collapse
|
16
|
Sun Y, He W, Jiang C, Li J, Liu J, Liu M. Wearable Biodevices Based on Two-Dimensional Materials: From Flexible Sensors to Smart Integrated Systems. NANO-MICRO LETTERS 2025; 17:109. [PMID: 39812886 PMCID: PMC11735798 DOI: 10.1007/s40820-024-01597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025]
Abstract
The proliferation of wearable biodevices has boosted the development of soft, innovative, and multifunctional materials for human health monitoring. The integration of wearable sensors with intelligent systems is an overwhelming tendency, providing powerful tools for remote health monitoring and personal health management. Among many candidates, two-dimensional (2D) materials stand out due to several exotic mechanical, electrical, optical, and chemical properties that can be efficiently integrated into atomic-thin films. While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene, the rapid development of new 2D materials with exotic properties has opened up novel applications, particularly in smart interaction and integrated functionalities. This review aims to consolidate recent progress, highlight the unique advantages of 2D materials, and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices. We begin with an in-depth analysis of the advantages, sensing mechanisms, and potential applications of 2D materials in wearable biodevice fabrication. Following this, we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body. Special attention is given to showcasing the integration of multi-functionality in 2D smart devices, mainly including self-power supply, integrated diagnosis/treatment, and human-machine interaction. Finally, the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of 2D materials for advanced biodevices.
Collapse
Affiliation(s)
- Yingzhi Sun
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Weiyi He
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Can Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Jing Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
| | - Jianli Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| |
Collapse
|
17
|
Zhang F, Xu W, Deng Z, Huang J. A bibliometric and visualization analysis of electrochemical biosensors for early diagnosis of eye diseases. Front Med (Lausanne) 2025; 11:1487981. [PMID: 39867928 PMCID: PMC11757256 DOI: 10.3389/fmed.2024.1487981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Electrochemical biosensors can provide an economical, accurate and rapid method for early screening of disease biomarkers in clinical medicine due to their high sensitivity, selectivity, portability, low cost and easy manufacturing, and multiplexing capability. Tear, a fluid naturally secreted by the human body, is not only easily accessible but also contains a great deal of biological information. However, no bibliometric studies focus on applying electrochemical sensors in tear/eye diseases. Therefore, we utilized VOSviewer and CiteSpace, to perform a detailed bibliometric analysis of 114 papers in the field of research on the application of tear in electrochemical biosensors screened from Web of Science with the combination of Scimago Graphica and Microsoft Excel for visualization to show the current research hotspots and future trends. The results show that the research in this field started in 2008 and experienced an emerging period in recent years. Researchers from China and the United States mainly contributed to the thriving research areas, with 41 and 29 articles published, respectively. Joseph Wang from the University of California San Diego is the most influential author in the field, and Biosensors & Bioelectronics is the journal with the most published research and the most cited journal. The highest appearance keywords were "biosensor" and "tear glucose," while the most recent booming keywords "diagnosis" and "in-vivo" were. In conclusion, this study elucidates current trends, hotspots, and emerging frontiers, and provides future biomarkers of ocular and systemic diseases by electrochemical sensors in tear with new ideas and opinions.
Collapse
Affiliation(s)
- Fushen Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Weiye Xu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zejun Deng
- School of Materials Science and Engineering, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
18
|
Choudhury S, Zafar S, Deepak D, Panghal A, Lochab B, Roy SS. A surface modified laser-induced graphene based flexible biosensor for multiplexed sweat analysis. J Mater Chem B 2024; 13:274-287. [PMID: 39535206 DOI: 10.1039/d4tb01936a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The growing popularity of electrochemical sensors featuring non-invasive biosensing technologies has generated significant enthusiasm for continuous monitoring of bodily fluid biomarkers, potentially aiding in the early detection of health issues in individuals. However, detection of multiple biomarkers in complex biofluids often necessitates a high-density array which creates a challenge in achieving cost-effective fabrication methods. To overcome this constraint, this work reports the fabrication of an electrochemical sensor utilizing a NiO-Ti3C2Tx MXene-modified flexible laser-induced graphene (LIG) electrode for the separate and concurrent analysis of ascorbic acid (AA), dopamine (DA), and uric acid (UA) in human sweat and also addresses the deficiencies in the existing state of the art by offering a cost-efficient and high-performance sensor that mitigates the degrading constraints of conventional LIG electrodes. Cyclic voltammetry and differential pulse voltammetry measurements reveals that the electrochemical properties of the modified electrode, attain a low detection limit and great sensitivity for the target biomarkers. The NiO-Ti3C2Tx/LIG sensor demonstrated enhanced electrocatalytic activity for the oxidation of ascorbic acid, dopamine, and uric acid, and proved useful for analysing these biomarkers in synthetic sweat samples. Under the optimized conditions, the LOD values were estimated to be 16, 1.97 and 0.78 μM for AA, DA and UA, respectively. The developed high-efficiency sensor holds significant promise for applications in flexible and wearable electronics for health monitoring.
Collapse
Affiliation(s)
- Sudipta Choudhury
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi-NCR, Greater Noida, 201314, India.
| | - Saad Zafar
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Greater Noida, 201314, India
| | - Deepak Deepak
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi-NCR, Greater Noida, 201314, India.
| | - Abhishek Panghal
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi-NCR, Greater Noida, 201314, India.
| | - Bimlesh Lochab
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Greater Noida, 201314, India
| | - Susanta Sinha Roy
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi-NCR, Greater Noida, 201314, India.
| |
Collapse
|
19
|
Zhong G, Liu Q, Wang Q, Qiu H, Li H, Xu T. Fully integrated microneedle biosensor array for wearable multiplexed fitness biomarkers monitoring. Biosens Bioelectron 2024; 265:116697. [PMID: 39182414 DOI: 10.1016/j.bios.2024.116697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Fitness monitoring has become increasingly important in modern lifestyles; the current fitness monitoring always relies on physical sensors, making it challenging to detect pertinent issues at a deeper level when exercising. Here, we report a fully integrated wearable microneedle sensor that simultaneously measures fitness related biomarkers (e.g., glucose, lactate, and alcohol) during physical exercise. Such a sensor integrates a biocompatible 3D-printed microneedle array that can comfortably access skin interstitial fluid and a small circuit for signal processing and calibration, and wireless communication. The microneedle array features good biocompatibility and highly sensitive biochemical sensors that can detect even the slightest variations within the biomarkers of this fluid. On-body experimental results indicate that such a sensor can monitor fitness-related biomarkers across multiple subjects and support multi-day monitoring, with results showing a good correlation with commercial devices. The data was transmitted to a smartphone via Bluetooth and uploaded to cloud platforms for further health assessment. This study has the potential to boost intelligent wearable devices in sports health.
Collapse
Affiliation(s)
- Geng Zhong
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, PR China
| | - Qingzhou Liu
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518060, PR China.
| | - Qiyu Wang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, PR China
| | - Haoji Qiu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, PR China
| | - Hanlin Li
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, PR China
| | - Tailin Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
20
|
Kim MS, Almuslem AS, Babatain W, Bahabry RR, Das UK, El-Atab N, Ghoneim M, Hussain AM, Kutbee AT, Nassar J, Qaiser N, Rojas JP, Shaikh SF, Torres Sevilla GA, Hussain MM. Beyond Flexible: Unveiling the Next Era of Flexible Electronic Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406424. [PMID: 39390819 DOI: 10.1002/adma.202406424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/31/2024] [Indexed: 10/12/2024]
Abstract
Flexible electronics are integral in numerous domains such as wearables, healthcare, physiological monitoring, human-machine interface, and environmental sensing, owing to their inherent flexibility, stretchability, lightweight construction, and low profile. These systems seamlessly conform to curvilinear surfaces, including skin, organs, plants, robots, and marine species, facilitating optimal contact. This capability enables flexible electronic systems to enhance or even supplant the utilization of cumbersome instrumentation across a broad range of monitoring and actuation tasks. Consequently, significant progress has been realized in the development of flexible electronic systems. This study begins by examining the key components of standalone flexible electronic systems-sensors, front-end circuitry, data management, power management and actuators. The next section explores different integration strategies for flexible electronic systems as well as their recent advancements. Flexible hybrid electronics, which is currently the most widely used strategy, is first reviewed to assess their characteristics and applications. Subsequently, transformational electronics, which achieves compact and high-density system integration by leveraging heterogeneous integration of bare-die components, is highlighted as the next era of flexible electronic systems. Finally, the study concludes by suggesting future research directions and outlining critical considerations and challenges for developing and miniaturizing fully integrated standalone flexible electronic systems.
Collapse
Affiliation(s)
- Min Sung Kim
- mmh Labs (DREAM), Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Amani S Almuslem
- Department of Physics, College of Science, King Faisal University, Prince Faisal bin Fahd bin Abdulaziz Street, Al-Ahsa, 31982, Saudi Arabia
| | - Wedyan Babatain
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rabab R Bahabry
- Department of Physical Sciences, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Uttam K Das
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Nazek El-Atab
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Mohamed Ghoneim
- Logic Technology Development Quality and Reliability, Intel Corporation, Hillsboro, OR, 97124, USA
| | - Aftab M Hussain
- International Institute of Information Technology (IIIT) Hyderabad, Gachibowli, Hyderabad, 500 032, India
| | - Arwa T Kutbee
- Department of Physics, College of Science, King AbdulAziz University, Jeddah, 21589, Saudi Arabia
| | - Joanna Nassar
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Nadeem Qaiser
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Jhonathan P Rojas
- Electrical Engineering Department & Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Academic Belt Road, Dhahran, 31261, Saudi Arabia
| | | | - Galo A Torres Sevilla
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Muhammad M Hussain
- mmh Labs (DREAM), Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47906, USA
| |
Collapse
|
21
|
Assalve G, Lunetti P, Di Cagno A, De Luca EW, Aldegheri S, Zara V, Ferramosca A. Advanced Wearable Devices for Monitoring Sweat Biochemical Markers in Athletic Performance: A Comprehensive Review. BIOSENSORS 2024; 14:574. [PMID: 39727839 DOI: 10.3390/bios14120574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Wearable technology has advanced significantly, offering real-time monitoring of athletes' physiological parameters and optimizing training and recovery strategies. Recent developments focus on biosensor devices capable of monitoring biochemical parameters in addition to physiological ones. These devices employ noninvasive methods such as sweat analysis, which reveals critical biomarkers like glucose, lactate, electrolytes, pH, and cortisol. These biomarkers provide valuable insights into an athlete's energy use, hydration status, muscle function, and stress levels. Current technologies utilize both electrochemical and colorimetric methods for sweat analysis, with electrochemical methods providing higher precision despite potential signal interference. Wearable devices such as epidermal patches, temporary tattoos, and fabric-based sensors are preferred for their flexibility and unobtrusive nature compared to more rigid conventional wearables. Such devices leverage advanced materials and transmit real-time data to computers, tablets, or smartphones. These data would aid coaches and sports medical personnel in monitoring athletes' health, optimizing diets, and developing training plans to enhance performance and reduce injuries.
Collapse
Affiliation(s)
- Graziana Assalve
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
| | - Paola Lunetti
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
| | - Alessandra Di Cagno
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Ernesto William De Luca
- Department of Engineering Sciences, Guglielmo Marconi University, 00193 Rome, Italy
- Institute of Technical and Business Information Systems, Otto-von-Guericke-University of Magdeburg, 39106 Magdeburg, Germany
| | - Stefano Aldegheri
- Department of Engineering Sciences, Guglielmo Marconi University, 00193 Rome, Italy
| | - Vincenzo Zara
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
| | | |
Collapse
|
22
|
Zhao J, Yang Y, Bo L, Qi J, Zhu Y. Research Progress on Applying Intelligent Sensors in Sports Science. SENSORS (BASEL, SWITZERLAND) 2024; 24:7338. [PMID: 39599115 PMCID: PMC11598178 DOI: 10.3390/s24227338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Smart sensors represent a significant advancement in modern sports science, and their effective use enhances the ability to monitor and analyze athlete performance in real time. The integration of these sensors has enhanced the accuracy of data collection related to physical activity, biomechanics, and physiological responses, thus providing valuable insights for performance optimization, injury prevention, and rehabilitation. This paper provides an overview of the research progress in the application of smart sensors in the field of sports science; highlights the current advances, challenges, and future directions in the deployment of smart sensor technologies; and anticipates their transformative impact on sports science and athlete development.
Collapse
Affiliation(s)
- Jingjing Zhao
- Physical Education Teaching Department, China University of Petroleum (East China), Qingdao 266580, China;
| | - Yulong Yang
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (Y.Y.); (Y.Z.)
| | - Leng Bo
- College of Education, Beijing Sports University, Beijing 100091, China;
| | - Jiantao Qi
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (Y.Y.); (Y.Z.)
| | - Yongqiang Zhu
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (Y.Y.); (Y.Z.)
| |
Collapse
|
23
|
Zhang S, Li Y, Li Y, Ji H, Feng X, Song S, Liu K, Zhai C, Xu M. Ion Identification and Ultralow Concentration Sensing with Liquid Flexoelectricity. NANO LETTERS 2024; 24:14279-14285. [PMID: 39480123 DOI: 10.1021/acs.nanolett.4c03688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The isolation and concentration of electrical charges at ionic-electronic interfaces are prevalent phenomena that impede effective communication between ionic and electronic systems. Detecting these concentrated charges at the interface is crucial for applications, such as signal transmission and ion detection. Current electrical detection approaches introduce additional ionic-electronic interfaces via metallic electrodes with an external stimulating voltage, which alters the initial ion distributions at the interfaces. In this work, we introduce the flexoelectricity of liquids to examine the electrical charge aggregation at ionic-electronic interfaces under cyclic mechanical loads. The measured electrical responses reflect the coupling phenomena between the flexoelectricity and the electric double layer. This proposed approach demonstrates the capability to quantify ion types and concentrations at interfaces. Furthermore, it can identify ion types in mixed solutions and offers high sensitivity at ultralow concentrations. This work promotes a nonchemical, general mechanical method for charge detection at ionic-electronic interfaces.
Collapse
Affiliation(s)
- Shuwen Zhang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yifan Li
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanyu Li
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hui Ji
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xingjian Feng
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Siyang Song
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kaiyuan Liu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chongpu Zhai
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Minglong Xu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
24
|
Bhaduri A, Ha T. Biowaste-Derived Triboelectric Nanogenerators for Emerging Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405666. [PMID: 39248387 PMCID: PMC11558148 DOI: 10.1002/advs.202405666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Triboelectric nanogenerators (TENGs) combine contact electrification and electrostatic induction effects to convert waste mechanical energy into electrical energy. As conventional devices contribute to electronic waste, TENGs based on ecofriendly and biocompatible materials have been developed for various energy applications. Owing to the abundance, accessibility, low cost, and biodegradability of biowaste (BW), recycling these materials has gained considerable attention as a green approach for fabricating TENGs. This review provides a detailed overview of BW materials, processing techniques for BW-based TENGs (BW-TENGs), and potential applications of BW-TENGs in emerging bioelectronics. In particular, recent progress in material design, fabrication methods, and biomechanical and environmental energy-harvesting performance is discussed. This review is aimed at promoting the continued development of BW-TENGs and their adoption for sustainable energy-harvesting applications in the field of bioelectronics.
Collapse
Affiliation(s)
- Abhisikta Bhaduri
- Dept. of Electronic Materials EngineeringKwangwoon UniversitySeoul01897Republic of Korea
| | - Tae‐Jun Ha
- Dept. of Electronic Materials EngineeringKwangwoon UniversitySeoul01897Republic of Korea
| |
Collapse
|
25
|
Ravitchandiran A, AlGarni S, AlSalhi MS, Rajaram R, Malik T, Angaiah S. ZnFe(PBA)@Ti 3C 2T x nanohybrid-based highly sensitive non-enzymatic electrochemical sensor for the detection of glucose in human sweat. Sci Rep 2024; 14:23835. [PMID: 39394386 PMCID: PMC11470011 DOI: 10.1038/s41598-024-75623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
The ZnFe prussian blue analogue [ZnFe(PBA)] was infused with Ti3C2Tx (MXene) denoted as ZnFe(PBA)@Ti3C2Tx and was prepared by an in-situ sonication method to use as a non-enzymatic screen printed electrode sensor. The advantage of non-enzymatic sensors is their excellent sensitivity, rapid detection, low cost and simple design. The synthesized ZnFe(PBA)@Ti3C2Tx was characterized for its physical and chemical characterization by XRD, Raman, XPS, EDAX, and FESEM analysis. It possessed multiple functionalized layers and a cubic structure in the nanohybrid. Further, the sensor was investigated by using electroanalytical studies such as cyclic voltammetry and chronoamperometry analysis. The enhanced surface area with a cubic structure of ZnFe(PBA) and the excellent electrical response of Ti3C2 nanosheet support the advancement of a non-enzymatic electrochemical glucose sensor with improved sensitivity of 973.42 µA mM-1 cm-2 with the limit of detection (LOD) of 3.036 µM (S/N = 3) and linear detection range (LDR) from 0.01 to 1 mM.
Collapse
Affiliation(s)
- Arrthi Ravitchandiran
- Electro-Materials Research Laboratory, Centre for Nanoscience and Technology, Pondicherry University, Puducherry, 605014, India
| | - Saad AlGarni
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rajamohan Rajaram
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.
| | - Subramania Angaiah
- Electro-Materials Research Laboratory, Centre for Nanoscience and Technology, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
26
|
Coskun A. Diagnosis Based on Population Data versus Personalized Data: The Evolving Paradigm in Laboratory Medicine. Diagnostics (Basel) 2024; 14:2135. [PMID: 39410539 PMCID: PMC11475514 DOI: 10.3390/diagnostics14192135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
The diagnosis of diseases is a complex process involving the integration of multiple parameters obtained from various sources, including laboratory findings. The interpretation of laboratory data is inherently comparative, necessitating reliable references for accurate assessment. Different types of references, such as reference intervals, decision limits, action limits, and reference change values, are essential tools in the interpretation of laboratory data. Although these references are used to interpret individual laboratory data, they are typically derived from population data, which raises concerns about their reliability and consequently the accuracy of interpretation of individuals' laboratory data. The accuracy of diagnosis is critical to all subsequent steps in medical practice, making the estimate of reliable references a priority. For more precise interpretation, references should ideally be derived from an individual's own data rather than from population averages. This manuscript summarizes the current sources of references used in laboratory data interpretation, examines the references themselves, and discusses the transition from population-based laboratory medicine to personalized laboratory medicine.
Collapse
Affiliation(s)
- Abdurrahman Coskun
- Department of Medical Biochemistry, School of Medicine, Acıbadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| |
Collapse
|
27
|
He R, Chen L, Chu P, Gao P, Wang J. Recent advances in nonenzymatic electrochemical biosensors for sports biomarkers: focusing on antibodies, aptamers and molecularly imprinted polymers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6079-6097. [PMID: 39212159 DOI: 10.1039/d4ay01002g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Nonenzymatic electrochemical biosensors, renowned for their high sensitivity, multi-target analysis capabilities, and miniaturized integration, align well with the requirements of non-invasive, multi-index integrated, continuous monitoring, and user-friendly wearable biosensors in sports science. In the past three years, novel strategies targeting specific responses to sports biomarkers have opened new avenues for applications in sports science. However, these advancements also pose challenges in achieving adequate sensitivity and specificity for online analysis of complex sweat bio-samples. Our article focuses on three key nonenzymatic electrochemical biosensing strategies: antigen-antibody reactions, nucleic acid aptamer recognition, and molecular imprinting capture. We delve into strategies to enhance specificity and sensitivity in the application of biosensors in sports science, including shortening signal transduction paths through built-in signal probes, increasing reaction sites through increased surface area and the introduction of nanostructures, multi-target analyses, and microfluidic techniques.
Collapse
Affiliation(s)
- Rui He
- Physical Education Department, Wuhan University, No. 299 Bayi Road, Wuchang District, Wuhan City, Hubei province, People's Republic of China
| | - Long Chen
- School of Physical Education and Equestrian, Wuhan Business University, No. 816 Dongfeng Avenue, Wuhan Economic and Technological Development Zone, Hubei Province, People's Republic of China
| | - Pengfei Chu
- School of Sports Science and Physical Education, China University of Geosciences, Wuhan 430074, People's Republic of China.
| | - Pengcheng Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China.
| | - Junjie Wang
- School of Sports Science and Physical Education, China University of Geosciences, Wuhan 430074, People's Republic of China.
| |
Collapse
|
28
|
Atta S, Zhao Y, Sanchez S, Vo-Dinh T. A Simple and Sensitive Wearable SERS Sensor Utilizing Plasmonic-Active Gold Nanostars. ACS OMEGA 2024; 9:38897-38905. [PMID: 39310163 PMCID: PMC11411535 DOI: 10.1021/acsomega.4c05140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
Wearable sweat sensors hold great potential for offering detailed health insights by monitoring various biomarkers present in sweat, such as glucose, lactate, uric acid, and urea, in real time. However, most previously reported sensors, primarily based on electrochemical technology, are limited to monitoring only a single analyte at a given time. This study introduces a simple, sensitive, wearable patch based on surface-enhanced Raman spectroscopy (SERS), integrated with highly plasmonically active sharp-branched gold nanostars (GNS) for the simultaneous detection of three sweat biomarkers: lactate, urea, and glucose. We have fabricated the GNS on commercially available adhesive tape, resulting in achieving a low-cost, flexible, and adhesive wearable SERS patch. The limits of detection for lactate, urea, and glucose were achieved at 0.7, 0.6, and 0.7 μM, respectively, which are significantly lower than the clinically relevant concentrations of these biomarkers in sweat. We further evaluated the performance of our wearable SERS patch during outdoor activities, including sitting, walking, and running. To evaluate its overall effectiveness, we simultaneously measured the concentrations of lactate, urea, and glucose during these activities. Overall, our simple, sensitive wearable SERS sensor represents a significant breakthrough by enabling the simultaneous detection of lactate, urea, and glucose present in sweat, marking a major step toward future applications in autonomous and noninvasive personalized healthcare monitoring at home.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick
Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Yuanhao Zhao
- Fitzpatrick
Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sebastian Sanchez
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
29
|
Guan PC, Qi QJ, Wang YQ, Lin JS, Zhang YJ, Li JF. Development of a 3D Hydrogel SERS Chip for Noninvasive, Real-Time pH and Glucose Monitoring in Sweat. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48139-48146. [PMID: 39197856 DOI: 10.1021/acsami.4c10817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Traditional diagnostic methods, such as blood tests, are invasive and time-consuming, while sweat biomarkers offer a rapid physiological assessment. Surface-enhanced Raman spectroscopy (SERS) has garnered significant attention in sweat analysis because of its high sensitivity, label-free nature, and nondestructive properties. However, challenges related to substrate reproducibility and interference from the biological matrix persist with SERS. This study developed a novel ratio-based 3D hydrogel SERS chip, providing a noninvasive solution for real-time monitoring of pH and glucose levels in sweat. Encapsulating the probe molecule (4-MBN) in nanoscale gaps to form gold nanoflower-like nanotags with internal standards and integrating them into an agarose hydrogel to create a 3D flexible SERS substrate significantly enhances the reproducibility and stability of sweat analysis. Gap-Au nanopetals modified with probe molecules are uniformly dispersed throughout the porous hydrogel structure, facilitating the effective detection of the pH and glucose in sweat. The 3D hydrogel SERS chip demonstrates a strong linear relationship in pH and glucose detection, with a pH response range of 5.5-8.0 and a glucose detection range of 0.01-5 mM, with R2 values of 0.9973 and 0.9923, respectively. In actual sweat samples, the maximum error in pH detection accuracy is only 1.13%, with a lower glucose detection limit of 0.25 mM. This study suggests that the ratio-based 3D hydrogel SERS chip provides convenient, reliable, and rapid detection capabilities with substantial application potential for analyzing body fluid pH and glucose.
Collapse
Affiliation(s)
- Peng-Cheng Guan
- College of Materials, College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qian-Jiao Qi
- College of Materials, College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu-Qing Wang
- College of Materials, College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jia-Sheng Lin
- College of Materials, College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yue-Jiao Zhang
- College of Materials, College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- College of Materials, College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Scientific Research Foundation of State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen 361005, China
| |
Collapse
|
30
|
Childs A, Mayol B, Lasalde-Ramírez JA, Song Y, Sempionatto JR, Gao W. Diving into Sweat: Advances, Challenges, and Future Directions in Wearable Sweat Sensing. ACS NANO 2024; 18:24605-24616. [PMID: 39185844 DOI: 10.1021/acsnano.4c10344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Sweat analysis has advanced from diagnosing cystic fibrosis and testing for illicit drugs to noninvasive monitoring of health biomarkers. This article introduces the rapid development of wearable and flexible sweat sensors, highlighting key milestones and various sensing strategies for real-time monitoring of analytes. We discuss challenges such as developing high-performance nanomaterial-based biosensors, ensuring continuous sweat production and sampling, achieving high sweat/blood correlation, and biocompatibility. The potential of machine learning to enhance these sensors for personalized healthcare is presented, enabling real-time tracking and prediction of physiological changes and disease onset. Leveraging advancements in flexible electronics, nanomaterials, biosensing, and data analytics, wearable sweat biosensors promise to revolutionize disease management, prevention, and prediction, promoting healthier lifestyles and transforming medical practices globally.
Collapse
Affiliation(s)
- Andre Childs
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Beatriz Mayol
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - José A Lasalde-Ramírez
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Juliane R Sempionatto
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
31
|
Ai D, Yu H, Han Y, Chang Y, Ma Y, Wu C, Liu M, Zhu Y, Li S, Dong C, Cheng Y. Electrochemical sensor based on Cu 2-xS/graphene heterostructures for sub-picomolar dopamine detection. Mikrochim Acta 2024; 191:578. [PMID: 39242473 DOI: 10.1007/s00604-024-06651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/18/2024] [Indexed: 09/09/2024]
Abstract
Detecting dopamine (DA) in biological samples is vital to understand its crucial role in numerous physiological processes, such as motion, cognition, and reward stimulus. In this work, p-type graphene on sapphire, synthesized via chemical vapor deposition, serves as substrate for the preparation of p-type Cu2-xS films through solid-phase sulfurization. The optimized Cu2-xS/graphene heterostructure, prepared at 250 °C using a 15-nm copper film sulfurized for 2 h, exhibits superior electron transfer performance, ideal for electrochemical sensing. It is confirmed that the spontaneous charge transfer from graphene to Cu2-xS, higher Cu(II)/Cu(I) ratio (~ 0.8), and the presence of well-defined nanocrystalline structures with an average size of ~ 35 nm in Cu2-xS significantly contribute to the improved electron transfer of the heterostructure. The electrochemical sensor based on Cu2-xS/graphene heterostructure demonstrates remarkable sensitivity towards DA, with a detection limit as low as 100 fM and a dynamic range greater than 109 from 100 fM to 100 μM. Additionally, it exhibits excellent selectivity even in the presence of uric acid and ascorbic acid 100 times higher, alongside notable storage and measurement stability and repeatability. Impressively, the sensor also proves capable of detecting DA concentrations as low as 100 pM in rat serum, showcasing its potential for clinically relevant analytes and promising applications in sensitive, selective, reliable, and efficient point-of-care diagnostics.
Collapse
Affiliation(s)
- Ding Ai
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
- National Health Commission Key Laboratory of Forensic Sciences (NKLF) and National Biosafety Evidence Foundation (NBEF), Bio-Evidence Sciences Academy, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Hao Yu
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Yuting Han
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Yuan Chang
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Yanhao Ma
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Chenglong Wu
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Mengning Liu
- National Health Commission Key Laboratory of Forensic Sciences (NKLF) and National Biosafety Evidence Foundation (NBEF), Bio-Evidence Sciences Academy, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Yongsheng Zhu
- National Health Commission Key Laboratory of Forensic Sciences (NKLF) and National Biosafety Evidence Foundation (NBEF), Bio-Evidence Sciences Academy, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Shengbin Li
- National Health Commission Key Laboratory of Forensic Sciences (NKLF) and National Biosafety Evidence Foundation (NBEF), Bio-Evidence Sciences Academy, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Chengye Dong
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
- National Health Commission Key Laboratory of Forensic Sciences (NKLF) and National Biosafety Evidence Foundation (NBEF), Bio-Evidence Sciences Academy, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| |
Collapse
|
32
|
Garg M, Guo H, Maclam E, Zhanov E, Samudrala S, Pavlov A, Rahman MS, Namkoong M, Moreno JP, Tian L. Molecularly Imprinted Wearable Sensor with Paper Microfluidics for Real-Time Sweat Biomarker Analysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46113-46122. [PMID: 39178237 PMCID: PMC11378148 DOI: 10.1021/acsami.4c10033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
The urgent need for real-time and noninvasive monitoring of health-associated biochemical parameters has motivated the development of wearable sweat sensors. Existing electrochemical sensors show promise in real-time analysis of various chemical biomarkers. These sensors often rely on labels and redox probes to generate and amplify the signals for the detection and quantification of analytes with limited sensitivity. In this study, we introduce a molecularly imprinted polymer (MIP)-based biochemical sensor to quantify a molecular biomarker in sweat using electrochemical impedance spectroscopy, which eliminates the need for labels or redox probes. The molecularly imprinted biosensor can achieve sensitive and specific detection of cortisol at concentrations as low as 1 pM, 1000-fold lower than previously reported MIP cortisol sensors. We integrated multimodal electrochemical sensors with an iontophoresis sweat extraction module and paper microfluidics for real-time sweat analysis. Several parameters can be simultaneously quantified, including sweat volume, secretion rate, sodium ion, and cortisol concentration. Paper microfluidic modules not only quantify sweat volume and secretion rate but also facilitate continuous sweat analysis without user intervention. While we focus on cortisol sensing as a proof-of-concept, the molecularly imprinted wearable sensors can be extended to real-time detection of other biochemicals, such as protein biomarkers and therapeutic drugs.
Collapse
Affiliation(s)
- Mayank Garg
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Heng Guo
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Ethan Maclam
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Elizabeth Zhanov
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Sathwika Samudrala
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Anton Pavlov
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Md Saifur Rahman
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Myeong Namkoong
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Jennette P Moreno
- Department of Pediatrics-Nutrition, Baylor College of Medicine, Houston 77030, Texas, United States
| | - Limei Tian
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station 77843, Texas, United States
| |
Collapse
|
33
|
Backiyalakshmi G, Snekhalatha U, Salvador AL. Recent advancements in non-invasive wearable electrochemical biosensors for biomarker analysis - A review. Anal Biochem 2024; 692:115578. [PMID: 38801938 DOI: 10.1016/j.ab.2024.115578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
A biomarker is a molecular indicator that can be used to identify the presence or severity of a disease. It may be produced due to biochemical or molecular changes in normal biological processes. In some cases, the presence of a biomarker itself is an indication of the disease, while in other cases, the elevated or depleted level of a particular protein or chemical substance aids in identifying a disease. Biomarkers indicate the progression of the disease in response to therapeutic interventions. Identifying these biomarkers can assist in diagnosing the disease early and providing proper therapeutic treatment. In recent years, wearable electrochemical (EC) biosensors have emerged as an important tool for early detection due to their excellent selectivity, low cost, ease of fabrication, and improved sensitivity. There are several challenges in developing a fully integrated wearable sensor, such as device miniaturization, high power consumption, incorporation of a power source, and maintaining the integrity and durability of the biomarker for long-term continuous monitoring. This review covers the recent advancements in the fabrication techniques involved in device development, the types of sensing platforms utilized, different materials used, challenges, and future developments in the field of wearable biosensors.
Collapse
Affiliation(s)
- G Backiyalakshmi
- Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - U Snekhalatha
- Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India; College of Engineering, Architecture and Fine Arts, Batangas State University, Batangas, Philippines.
| | - Anela L Salvador
- College of Engineering, Architecture and Fine Arts, Batangas State University, Batangas, Philippines
| |
Collapse
|
34
|
Zhang Y, Liu Y, Lu Y, Gong S, Haick H, Cheng W, Wang Y. Tailor-Made Gold Nanomaterials for Applications in Soft Bioelectronics and Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405046. [PMID: 39022844 DOI: 10.1002/adma.202405046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/02/2024] [Indexed: 07/20/2024]
Abstract
In modern nanoscience and nanotechnology, gold nanomaterials are indispensable building blocks that have demonstrated a plethora of applications in catalysis, biology, bioelectronics, and optoelectronics. Gold nanomaterials possess many appealing material properties, such as facile control over their size/shape and surface functionality, intrinsic chemical inertness yet with high biocompatibility, adjustable localized surface plasmon resonances, tunable conductivity, wide electrochemical window, etc. Such material attributes have been recently utilized for designing and fabricating soft bioelectronics and optoelectronics. This motivates to give a comprehensive overview of this burgeoning field. The discussion of representative tailor-made gold nanomaterials, including gold nanocrystals, ultrathin gold nanowires, vertically aligned gold nanowires, hard template-assisted gold nanowires/gold nanotubes, bimetallic/trimetallic gold nanowires, gold nanomeshes, and gold nanosheets, is begun. This is followed by the description of various fabrication methodologies for state-of-the-art applications such as strain sensors, pressure sensors, electrochemical sensors, electrophysiological devices, energy-storage devices, energy-harvesting devices, optoelectronics, and others. Finally, the remaining challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yi Liu
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yuerui Lu
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT, 2601, Australia
| | - Shu Gong
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Wenlong Cheng
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| |
Collapse
|
35
|
Rashid A, Mondal S, Musha Islam AS, Mondal S, Ghosh P. Naphthalene Diimide and Bis-Heteroleptic Ru(II) Complex-Based Hybrid Molecule with 3-in-1 Functionalities. Chem Asian J 2024:e202400724. [PMID: 39166360 DOI: 10.1002/asia.202400724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024]
Abstract
Multipurpose applications of a newly developed homobimetallic Ru(II) complex, Ru-NDI[PF6]4, which incorporates 1,10-phenanthroline and triazole-pyridine ligands and linked via a (-CH2-)3 spacer to the reputed anion-π interacting NDI system, are described. Solution-state studies of the bimetallic complex, including EPR, PL, UV-vis, and NMR experiments, reveal two sequential one-electron transfers to the NDI unit, generating NDI⋅- and NDI2- in the presence of F- selectively. This process inhibits the primary electron transfer from Ru(II) to the NDI unit, thereby allowing the 3MLCT-based emission of the complex to be recovered, resulting in a corresponding ten-fold increase in luminescence intensity. DFT and TD-DFT computational studies further elucidate the experimentally observed absorption spectra of the complex. Secondly, CT-DNA binding studies with the complex are performed using various spectroscopic analyses such as UV-vis, PL, and CD. Comparative DNA binding studies employing EB and molecular docking reveal that the binding with CT-DNA occurs through both intercalative and groove binding modalities. Thirdly, the photocatalytic activities of the complex towards C-C, C-N, and C-O bond formation in organic cross-coupling reactions, including the amidation of α-keto acids to amines and the oxidation of alcohol to aldehydes, are also demonstrated.
Collapse
Affiliation(s)
- Ambreen Rashid
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Sahidul Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
- Department of Chemistry, Ramsaday College, Amta, Howrah, West Bengal, 711401, India
| | - Abu Saleh Musha Islam
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Subal Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
36
|
Katsumata Y, Muramoto Y, Ishida N, Takemura R, Nagashima K, Ikoma T, Kawamatsu N, Araki M, Goda A, Okawara H, Sawada T, Ichihara YK, Hattori O, Yamaoka K, Seki Y, Ryuzaki T, Ikura H, Nakashima D, Nagura T, Nakamura M, Sato K, Shiraishi Y. Sweat lactate sensor for detecting anaerobic threshold in heart failure: a prospective clinical trial (LacS-001). Sci Rep 2024; 14:18985. [PMID: 39152287 PMCID: PMC11329511 DOI: 10.1038/s41598-024-70001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
A simple method for determining the anaerobic threshold in patients with heart failure (HF) is needed. This prospective clinical trial (LacS-001) aimed to investigate the safety of a sweat lactate-monitoring sensor and the correlation between lactate threshold in sweat (sLT) and ventilatory threshold (VT). To this end, we recruited 50 patients with HF and New York Heart Association functional classification I-II (mean age: 63.5 years, interquartile range: 58.0-72.0). Incremental exercise tests were conducted while monitoring sweat lactate levels using our sensor. sLT was defined as the first steep increase in lactate levels from baseline. Primary outcome measures were a correlation coefficient of ≥ 0.6 between sLT and VT, similarities as assessed by the Bland-Altman analysis, and standard deviation of the difference within 15 W. A correlation coefficient of 0.651 (95% confidence interval, 0.391-0.815) was achieved in 32/50 cases. The difference between sLT and VT was -4.9 ± 15.0 W. No comparative error was noted in the Bland-Altman plot. No device-related adverse events were reported among the registered patients. Our sweat lactate sensor is safe and accurate for detecting VT in patients with HF in clinical settings, thereby offering valuable additional information for treatment.
Collapse
Affiliation(s)
- Yoshinori Katsumata
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Yuki Muramoto
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Noriyuki Ishida
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Ryo Takemura
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Kengo Nagashima
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Takenori Ikoma
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoto Kawamatsu
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masaru Araki
- Second Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ayumi Goda
- Department of Cardiovascular Medicine, Faculty of Medicine, Kyorin University, Tokyo, Japan
| | - Hiroki Okawara
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tomonori Sawada
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yumiko Kawakubo Ichihara
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Osamu Hattori
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Koki Yamaoka
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuta Seki
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Toshinobu Ryuzaki
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hidehiko Ikura
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Nakashima
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Takeo Nagura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Clinical Biomechanics, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kazuki Sato
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yasuyuki Shiraishi
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
37
|
Imali DY, Perera ECJ, Kaumal MN, Dissanayake DP. Conducting polymer functionalization in search of advanced materials in ionometry: ion-selective electrodes and optodes. RSC Adv 2024; 14:25516-25548. [PMID: 39139237 PMCID: PMC11321474 DOI: 10.1039/d4ra02615b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Functionalized conducting polymers (FCPs) have recently garnered attention as ion-selective sensor materials, surpassing their intrinsic counterparts due to synergistic effects that lead to enhanced electrochemical and analytical parameters. Following a brief introduction of the fundamental concepts, this article provides a comprehensive review of the recent developments in the application of FCPs in ion-selective electrodes (ISEs) and ion-selective optodes (ISOs), particularly as ion-to-electron transducers, optical transducers, and ion-selective membranes. Utilizing FCPs in these devices offers a promising avenue for detecting and measuring ions in various applications, regardless of the sample nature and composition. Research has focused on functionalizing different conducting polymers, such as polyaniline and polypyrrole, through strategies such as doping and derivatization to alter their hydrophobicity, conductance, redox capacitance, surface area, pH sensitivity, gas and light sensitivity, etc. These modifications aim to enhance performance outcomes, including potential stability/emission signal stability, reproducibility and low detection limits. The advancements have led to the transition of ISEs from conventional zero-current potentiometric ion sensing to innovative current-triggered sensing approaches, enabling calibration-free applications and emerging concepts such as opto-electro dual sensing systems. The intrinsic pH cross-response and instability of the optical signal of ISOs have been overcome through the novel optical signal transduction mechanisms facilitated by FCPs. In this review, the characteristics of materials, functionalization approaches, particular implementation strategies, specific performance outcomes and challenges faced are discussed. Consolidating dispersed information in the field, the in-depth analysis presented here is poised to drive further innovations by broadening the scope of ion-selective sensors in real-world scenarios.
Collapse
Affiliation(s)
- D Yureka Imali
- Department of Chemistry, University of Colombo Colombo 03 Sri Lanka
| | | | - M N Kaumal
- Department of Chemistry, University of Colombo Colombo 03 Sri Lanka
| | | |
Collapse
|
38
|
Verzino SJ, Priyev SA, Estrada VAS, Crowley GX, Rutkowski A, Lam AC, Nazginov ES, Kotemelo P, Bacelo A, Sukhram DT, Vázquez FX, Juárez JF. Expanding salivary biomarker detection by creating a synthetic neuraminic acid sensor via chimeragenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598939. [PMID: 38915506 PMCID: PMC11195194 DOI: 10.1101/2024.06.13.598939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Accurate and timely diagnosis of oral squamous cell carcinoma (OSCC) is crucial in preventing its progression to advanced stages with a poor prognosis. As such, the construction of sensors capable of detecting previously established disease biomarkers for the early and non-invasive diagnosis of this and many other conditions has enormous therapeutic potential. In this work, we apply synthetic biology techniques for the development of a whole-cell biosensor (WCB) that leverages the physiology of engineered bacteria in vivo to promote the expression of an observable effector upon detection of a soluble molecule. To this end, we have constructed a bacterial strain expressing a novel chimeric transcription factor (Sphnx) for the detection of N-acetylneuraminic acid (Neu5Ac), a salivary biomolecule correlated with the onset of OSCC. This WCB serves as the proof-of-concept of a platform that can eventually be applied to clinical screening panels for a multitude of oral and systemic medical conditions whose biomarkers are present in saliva.
Collapse
|
39
|
Amers EL, Orme BV, Shi Y, Torun H, Dodd LE. Embroidered Interdigitated Electrodes (IDTs) with Wireless Readout for Continuous Biomarker Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:4643. [PMID: 39066041 PMCID: PMC11280827 DOI: 10.3390/s24144643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Non-invasive continuous health monitoring has become feasible with the advancement of biosensors. While monitoring certain biomarkers such as heart rate or skin temperature are now at a certain maturity, monitoring molecular biomarkers is still challenging. Progress has been shown in sampling, measurement, and interpretation of data toward non-invasive molecular sensors that can be integrated into daily wearable items. Toward this goal, this paper explores the potential of embroidered interdigitated transducer (IDT)-based sensors for non-invasive, continuous monitoring of human biomarkers, particularly glucose levels, in human sweat. The study employs innovative embroidery techniques to create flexible fabric-based sensors with gold-coated IDTs. In controlled experiments, we have shown the variation of glucose concentration in water can be wirelessly detected by tracking the resonant frequency of the embroidered sensors. The current sensors operate at 1.8 GHz to 2 GHz and respond to the change in glucose concentration with a sensitivity of 0.17 MHz/(mg/dL). The embroidered IDT-based sensors with wireless sensing will be a new measurement modality for molecular wearable sensors. The establishment of a wireless sensing mechanism for embroidered IDT-based sensors will be followed by an investigation of sweat for molecular detection. This will require adding functionalities for sampling and interpretation of acquired data. We envisage the embroidered IDT-based sensors offer a unique approach for seamless integration into clothing, paving the way for personalised, continuous health data capture.
Collapse
Affiliation(s)
- Emmy L. Amers
- Smart Materials & Surfaces Laboratory—E-Textiles Centre, Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK (H.T.)
| | - Bethany V. Orme
- Smart Materials & Surfaces Laboratory—E-Textiles Centre, Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK (H.T.)
| | - Yuyuan Shi
- Digital Textile Lab, School of Design, Faculty of Arts, Design and Social Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Hamdi Torun
- Smart Materials & Surfaces Laboratory—E-Textiles Centre, Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK (H.T.)
| | - Linzi E. Dodd
- Smart Materials & Surfaces Laboratory—E-Textiles Centre, Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK (H.T.)
| |
Collapse
|
40
|
Lipovka A, Fatkullin M, Averkiev A, Pavlova M, Adiraju A, Weheabby S, Al-Hamry A, Kanoun O, Pašti I, Lazarevic-Pasti T, Rodriguez RD, Sheremet E. Surface-Enhanced Raman Spectroscopy and Electrochemistry: The Ultimate Chemical Sensing and Manipulation Combination. Crit Rev Anal Chem 2024; 54:110-134. [PMID: 35435777 DOI: 10.1080/10408347.2022.2063683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
One of the lessons we learned from the COVID-19 pandemic is that the need for ultrasensitive detection systems is now more critical than ever. While sensors' sensitivity, portability, selectivity, and low cost are crucial, new ways to couple synergistic methods enable the highest performance levels. This review article critically discusses the synergetic combinations of optical and electrochemical methods. We also discuss three key application fields-energy, biomedicine, and environment. Finally, we selected the most promising approaches and examples, the open challenges in sensing, and ways to overcome them. We expect this work to set a clear reference for developing and understanding strategies, pros and cons of different combinations of electrochemical and optical sensors integrated into a single device.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Olfa Kanoun
- Technische Universität Chemnitz, Chemnitz, Germany
| | - Igor Pašti
- Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Tamara Lazarevic-Pasti
- Department of Physical Chemistry, "VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Vinca, Serbia
| | | | | |
Collapse
|
41
|
Herrald AL, Ambrogi EK, Mirica KA. Electrochemical Detection of Gasotransmitters: Status and Roadmap. ACS Sens 2024; 9:1682-1705. [PMID: 38593007 PMCID: PMC11196117 DOI: 10.1021/acssensors.3c02529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), are a class of gaseous, endogenous signaling molecules that interact with one another in the regulation of critical cardiovascular, immune, and neurological processes. The development of analytical sensing mechanisms for gasotransmitters, especially multianalyte mechanisms, holds vast importance and constitutes a growing area of study. This review provides an overview of electrochemical sensing mechanisms with an emphasis on opportunities in multianalyte sensing. Electrochemical methods demonstrate good sensitivity, adequate selectivity, and the most well-developed potential for the multianalyte detection of gasotransmitters. Future research will likely address challenges with sensor stability and biocompatibility (i.e., sensor lifetime and cytotoxicity), sensor miniaturization, and multianalyte detection in biological settings.
Collapse
Affiliation(s)
- Audrey L Herrald
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Emma K Ambrogi
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| |
Collapse
|
42
|
Park S, Kaufman D, Ben-Yoav H, Yossifon G. On-Chip Electrochemical Sensing with an Enhanced Detecting Signal Due to Concentration Polarization-Based Analyte Preconcentration. Anal Chem 2024; 96:6501-6510. [PMID: 38593185 PMCID: PMC11044107 DOI: 10.1021/acs.analchem.4c01018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024]
Abstract
Here, we integrated two key technologies within a microfluidic system, an electrokinetic preconcentration of analytes by ion Concentration Polarization (CP) and local electrochemical sensors to detect the analytes, which can synergistically act to significantly enhance the detection signal. This synergistic combination, offering both decoupled and coupled operation modes for continuous monitoring, was validated by the intensified fluorescent intensities of CP-preconcentrated analytes and the associated enhanced electrochemical response using differential pulse voltammetry and chronoamperometry. The system performance was evaluated by varying the location of the active electrochemical sensor, target analyte concentrations, and electrolyte concentration using fluorescein molecules as the model analyte and Homovanillic acid (HVA) as the target bioanalyte within both phosphate-buffered saline (PBS) and artificial sweat solution. The combination of on-chip electrochemical sensing with CP-based preconcentration renders this generic approach adaptable to various analytes. This advanced system shows remarkable promise for enhancing biosensing detection in practical applications while bridging the gap between fundamental research and practical implementation.
Collapse
Affiliation(s)
- Sinwook Park
- School
of Mechanical Engineering, Tel-Aviv University, Tel Aviv, 6997801, Israel
- Department
of Biomedical Engineering, Tel-Aviv University, Tel Aviv, 6997801, Israel
| | - Daniel Kaufman
- Nanobioelectronics
Laboratory (NBEL), Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Hadar Ben-Yoav
- Nanobioelectronics
Laboratory (NBEL), Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Gilad Yossifon
- School
of Mechanical Engineering, Tel-Aviv University, Tel Aviv, 6997801, Israel
- Department
of Biomedical Engineering, Tel-Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
43
|
Bernasconi S, Angelucci A, De Cesari A, Masotti A, Pandocchi M, Vacca F, Zhao X, Paganelli C, Aliverti A. Recent Technologies for Transcutaneous Oxygen and Carbon Dioxide Monitoring. Diagnostics (Basel) 2024; 14:785. [PMID: 38667431 PMCID: PMC11049249 DOI: 10.3390/diagnostics14080785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The measurement of partial pressures of oxygen (O2) and carbon dioxide (CO2) is fundamental for evaluating a patient's conditions in clinical practice. There are many ways to retrieve O2/CO2 partial pressures and concentrations. Arterial blood gas (ABG) analysis is the gold standard technique for such a purpose, but it is invasive, intermittent, and potentially painful. Among all the alternative methods for gas monitoring, non-invasive transcutaneous O2 and CO2 monitoring has been emerging since the 1970s, being able to overcome the main drawbacks of ABG analysis. Clark and Severinghaus electrodes enabled the breakthrough for transcutaneous O2 and CO2 monitoring, respectively, and in the last twenty years, many innovations have been introduced as alternatives to overcome their limitations. This review reports the most recent solutions for transcutaneous O2 and CO2 monitoring, with a particular consideration for wearable measurement systems. Luminescence-based electronic paramagnetic resonance and photoacoustic sensors are investigated. Optical sensors appear to be the most promising, giving fast and accurate measurements without the need for frequent calibrations and being suitable for integration into wearable measurement systems.
Collapse
|
44
|
Shi S, Ming Y, Wu H, Zhi C, Yang L, Meng S, Si Y, Wang D, Fei B, Hu J. A Bionic Skin for Health Management: Excellent Breathability, In Situ Sensing, and Big Data Analysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306435. [PMID: 37607262 DOI: 10.1002/adma.202306435] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/11/2023] [Indexed: 08/24/2023]
Abstract
Developing an intelligent wearable system is of great significance to human health management. An ideal health-monitoring patch should possess key characteristics such as high air permeability, moisture-wicking function, high sensitivity, and a comfortable user experience. However, such a patch that encompasses all these functions is rarely reported. Herein, an intelligent bionic skin patch for health management is developed by integrating bionic structures, nano-welding technology, flexible circuit design, multifunctional sensing functions, and big data analysis using advanced electrospinning technology. By controlling the preparation of nanofibers and constructing bionic secondary structures, the resulting nanofiber membrane closely resembles human skin, exhibiting excellent air/moisture permeability, and one-side sweat-wicking properties. Additionally, the bionic patch is endowed with a high-precision signal acquisition capabilities for sweat metabolites, including glucose, lactic acid, and pH; skin temperature, skin impedance, and electromyographic signals can be precisely measured through the in situ sensing electrodes and flexible circuit design. The achieved intelligent bionic skin patch holds great potential for applications in health management systems and rehabilitation engineering management. The design of the smart bionic patch not only provides high practical value for health management but also has great theoretical value for the development of the new generation of wearable electronic devices.
Collapse
Affiliation(s)
- Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yang Ming
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - Hanbai Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chuanwei Zhi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Liangtao Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, 518055, China
| | - Shuo Meng
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Dong Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- College of Textile Science and Engineering, Key Laboratory of Eco-Textile Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Bin Fei
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
45
|
Reza MS, Seonu S, Abu Zahed M, Asaduzzaman M, Song H, Hoon Jeong S, Park JY. Reduced graphene oxide-functionalized polymer microneedle for continuous and wide-range monitoring of lactate in interstitial fluid. Talanta 2024; 270:125582. [PMID: 38176248 DOI: 10.1016/j.talanta.2023.125582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Despite substantial developments in minimally invasive lactate monitoring microneedle electrodes, most such electrode developments have focused on either sensitivity or invasiveness while ignoring a wide range of detection, which is the most important factor in measuring the normal range of lactate in interstitial fluid (ISF). Herein, we present a polymer-based planar microneedle electrode fabrication using microelectromechanical and femtosecond laser technology for the continuous monitoring of lactate in ISF. The microneedle is functionalized with two-dimensional reduced graphene oxide (rGO) and electrochemically synthesized platinum nanoparticles (PtNPs). A particular quantity of Nafion (1.25 wt%) is applied on top of the lactate enzyme to create a diffusion-controlled membrane. Due to the combined effects of the planar structure of the microneedle, rGO, and membrane, the biosensor exhibited excellent linearity up to 10 mM lactate with a limit of detection of 2.04 μM, high sensitivity of 43.96 μA mM-1cm-2, a reaction time of 8 s and outstanding stability, selectivity, and repeatability. The feasibility of the microneedle is evaluated by using it to measure lactate concentrations in artificial ISF and human serum. The results demonstrate that the microneedle described here has great potential for use in real-time lactate monitoring for use in sports medicine and treatment.
Collapse
Affiliation(s)
- Md Selim Reza
- Advanced Sensor and Energy Research (ASER) Laboratory, Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul, 139-701, Republic of Korea
| | - Sookyeong Seonu
- Advanced Sensor and Energy Research (ASER) Laboratory, Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul, 139-701, Republic of Korea
| | - Md Abu Zahed
- Advanced Sensor and Energy Research (ASER) Laboratory, Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul, 139-701, Republic of Korea
| | - Md Asaduzzaman
- Advanced Sensor and Energy Research (ASER) Laboratory, Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul, 139-701, Republic of Korea
| | - Hyesu Song
- Advanced Sensor and Energy Research (ASER) Laboratory, Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul, 139-701, Republic of Korea
| | - Seong Hoon Jeong
- Advanced Sensor and Energy Research (ASER) Laboratory, Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul, 139-701, Republic of Korea
| | - Jae Yeong Park
- Advanced Sensor and Energy Research (ASER) Laboratory, Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul, 139-701, Republic of Korea.
| |
Collapse
|
46
|
Huang X, Yao C, Huang S, Zheng S, Liu Z, Liu J, Wang J, Chen HJ, Xie X. Technological Advances of Wearable Device for Continuous Monitoring of In Vivo Glucose. ACS Sens 2024; 9:1065-1088. [PMID: 38427378 DOI: 10.1021/acssensors.3c01947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Managing diabetes is a chronic challenge today, requiring monitoring and timely insulin injections to maintain stable blood glucose levels. Traditional clinical testing relies on fingertip or venous blood collection, which has facilitated the emergence of continuous glucose monitoring (CGM) technology to address data limitations. Continuous glucose monitoring technology is recognized for tracking long-term blood glucose fluctuations, and its development, particularly in wearable devices, has given rise to compact and portable continuous glucose monitoring devices, which facilitates the measurement of blood glucose and adjustment of medication. This review introduces the development of wearable CGM-based technologies, including noninvasive methods using body fluids and invasive methods using implantable electrodes. The advantages and disadvantages of these approaches are discussed as well as the use of microneedle arrays in minimally invasive CGM. Microneedle arrays allow for painless transdermal puncture and are expected to facilitate the development of wearable CGM devices. Finally, we discuss the challenges and opportunities and look forward to the biomedical applications and future directions of wearable CGM-based technologies in biological research.
Collapse
Affiliation(s)
- Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shantao Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jing Liu
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
47
|
Wanniarachchi PC, Upul Kumarasinghe KG, Jayathilake C. Recent advancements in chemosensors for the detection of food spoilage. Food Chem 2024; 436:137733. [PMID: 37862988 DOI: 10.1016/j.foodchem.2023.137733] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 07/10/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
The need for reliable sensors has become a major requirement to confirm the quality and safety of food commodities. Chemosensors are promising sensing tools to identify contaminants and food spoilage to ensure food safety. Chemosensing materials are evolving and becoming potential mechanisms to enable onsite and real-time monitoring of food safety. This review summarizes the information about the basic four types of chemosensors (colorimetric, optical, electrochemical, and piezoelectric) employed in the food sector, the latest advancements in the development of chemo-sensing mechanisms, and their food applications, with special emphasis on the future outlook of them. In this review, we discuss the novel chemosensors developed from the year 2018 to 2022 to detect spoilage in some common types of food like fish, meat, milk, cheese and soy sauce. This work will provide a fundamental step toward further development and innovations of chemosensors targeting different arenas in the food industry.
Collapse
Affiliation(s)
| | - K G Upul Kumarasinghe
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Chathuni Jayathilake
- School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| |
Collapse
|
48
|
Tang C, Zhou K, Wang R, Li M, Liu W, Li C, Chen X, Lu Q, Chang Y. Wearable biosensors for human sweat glucose detection based on carbon black nanoparticles. Anal Bioanal Chem 2024; 416:1407-1415. [PMID: 38246908 DOI: 10.1007/s00216-024-05135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Wearable glucose biosensors enable noninvasive glucose monitoring, thereby enhancing blood glucose management. In this work, we present a wearable biosensor based on carbon black nanoparticles (CBNPs) for glucose detection in human sweat. The biosensor consists of CBNPs, Prussian blue (PB), glucose oxidase, chitosan, and Nafion. The fabricated biosensor has a linear range of 5 µM to 1250 µM, sensitivity of 14.64 µA mM-1 cm-2, and a low detection potential (-0.05 V, vs. Ag/AgCl). The detection limit for glucose was calculated as 4.83 µM. This reusable biosensor has good selectivity and stability and exhibits a good response to glucose in real sweat. These results demonstrate the potential of our CBNP-based biosensor for monitoring blood glucose in human sweat.
Collapse
Affiliation(s)
- Chaoli Tang
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, 232001, China
| | - Kai Zhou
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, 232001, China
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, 231131, China
- Intelligent Agriculture Engineering Laboratory of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Rujing Wang
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, 231131, China.
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Mengya Li
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, 231131, China
- Intelligent Agriculture Engineering Laboratory of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wenlong Liu
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, 232001, China
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, 231131, China
- Intelligent Agriculture Engineering Laboratory of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Chengpan Li
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China
| | - Xiangyu Chen
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, 231131, China
- Intelligent Agriculture Engineering Laboratory of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Qinwen Lu
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, 231131, China
- Intelligent Agriculture Engineering Laboratory of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yongjia Chang
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, 231131, China.
- Intelligent Agriculture Engineering Laboratory of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
49
|
M R K, Panicker LR, Narayan R, Kotagiri YG. Biopolymer-protected graphene-Fe 3O 4 nanocomposite based wearable microneedle sensor: toward real-time continuous monitoring of dopamine. RSC Adv 2024; 14:7131-7141. [PMID: 38414985 PMCID: PMC10898425 DOI: 10.1039/d4ra00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
Neurological disorders can occur in the human body as a result of nano-level variations in the neurotransmitter levels. Patients affected by neuropsychiatric disorders, that are chronic require continuous monitoring of these neurotransmitter levels for effective disease management. The current work focus on developing a highly sensitive and personalized sensor for continuous monitoring of dopamine. Here we propose a wearable microneedle-based electrochemical sensor, to continuously monitor dopamine in interstitial fluid (ISF). A chitosan-protected hybrid nanomaterial Fe3O4-GO composite has been used as a chemical recognition element protected by Nafion antifouling coating layer. The morphological and physiochemical characterizations of the nanocomposite were carried out with XRD, XPS, FESEM, EDAX and FT-IR. The principle of the developed sensor relies on orthogonal detection of dopamine with square wave voltammetry and chronoamperometric techniques. The microneedle sensor array exhibited an attractive analytical performance toward detecting dopamine in phosphate buffer and artificial ISF. The limit of detection (LOD) of the developed sensor was observed to be low, 90 nM in square wave voltammetry and 0.6 μM in chronoamperometric analysis. The practical applicability of the microneedle sensor array has been demonstrated on a skin-mimicking phantom gel model. The microneedle sensor also exhibited good long-term storage stability, reproducibility, and sensitivity. All of these promising results suggest that the proposed microneedle sensor array could be reliable for the continuous monitoring of dopamine.
Collapse
Affiliation(s)
- Keerthanaa M R
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
| | - Lakshmi R Panicker
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
| | - Roger Narayan
- Department of Biomedical Engineering, NC State University Raleigh NC 27695 USA
| | - Yugender Goud Kotagiri
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
| |
Collapse
|
50
|
Fattahi M, Rahdan F, Shaterabadi D, Zamani Sani M, Alizadeh M, Khatami SH, Taheri-Anganeh M, Movahedpour A, Ghasemi H. MicroRNA biosensors for the detection of liver cancer. Clin Chim Acta 2024; 554:117796. [PMID: 38272250 DOI: 10.1016/j.cca.2024.117796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Liver cancer is one of the deadliest types worldwide and early diagnosis is highly important for successful treatment. Therefore, it is necessary to develop rapid, sensitive, simple, and inexpensive analytical tools for its detection. MicroRNAs (miRNA) represent unique biomarkers whose expression in biofluids is strongly associated with cancer in general and miR-21, -31, -122, -145, -146a, -200c, -221, -222, and -223 in liver cancer, specifically. Various biosensors for miRNA detection have been developed. These include electrochemical biosensors based on amperometric, potentiometric, conductometric and impedimetric technology. Furthermore, the use of advanced nanomaterials with enhanced chemical stability, conductivity and electrocatalytic activity have greatly increased the sensitivity and specificity of these devices. The present review focuses on recent advances in electrochemical biosensors for miRNA detection in liver cancer.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Donya Shaterabadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Zamani Sani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | | |
Collapse
|