1
|
Ucheana IA, Omeka ME, Ezugwu AL, Agbasi JC, Egbueri JC, Abugu HO, Aralu CC. A targeted review on occurrence, remediation, and risk assessments of bisphenol A in Africa. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1193. [PMID: 39532752 DOI: 10.1007/s10661-024-13337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Bisphenol A (BPA) is a vital raw material used to manufacture various household and commercial goods. However, BPA is a contaminant of emerging concern (CEC) and an endocrine-disrupting chemical (EDC) capable of migrating and bio-accumulating in environmental and biological compartments. At threshold levels, they become toxic causing adverse health and environmental issues. BPA's occurrence in food, food contact materials (FCMs), beverages, water, cosmetics, consumer goods, soil, sediments, and human/biological fluids across Africa was outlined. Unlike most reviews, it further collated data on BPA remediation techniques, including the human and ecological risk assessment studies conducted across Africa. A systematic scrutiny of the major indexing databases was employed extracting relevant data for this study. Results reveal that only 10 out of 54 countries have researched BPA in Africa. BPA levels in water were the most investigated, whereas levels in cosmetics and consumer goods were the least studied. Maximum BPA concentrations found in Africa were 3,590,000 ng/g (cosmetic and consumer goods), 154,820,000 ng/g (soils), 189 ng/mL (water), 1139 ng/g (food), and 208.55 ng/mL (biological fluids). The optimum percentage removal/degradation of BPA was within 70-100%. The potential health and ecological risk levels were assessed by comparing them with recommended limits and were found to fall within safe/low risks to unsafe/high risks. In conclusion, this study revealed that there is still little research on BPA in Africa. Levels detected in some matrices call for increased research, stricter health and environmental regulations, and surveillance.
Collapse
Affiliation(s)
- Ifeanyi Adolphus Ucheana
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Central Science Laboratory, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Michael Ekuru Omeka
- Department of Geology, University of Calabar, Etagbor, 540271, Cross River State, Nigeria
| | - Arinze Longinus Ezugwu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Johnson C Agbasi
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, 431124, Anambra State, Nigeria
| | - Johnbosco C Egbueri
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, 431124, Anambra State, Nigeria
| | - Hillary Onyeka Abugu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
| | - Chiedozie Chukwuemeka Aralu
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, Awka, 420007, Anambra State, Nigeria
| |
Collapse
|
2
|
Dolz M, Monterrey DT, Quartinello F, de Santos PG, Mateljak I, Pellis A, Guebitz G, Viña-González J, Alcalde M. Enzyme Benchmarking with Polyethylene Furanoate Soluble Scaffolds for Directed Evolution of PEFases. ACS OMEGA 2024; 9:45633-45640. [PMID: 39554451 PMCID: PMC11561765 DOI: 10.1021/acsomega.4c09053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024]
Abstract
Plastic waste is a major threat in our industrialized world and is driving research into bioplastics. The success of biobased polyethylene furanoate (PEF) as a viable alternative to polyethylene terephthalate (PET) of fossil origin will depend on designing effective enzymes to break it down, aiding its recycling. Here, a panel of fungal and bacterial cutinases were functionally expressed in a tandem yeast expression system based on Saccharomyces cerevisiae and Pichia pastoris. The activity of the enzyme panel was tested with soluble PEF model scaffolds, observing a correlation with the degradation of real PEF powder. A high-throughput colorimetric screening assay based on the PEF scaffold diethyl furan-2,5-dicarboxylate was developed, establishing the basis for future directed evolution campaigns of PEFases.
Collapse
Affiliation(s)
- Mikel Dolz
- EvoEnzyme
S.L., Parque Científico de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Dianelis T. Monterrey
- Department
of Biocatalysis, Institute of Catalysis,
CSIC, Marie Curie 2,
Cantoblanco, 28049 Madrid, Spain
| | - Felice Quartinello
- Austrian
Center of Industrial Biotechnology, Acib GmbH, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | | | - Ivan Mateljak
- EvoEnzyme
S.L., Parque Científico de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Alessandro Pellis
- Department
of Chemistry and Industrial Chemistry, University
of Genova, via Dodecaneso 31, 16146 Genova, Italy
| | - Georg Guebitz
- Department
of Agrobiotechnology IFA-Tulln, University
of Natural Resources and Life Sciences Vienna, Institute of Environmental
Biotechnology, Konrad
Lorenz Strasse 20, 3430 Tulln an der Donau, Austria
| | | | - Miguel Alcalde
- Department
of Biocatalysis, Institute of Catalysis,
CSIC, Marie Curie 2,
Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
3
|
Pathak GS, Hinge M, Otzen DE. Transdisciplinary pragmatic melioration for the plastic life cycle: Why the social, natural, and technical sciences should prioritize reducing harm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165154. [PMID: 37385513 DOI: 10.1016/j.scitotenv.2023.165154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/24/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
Plastics underpin modern society but also threaten to choke it. Only 9 % of all plastic waste is recycled, usually with loss of quality ("downcycling"); the rest is landfilled or dumped (79 %) or incinerated (12 %). Put bluntly, the "plastic age" needs a "sustainable plastic culture." Consequently, we urgently need to develop a global and transdisciplinary approach not only to fully recycle plastics but also to manage the harms across their life cycle. The past decade has witnessed an explosion in research on new technologies and interventions that purport to help solve the plastic waste challenge; however, this work has, in most cases, been carried forward within single disciplines (for example, researching novel chemical and bio-based technologies for plastic degradation, engineering processing equipment innovations, and mapping recycling behaviours). In particular, although there has been vast progress within individual scientific fields, such work does not address the complexities of various plastic types and waste management systems. Meanwhile, research on the social contexts (and constraints) of plastic use and disposal is rarely in conversation with the sciences to drive innovation. In short, research on plastics typically lacks a transdisciplinary perspective. In this review, we urge the adoption of a transdisciplinary approach that focuses on pragmatic melioration; such an approach combines the natural and technical sciences with the social sciences to focus on the mitigation of harms across the plastic life cycle. To illustrate our case, we review the status of plastic recycling from these three scientific perspectives. Based on this, we advocate 1) foundational studies to identify sources of harm and 2) global/local interventions aimed at those plastics and aspects of the plastic life cycle that cause maximal harm, both in terms of planetary welfare and social justice. We believe this approach to plastic stewardship can be a showcase for tackling other environmental challenges.
Collapse
Affiliation(s)
- Gauri S Pathak
- Department of Global Studies, Aarhus University, Jens Chr. Skous Vej 7, 8000 Aarhus C, Denmark.
| | - Mogens Hinge
- Department of Biological and Chemical Engineering - Process and Materials Engineering, Aarhus University, Aabogade 40, 8000 Aarhus C, Denmark.
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
| |
Collapse
|
4
|
Fungal bioproducts for petroleum hydrocarbons and toxic metals remediation: recent advances and emerging technologies. Bioprocess Biosyst Eng 2023; 46:393-428. [PMID: 35943595 DOI: 10.1007/s00449-022-02763-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/22/2022] [Indexed: 11/02/2022]
Abstract
Petroleum hydrocarbons and toxic metals are sources of environmental contamination and are harmful to all ecosystems. Fungi have metabolic and morphological plasticity that turn them into potential prototypes for technological development in biological remediation of these contaminants due to their ability to interact with a specific contaminant and/or produced metabolites. Although fungal bioinoculants producing enzymes, biosurfactants, polymers, pigments and organic acids have potential to be protagonists in mycoremediation of hydrocarbons and toxic metals, they can still be only adjuvants together with bacteria, microalgae, plants or animals in such processes. However, the sudden accelerated development of emerging technologies related to the use of potential fungal bioproducts such as bioinoculants, enzymes and biosurfactants in the remediation of these contaminants, has boosted fungal bioprocesses to achieve higher performance and possible real application. In this review, we explore scientific and technological advances in bioprocesses related to the production and/or application of these potential fungal bioproducts when used in remediation of hydrocarbons and toxic metals from an integral perspective of biotechnological process development. In turn, it sheds light to overcome existing technological limitations or enable new experimental designs in the remediation of these and other emerging contaminants.
Collapse
|
5
|
Liu ZH, Li BZ, Yuan JS, Yuan YJ. Creative biological lignin conversion routes toward lignin valorization. Trends Biotechnol 2022; 40:1550-1566. [PMID: 36270902 DOI: 10.1016/j.tibtech.2022.09.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
Lignin, the largest renewable aromatic resource, is a promising alternative feedstock for the sustainable production of various chemicals, fuels, and materials. Despite this potential, lignin is characterized by heterogeneous and macromolecular structures that must be addressed. In this review, we present biological lignin conversion routes (BLCRs) that offer opportunities for overcoming these challenges, making lignin valorization feasible. Funneling heterogeneous aromatics via a 'biological funnel' offers a high-specificity bioconversion route for aromatic platform chemicals. The inherent aromaticity of lignin drives atom-economic functionalization routes toward aromatic natural product generation. By harnessing the ligninolytic capacities of specific microbial systems, powerful aromatic ring-opening routes can be developed to generate various value-added products. Thus, BLCRs hold the promise to make lignin valorization feasible and enable a lignocellulose-based bioeconomy.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Joshua S Yuan
- Department of Energy, Environmental, and Chemical Engineering, The McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
6
|
Bilal M, Iqbal HM. Nanoengineered ligninolytic enzymes for sustainable lignocellulose biorefinery. CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY 2022; 38:100697. [DOI: 10.1016/j.cogsc.2022.100697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
7
|
Barber-Zucker S, Mateljak I, Goldsmith M, Kupervaser M, Alcalde M, Fleishman SJ. Designed High-Redox Potential Laccases Exhibit High Functional Diversity. ACS Catal 2022; 12:13164-13173. [PMID: 36366766 PMCID: PMC9638991 DOI: 10.1021/acscatal.2c03006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/29/2022] [Indexed: 11/29/2022]
Abstract
White-rot fungi secrete an impressive repertoire of high-redox potential laccases (HRPLs) and peroxidases for efficient oxidation and utilization of lignin. Laccases are attractive enzymes for the chemical industry due to their broad substrate range and low environmental impact. Since expression of functional recombinant HRPLs is challenging, however, iterative-directed evolution protocols have been applied to improve their expression, activity, and stability. We implement a rational, stabilize-and-diversify strategy to two HRPLs that we could not functionally express. First, we use the PROSS stability-design algorithm to allow functional expression in yeast. Second, we use the stabilized enzymes as starting points for FuncLib active-site design to improve their activity and substrate diversity. Four of the FuncLib-designed HRPLs and their PROSS progenitor exhibit substantial diversity in reactivity profiles against high-redox potential substrates, including lignin monomers. Combinations of 3-4 subtle mutations that change the polarity, solvation, and sterics of the substrate-oxidation site result in orders of magnitude changes in reactivity profiles. These stable and versatile HRPLs are a step toward generating an effective lignin-degrading consortium of enzymes that can be secreted from yeast. The stabilize-and-diversify strategy can be applied to other challenging enzyme families to study and expand the utility of natural enzymes.
Collapse
Affiliation(s)
- Shiran Barber-Zucker
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| | - Ivan Mateljak
- Department
of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, Madrid 28049, Spain
- EvoEnzyme
S.L., Parque Científico de Madrid, C/Faraday, 7, Campus de Cantoblanco, Madrid 28049, Spain
| | - Moshe Goldsmith
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| | - Meital Kupervaser
- Nancy
and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7600001, Israel
| | - Miguel Alcalde
- Department
of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, Madrid 28049, Spain
| | - Sarel J. Fleishman
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| |
Collapse
|
8
|
Ayuso-Fernández I, Molpeceres G, Camarero S, Ruiz-Dueñas FJ, Martínez AT. Ancestral sequence reconstruction as a tool to study the evolution of wood decaying fungi. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1003489. [PMID: 37746217 PMCID: PMC10512382 DOI: 10.3389/ffunb.2022.1003489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/22/2022] [Indexed: 09/26/2023]
Abstract
The study of evolution is limited by the techniques available to do so. Aside from the use of the fossil record, molecular phylogenetics can provide a detailed characterization of evolutionary histories using genes, genomes and proteins. However, these tools provide scarce biochemical information of the organisms and systems of interest and are therefore very limited when they come to explain protein evolution. In the past decade, this limitation has been overcome by the development of ancestral sequence reconstruction (ASR) methods. ASR allows the subsequent resurrection in the laboratory of inferred proteins from now extinct organisms, becoming an outstanding tool to study enzyme evolution. Here we review the recent advances in ASR methods and their application to study fungal evolution, with special focus on wood-decay fungi as essential organisms in the global carbon cycling.
Collapse
Affiliation(s)
- Iván Ayuso-Fernández
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Gonzalo Molpeceres
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), CSIC, Madrid, Spain
| | - Susana Camarero
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), CSIC, Madrid, Spain
| | | | - Angel T. Martínez
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), CSIC, Madrid, Spain
| |
Collapse
|
9
|
Mattoo AJ, Nonzom S. Endophytes in Lignin Valorization: A Novel Approach. Front Bioeng Biotechnol 2022; 10:895414. [PMID: 35928943 PMCID: PMC9343868 DOI: 10.3389/fbioe.2022.895414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Lignin, one of the essential components of lignocellulosic biomass, comprises an abundant renewable aromatic resource on the planet earth. Although 15%––40% of lignocellulose pertains to lignin, its annual valorization rate is less than 2% which raises the concern to harness and/or develop effective technologies for its valorization. The basic hindrance lies in the structural heterogeneity, complexity, and stability of lignin that collectively makes it difficult to depolymerize and yield common products. Recently, microbial delignification, an eco-friendly and cheaper technique, has attracted the attention due to the diverse metabolisms of microbes that can channelize multiple lignin-based products into specific target compounds. Also, endophytes, a fascinating group of microbes residing asymptomatically within the plant tissues, exhibit marvellous lignin deconstruction potential. Apart from novel sources for potent and stable ligninases, endophytes share immense ability of depolymerizing lignin into desired valuable products. Despite their efficacy, ligninolytic studies on endophytes are meagre with incomplete understanding of the pathways involved at the molecular level. In the recent years, improvement of thermochemical methods has received much attention, however, we lagged in exploring the novel microbial groups for their delignification efficiency and optimization of this ability. This review summarizes the currently available knowledge about endophytic delignification potential with special emphasis on underlying mechanism of biological funnelling for the production of valuable products. It also highlights the recent advancements in developing the most intriguing methods to depolymerize lignin. Comparative account of thermochemical and biological techniques is accentuated with special emphasis on biological/microbial degradation. Exploring potent biological agents for delignification and focussing on the basic challenges in enhancing lignin valorization and overcoming them could make this renewable resource a promising tool to accomplish Sustainable Development Goals (SDG’s) which are supposed to be achieved by 2030.
Collapse
Affiliation(s)
| | - Skarma Nonzom
- *Correspondence: Skarma Nonzom, , orcid.org/0000-0001-9372-7900
| |
Collapse
|
10
|
Monterrey DT, Ayuso-Fernández I, Oroz-Guinea I, García-Junceda E. Design and biocatalytic applications of genetically fused multifunctional enzymes. Biotechnol Adv 2022; 60:108016. [PMID: 35781046 DOI: 10.1016/j.biotechadv.2022.108016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 01/01/2023]
Abstract
Fusion proteins, understood as those created by joining two or more genes that originally encoded independent proteins, have numerous applications in biotechnology, from analytical methods to metabolic engineering. The use of fusion enzymes in biocatalysis may be even more interesting due to the physical connection of enzymes catalyzing successive reactions into covalently linked complexes. The proximity of the active sites of two enzymes in multi-enzyme complexes can make a significant contribution to the catalytic efficiency of the reaction. However, the physical proximity of the active sites does not guarantee this result. Other aspects, such as the nature and length of the linker used for the fusion or the order in which the enzymes are fused, must be considered and optimized to achieve the expected increase in catalytic efficiency. In this review, we will relate the new advances in the design, creation, and use of fused enzymes with those achieved in biocatalysis over the past 20 years. Thus, we will discuss some examples of genetically fused enzymes and their application in carbon‑carbon bond formation and oxidative reactions, generation of chiral amines, synthesis of carbohydrates, biodegradation of plant biomass and plastics, and in the preparation of other high-value products.
Collapse
Affiliation(s)
- Dianelis T Monterrey
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Iván Ayuso-Fernández
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Isabel Oroz-Guinea
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Eduardo García-Junceda
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
11
|
Barber-Zucker S, Mindel V, Garcia-Ruiz E, Weinstein JJ, Alcalde M, Fleishman SJ. Stable and Functionally Diverse Versatile Peroxidases Designed Directly from Sequences. J Am Chem Soc 2022; 144:3564-3571. [PMID: 35179866 PMCID: PMC8895400 DOI: 10.1021/jacs.1c12433] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/19/2022]
Abstract
White-rot fungi secrete a repertoire of high-redox potential oxidoreductases to efficiently decompose lignin. Of these enzymes, versatile peroxidases (VPs) are the most promiscuous biocatalysts. VPs are attractive enzymes for research and industrial use but their recombinant production is extremely challenging. To date, only a single VP has been structurally characterized and optimized for recombinant functional expression, stability, and activity. Computational enzyme optimization methods can be applied to many enzymes in parallel but they require accurate structures. Here, we demonstrate that model structures computed by deep-learning-based ab initio structure prediction methods are reliable starting points for one-shot PROSS stability-design calculations. Four designed VPs encoding as many as 43 mutations relative to the wildtype enzymes are functionally expressed in yeast, whereas their wildtype parents are not. Three of these designs exhibit substantial and useful diversity in their reactivity profiles and tolerance to environmental conditions. The reliability of the new generation of structure predictors and design methods increases the scale and scope of computational enzyme optimization, enabling efficient discovery and exploitation of the functional diversity in natural enzyme families directly from genomic databases.
Collapse
Affiliation(s)
- Shiran Barber-Zucker
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| | - Vladimir Mindel
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| | - Eva Garcia-Ruiz
- Department
of Biocatalysis, Institute of Catalysis,
CSIC, Cantoblanco, Madrid 28094, Spain
| | - Jonathan J. Weinstein
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| | - Miguel Alcalde
- Department
of Biocatalysis, Institute of Catalysis,
CSIC, Cantoblanco, Madrid 28094, Spain
| | - Sarel J. Fleishman
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| |
Collapse
|
12
|
Surfing the wave of oxyfunctionalization chemistry by engineering fungal unspecific peroxygenases. Curr Opin Struct Biol 2022; 73:102342. [PMID: 35240455 DOI: 10.1016/j.sbi.2022.102342] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/04/2022] [Accepted: 01/17/2022] [Indexed: 11/20/2022]
Abstract
The selective insertion of oxygen into non-activated organic molecules has to date been considered of utmost importance to synthesize existing and next generation industrial chemicals or pharmaceuticals. In this respect, the minimal requirements and high activity of fungal unspecific peroxygenases (UPOs) situate them as the jewel in the crown of C-H oxyfunctionalization biocatalysts. Although their limited availability and development has hindered their incorporation into industry, the conjunction of directed evolution and computational design is approaching UPOs to practical applications. In this review, we will address the most recent advances in UPO engineering, both of the long and short UPO families, while discussing the future prospects in this fast-moving field of research.
Collapse
|
13
|
Immerzeel P, Fiskari J. Synergism of enzymes in chemical pulp bleaching from an industrial point of view‐A critical review. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peter Immerzeel
- Mid Sweden University, Fibre Science and Communication Network Sundsvall Sweden
| | - Juha Fiskari
- Mid Sweden University, Fibre Science and Communication Network Sundsvall Sweden
| |
Collapse
|
14
|
Abstract
The reconstruction of genetic material of ancestral organisms constitutes a powerful application of evolutionary biology. A fundamental step in this inference is the ancestral sequence reconstruction (ASR), which can be performed with diverse methodologies implemented in computer frameworks. However, most of these methodologies ignore evolutionary properties frequently observed in microbes, such as genetic recombination and complex selection processes, that can bias the traditional ASR. From a practical perspective, here I review methodologies for the reconstruction of ancestral DNA and protein sequences, with particular focus on microbes, and including biases, recommendations, and software implementations. I conclude that microbial ASR is a complex analysis that should be carefully performed and that there is a need for methods to infer more realistic ancestral microbial sequences.
Collapse
Affiliation(s)
- Miguel Arenas
- Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain.
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.
- Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain.
| |
Collapse
|
15
|
Mendes IV, Garcia MB, Bitencourt ACA, Santana RH, Lins PDC, Silveira R, Simmons BA, Gladden JM, Kruger RH, Quirino BF. Bacterial diversity dynamics in microbial consortia selected for lignin utilization. PLoS One 2021; 16:e0255083. [PMID: 34516585 PMCID: PMC8437272 DOI: 10.1371/journal.pone.0255083] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 07/10/2021] [Indexed: 01/23/2023] Open
Abstract
Lignin is nature's largest source of phenolic compounds. Its recalcitrance to enzymatic conversion is still a limiting step to increase the value of lignin. Although bacteria are able to degrade lignin in nature, most studies have focused on lignin degradation by fungi. To understand which bacteria are able to use lignin as the sole carbon source, natural selection over time was used to obtain enriched microbial consortia over a 12-week period. The source of microorganisms to establish these microbial consortia were commercial and backyard compost soils. Cultivation occurred at two different temperatures, 30°C and 37°C, in defined culture media containing either Kraft lignin or alkaline-extracted lignin as carbon source. iTag DNA sequencing of bacterial 16S rDNA gene was performed for each of the consortia at six timepoints (passages). The initial bacterial richness and diversity of backyard compost soil consortia was greater than that of commercial soil consortia, and both parameters decreased after the enrichment protocol, corroborating that selection was occurring. Bacterial consortia composition tended to stabilize from the fourth passage on. After the enrichment protocol, Firmicutes phylum bacteria were predominant when lignin extracted by alkaline method was used as a carbon source, whereas Proteobacteria were predominant when Kraft lignin was used. Bray-Curtis dissimilarity calculations at genus level, visualized using NMDS plots, showed that the type of lignin used as a carbon source contributed more to differentiate the bacterial consortia than the variable temperature. The main known bacterial genera selected to use lignin as a carbon source were Altererythrobacter, Aminobacter, Bacillus, Burkholderia, Lysinibacillus, Microvirga, Mycobacterium, Ochrobactrum, Paenibacillus, Pseudomonas, Pseudoxanthomonas, Rhizobiales and Sphingobium. These selected bacterial genera can be of particular interest for studying lignin degradation and utilization, as well as for lignin-related biotechnology applications.
Collapse
Affiliation(s)
- Isis Viana Mendes
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), PqEB s/n, Brasília, DF, Brazil
- Universidade de Brasília, Brasília, DF, Brazil
| | - Mariana Botelho Garcia
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), PqEB s/n, Brasília, DF, Brazil
- Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Ana Carolina Araújo Bitencourt
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), PqEB s/n, Brasília, DF, Brazil
- Universidade de Brasília, Brasília, DF, Brazil
| | | | - Philippe de Castro Lins
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), PqEB s/n, Brasília, DF, Brazil
- Universidade de Brasília, Brasília, DF, Brazil
| | | | - Blake A. Simmons
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California, United States of America
| | - John M. Gladden
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California, United States of America
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, California, United States of America
| | | | - Betania Ferraz Quirino
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), PqEB s/n, Brasília, DF, Brazil
- Universidade de Brasília, Brasília, DF, Brazil
- Universidade Católica de Brasília, Brasília, DF, Brazil
- * E-mail: ,
| |
Collapse
|
16
|
Sosa-Martínez J, Balagurusamy N, Benavente-Valdés JR, Montañez J, Morales-Oyervides L. Process performance improvement for the simultaneous production of ligninolytic enzymes in solid culture using agricultural wastes through the Taguchi method. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112966. [PMID: 34098354 DOI: 10.1016/j.jenvman.2021.112966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Despite a large amount of published research on the production of ligninolytic enzymes, the latter are not yet being applied to combat environmental pollution. No cost-effective process has been developed to date. This study describes an improvement of the solid-state fermentation procedure for the production of ligninolytic enzymes via Phanerochaete chrysosporium ATX by applying the Taguchi method and using an agro-industrial waste as substrate. The production of lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac) were simultaneously increased within a packed-bed column. The factors and levels studied were humidity (A: 60, 70, 80%), inoculum concentration (B: 7.5, 10.0, 12.5 × 105 spores/mL), packed density (C: 0.14, 0.16, 0.18 g/mL), and time (D: 6, 8, 10 days). The results showed that humidity was the factor with a higher effect upon LiP and Lac's production, while time was for MnP. Humidity exerted the greatest influence on the global desirability of the process. Improved conditions (A, 60%; B, 1.0 × 106 spores/mL; C, 0.17 g/mL; D, 8 days) were further validated: the results revealed an overall desirability increase of 237% over the unoptimized process. Process performance was likewise maintained at a higher scale (1:10). The results contribute to establishing a cost-effective bioprocess to produce ligninolytic enzymes by reducing the cost associated with raw materials and purification steps.
Collapse
Affiliation(s)
- Jazel Sosa-Martínez
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico
| | - Nagamani Balagurusamy
- Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, Libramiento Torreón-Matamoros, Torreón, Coahuila, 27000, Mexico
| | - Juan Roberto Benavente-Valdés
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico
| | - Julio Montañez
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico
| | - Lourdes Morales-Oyervides
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico.
| |
Collapse
|
17
|
Consolidated Bioprocessing: Synthetic Biology Routes to Fuels and Fine Chemicals. Microorganisms 2021; 9:microorganisms9051079. [PMID: 34069865 PMCID: PMC8157379 DOI: 10.3390/microorganisms9051079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/27/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
The long road from emerging biotechnologies to commercial “green” biosynthetic routes for chemical production relies in part on efficient microbial use of sustainable and renewable waste biomass feedstocks. One solution is to apply the consolidated bioprocessing approach, whereby microorganisms convert lignocellulose waste into advanced fuels and other chemicals. As lignocellulose is a highly complex network of polymers, enzymatic degradation or “saccharification” requires a range of cellulolytic enzymes acting synergistically to release the abundant sugars contained within. Complications arise from the need for extracellular localisation of cellulolytic enzymes, whether they be free or cell-associated. This review highlights the current progress in the consolidated bioprocessing approach, whereby microbial chassis are engineered to grow on lignocellulose as sole carbon sources whilst generating commercially useful chemicals. Future perspectives in the emerging biofoundry approach with bacterial hosts are discussed, where solutions to existing bottlenecks could potentially be overcome though the application of high throughput and iterative Design-Build-Test-Learn methodologies. These rapid automated pathway building infrastructures could be adapted for addressing the challenges of increasing cellulolytic capabilities of microorganisms to commercially viable levels.
Collapse
|
18
|
Chiadò A, Bosco F, Bardelli M, Simonelli L, Pedotti M, Marmo L, Varani L. Rational engineering of the lccβ T. versicolor laccase for the mediator-less oxidation of large polycyclic aromatic hydrocarbons. Comput Struct Biotechnol J 2021; 19:2213-2222. [PMID: 33995914 PMCID: PMC8099718 DOI: 10.1016/j.csbj.2021.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 01/10/2023] Open
Abstract
Computational-assisted protein engineering of the binding pocket of laccases. Mutants have activity increased up to ~ 300% in a broader pH range compared to the WT. Enhanced activity towards bulky PAHs in comparison to the WT enzyme. Ability to oxidize harmful PAH model compounds (dyes) that the WT enzyme cannot modify. Higher oxidation levels without mediators compared to the WT laccase with mediators.
Laccases are among the most sought-after biocatalyst for many green applications, from biosensors to pollution remedial, because they simply need oxygen from the air to oxidize and degrade a broad range of substrates. However, natural laccases cannot process large and toxic polycyclic aromatic hydrocarbons (PAHs) except in the presence of small molecules, called mediators, which facilitate the reaction but are inconvenient for practical on-field applications. Here we exploited structure-based protein engineering to generate rationally modified fungal laccases with increased ability to process bulky PAHs even in a mediator-less reaction. Computational simulations were used to estimate the impact of mutations in the enzymatic binding pocket on the ability to bind and oxidize a selected set of organic compounds. The most promising mutants were produced and their activity was evaluated by biochemical assays with phenolic and non-phenolic substrates. Mutant laccases engineered with a larger binding pocket showed enhanced activity (up to ~ 300% at pH 3.0) in a wider range of pH values (3.0–8.0) in comparison to the wild type enzyme. In contrast to the natural laccase, these mutants efficiently degraded bulky and harmful triphenylmethane dyes such as Ethyl Green (up to 91.64% after 24 h), even in the absence of mediators, with positive implications for the use of such modified laccases in many green chemistry processes (e.g. wastewater treatment).
Collapse
Affiliation(s)
- Alessandro Chiadò
- Department of Applied Science and Technology, Politecnico di Torino Corso, Duca degli Abruzzi 24, 10129 Torino, Italy
- Corresponding author.
| | - Francesca Bosco
- Department of Applied Science and Technology, Politecnico di Torino Corso, Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Marco Bardelli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vincenzo Vela 6, 6500, Bellinzona, Switzerland
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vincenzo Vela 6, 6500, Bellinzona, Switzerland
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vincenzo Vela 6, 6500, Bellinzona, Switzerland
| | - Luca Marmo
- Department of Applied Science and Technology, Politecnico di Torino Corso, Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vincenzo Vela 6, 6500, Bellinzona, Switzerland
| |
Collapse
|
19
|
Asemoloye MD, Marchisio MA, Gupta VK, Pecoraro L. Genome-based engineering of ligninolytic enzymes in fungi. Microb Cell Fact 2021; 20:20. [PMID: 33478513 PMCID: PMC7819241 DOI: 10.1186/s12934-021-01510-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
Background Many fungi grow as saprobic organisms and obtain nutrients from a wide range of dead organic materials. Among saprobes, fungal species that grow on wood or in polluted environments have evolved prolific mechanisms for the production of degrading compounds, such as ligninolytic enzymes. These enzymes include arrays of intense redox-potential oxidoreductase, such as laccase, catalase, and peroxidases. The ability to produce ligninolytic enzymes makes a variety of fungal species suitable for application in many industries, including the production of biofuels and antibiotics, bioremediation, and biomedical application as biosensors. However, fungal ligninolytic enzymes are produced naturally in small quantities that may not meet the industrial or market demands. Over the last decade, combined synthetic biology and computational designs have yielded significant results in enhancing the synthesis of natural compounds in fungi. Main body of the abstract In this review, we gave insights into different protein engineering methods, including rational, semi-rational, and directed evolution approaches that have been employed to enhance the production of some important ligninolytic enzymes in fungi. We described the role of metabolic pathway engineering to optimize the synthesis of chemical compounds of interest in various fields. We highlighted synthetic biology novel techniques for biosynthetic gene cluster (BGC) activation in fungo and heterologous reconstruction of BGC in microbial cells. We also discussed in detail some recombinant ligninolytic enzymes that have been successfully enhanced and expressed in different heterologous hosts. Finally, we described recent advance in CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR associated) protein systems as the most promising biotechnology for large-scale production of ligninolytic enzymes. Short conclusion Aggregation, expression, and regulation of ligninolytic enzymes in fungi require very complex procedures with many interfering factors. Synthetic and computational biology strategies, as explained in this review, are powerful tools that can be combined to solve these puzzles. These integrated strategies can lead to the production of enzymes with special abilities, such as wide substrate specifications, thermo-stability, tolerance to long time storage, and stability in different substrate conditions, such as pH and nutrients.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
20
|
Ouyang J, Pu S, Wang J, Deng Y, Yang C, Naseer S, Li D. Enzymatic hydrolysate of geniposide directly acts as cross-linking agent for enzyme immobilization. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Gomez de Santos P, Lazaro S, Viña-Gonzalez J, Hoang MD, Sánchez-Moreno I, Glieder A, Hollmann F, Alcalde M. Evolved Peroxygenase–Aryl Alcohol Oxidase Fusions for Self-Sufficient Oxyfunctionalization Reactions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Sofia Lazaro
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
| | - Javier Viña-Gonzalez
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
- EvoEnzyme S.L., Marie Curie 2, 28049 Madrid, Spain
| | - Manh Dat Hoang
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany
| | | | - Anton Glieder
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
- Bisy e.U., Wuenschendorf 292, 8200 Hofstaetten a. d. Raab, Austria
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
- EvoEnzyme S.L., Marie Curie 2, 28049 Madrid, Spain
| |
Collapse
|
22
|
Liu E, Wilkins MR. Process optimization and scale-up production of fungal aryl alcohol oxidase from genetically modified Aspergillus nidulans in stirred-tank bioreactor. BIORESOURCE TECHNOLOGY 2020; 315:123792. [PMID: 32659422 DOI: 10.1016/j.biortech.2020.123792] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Microbial production of aryl alcohol oxidase (AAO) has attracted increasing attention due to the central role of AAO in enzymatic lignin depolymerization. However, large-scale production of AAO has not been reached because of the low yield and inefficient fermentation process. This study aims to optimize the process parameters and scale-up production of AAO using Aspergillus nidulans in a stirred-tank bioreactor. Effects of pH and dissolved oxygen on AAO production at bioreactor scale were particularly investigated. Results revealed that pH control significantly affected protein production and increasing dissolved oxygen level stimulated AAO production. The greatest AAO activity (1906 U/L) and protein concentration (1.19 g/L) were achieved in 48 h at 60% dissolved oxygen with pH controlled at 6.0. The yield and productivity (in 48 h) were 31.2 U/g maltose and 39.7 U/L/h, respectively. In addition, crude AAO was concentrated and partially purified by ultrafiltration and verified by protein identification.
Collapse
Affiliation(s)
- Enshi Liu
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mark R Wilkins
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
23
|
Viña-Gonzalez J, Alcalde M. In vivo site-directed recombination (SDR): An efficient tool to reveal beneficial epistasis. Methods Enzymol 2020; 643:1-13. [PMID: 32896276 DOI: 10.1016/bs.mie.2020.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Employing the homologous DNA recombination apparatus of Saccharomyces cerevisiae as a dynamic engineering tool allows mutant libraries to be constructed in a rapid and efficient manner. Among the plethora of methods based on the yeast's splicing apparatus, site-directed recombination (SDR) is often useful to gather information from mutations discovered in directed evolution experiments. When using SDR, the target gene is divided in segments carrying the selected mutation positions so that the resulting PCR fragments show 50% mutated and 50% wild type residues at the codons of interest. The PCR products are then assembled and cloned into yeast through one-pot transformations with the help of homologous overlapping flanking regions. By screening SDR libraries, the effect of the mutations/reversions at the different positions can be rapidly sorted out in a combinatorial manner. As such, SDR can serve as the `final polishing step´ in a laboratory evolution campaign, revealing beneficial synergies among mutations and/or overriding deleterious mutations. In practice, using SDR it is possible to discern between beneficial and negative epistasis, that is, it should be possible to collect positive synergistic mutations while discarding detrimental substitutions that affect the enzyme's fitness.
Collapse
Affiliation(s)
- Javier Viña-Gonzalez
- Department of Biocatalysis, Institute of Catalysis, Madrid, Spain; EvoEnzyme S.L, C/Marie Curie nº2, Madrid, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, Madrid, Spain; EvoEnzyme S.L, C/Marie Curie nº2, Madrid, Spain.
| |
Collapse
|
24
|
Rueda AM, López de los Santos Y, Vincent AT, Létourneau M, Hernández I, Sánchez CI, Molina V. D, Ospina SA, Veyrier FJ, Doucet N. Genome sequencing and functional characterization of a Dictyopanus pusillus fungal enzymatic extract offers a promising alternative for lignocellulose pretreatment of oil palm residues. PLoS One 2020; 15:e0227529. [PMID: 32730337 PMCID: PMC7392265 DOI: 10.1371/journal.pone.0227529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
The pretreatment of biomass remains a critical requirement for bio-renewable fuel production from lignocellulose. Although current processes primarily involve chemical and physical approaches, the biological breakdown of lignin using enzymes and microorganisms is quickly becoming an interesting eco-friendly alternative to classical processes. As a result, bioprospection of wild fungi from naturally occurring lignin-rich sources remains a suitable method to uncover and isolate new species exhibiting ligninolytic activity. In this study, wild species of white rot fungi were collected from Colombian forests based on their natural wood decay ability and high capacity to secrete oxidoreductases with high affinity for phenolic polymers such as lignin. Based on high activity obtained from solid-state fermentation using a lignocellulose source from oil palm as matrix, we describe the isolation and whole-genome sequencing of Dictyopanus pusillus, a wild basidiomycete fungus exhibiting ABTS oxidation as an indication of laccase activity. Functional characterization of a crude enzymatic extract identified laccase activity as the main enzymatic contributor to fungal extracts, an observation supported by the identification of 13 putative genes encoding for homologous laccases in the genome. To the best of our knowledge, this represents the first report of an enzymatic extract exhibiting laccase activity in the Dictyopanus genera, offering means to exploit this species and its enzymes for the delignification process of lignocellulosic by-products from oil palm.
Collapse
Affiliation(s)
- Andrés M. Rueda
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
- Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia
- Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Yossef López de los Santos
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Antony T. Vincent
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Myriam Létourneau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Inés Hernández
- Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Clara I. Sánchez
- Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Bucaramanga, Colombia
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Daniel Molina V.
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Sonia A. Ospina
- Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Frédéric J. Veyrier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
- PROTEO, Québec Network for Research on Protein Function, Engineering, and Applications, Québec, Canada
| |
Collapse
|
25
|
Kadowaki MAS, Higasi PMR, de Godoy MO, de Araújo EA, Godoy AS, Prade RA, Polikarpov I. Enzymatic versatility and thermostability of a new aryl-alcohol oxidase from Thermothelomyces thermophilus M77. Biochim Biophys Acta Gen Subj 2020; 1864:129681. [PMID: 32653619 DOI: 10.1016/j.bbagen.2020.129681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/14/2020] [Accepted: 06/30/2020] [Indexed: 01/23/2023]
Abstract
Background Fungal aryl-alcohol oxidases (AAOx) are extracellular flavoenzymes that belong to glucose-methanol-choline oxidoreductase family and are responsible for the selective conversion of primary aromatic alcohols into aldehydes and aromatic aldehydes to their corresponding acids, with concomitant production of hydrogen peroxide (H2O2) as by-product. The H2O2 can be provided to lignin degradation pathway, a biotechnological property explored in biofuel production. In the thermophilic fungus Thermothelomyces thermophilus (formerly Myceliophthora thermophila), just one AAOx was identified in the exo-proteome. Methods The glycosylated and non-refolded crystal structure of an AAOx from T. thermophilus at 2.6 Å resolution was elucidated by X-ray crystallography combined with small-angle X-ray scattering (SAXS) studies. Moreover, biochemical analyses were carried out to shed light on enzyme substrate specificity and thermostability. Results This flavoenzyme harbors a flavin adenine dinucleotide as a cofactor and is able to oxidize aromatic substrates and 5-HMF. Our results also show that the enzyme has similar oxidation rates for bulky or simple aromatic substrates such as cinnamyl and veratryl alcohols. Moreover, the crystal structure of MtAAOx reveals an open active site, which might explain observed specificity of the enzyme. Conclusions MtAAOx shows previously undescribed structural differences such as a fully accessible catalytic tunnel, heavy glycosylation and Ca2+ binding site providing evidences for thermostability and activity of the enzymes from AA3_2 subfamily. General significance Structural and biochemical analyses of MtAAOx could be important for comprehension of aryl-alcohol oxidases structure-function relationships and provide additional molecular tools to be used in future biotechnological applications.
Collapse
Affiliation(s)
- Marco Antonio Seiki Kadowaki
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil.
| | - Paula Miwa Rabelo Higasi
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil
| | - Mariana Ortiz de Godoy
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil
| | - Evandro Ares de Araújo
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil
| | - Andre Schutzer Godoy
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil
| | - Rolf Alexander Prade
- Departments of Microbiology & Molecular Genetics and Biochemistry & Molecular Biology, Oklahoma State University, OK, USA
| | - Igor Polikarpov
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil.
| |
Collapse
|
26
|
Gomez-Fernandez BJ, Risso VA, Rueda A, Sanchez-Ruiz JM, Alcalde M. Ancestral Resurrection and Directed Evolution of Fungal Mesozoic Laccases. Appl Environ Microbiol 2020; 86:e00778-20. [PMID: 32414792 PMCID: PMC7357490 DOI: 10.1128/aem.00778-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Ancestral sequence reconstruction and resurrection provides useful information for protein engineering, yet its alliance with directed evolution has been little explored. In this study, we have resurrected several ancestral nodes of fungal laccases dating back ∼500 to 250 million years. Unlike modern laccases, the resurrected Mesozoic laccases were readily secreted by yeast, with similar kinetic parameters, a broader stability, and distinct pH activity profiles. The resurrected Agaricomycetes laccase carried 136 ancestral mutations, a molecular testimony to its origin, and it was subjected to directed evolution in order to improve the rate of 1,3-cyclopentanedione oxidation, a β-diketone initiator commonly used in vinyl polymerization reactions.IMPORTANCE The broad variety of biotechnological uses of fungal laccases is beyond doubt (food, textiles, pulp and paper, pharma, biofuels, cosmetics, and bioremediation), and protein engineering (in particular, directed evolution) has become the key driver for adaptation of these enzymes to harsh industrial conditions. Usually, the first requirement for directed laccase evolution is heterologous expression, which presents an important hurdle and often a time-consuming process. In this work, we resurrected a fungal Mesozoic laccase node which showed strikingly high heterologous expression and pH stability. As a proof of concept that the ancestral laccase is a suitable blueprint for engineering, we performed a quick directed evolution campaign geared to the oxidation of the β-diketone 1,3-cyclopentanedione, a poor laccase substrate that is used in the polymerization of vinyl monomers.
Collapse
Affiliation(s)
- Bernardo J Gomez-Fernandez
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, CSIC, Madrid, Spain
- EvoEnzyme, S.L., Madrid, Spain
| | - Valeria A Risso
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Andres Rueda
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Quebec, Canada
| | - Jose M Sanchez-Ruiz
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, CSIC, Madrid, Spain
- EvoEnzyme, S.L., Madrid, Spain
| |
Collapse
|
27
|
Viña-Gonzalez J, Alcalde M. Directed evolution of the aryl-alcohol oxidase: Beyond the lab bench. Comput Struct Biotechnol J 2020; 18:1800-1810. [PMID: 32695272 PMCID: PMC7358221 DOI: 10.1016/j.csbj.2020.06.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 11/22/2022] Open
Abstract
Aryl-alcohol oxidase (AAO) is a fungal GMC flavoprotein secreted by white-rot fungi that supplies H2O2 to the ligninolytic consortium. This enzyme can oxidize a wide array of aromatic alcohols in a highly enantioselective manner, an important trait in organic synthesis. The best strategy to adapt AAO to industrial needs is to engineer its properties by directed evolution, aided by computational analysis. The aim of this review is to describe the strategies and challenges we faced when undertaking laboratory evolution of AAO. After a comprehensive introduction into the structure of AAO, its function and potential applications, the different directed evolution enterprises designed to express the enzyme in an active and soluble form in yeast are described, as well as those to unlock new activities involving the oxidation of secondary aromatic alcohols and the synthesis of furandicarboxylic acids.
Collapse
Affiliation(s)
- Javier Viña-Gonzalez
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
28
|
Wang L, Ni H, Zhang J, Shi Q, Zhang R, Yu H, Li M. Enzymatic treatment improves fast pyrolysis product selectivity of softwood and hardwood lignin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137241. [PMID: 32070898 DOI: 10.1016/j.scitotenv.2020.137241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/08/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
Fast pyrolysis of lignin is still struggling in efficiency and scalable utilization. The low product selectivity thereby represents one of the most challenging issues. White-rot fungi have been widely used in bio-pretreatment of lignocellulosic biomass, where ligninolytic enzymes have been evidenced to modify lignin structures and enhance bio-refining efficiency. We thus treated lignin from both softwood (ginkgo) and hardwood (poplar) with enzymatic cocktail from white-rot fungus for fast pyrolysis. Both ginkgo and poplar lignin had much improved product selectivity at lower temperature after enzymatic modification, in particular, the 2-methoxy-phenol production from ginkgo lignin. Besides the improved product selectivity, the residue bio-char from pyrolysis had much improved surface area with more porous structures. Mechanistic study showed that the improvement of lignin pyrolysis products might attribute to demethoxylation and interunit linkage cleavage of lignin during enzymatic treatment. All these results highlighted that the product selectivity and bio-char performances have been synergistically improved by enzymatic treatment, which could thus pave a new way for enhancing fast pyrolysis efficiency. Overall, using softwood and hardwood lignin, this research has presented a new strategy using ligninolytic enzyme to modify lignin for synergistically improving product selectivity and bio-char performances, which opened up a new avenue for lignin valorization.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Haoxiang Ni
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jialong Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qipeng Shi
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ran Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongbo Yu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Mengjie Li
- College of Resources and Environment, Gansu Agricultural University, Lanzhou 730030, China.
| |
Collapse
|
29
|
Aragão MS, Menezes DB, Ramos LC, Oliveira HS, Bharagava RN, Romanholo Ferreira LF, Teixeira JA, Ruzene DS, Silva DP. Mycoremediation of vinasse by surface response methodology and preliminary studies in air-lift bioreactors. CHEMOSPHERE 2020; 244:125432. [PMID: 31812763 DOI: 10.1016/j.chemosphere.2019.125432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
This work evaluated the degradation of sugarcane vinasse with the production of biomass by Pleurotus sajor-caju CCB020, considering the combination of temperature and pH effects, using surface response methodology (RSM). A 22 complete central factorial composite experiment was used to analyze the results. The optimum temperature and pH values were respectively 27 °C and 5.6 for maximum decolorization yield and 20 °C and 6.8 for maximum biomass production. In parallel, scale-up experiments under conditions of 30 °C and initial pH 5.0 were evaluated in two different air-lift bioreactors of 7.0 L. Under these conditions, reductions of 53% and 58% in chemical oxygen demand (COD) and 71% and 58% in biological oxygen demand (BOD) were obtained respectively with the concentric tube type air-lift bioreactor with an increased degassing zone and without an increased degassing zone. Under these conditions, this study concluded that the systematic combination of P. sajor-caju and vinasse can be applied in the biodegradation process of refractory compounds contained in vinasse, concomitant to obtaining biomass and laccase and manganese peroxidase enzymes. Due to the good performance of the air-lift bioreactors, they can be used in scale studies in future industrial vinasse applications, besides it is possible to emphasize that different configurations in the bioreactor can affect the efficiency of the process.
Collapse
Affiliation(s)
- Moniky S Aragão
- Institute of Technology and Research, Murilo Dantas Avenue 300, Campus Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Diego B Menezes
- Institute of Technology and Research, Murilo Dantas Avenue 300, Campus Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Larissa C Ramos
- Northeastern Biotechnology Network - RENORBIO, Federal University of Sergipe, 49100-000, São Cristóvão, Sergipe, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Helon S Oliveira
- Institute of Technology and Research, Murilo Dantas Avenue 300, Campus Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Ram Naresh Bharagava
- Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Microbiology (DM), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India
| | - Luiz Fernando Romanholo Ferreira
- Institute of Technology and Research, Murilo Dantas Avenue 300, Campus Farolândia, 49032-490, Aracaju, SE, Brazil; Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil.
| | - José A Teixeira
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
| | - Denise S Ruzene
- Northeastern Biotechnology Network - RENORBIO, Federal University of Sergipe, 49100-000, São Cristóvão, Sergipe, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Daniel P Silva
- Northeastern Biotechnology Network - RENORBIO, Federal University of Sergipe, 49100-000, São Cristóvão, Sergipe, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| |
Collapse
|
30
|
Bilal M, Iqbal HMN, Barceló D. Mitigation of bisphenol A using an array of laccase-based robust bio-catalytic cues - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:160-177. [PMID: 31271985 DOI: 10.1016/j.scitotenv.2019.06.403] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 02/05/2023]
Abstract
Bisphenol A (BPA) is a known endocrine disruptor that poses concerning environmental and human-health related issues and ecological risks. It has been largely used as an intermediate in the manufacture of epoxy resins and polycarbonate plastics. Traces of BPA can reach into the environment through inadequate or inefficient removal during wastewater treatment, uncontrolled landfill leachates, and leaching out from the discarded BPA-based materials. Several physicochemical treatment methods including adsorption, Fenton, ozonation, electrochemical and photochemical degradation, and membrane filtration, have been applied for BPA elimination. However, these methods are not adequate for large-scale treatment due to some inherent limitations. Benefiting from high catalytic efficiency and specificity, enzyme-based bio-catalytic degradation strategies are considered quite meaningful alternative for efficient and effective BPA removal from different routes. Among various oxidoreductases, i.e., laccases exhibited a superior potential for the remediation of BPA-containing wastewater. Enzymatic oxidation of BPA can be boosted by using various natural or synthetic redox mediators. Immobilized enzymes can expand their applicability to continuous bioprocessing and facilitates process intensification. Therefore, optimized formulations of insolubilized biocatalysts are of strategic interest in the environmental biotechnology. In this review, recent research studies dealing with BPA removal by the laccase-catalyzed system are presented. At first, the presence of BPA in the ecosystem, sources, exposure, and its impact on the living organisms and human beings is summarized. Then, we highlighted the use of crude as well as immobilized laccases for the degradation of BPA. In addition to toxicity and estrogenicity removal studies, the unresolved challenges, concluding remarks, and possible future direction is proposed in this important research area. It is palpable from the literature reviewed that free as well as immobilized forms of laccases have displayed noteworthy potential for BPA removal from wastewater.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico.
| | - Damiá Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain; ICRA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, Girona 17003, Spain; Botany and Microbiology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
31
|
Shin SK, Ko YJ, Hyeon JE, Han SO. Studies of advanced lignin valorization based on various types of lignolytic enzymes and microbes. BIORESOURCE TECHNOLOGY 2019; 289:121728. [PMID: 31277889 DOI: 10.1016/j.biortech.2019.121728] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
Lignin is a robust material that is considered useless because it has an inhibitory effect on microbes and acts as a physical barrier for cellulose degradation. Therefore, it has been removed from cellulosic biomass to produce high-value materials. However, lignin monomers can be converted to value-added chemicals such as biodegradable plastics and food additives by appropriately engineered microbes. Lignin degradation through peroxidase, laccase and other proteins with auxiliary activity is the first step in lignin valorization. Metabolic engineering of microorganisms for increased tolerance and production yield is the second step for lignin valorization. Here, this review offers a summary of current biotechnologies using various enzymatic activities, synergistic enzyme mixtures and metabolic engineering for lignin valorization in biorefinery.
Collapse
Affiliation(s)
- Sang Kyu Shin
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Young Jin Ko
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeong Eun Hyeon
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, Republic of Korea; Department of Food and Nutrition, College of Health & Wellness, Sungshin Women's University, Seoul 01133, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
32
|
Enhancing thermostability by modifying flexible surface loops in an evolved high‐redox potential laccase. AIChE J 2019. [DOI: 10.1002/aic.16747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
33
|
Venkatesagowda B. Enzymatic demethylation of lignin for potential biobased polymer applications. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2019.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Mateljak I, Rice A, Yang K, Tron T, Alcalde M. The Generation of Thermostable Fungal Laccase Chimeras by SCHEMA-RASPP Structure-Guided Recombination in Vivo. ACS Synth Biol 2019; 8:833-843. [PMID: 30897903 DOI: 10.1021/acssynbio.8b00509] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fungal laccases are biotechnologically relevant enzymes that are capable of oxidizing a wide array of compounds, using oxygen from the air and releasing water as the only byproduct. The laccase structure is comprised of three cupredoxin domains sheltering two copper centers-the T1Cu site and the T2/T3 trinuclear Cu cluster-connected to each other through a highly conserved internal electron transfer pathway. As such, the generation of laccase chimeras with high sequence diversity from different orthologs is difficult to achieve without compromising protein functionality. Here, we have obtained a diverse family of functional chimeras showing increased thermostability from three fungal laccase orthologs with ∼70% protein sequence identity. Assisted by the high frequency of homologous DNA recombination in Saccharomyces cerevisiae, computationally selected SCHEMA-RASPP blocks were spliced and cloned in a one-pot transformation. As a result of this in vivo assembly, an enriched library of laccase chimeras was rapidly generated, with multiple recombination events simultaneously occurring between and within the SCHEMA blocks. The resulting library was screened at high temperature, identifying a collection of thermostable chimeras with considerable sequence diversity, which varied from their closest parent homologue by 46 amino acids on average. The most thermostable variant increased its half-life of thermal inactivation at 70 °C 5-fold (up to 108 min), whereas several chimeras also displayed improved stability at acidic pH. The two catalytic copper sites spanned different SCHEMA blocks, shedding light on the recognition of specific residues involved in substrate oxidation. In summary, this case-study, through comparison with previous laccase engineering studies, highlights the benefits of bringing together computationally guided recombination and in vivo shuffling as an invaluable strategy for laccase evolution, which can be translated to other enzyme systems.
Collapse
Affiliation(s)
- Ivan Mateljak
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Austin Rice
- Division of Chemistry and Chemical Engineering, California Institute of Technology, CALTECH, Pasadena, California 91125-4100, United States
| | - Kevin Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, CALTECH, Pasadena, California 91125-4100, United States
| | - Thierry Tron
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
35
|
Xin F, Dong W, Zhang W, Ma J, Jiang M. Biobutanol Production from Crystalline Cellulose through Consolidated Bioprocessing. Trends Biotechnol 2019; 37:167-180. [DOI: 10.1016/j.tibtech.2018.08.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 01/08/2023]
|
36
|
Olajuyigbe FM, Adetuyi OY, Fatokun CO. Characterization of free and immobilized laccase from Cyberlindnera fabianii and application in degradation of bisphenol A. Int J Biol Macromol 2018; 125:856-864. [PMID: 30557644 DOI: 10.1016/j.ijbiomac.2018.12.106] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 01/15/2023]
Abstract
Recovery difficulty and inactivation of laccases are major challenges that hamper their application in biotechnology. In this study, laccase was purified from Cyberlindnera fabianii using ion-exchange and gel filtration chromatography with homogeneity confirmed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Purified laccase of 52 kDa was immobilized on calcium and copper alginate beads by entrapment method. Free and immobilized enzymes were characterized, and efficiency of bisphenol A (BPA) degradation was determined. pH optima for free and immobilized laccases were 5.0 and 6.0, respectively. Ca and Cu alginate immobilized laccase (Ca-AIL and Cu-AIL) had optimum activity at 60 °C and 50 °C, respectively while free laccase (FL) was at 40 °C. Km and Vmax of FL, Ca-AIL and Cu-AIL were 0.032 mM and 15 mM/min, 0.078 mM and 6.98 mM/min, and 0.091 mM and 5.61 mM/min, respectively. Remarkably, immobilized laccases had higher operational stability than FL over 21 d at 4°C. Reusability of immobilized laccase was effective for 3 cycles with residual activity above 70%. Notably, Ca-AIL and Cu-AIL exhibited 71% and 65.5% BPA degradation efficiency on 14 d. Results reveal good kinetic parameters, improved thermal stability and enhanced reusability of immobilized laccase from C. fabianii with potentials for various industrial applications and bioremediation.
Collapse
Affiliation(s)
- Folasade M Olajuyigbe
- Enzyme Biotechnology and Environmental Health Unit, Department of Biochemistry, Federal University of Technology, Akure 340252, Ondo State, Nigeria.
| | - Oluwafijimi Y Adetuyi
- Enzyme Biotechnology and Environmental Health Unit, Department of Biochemistry, Federal University of Technology, Akure 340252, Ondo State, Nigeria
| | - Cornelius O Fatokun
- Enzyme Biotechnology and Environmental Health Unit, Department of Biochemistry, Federal University of Technology, Akure 340252, Ondo State, Nigeria
| |
Collapse
|
37
|
Dos Santos AC, Ximenes E, Kim Y, Ladisch MR. Lignin-Enzyme Interactions in the Hydrolysis of Lignocellulosic Biomass. Trends Biotechnol 2018; 37:518-531. [PMID: 30477739 DOI: 10.1016/j.tibtech.2018.10.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022]
Abstract
Lignin is central to overcoming recalcitrance in the enzyme hydrolysis of lignocellulose. While the term implies a physical barrier in the cell wall structure, there are also important biochemical components that direct interactions between lignin and the hydrolytic enzymes that attack cellulose in plant cell walls. Progress toward a deeper understanding of the lignin synthesis pathway - and the consistency between a range of observations over the past 40 years in the very extensive literature on cellulose hydrolysis - is resulting in advances in reducing a major impediment to cellulose conversion: the cost of enzymes. This review addresses lignin and its role in the hydrolysis of hardwood and other lignocellulosic residues.
Collapse
Affiliation(s)
- Antonio Carlos Dos Santos
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Eduardo Ximenes
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Youngmi Kim
- Department of Agricultural Engineering Technology, University of Wisconsin, River Falls, WI 54022, USA
| | - Michael R Ladisch
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; www.purdue.edu/LORRE.
| |
Collapse
|
38
|
Munk L, Andersen ML, Meyer AS. Influence of mediators on laccase catalyzed radical formation in lignin. Enzyme Microb Technol 2018; 116:48-56. [DOI: 10.1016/j.enzmictec.2018.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/06/2018] [Accepted: 05/11/2018] [Indexed: 11/28/2022]
|
39
|
Viña-Gonzalez J, Elbl K, Ponte X, Valero F, Alcalde M. Functional expression of aryl-alcohol oxidase in Saccharomyces cerevisiae
and Pichia pastoris
by directed evolution. Biotechnol Bioeng 2018. [DOI: 10.1002/bit.26585] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Javier Viña-Gonzalez
- Department of Biocatalysis; Institute of Catalysis, CSIC; Cantoblanco Madrid Spain
| | - Katarina Elbl
- Department of Biocatalysis; Institute of Catalysis, CSIC; Cantoblanco Madrid Spain
| | - Xavier Ponte
- Departamento de Ingeniería Química; Biológica y Medioambiental, Escuela de Ingeniería, Universidad Autónoma de Barcelona; Bellaterra Barcelona Spain
| | - Francisco Valero
- Departamento de Ingeniería Química; Biológica y Medioambiental, Escuela de Ingeniería, Universidad Autónoma de Barcelona; Bellaterra Barcelona Spain
| | - Miguel Alcalde
- Department of Biocatalysis; Institute of Catalysis, CSIC; Cantoblanco Madrid Spain
| |
Collapse
|
40
|
Zhou S, Rousselot-Pailley P, Ren L, Charmasson Y, Dezord EC, Robert V, Tron T, Mekmouche Y. Production and manipulation of blue copper oxidases for technological applications. Methods Enzymol 2018; 613:17-61. [DOI: 10.1016/bs.mie.2018.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Mateljak I, Tron T, Alcalde M. Evolved α-factor prepro-leaders for directed laccase evolution in Saccharomyces cerevisiae. Microb Biotechnol 2017; 10:1830-1836. [PMID: 28805314 PMCID: PMC5658585 DOI: 10.1111/1751-7915.12838] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/06/2017] [Accepted: 07/13/2017] [Indexed: 11/28/2022] Open
Abstract
Although the functional expression of fungal laccases in Saccharomyces cerevisiae has proven to be complicated, the replacement of signal peptides appears to be a suitable approach to enhance secretion in directed evolution experiments. In this study, twelve constructs were prepared by fusing native and evolved α-factor prepro-leaders from S. cerevisiae to four different laccases with low-, medium- and high-redox potential (PM1L from basidiomycete PM1; PcL from Pycnoporus cinnabarinus; TspC30L from Trametes sp. strain C30; and MtL from Myceliophthora thermophila). Microcultures of the prepro-leader:laccase fusions were grown in selective expression medium that used galactose as both the sole carbon source and as the inducer of expression so that the secretion and activity were assessed with low- and high-redox potential mediators in a high-throughput screening context. With total activity improvements as high as sevenfold over those obtained with the native α-factor prepro-leader, the evolved prepro-leader from PcL (αPcL ) most strongly enhanced secretion of the high- and medium-redox potential laccases PcL, PM1L and TspC30L in the microtiter format with an expression pattern driven by prepro-leaders in the order αPcL > αPM1L ~ αnative . By contrast, the pattern of the low-redox potential MtL was αnative > αPcL > αPM1L . When produced in flask with rich medium, the evolved prepro-leaders outperformed the αnative signal peptide irrespective of the laccase attached, enhancing secretion over 50-fold. Together, these results highlight the importance of using evolved α-factor prepro-leaders for functional expression of fungal laccases in directed evolution campaigns.
Collapse
Affiliation(s)
- Ivan Mateljak
- Department of BiocatalysisInstitute of CatalysisCSICCantoblanco28049MadridSpain
| | - Thierry Tron
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 731313397MarseilleFrance
| | - Miguel Alcalde
- Department of BiocatalysisInstitute of CatalysisCSICCantoblanco28049MadridSpain
| |
Collapse
|
42
|
Martínez AT, Ruiz-Dueñas FJ, Camarero S, Serrano A, Linde D, Lund H, Vind J, Tovborg M, Herold-Majumdar OM, Hofrichter M, Liers C, Ullrich R, Scheibner K, Sannia G, Piscitelli A, Pezzella C, Sener ME, Kılıç S, van Berkel WJ, Guallar V, Lucas MF, Zuhse R, Ludwig R, Hollmann F, Fernández-Fueyo E, Record E, Faulds CB, Tortajada M, Winckelmann I, Rasmussen JA, Gelo-Pujic M, Gutiérrez A, del Río JC, Rencoret J, Alcalde M. Oxidoreductases on their way to industrial biotransformations. Biotechnol Adv 2017. [DOI: 10.1016/j.biotechadv.2017.06.003] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
43
|
Mate DM, Alcalde M. Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microb Biotechnol 2017; 10:1457-1467. [PMID: 27696775 PMCID: PMC5658592 DOI: 10.1111/1751-7915.12422] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 11/30/2022] Open
Abstract
Laccases are multicopper containing enzymes capable of performing one electron oxidation of a broad range of substrates. Using molecular oxygen as the final electron acceptor, they release only water as a by-product, and as such, laccases are eco-friendly, versatile biocatalysts that have generated an enormous biotechnological interest. Indeed, this group of enzymes has been used in different industrial fields for very diverse purposes, from food additive and beverage processing to biomedical diagnosis, and as cross-linking agents for furniture construction or in the production of biofuels. Laccases have also been studied intensely in nanobiotechnology for the development of implantable biosensors and biofuel cells. Moreover, their capacity to transform complex xenobiotics makes them useful biocatalysts in enzymatic bioremediation. This review summarizes the most significant recent advances in the use of laccases and their future perspectives in biotechnology.
Collapse
Affiliation(s)
- Diana M. Mate
- Department of BiocatalysisInstitute of CatalysisCSICCantoblanco28049MadridSpain
| | - Miguel Alcalde
- Department of BiocatalysisInstitute of CatalysisCSICCantoblanco28049MadridSpain
| |
Collapse
|
44
|
Tyzack JD, Furnham N, Sillitoe I, Orengo CM, Thornton JM. Understanding enzyme function evolution from a computational perspective. Curr Opin Struct Biol 2017; 47:131-139. [PMID: 28892668 DOI: 10.1016/j.sbi.2017.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/08/2017] [Accepted: 08/13/2017] [Indexed: 10/18/2022]
Abstract
In this review, we will explore recent computational approaches to understand enzyme evolution from the perspective of protein structure, dynamics and promiscuity. We will present quantitative methods to measure the size of evolutionary steps within a structural domain, allowing the correlation between change in substrate and domain structure to be assessed, and giving insights into the evolvability of different domains in terms of the number, types and sizes of evolutionary steps observed. These approaches will help to understand the evolution of new catalytic and non-catalytic functionality in response to environmental demands, showing potential to guide de novoenzyme design and directed evolution experiments.
Collapse
Affiliation(s)
| | - Nicholas Furnham
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Ian Sillitoe
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Christine M Orengo
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | | |
Collapse
|
45
|
Affiliation(s)
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Madrid, Spain
| |
Collapse
|
46
|
Yang J, Li W, Ng TB, Deng X, Lin J, Ye X. Laccases: Production, Expression Regulation, and Applications in Pharmaceutical Biodegradation. Front Microbiol 2017; 8:832. [PMID: 28559880 PMCID: PMC5432550 DOI: 10.3389/fmicb.2017.00832] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/24/2017] [Indexed: 01/08/2023] Open
Abstract
Laccases are a family of copper-containing oxidases with important applications in bioremediation and other various industrial and biotechnological areas. There have been over two dozen reviews on laccases since 2010 covering various aspects of this group of versatile enzymes, from their occurrence, biochemical properties, and expression to immobilization and applications. This review is not intended to be all-encompassing; instead, we highlighted some of the latest developments in basic and applied laccase research with an emphasis on laccase-mediated bioremediation of pharmaceuticals, especially antibiotics. Pharmaceuticals are a broad class of emerging organic contaminants that are recalcitrant and prevalent. The recent surge in the relevant literature justifies a short review on the topic. Since low laccase yields in natural and genetically modified hosts constitute a bottleneck to industrial-scale applications, we also accentuated a genus of laccase-producing white-rot fungi, Cerrena, and included a discussion with regards to regulation of laccase expression.
Collapse
Affiliation(s)
- Jie Yang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Wenjuan Li
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Tzi Bun Ng
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong KongShatin, Hong Kong
| | - Xiangzhen Deng
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Juan Lin
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| |
Collapse
|
47
|
Pornsuwan S, Maenpuen S, Kamutira P, Watthaisong P, Thotsaporn K, Tongsook C, Juttulapa M, Nijvipakul S, Chaiyen P. 3,4-Dihydroxyphenylacetate 2,3-dioxygenase from Pseudomonas aeruginosa: An Fe(II)-containing enzyme with fast turnover. PLoS One 2017; 12:e0171135. [PMID: 28158217 PMCID: PMC5291488 DOI: 10.1371/journal.pone.0171135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/15/2017] [Indexed: 11/18/2022] Open
Abstract
3,4-dihydroxyphenylacetate (DHPA) dioxygenase (DHPAO) from Pseudomonas aeruginosa (PaDHPAO) was overexpressed in Escherichia coli and purified to homogeneity. As the enzyme lost activity over time, a protocol to reactivate and conserve PaDHPAO activity has been developed. Addition of Fe(II), DTT and ascorbic acid or ROS scavenging enzymes (catalase or superoxide dismutase) was required to preserve enzyme stability. Metal content and activity analyses indicated that PaDHPAO uses Fe(II) as a metal cofactor. NMR analysis of the reaction product indicated that PaDHPAO catalyzes the 2,3-extradiol ring-cleavage of DHPA to form 5-carboxymethyl-2-hydroxymuconate semialdehyde (CHMS) which has a molar absorptivity of 32.23 mM-1cm-1 at 380 nm and pH 7.5. Steady-state kinetics under air-saturated conditions at 25°C and pH 7.5 showed a Km for DHPA of 58 ± 8 μM and a kcat of 64 s-1, indicating that the turnover of PaDHPAO is relatively fast compared to other DHPAOs. The pH-rate profile of the PaDHPAO reaction shows a bell-shaped plot that exhibits a maximum activity at pH 7.5 with two pKa values of 6.5 ± 0.1 and 8.9 ± 0.1. Study of the effect of temperature on PaDHPAO activity indicated that the enzyme activity increases as temperature increases up to 55°C. The Arrhenius plot of ln(k’cat) versus the reciprocal of the absolute temperature shows two correlations with a transition temperature at 35°C. Two activation energy values (Ea) above and below the transition temperature were calculated as 42 and 14 kJ/mol, respectively. The data imply that the rate determining steps of the PaDHPAO reaction at temperatures above and below 35°C may be different. Sequence similarity network analysis indicated that PaDHPAO belongs to the enzyme clusters that are largely unexplored. As PaDHPAO has a high turnover number compared to most of the enzymes previously reported, understanding its biochemical and biophysical properties should be useful for future applications in biotechnology.
Collapse
Affiliation(s)
- Soraya Pornsuwan
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Philaiwarong Kamutira
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Pratchaya Watthaisong
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kittisak Thotsaporn
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chanakan Tongsook
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Maneerat Juttulapa
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sarayut Nijvipakul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pimchai Chaiyen
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
48
|
High-yield production of aryl alcohol oxidase under limited growth conditions in small-scale systems using a mutant Aspergillus nidulans strain. ACTA ACUST UNITED AC 2017; 44:247-257. [DOI: 10.1007/s10295-016-1884-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/03/2016] [Indexed: 10/20/2022]
Abstract
Abstract
Aryl alcohol oxidase (MtGloA) is an enzyme that belongs to the ligninolytic consortium and can play an important role in the bioenergy industry. This study investigated production of an MtGloA client enzyme by a mutant strain of Aspergillus nidulans unable to synthesize its own pyridoxine. Pyridoxine limitation can be used to control cell growth, diverting substrate to protein production. In agitated culture, enzyme production was similar when using media with 1 mg/L and without pyridoxine (26.64 ± 6.14 U/mg mycelia and 26.14 ± 8.39 U/mg mycelia using media with and without pyridoxine, respectively). However, the treatment lacking pyridoxine had to be supplemented with pyridoxine after 156 h of fermentation to sustain continued enzyme production. Use of extremely diluted pyridoxine levels allowed reduced fungal growth while maintaining steady enzyme production. Concentrations of 9 and 13.5 µg/L pyridoxine allowed MtGloA production with a growth rate of only 5% of that observed when using the standard 1 mg/L pyridoxine media.
Collapse
|
49
|
Ayuso-Fernández I, Martínez AT, Ruiz-Dueñas FJ. Experimental recreation of the evolution of lignin-degrading enzymes from the Jurassic to date. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:67. [PMID: 28331543 PMCID: PMC5356311 DOI: 10.1186/s13068-017-0744-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/28/2017] [Indexed: 05/17/2023]
Abstract
BACKGROUND Floudas et al. (Science 336: 1715) established that lignin-degrading fungi appeared at the end of Carboniferous period associated with the production of the first ligninolytic peroxidases. Here, the subsequent evolution of these enzymes in Polyporales, where most wood-rotting fungi are included, is experimentally recreated using genomic information. RESULTS With this purpose, we analyzed the evolutionary pathway leading to the most efficient lignin-degrading peroxidases characterizing Polyporales species. After sequence reconstruction from 113 genes of ten sequenced genomes, the main enzyme intermediates were resurrected and characterized. Biochemical changes were analyzed together with predicted sequences and structures, to understand how these enzymes acquired the ability to degrade lignin and how this ability changed with time. The most probable first peroxidase in Polyporales would be a manganese peroxidase (Mn3+ oxidizing phenolic lignin) that did not change substantially until the appearance of an exposed tryptophan (oxidizing nonphenolic lignin) originating an ancestral versatile peroxidase. Later, a quick evolution, with loss of the Mn2+-binding site, generated the first lignin peroxidase that evolved to the extant form by improving the catalytic efficiency. Increased stability at acidic pH, which strongly increases the oxidizing power of these enzymes, was observed paralleling the appearance of the exposed catalytic tryptophan. CONCLUSIONS We show how the change in peroxidase catalytic activities meant an evolutionary exploration for more efficient ways of lignin degradation by fungi, a key step for carbon recycling in land ecosystems. The study provides ancestral enzymes with a potential biotechnological interest for the sustainable production of fuels and chemicals in a biomass-based economy.
Collapse
Affiliation(s)
- Iván Ayuso-Fernández
- IPSBB unit, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Angel T. Martínez
- IPSBB unit, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | |
Collapse
|
50
|
Duwe A, Tippkötter N, Ulber R. Lignocellulose-Biorefinery: Ethanol-Focused. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 166:177-215. [PMID: 29071401 DOI: 10.1007/10_2016_72] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development prospects of the world markets for petroleum and other liquid fuels are diverse and partly contradictory. However, comprehensive changes for the energy supply of the future are essential. Notwithstanding the fact that there are still very large deposits of energy resources from a geological point of view, the finite nature of conventional oil reserves is indisputable. To reduce our dependence on oil, the EU, the USA, and other major economic zones rely on energy diversification. For this purpose, alternative materials and technologies are being sought, and is most obvious in the transport sector. The objective is to progressively replace fossil fuels with renewable and more sustainable fuels. In this respect, biofuels have a pre-eminent position in terms of their capability of blending with fossil fuels and being usable in existing cars without substantial modification. Ethanol can be considered as the primary renewable liquid fuel. In this chapter enzymes, micro-organisms, and processes for ethanol production based on renewable resources are described.
Collapse
Affiliation(s)
- A Duwe
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany.
| | - N Tippkötter
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - R Ulber
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| |
Collapse
|