1
|
Stari L, Jittayasotorn T, Inoue C, Chien MF. Complete genome sequence of a carbon tetrachloride-degrading bacterium, Pseudomonas sp. strain Stari2. Microbiol Resour Announc 2025; 14:e0095824. [PMID: 39878464 PMCID: PMC11895450 DOI: 10.1128/mra.00958-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/11/2025] [Indexed: 01/31/2025] Open
Abstract
This article reports on the complete genome of Pseudomonas sp. strain Stari2, which was shown to have the ability to degrade carbon tetrachloride (CCl4) in aerobic conditions. A single circular sequence of 6,310,573 bp, a GC content of 60.3%, and 5,680 coding sequences were obtained. In silico analysis revealed an average nucleotide identity of 94.06% to its closest species.
Collapse
Affiliation(s)
- Leonardo Stari
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
- Graduate School of Life Science, Tohoku University, Sendai, Japan
| | | | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Mei-Fang Chien
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Reed JH, Seebeck FP. Reagent Engineering for Group Transfer Biocatalysis. Angew Chem Int Ed Engl 2024; 63:e202311159. [PMID: 37688533 DOI: 10.1002/anie.202311159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/11/2023]
Abstract
Biocatalysis has become a major driver in the innovation of preparative chemistry. Enzyme discovery, engineering and computational design have matured to reliable strategies in the development of biocatalytic processes. By comparison, substrate engineering has received much less attention. In this Minireview, we highlight the idea that the design of synthetic reagents may be an equally fruitful and complementary approach to develop novel enzyme-catalysed group transfer chemistry. This Minireview discusses key examples from the literature that illustrate how synthetic substrates can be devised to improve the efficiency, scalability and sustainability, as well as the scope of such reactions. We also provide an opinion as to how this concept might be further developed in the future, aspiring to replicate the evolutionary success story of natural group transfer reagents, such as adenosine triphosphate (ATP) and S-adenosyl methionine (SAM).
Collapse
Affiliation(s)
- John H Reed
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
- Molecular Systems Engineering, National Competence Center in Research, 4058, Basel, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
- Molecular Systems Engineering, National Competence Center in Research, 4058, Basel, Switzerland
| |
Collapse
|
3
|
Yin Y, Kara-Murdoch F, Murdoch RW, Yan J, Chen G, Xie Y, Sun Y, Löffler FE. Nitrous oxide inhibition of methanogenesis represents an underappreciated greenhouse gas emission feedback. THE ISME JOURNAL 2024; 18:wrae027. [PMID: 38447133 PMCID: PMC10960958 DOI: 10.1093/ismejo/wrae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/08/2024]
Abstract
Methane (CH4) and nitrous oxide (N2O) are major greenhouse gases that are predominantly generated by microbial activities in anoxic environments. N2O inhibition of methanogenesis has been reported, but comprehensive efforts to obtain kinetic information are lacking. Using the model methanogen Methanosarcina barkeri strain Fusaro and digester sludge-derived methanogenic enrichment cultures, we conducted growth yield and kinetic measurements and showed that micromolar concentrations of N2O suppress the growth of methanogens and CH4 production from major methanogenic substrate classes. Acetoclastic methanogenesis, estimated to account for two-thirds of the annual 1 billion metric tons of biogenic CH4, was most sensitive to N2O, with inhibitory constants (KI) in the range of 18-25 μM, followed by hydrogenotrophic (KI, 60-90 μM) and methylotrophic (KI, 110-130 μM) methanogenesis. Dissolved N2O concentrations exceeding these KI values are not uncommon in managed (i.e. fertilized soils and wastewater treatment plants) and unmanaged ecosystems. Future greenhouse gas emissions remain uncertain, particularly from critical zone environments (e.g. thawing permafrost) with large amounts of stored nitrogenous and carbonaceous materials that are experiencing unprecedented warming. Incorporating relevant feedback effects, such as the significant N2O inhibition on methanogenesis, can refine climate models and improve predictive capabilities.
Collapse
Affiliation(s)
- Yongchao Yin
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Fadime Kara-Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Robert W Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, United States
| | - Jun Yan
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
- Key Laboratory of Pollution Control and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Gao Chen
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, United States
| | - Yongchao Xie
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, United States
| | - Yanchen Sun
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, United States
| | - Frank E Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, United States
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
4
|
Li J, Kumar A, Lewis JC. Non-native Intramolecular Radical Cyclization Catalyzed by a B 12 -Dependent Enzyme. Angew Chem Int Ed Engl 2023; 62:e202312893. [PMID: 37874184 PMCID: PMC11328698 DOI: 10.1002/anie.202312893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
Despite the unique reactivity of vitamin B12 and its derivatives, B12 -dependent enzymes remain underutilized in biocatalysis. In this study, we repurposed the B12 -dependent transcription factor CarH to enable non-native radical cyclization reactions. An engineered variant of this enzyme, CarH*, catalyzes the formation γ- and δ-lactams through either redox-neutral or reductive ring closure with marked enhancement of reactivity and selectivity relative to the free B12 cofactor. CarH* also catalyzes an unusual spirocyclization by dearomatization of pendant arenes to produce bicyclic 1,3-diene products instead of 1,4-dienes provided by existing methods. These results and associated mechanistic studies highlight the importance of protein scaffolds for controlling the reactivity of B12 and expanding the synthetic utility of B12 -dependent enzymes.
Collapse
Affiliation(s)
- Jianbin Li
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Amardeep Kumar
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
5
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
6
|
Grimm C, Pompei S, Egger K, Fuchs M, Kroutil W. Anaerobic demethylation of guaiacyl-derived monolignols enabled by a designed artificial cobalamin methyltransferase fusion enzyme. RSC Adv 2023; 13:5770-5777. [PMID: 36816070 PMCID: PMC9930637 DOI: 10.1039/d2ra08005b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Lignin-derived aryl methyl ethers (e.g. coniferyl alcohol, ferulic acid) are expected to be a future carbon source for chemistry. The well-known P450 dependent biocatalytic O-demethylation of these aryl methyl ethers is prone to side product formation especially for the oxidation sensitive catechol products which get easily oxidized in the presence of O2. Alternatively, biocatalytic demethylation using cobalamin dependent enzymes may be used under anaerobic conditions, whereby two proteins, namely a methyltransferase and a carrier protein are required. To make this approach applicable for preparative transformations, fusion proteins were designed connecting the cobalamin-dependent methyltransferase (MT) with the corrinoid-binding protein (CP) from Desulfitobacterium hafniense by variable glycine linkers. From the proteins created, the fusion enzyme MT-L5-CP with the shortest linker performed best of all fusion enzymes investigated showing comparable and, in some aspects, even better performance than the separated proteins. The fusion enzymes provided several advantages like that the cobalamin cofactor loading step required originally for the CP could be skipped enabling a significantly simpler protocol. Consequently, the biocatalytic demethylation was performed using Schlenk conditions allowing the O-demethylation e.g. of the monolignol coniferyl alcohol on a 25 mL scale leading to 75% conversion. The fusion enzyme represents a promising starting point to be evolved for alternative demethylation reactions to diversify natural products and to valorize lignin.
Collapse
Affiliation(s)
- Christopher Grimm
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstraße 28 8010 Graz Austria
| | - Simona Pompei
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstraße 28 8010 Graz Austria
| | - Kristina Egger
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstraße 28 8010 Graz Austria
| | - Michael Fuchs
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstraße 28 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstraße 28 8010 Graz Austria
- BioTechMed Graz 8010 Graz Austria
- Field of Excellence BioHealth, University of Graz 8010 Graz Austria
| |
Collapse
|
7
|
Mathur Y, Hazra AB. Methylations in vitamin B 12 biosynthesis and catalysis. Curr Opin Struct Biol 2022; 77:102490. [PMID: 36371846 DOI: 10.1016/j.sbi.2022.102490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/12/2022]
Abstract
Vitamin B12 is an essential biomolecule that assists in the catalysis of methyl transfer and radical-based reactions in cellular metabolism. The structure of B12 is characterized by a tetrapyrrolic corrin ring with a central cobalt ion coordinated with an upper ligand, and a lower ligand anchored via a nucleotide loop. Multiple methyl groups decorate B12, and their presence (or absence) have structural and functional consequences. In this minireview, we focus on the methyl groups that distinguish vitamin B12 from other tetrapyrrolic biomolecules and from its own naturally occurring analogues called cobamides. We draw information from recent advances in the field to understand the origins of these methyl groups and the enzymes that incorporate them, and discuss their biological significance.
Collapse
Affiliation(s)
- Yamini Mathur
- Department of Biology, Indian Institute of Science Education and Research, Pune, India. https://twitter.com/yaminipmathur
| | - Amrita B Hazra
- Department of Biology, Indian Institute of Science Education and Research, Pune, India; Department of Chemistry, Indian Institute of Science Education and Research, Pune, India.
| |
Collapse
|
8
|
Abstract
Coabalamin-dependent O-demethylase in Blautia sp. strain MRG-PMF1 was found to catalyze the unprecedented allyl aryl ether cleavage reaction. To expand the potential biotechnological applications, the reaction mechanism of the allyl aryl ether C-O bond cleavage, proposed to utilize the reactive Co(I) supernucleophile species, was studied further from the anaerobic whole-cell biotransformation. Various allyl naphthyl ether derivatives were reacted with Blautia sp. MRG-PMF1 O-demethylase, and stereoisomers of allyl naphthyl ethers, including prenyl and but-2-enyl naphthyl ethers, were converted to the corresponding naphthol in a stereoselective manner. The allyl aryl ether cleavage reaction was regioselective, and 2-naphthyl ethers were converted faster than the corresponding 1-naphthyl ethers. However, MRG-PMF1 cocorrinoid O-demethylase was not able to convert (2-methylallyl) naphthyl ether substrates, and the conversion of propargyl naphthyl ether was extremely slow. From the results, it was proposed that the allyl ether cleavage reaction follows the nucleophilic conjugate substitution (SN2') mechanism. The reactivity and mechanism of the new allyl ether cleavage reaction by cobalamin-dependent O-demethylase would facilitate the application of Blautia sp. MRG-PMF1 O-demethylase in the area of green biotechnology. IMPORTANCE Biodegradation of environmental pollutants and valorization of biomaterials in a greener way is of great interest. Cobalamin-dependent O-demethylase in Blautia sp. MRG-PMF1 exclusively involves anaerobic C1 metabolism by cleaving the C-O bond of aromatic methoxy group and also produces various aryl alcohols by metabolizing allyl aryl ether compounds. Whereas methyl ether cleavage reaction is known to follow the SN2' mechanism, the reaction pattern and mechanism of the new allyl ether cleavage reaction by cobalamin-dependent O-demethylase have never been studied. For the first time, stereoselectivity and the SN2' mechanism of allyl aryl ether cleavage reaction by Blautia sp. MRG-PMF1 O-demethylase is reported, and the results would facilitate the application of Blautia sp. MRG-PMF1 O-demethylase in the area of green biotechnology.
Collapse
|
9
|
Pettersen R, Ormaasen I, Angell IL, Keeley NB, Lindseth A, Snipen L, Rudi K. Bimodal distribution of seafloor microbiota diversity and function are associated with marine aquaculture. Mar Genomics 2022; 66:100991. [PMID: 36116403 DOI: 10.1016/j.margen.2022.100991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022]
Abstract
The aim of the current work was to investigate the impact of marine aquaculture on seafloor biogeochemistry and diversity from pristine environments in the northern part of Norway. Our analytical approach included analyses of 182 samples from 16 aquaculture sites using 16S and 18S rRNA, shotgun analyses, visual examination of macro-organisms, in addition to chemical measurements. We observed a clear bimodal distribution of the prokaryote composition and richness, determined by analyses of 16S rRNA gene operational taxonomic units (OTUs). The high OTU richness cluster was associated with non-perturbed environments and farness from the aquaculture sites, while the low OTU richness cluster was associated with perturbed environments and proximity to the aquaculture sites. Similar patterns were also observed for eukaryotes using 18S rRNA gene analyses and visual examination, but without a bimodal distribution of OTU richness. Shotgun sequencing showed the archaeum Nitrosopumilus as dominant for the high OTU richness cluster, and the epsilon protobacterium Sulfurovum as dominant for the low OTU richness cluster. Metabolic reconstruction of Nitrosopumilus indicates nitrification as the main metabolic pathway. Sulfurovum, on the other hand, was associated with sulfur oxidation and denitrification. Changes in nitrogen and sulfur metabolism is proposed as a potential explanation for the difference between the high and low OTU richness clusters. In conclusion, these findings suggest that pollution from elevated loads of organic waste drives the microbiota towards a complete alteration of respiratory routes and species composition, in addition to a collapse in prokaryote OTU richness.
Collapse
Affiliation(s)
| | - I Ormaasen
- Norwegian University of Life Sciences, Ås, Norway
| | - I L Angell
- Norwegian University of Life Sciences, Ås, Norway
| | - N B Keeley
- Institute of Marine Research, Tromsø, Norway
| | | | - L Snipen
- Norwegian University of Life Sciences, Ås, Norway
| | - K Rudi
- Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
10
|
Li M, Miao H, Li Y, Wang F, Xu J. Protein Engineering of an Artificial P450BM3 Peroxygenase System Enables Highly Selective O-Demethylation of Lignin Monomers. Molecules 2022; 27:molecules27103120. [PMID: 35630597 PMCID: PMC9143554 DOI: 10.3390/molecules27103120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
The O-demethylation of lignin monomers, which has drawn substantial attention recently, is critical for the formation of phenols from aromatic ethers. The P450BM3 peroxygenase system was recently found to enable the O-demethylation of different aromatic ethers with the assistance of dual-functional small molecules (DFSM), but these prepared mutants only have either moderate O-demethylation activity or moderate selectivity, which hinders their further application. In this study, we improve the system by introducing different amino acids into the active site of P450BM3, and these amino acids with different side chains impacted the catalytic ability of enzymes due to their differences in size, polarity, and hydrophobicity. Among the prepared mutants, the combination of V78A/F87A/T268I/A264G and Im-C6-Phe efficiently catalyzed the O-demethylation of guaiacol (TON = 839) with 100% selectivity. Compared with NADPH-dependent systems, we offer an economical and practical bioconversion avenue.
Collapse
Affiliation(s)
- Maosheng Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China; (H.M.); (Y.L.); (F.W.)
| | - Hengmin Miao
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China; (H.M.); (Y.L.); (F.W.)
| | - Yanqing Li
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China; (H.M.); (Y.L.); (F.W.)
| | - Fang Wang
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China; (H.M.); (Y.L.); (F.W.)
| | - Jiakun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China; (H.M.); (Y.L.); (F.W.)
- Correspondence: ; Tel.: +86-13869828530
| |
Collapse
|
11
|
Di S, Fan S, Jiang F, Cong Z. A Unique P450 Peroxygenase System Facilitated by a Dual-Functional Small Molecule: Concept, Application, and Perspective. Antioxidants (Basel) 2022; 11:antiox11030529. [PMID: 35326179 PMCID: PMC8944620 DOI: 10.3390/antiox11030529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Cytochrome P450 monooxygenases (P450s) are promising versatile oxidative biocatalysts. However, the practical use of P450s in vitro is limited by their dependence on the co-enzyme NAD(P)H and the complex electron transport system. Using H2O2 simplifies the catalytic cycle of P450s; however, most P450s are inactive in the presence of H2O2. By mimicking the molecular structure and catalytic mechanism of natural peroxygenases and peroxidases, an artificial P450 peroxygenase system has been designed with the assistance of a dual-functional small molecule (DFSM). DFSMs, such as N-(ω-imidazolyl fatty acyl)-l-amino acids, use an acyl amino acid as an anchoring group to bind the enzyme, and the imidazolyl group at the other end functions as a general acid-base catalyst in the activation of H2O2. In combination with protein engineering, the DFSM-facilitated P450 peroxygenase system has been used in various oxidation reactions of non-native substrates, such as alkene epoxidation, thioanisole sulfoxidation, and alkanes and aromatic hydroxylation, which showed unique activities and selectivity. Moreover, the DFSM-facilitated P450 peroxygenase system can switch to the peroxidase mode by mechanism-guided protein engineering. In this short review, the design, mechanism, evolution, application, and perspective of these novel non-natural P450 peroxygenases for the oxidation of non-native substrates are discussed.
Collapse
Affiliation(s)
- Siyu Di
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengxian Fan
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengjie Jiang
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-532-80662758
| |
Collapse
|
12
|
Pompei S, Grimm C, Schiller C, Schober L, Kroutil W. Thiols Act as Methyl Traps in the Biocatalytic Demethylation of Guaiacol Derivatives. Angew Chem Int Ed Engl 2021; 60:16906-16910. [PMID: 34057803 PMCID: PMC8361964 DOI: 10.1002/anie.202104278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Indexed: 12/13/2022]
Abstract
Demethylating methyl phenyl ethers is challenging, especially when the products are catechol derivatives prone to follow-up reactions. For biocatalytic demethylation, monooxygenases have previously been described requiring molecular oxygen which may cause oxidative side reactions. Here we show that such compounds can be demethylated anaerobically by using cobalamin-dependent methyltransferases exploiting thiols like ethyl 3-mercaptopropionate as a methyl trap. Using just two equivalents of this reagent, a broad spectrum of substituted guaiacol derivatives were demethylated, with conversions mostly above 90 %. This strategy was used to prepare the highly valuable antioxidant hydroxytyrosol on a one-gram scale in 97 % isolated yield.
Collapse
Affiliation(s)
- Simona Pompei
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Christopher Grimm
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Christine Schiller
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Lukas Schober
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Wolfgang Kroutil
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
- BioTechMed Graz8010GrazAustria
- Field of Excellence BioHealth-University of Graz8010GrazAustria
| |
Collapse
|
13
|
Pompei S, Grimm C, Schiller C, Schober L, Kroutil W. Thiols Act as Methyl Traps in the Biocatalytic Demethylation of Guaiacol Derivatives. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:17043-17047. [PMID: 38505659 PMCID: PMC10946705 DOI: 10.1002/ange.202104278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Indexed: 11/10/2022]
Abstract
Demethylating methyl phenyl ethers is challenging, especially when the products are catechol derivatives prone to follow-up reactions. For biocatalytic demethylation, monooxygenases have previously been described requiring molecular oxygen which may cause oxidative side reactions. Here we show that such compounds can be demethylated anaerobically by using cobalamin-dependent methyltransferases exploiting thiols like ethyl 3-mercaptopropionate as a methyl trap. Using just two equivalents of this reagent, a broad spectrum of substituted guaiacol derivatives were demethylated, with conversions mostly above 90 %. This strategy was used to prepare the highly valuable antioxidant hydroxytyrosol on a one-gram scale in 97 % isolated yield.
Collapse
Affiliation(s)
- Simona Pompei
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Christopher Grimm
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Christine Schiller
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Lukas Schober
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Wolfgang Kroutil
- Institute of Chemistry, Biocatalytic SynthesisUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
- BioTechMed Graz8010GrazAustria
- Field of Excellence BioHealth-University of Graz8010GrazAustria
| |
Collapse
|
14
|
Hollmann F, Opperman DJ, Paul CE. Biocatalytic Reduction Reactions from a Chemist's Perspective. Angew Chem Int Ed Engl 2021; 60:5644-5665. [PMID: 32330347 PMCID: PMC7983917 DOI: 10.1002/anie.202001876] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Reductions play a key role in organic synthesis, producing chiral products with new functionalities. Enzymes can catalyse such reactions with exquisite stereo-, regio- and chemoselectivity, leading the way to alternative shorter classical synthetic routes towards not only high-added-value compounds but also bulk chemicals. In this review we describe the synthetic state-of-the-art and potential of enzymes that catalyse reductions, ranging from carbonyl, enone and aromatic reductions to reductive aminations.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Diederik J. Opperman
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
15
|
Qiu M, Hu A, Huang YMM, Zhao Y, He Y, Xu J, Lu Z. Elucidating degradation mechanisms of florfenicol in soil by stable-isotope assisted nontarget screening. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123974. [PMID: 33265015 DOI: 10.1016/j.jhazmat.2020.123974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/18/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
Antibiotics in soil environments are a growing concern. Identifying transformation products is key to elucidating degradation pathways and mechanisms of antibiotics and other organic micropollutants. The primary challenge of transformation product identification is the interference of matrices. In this study, stable-isotope assisted nontarget screening was used to identify biodegradation products of florfenicol in soil. A total of 74 candidates were prioritized from thousands of mass features observed by a tiered peak filtering approach. Moreover, with the support of in silico prediction tools, the structures of 12 transformation products were elucidated, and 9 of them were reported for the first time. A biodegradation map of florfenicol consisting of amide hydrolysis, dechlorination, dehydration, defluorination, and sulfone reduction was established based on these identified products. A total of 8 products were also found in 6 field soil samples with manure application. Because of the structural similarity to florfenicol, some transformation products might still keep antimicrobial activity toward a variety of bacterial species. The strategies demonstrated in this study provide a basis for efficient identification of transformation products of other organic micropollutants in a variety of environmental matrices. The results also shed light on the degradation mechanisms, risk assessments, and regulations of these compounds.
Collapse
Affiliation(s)
- Min Qiu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ailun Hu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yu-Ming M Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, United States
| | - Yun Zhao
- Hangzhou Academy of Agricultural Sciences, Hangzhou, Zhejiang 310024, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhijiang Lu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
16
|
Winkler C, Schrittwieser JH, Kroutil W. Power of Biocatalysis for Organic Synthesis. ACS CENTRAL SCIENCE 2021; 7:55-71. [PMID: 33532569 PMCID: PMC7844857 DOI: 10.1021/acscentsci.0c01496] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 05/05/2023]
Abstract
Biocatalysis, using defined enzymes for organic transformations, has become a common tool in organic synthesis, which is also frequently applied in industry. The generally high activity and outstanding stereo-, regio-, and chemoselectivity observed in many biotransformations are the result of a precise control of the reaction in the active site of the biocatalyst. This control is achieved by exact positioning of the reagents relative to each other in a fine-tuned 3D environment, by specific activating interactions between reagents and the protein, and by subtle movements of the catalyst. Enzyme engineering enables one to adapt the catalyst to the desired reaction and process. A well-filled biocatalytic toolbox is ready to be used for various reactions. Providing nonnatural reagents and conditions and evolving biocatalysts enables one to play with the myriad of options for creating novel transformations and thereby opening new, short pathways to desired target molecules. Combining several biocatalysts in one pot to perform several reactions concurrently increases the efficiency of biocatalysis even further.
Collapse
Affiliation(s)
- Christoph
K. Winkler
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
| | - Joerg H. Schrittwieser
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
- Field
of Excellence BioHealth − University of Graz, 8010 Graz, Austria
- BioTechMed
Graz, 8010 Graz, Austria
| |
Collapse
|
17
|
Pompei S, Grimm C, Farnberger JE, Schober L, Kroutil W. Regioselectivity of Cobalamin-Dependent Methyltransferase Can Be Tuned by Reaction Conditions and Substrate. ChemCatChem 2020; 12:5977-5983. [PMID: 33442427 PMCID: PMC7783988 DOI: 10.1002/cctc.202001296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Indexed: 12/21/2022]
Abstract
Regioselective reactions represent a significant challenge for organic chemistry. Here the regioselective methylation of a single hydroxy group of 4-substituted catechols was investigated employing the cobalamin-dependent methyltransferase from Desulfitobacterium hafniense. Catechols substituted in position four were methylated either in meta- or para-position to the substituent depending whether the substituent was polar or apolar. While the biocatalytic cobalamin dependent methylation was meta-selective with 4-substituted catechols bearing hydrophilic groups, it was para-selective for hydrophobic substituents. Furthermore, the presence of water miscible co-solvents had a clear improving influence, whereby THF turned out to enable the formation of a single regioisomer in selected cases. Finally, it was found that also the pH led to an enhancement of regioselectivity for the cases investigated.
Collapse
Affiliation(s)
- Simona Pompei
- Institute of ChemistryNAWI GrazUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Christopher Grimm
- Institute of ChemistryNAWI GrazUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Judith E. Farnberger
- Austrian Centre of Industrial Biotechnologyc/o Institute of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Lukas Schober
- Institute of ChemistryNAWI GrazUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Wolfgang Kroutil
- Institute of ChemistryNAWI GrazUniversity of GrazHeinrichstrasse 288010GrazAustria
- Field of Excellence BioHealthUniversity of Graz8010GrazAustria
- BioTechMed Graz8010GrazAustria
| |
Collapse
|
18
|
Hollmann F, Opperman DJ, Paul CE. Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Diederik J. Opperman
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
| |
Collapse
|
19
|
Grimm C, Lazzarotto M, Pompei S, Schichler J, Richter N, Farnberger JE, Fuchs M, Kroutil W. Oxygen-Free Regioselective Biocatalytic Demethylation of Methyl-phenyl Ethers via Methyltransfer Employing Veratrol- O-demethylase. ACS Catal 2020; 10:10375-10380. [PMID: 32974079 PMCID: PMC7506938 DOI: 10.1021/acscatal.0c02790] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/17/2020] [Indexed: 11/28/2022]
Abstract
![]()
The cleavage of aryl
methyl ethers is a common reaction in chemistry requiring rather harsh
conditions; consequently, it is prone to undesired reactions and lacks
regioselectivity. Nevertheless, O-demethylation of
aryl methyl ethers is a tool to valorize natural and pharmaceutical
compounds by deprotecting reactive hydroxyl moieties. Various oxidative
enzymes are known to catalyze this reaction at the expense of molecular
oxygen, which may lead in the case of phenols/catechols to undesired
side reactions (e.g., oxidation, polymerization). Here an oxygen-independent
demethylation via methyl transfer is presented employing a cobalamin-dependent
veratrol-O-demethylase (vdmB). The biocatalytic demethylation
transforms a variety of aryl methyl ethers with two functional methoxy
moieties either in 1,2-position or in 1,3-position. Biocatalytic reactions
enabled, for instance, the regioselective monodemethylation of substituted
3,4-dimethoxy phenol as well as the monodemethylation of 1,3,5-trimethoxybenzene.
The methyltransferase vdmB was also successfully applied for the regioselective
demethylation of natural compounds such as papaverine and rac-yatein. The approach presented here represents an alternative
to chemical and enzymatic demethylation concepts and allows performing
regioselective demethylation in the absence of oxygen under mild conditions,
representing a valuable extension of the synthetic repertoire to modify
pharmaceuticals and diversify natural products.
Collapse
Affiliation(s)
- Christopher Grimm
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Mattia Lazzarotto
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Simona Pompei
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Johanna Schichler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Nina Richter
- ACIB GmbH, Petersgasse 14, 8010 Graz, Austria, c/o Institute of Chemistry, Heinrichstraße 28, 8010 Graz, Austria
| | - Judith E. Farnberger
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
- ACIB GmbH, Petersgasse 14, 8010 Graz, Austria, c/o Institute of Chemistry, Heinrichstraße 28, 8010 Graz, Austria
| | - Michael Fuchs
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
20
|
Jiang Y, Wang C, Ma N, Chen J, Liu C, Wang F, Xu J, Cong Z. Regioselective aromatic O-demethylation with an artificial P450BM3 peroxygenase system. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00241k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly regioselective O-demethylation of aromatic ethers related to the bioconversion of lignin was achieved by the H2O2-dependent engineered P450BM3 enzymes with assistance of a dual-functional small molecule (DFSM) for the first time.
Collapse
Affiliation(s)
- Yihui Jiang
- Key Lab of Sustainable Development of Polar Fisheries
- Ministry of Agriculture and Rural Affairs
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
- Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology
- Qingdao 266071
| | - Chunlan Wang
- Key Lab of Sustainable Development of Polar Fisheries
- Ministry of Agriculture and Rural Affairs
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
- Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology
- Qingdao 266071
| | - Nana Ma
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences
- Qingdao
- China
- University of Chinese Academy of Sciences
| | - Jie Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences
- Qingdao
- China
- University of Chinese Academy of Sciences
| | - Chuanfei Liu
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences
- Qingdao
- China
| | - Fang Wang
- Key Lab of Sustainable Development of Polar Fisheries
- Ministry of Agriculture and Rural Affairs
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
- Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology
- Qingdao 266071
| | - Jiakun Xu
- Key Lab of Sustainable Development of Polar Fisheries
- Ministry of Agriculture and Rural Affairs
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
- Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology
- Qingdao 266071
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences
- Qingdao
- China
- University of Chinese Academy of Sciences
| |
Collapse
|
21
|
Farnberger J, Hiebler K, Bierbaumer S, Skibar W, Zepeck F, Kroutil W. Cobalamin-Dependent Apparent Intramolecular Methyl Transfer for Biocatalytic Constitutional Isomerization of Catechol Monomethyl Ethers. ACS Catal 2019; 9:3900-3905. [PMID: 31080689 PMCID: PMC6503581 DOI: 10.1021/acscatal.8b05072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/14/2019] [Indexed: 12/29/2022]
Abstract
Isomerization is a fundamental reaction in chemistry. However, isomerization of phenyl methyl ethers has not been described yet. Using a cobalamin-dependent methyl transferase, a reversible shuttle concept was investigated for isomerization of catechol monomethyl ethers. The methyl ether of substituted catechol derivatives was successfully transferred onto the adjacent hydroxy moiety. For instance, the cobalamin-dependent biocatalyst transformed isovanillin to its regioisomer vanillin with significant regioisomeric excess (68% vanillin). To the best of our knowledge, isomerization by methyl transfer employing a methyl transferase has not been reported before.
Collapse
Affiliation(s)
- Judith
E. Farnberger
- Austrian
Centre of Industrial Biotechnolgy, ACIB GmbH, c/o University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Katharina Hiebler
- Institute
of Chemistry, Organic and Bioorganic Chemistry, NAWI Graz, BioTechMed
Graz, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Sarah Bierbaumer
- Institute
of Chemistry, Organic and Bioorganic Chemistry, NAWI Graz, BioTechMed
Graz, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Skibar
- Sandoz
GmbH, Biocatalysis Lab, Biochemiestrasse 10, 6250 Kundl, Austria
| | - Ferdinand Zepeck
- Sandoz
GmbH, Biocatalysis Lab, Biochemiestrasse 10, 6250 Kundl, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, Organic and Bioorganic Chemistry, NAWI Graz, BioTechMed
Graz, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
22
|
Richter N, Farnberger JE, Pompei S, Grimm C, Skibar W, Zepeck F, Kroutil W. Biocatalytic Methyl Ether Cleavage: Characterization of the Corrinoid‐Dependent Methyl Transfer System from Desulfitobacterium hafniense. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nina Richter
- Austrian Centre of Industrial BiotechnologyACIB GmbHc/o University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Judith E. Farnberger
- Austrian Centre of Industrial BiotechnologyACIB GmbHc/o University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Simona Pompei
- Institute of ChemistryUniversity of GrazNAWI GrazBioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Christopher Grimm
- Institute of ChemistryUniversity of GrazNAWI GrazBioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Wolfgang Skibar
- Sandoz GmbHBiocatalysis Lab Biochemiestrasse 10 6250 Kundl Austria
| | - Ferdinand Zepeck
- Sandoz GmbHBiocatalysis Lab Biochemiestrasse 10 6250 Kundl Austria
| | - Wolfgang Kroutil
- Institute of ChemistryUniversity of GrazNAWI GrazBioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
23
|
Lanfranchi E, Trajković M, Barta K, de Vries JG, Janssen DB. Exploring the Selective Demethylation of Aryl Methyl Ethers with a
Pseudomonas
Rieske Monooxygenase. Chembiochem 2018; 20:118-125. [DOI: 10.1002/cbic.201800594] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Elisa Lanfranchi
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of Groningen Nijenborgh 4 9726 AG Groningen The Netherlands
- Present address: School of Food and Nutritional Science SciencesUniversity College Cork College Road Cork T12 YN60 Republic of Ireland
| | - Miloš Trajković
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of Groningen Nijenborgh 4 9726 AG Groningen The Netherlands
| | - Katalin Barta
- Synthetic Organic ChemistryStratingh Institute for ChemistryUniversity of Groningen Nijenborgh 4 9726 AG Groningen The Netherlands
| | - Johannes G. de Vries
- Synthetic Organic ChemistryStratingh Institute for ChemistryUniversity of Groningen Nijenborgh 4 9726 AG Groningen The Netherlands
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Dick B. Janssen
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of Groningen Nijenborgh 4 9726 AG Groningen The Netherlands
| |
Collapse
|
24
|
Farnberger JE, Richter N, Hiebler K, Bierbaumer S, Pickl M, Skibar W, Zepeck F, Kroutil W. Biocatalytic methylation and demethylation via a shuttle catalysis concept involving corrinoid proteins. Commun Chem 2018. [DOI: 10.1038/s42004-018-0083-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
25
|
Shen C, Shan T, Zhao W, Ou C, Li L, Liu X, Liu J, Yu B. Regio- and enantioselective O-demethylation of tetrahydroprotoberberines by cytochrome P450 enzyme system from Streptomyces griseus ATCC 13273. Appl Microbiol Biotechnol 2018; 103:761-776. [PMID: 30368581 DOI: 10.1007/s00253-018-9416-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 11/27/2022]
Abstract
Tetrahydroprotoberberines (THPBs), a class of naturally occurring isoquinoline alkaloids, contain substituent methoxyl or hydroxyl groups which play a significant role in the pharmacological properties of these molecules. In this study, we report a biocatalytic strategy for selective O-demethylation of THPBs. CYP105D1, a cytochrome P450 from Streptomyces griseus ATCC 13273, exhibited markedly regioselective demethylation of nonhydroxyl-THPBs and monohydroxyl-THPBs on the D-ring. A possible binding mode of THPBs with CYP105D1 was investigated by docking analysis, and the results revealed that the D-rings of THPBs were with the minimum distance to the heme iron. Tetrahydropalmatine was used as a model substrate and enantioselective demethylation was demonstrated. (S)-Tetrahydropalmatine was only demethylated at C-10, while (R)-tetrahydropalmatine was first demethylated at C-10 and then subsequently demethylated at C-9. The kcat/Km value for demethylation of (R)-tetrahydropalmatine by CYP105D1 was 3.7 times greater than that for demethylation of (S)-tetrahydropalmatine. Furthermore, selective demethylation of (S)-tetrahydropalmatine by the CYP105D1-based whole-cell system was demonstrated for the highly efficient production of (S)-corydalmine which has distinct pharmacological applications, such as providing relief from bone cancer pain and reducing morphine tolerance. Moreover, a homologous redox partner was identified to enhance the catalytic efficiency of the CYP105D1-based whole-cell system. This is the first enzymatic characterization of a cytochrome P450 that has regio- and enantioselective demethylation activity of THPBs for application purpose. The cytochrome P450 system could be a promising strategy for selective demethylation in the pharmaceutical industry.
Collapse
Affiliation(s)
- Chen Shen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Tianyue Shan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Wanli Zhao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Chenhui Ou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Li Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Xiufeng Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| | - Jihua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|