1
|
Soliman SS, Shah DH, El-Samad H, Weinberg ZY. Small molecule- and cell contact-inducible systems for controlling expression and differentiation in mouse embryonic stem cells. Development 2025; 152:dev204505. [PMID: 40377146 DOI: 10.1242/dev.204505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/31/2025] [Indexed: 05/18/2025]
Abstract
Synthetic developmental biology uses engineering approaches to understand multicellularity with goals ranging from recapitulating development to building synthetic organisms. Current approaches include engineering multicellular patterning, controlling differentiation and implementing cooperative cellular behaviors in model systems. Synthetic biology enables these pursuits by providing tools to control cell behavior. Mouse embryonic stem cells (mESCs) offer a well-studied and genetically tractable pluripotent model for pursuing synthetic development questions. However, there is minimal characterization of existing synthetic biology tools in mESCs. Here, we characterize three small molecule- and two cell contact-inducible systems for gene expression in and differentiation of mESCs. We show that small molecule- and cell contact-inducible systems work reliably and efficiently for controlling expression of arbitrary genetic payloads. We identify how these systems function differently across model differentiations. Furthermore, we show that these systems can drive direct differentiation of mESCs into neurons. Each of these systems can be used on their own or in combination, raising many possibilities for studying developmental principles with high precision.
Collapse
Affiliation(s)
- Sarah S Soliman
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Devan H Shah
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA 94720-1762, USA
| | - Hana El-Samad
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Cell Design Institute, University of California, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
- Altos Labs, Redwood City, CA 94063, USA
| | - Zara Y Weinberg
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
2
|
Pai VP, Pio-Lopez L, Sperry MM, Erickson P, Tayyebi P, Levin M. Basal Xenobot transcriptomics reveals changes and novel control modality in cells freed from organismal influence. Commun Biol 2025; 8:646. [PMID: 40263484 PMCID: PMC12015265 DOI: 10.1038/s42003-025-08086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/14/2025] [Indexed: 04/24/2025] Open
Abstract
Would transcriptomes change if cell collectives acquired a novel morphogenetic and behavioral phenotype in the absence of genomic editing, transgenes, heterologous materials, or drugs? We investigate the effects of morphology and nascent emergent life history on gene expression in the basal (no engineering, no sculpting) form of Xenobots -autonomously motile constructs derived from Xenopus embryo ectodermal cell explants. To investigate gene expression differences between cells in the context of an embryo with those that have been freed from instructive signals and acquired novel lived experiences, we compare transcriptomes of these basal Xenobots with age-matched Xenopus embryos. Basal Xenobots show significantly larger inter-individual gene variability than age-matched embryos, suggesting increased exploration of the transcriptional space. We identify at least 537 (non-epidermal) transcripts uniquely upregulated in these Xenobots. Phylostratigraphy shows a majority of transcriptomic shifts in the basal Xenobots towards evolutionarily ancient transcripts. Pathway analyses indicate transcriptomic shifts in the categories of motility machinery, multicellularity, stress and immune response, metabolism, thanatotranscriptome, and sensory perception of sound and mechanical stimuli. We experimentally confirm that basal Xenobots respond to acoustic stimuli via changes in behavior. Together, these data may have implications for evolution, biomedicine, and synthetic morphoengineering.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Léo Pio-Lopez
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Megan M Sperry
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | | | - Parande Tayyebi
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
3
|
Santorelli M, Bhamidipati PS, Courte J, Swedlund B, Jain N, Poon K, Schildknecht D, Kavanagh A, MacKrell VA, Sondkar T, Malaguti M, Quadrato G, Lowell S, Thomson M, Morsut L. Control of spatio-temporal patterning via cell growth in a multicellular synthetic gene circuit. Nat Commun 2024; 15:9867. [PMID: 39562554 PMCID: PMC11577002 DOI: 10.1038/s41467-024-53078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 10/01/2024] [Indexed: 11/21/2024] Open
Abstract
A major goal in synthetic development is to build gene regulatory circuits that control patterning. In natural development, an interplay between mechanical and chemical communication shapes the dynamics of multicellular gene regulatory circuits. For synthetic circuits, how non-genetic properties of the growth environment impact circuit behavior remains poorly explored. Here, we first describe an occurrence of mechano-chemical coupling in synthetic Notch (synNotch) patterning circuits: high cell density decreases synNotch-gated gene expression in different cellular systems in vitro. We then construct, both in vitro and in silico, a synNotch-based signal propagation circuit whose outcome can be regulated by cell density. Spatial and temporal patterning outcomes of this circuit can be predicted and controlled via modulation of cell proliferation, initial cell density, and/or spatial distribution of cell density. Our work demonstrates that synthetic patterning circuit outcome can be controlled via cellular growth, providing a means for programming multicellular circuit patterning outcomes.
Collapse
Affiliation(s)
- Marco Santorelli
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pranav S Bhamidipati
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Josquin Courte
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benjamin Swedlund
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Naisargee Jain
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kyle Poon
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dominik Schildknecht
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Andriu Kavanagh
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Victoria A MacKrell
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Trusha Sondkar
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mattias Malaguti
- Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
- Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Giorgia Quadrato
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sally Lowell
- Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
- Beckman Center for Single-Cell Profiling and Engineering, Pasadena, CA, USA.
| | - Leonardo Morsut
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
McMillen P, Levin M. Collective intelligence: A unifying concept for integrating biology across scales and substrates. Commun Biol 2024; 7:378. [PMID: 38548821 PMCID: PMC10978875 DOI: 10.1038/s42003-024-06037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/11/2024] [Indexed: 04/01/2024] Open
Abstract
A defining feature of biology is the use of a multiscale architecture, ranging from molecular networks to cells, tissues, organs, whole bodies, and swarms. Crucially however, biology is not only nested structurally, but also functionally: each level is able to solve problems in distinct problem spaces, such as physiological, morphological, and behavioral state space. Percolating adaptive functionality from one level of competent subunits to a higher functional level of organization requires collective dynamics: multiple components must work together to achieve specific outcomes. Here we overview a number of biological examples at different scales which highlight the ability of cellular material to make decisions that implement cooperation toward specific homeodynamic endpoints, and implement collective intelligence by solving problems at the cell, tissue, and whole-organism levels. We explore the hypothesis that collective intelligence is not only the province of groups of animals, and that an important symmetry exists between the behavioral science of swarms and the competencies of cells and other biological systems at different scales. We then briefly outline the implications of this approach, and the possible impact of tools from the field of diverse intelligence for regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Patrick McMillen
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Gumuskaya G, Srivastava P, Cooper BG, Lesser H, Semegran B, Garnier S, Levin M. Motile Living Biobots Self-Construct from Adult Human Somatic Progenitor Seed Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303575. [PMID: 38032125 PMCID: PMC10811512 DOI: 10.1002/advs.202303575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/31/2023] [Indexed: 12/01/2023]
Abstract
Fundamental knowledge gaps exist about the plasticity of cells from adult soma and the potential diversity of body shape and behavior in living constructs derived from genetically wild-type cells. Here anthrobots are introduced, a spheroid-shaped multicellular biological robot (biobot) platform with diameters ranging from 30 to 500 microns and cilia-powered locomotive abilities. Each Anthrobot begins as a single cell, derived from the adult human lung, and self-constructs into a multicellular motile biobot after being cultured in extra cellular matrix for 2 weeks and transferred into a minimally viscous habitat. Anthrobots exhibit diverse behaviors with motility patterns ranging from tight loops to straight lines and speeds ranging from 5-50 microns s-1 . The anatomical investigations reveal that this behavioral diversity is significantly correlated with their morphological diversity. Anthrobots can assume morphologies with fully polarized or wholly ciliated bodies and spherical or ellipsoidal shapes, each related to a distinct movement type. Anthrobots are found to be capable of traversing, and inducing rapid repair of scratches in, cultured human neural cell sheets in vitro. By controlling microenvironmental cues in bulk, novel structures, with new and unexpected behavior and biomedically-relevant capabilities, can be discovered in morphogenetic processes without direct genetic editing or manual sculpting.
Collapse
Affiliation(s)
- Gizem Gumuskaya
- Allen Discovery Center at Tufts Universityand Department of BiologyTufts UniversityMedfordMA02155USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Pranjal Srivastava
- Allen Discovery Center at Tufts Universityand Department of BiologyTufts UniversityMedfordMA02155USA
| | - Ben G. Cooper
- Allen Discovery Center at Tufts Universityand Department of BiologyTufts UniversityMedfordMA02155USA
| | - Hannah Lesser
- Allen Discovery Center at Tufts Universityand Department of BiologyTufts UniversityMedfordMA02155USA
| | - Ben Semegran
- Allen Discovery Center at Tufts Universityand Department of BiologyTufts UniversityMedfordMA02155USA
| | - Simon Garnier
- Federated Department of Biological SciencesNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Michael Levin
- Allen Discovery Center at Tufts Universityand Department of BiologyTufts UniversityMedfordMA02155USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| |
Collapse
|
6
|
Grodstein J, McMillen P, Levin M. Closing the loop on morphogenesis: a mathematical model of morphogenesis by closed-loop reaction-diffusion. Front Cell Dev Biol 2023; 11:1087650. [PMID: 37645245 PMCID: PMC10461482 DOI: 10.3389/fcell.2023.1087650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
Morphogenesis, the establishment and repair of emergent complex anatomy by groups of cells, is a fascinating and biomedically-relevant problem. One of its most fascinating aspects is that a developing embryo can reliably recover from disturbances, such as splitting into twins. While this reliability implies some type of goal-seeking error minimization over a morphogenic field, there are many gaps with respect to detailed, constructive models of such a process. A common way to achieve reliability is negative feedback, which requires characterizing the existing body shape to create an error signal-but measuring properties of a shape may not be simple. We show how cells communicating in a wave-like pattern could analyze properties of the current body shape. We then describe a closed-loop negative-feedback system for creating reaction-diffusion (RD) patterns with high reliability. Specifically, we use a wave to count the number of peaks in a RD pattern, letting us use a negative-feedback controller to create a pattern with N repetitions, where N can be altered over a wide range. Furthermore, the individual repetitions of the RD pattern can be easily stretched or shrunk under genetic control to create, e.g., some morphological features larger than others. This work contributes to the exciting effort of understanding design principles of morphological computation, which can be used to understand evolved developmental mechanisms, manipulate them in regenerative-medicine settings, or engineer novel synthetic morphology constructs with desired robust behavior.
Collapse
Affiliation(s)
- Joel Grodstein
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, United States
| | - Patrick McMillen
- Allen Discovery Center at Tufts University, Medford, MA, United States
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, United States
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| |
Collapse
|
7
|
Review on Bioinspired Design of ECM-Mimicking Scaffolds by Computer-Aided Assembly of Cell-Free and Cell Laden Micro-Modules. J Funct Biomater 2023; 14:jfb14020101. [PMID: 36826900 PMCID: PMC9964438 DOI: 10.3390/jfb14020101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Tissue engineering needs bioactive drug delivery scaffolds capable of guiding cell biosynthesis and tissue morphogenesis in three dimensions. Several strategies have been developed to design and fabricate ECM-mimicking scaffolds suitable for directing in vitro cell/scaffold interaction, and controlling tissue morphogenesis in vivo. Among these strategies, emerging computer aided design and manufacturing processes, such as modular tissue unit patterning, promise to provide unprecedented control over the generation of biologically and biomechanically competent tissue analogues. This review discusses recent studies and highlights the role of scaffold microstructural properties and their drug release capability in cell fate control and tissue morphogenesis. Furthermore, the work highlights recent advances in the bottom-up fabrication of porous scaffolds and hybrid constructs through the computer-aided assembly of cell-free and/or cell-laden micro-modules. The advantages, current limitations, and future challenges of these strategies are described and discussed.
Collapse
|
8
|
Shafritz DA, Ebrahimkhani MR, Oertel M. Therapeutic Cell Repopulation of the Liver: From Fetal Rat Cells to Synthetic Human Tissues. Cells 2023; 12:529. [PMID: 36831196 PMCID: PMC9954009 DOI: 10.3390/cells12040529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Progenitor cells isolated from the fetal liver can provide a unique cell source to generate new healthy tissue mass. Almost 20 years ago, it was demonstrated that rat fetal liver cells repopulate the normal host liver environment via a mechanism akin to cell competition. Activin A, which is produced by hepatocytes, was identified as an important player during cell competition. Because of reduced activin receptor expression, highly proliferative fetal liver stem/progenitor cells are resistant to activin A and therefore exhibit a growth advantage compared to hepatocytes. As a result, transplanted fetal liver cells are capable of repopulating normal livers. Important for cell-based therapies, hepatic stem/progenitor cells containing repopulation potential can be separated from fetal hematopoietic cells using the cell surface marker δ-like 1 (Dlk-1). In livers with advanced fibrosis, fetal epithelial stem/progenitor cells differentiate into functional hepatic cells and out-compete injured endogenous hepatocytes, which cause anti-fibrotic effects. Although fetal liver cells efficiently repopulate the liver, they will likely not be used for human cell transplantation. Thus, utilizing the underlying mechanism of repopulation and developed methods to produce similar growth-advantaged cells in vitro, e.g., human induced pluripotent stem cells (iPSCs), this approach has great potential for developing novel cell-based therapies in patients with liver disease. The present review gives a brief overview of the classic cell transplantation models and various cell sources studied as donor cell candidates. The advantages of fetal liver-derived stem/progenitor cells are discussed, as well as the mechanism of liver repopulation. Moreover, this article reviews the potential of in vitro developed synthetic human fetal livers from iPSCs and their therapeutic benefits.
Collapse
Affiliation(s)
- David A. Shafritz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mo R. Ebrahimkhani
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Michael Oertel
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
9
|
Martínez-Ara G, Stapornwongkul KS, Ebisuya M. Scaling up complexity in synthetic developmental biology. Science 2022; 378:864-868. [DOI: 10.1126/science.add9666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The application of synthetic biology approaches to study development opens the possibility to build and manipulate developmental processes to understand them better. Researchers have reconstituted fundamental developmental processes, such as cell patterning and sorting, by engineering gene circuits in vitro. Moreover, new tools have been created that allow for the control of developmental processes in more complex organoids and embryos. Synthetic approaches allow testing of which components are sufficient to reproduce a developmental process and under which conditions as well as what effect perturbations have on other processes. We envision that the future of synthetic developmental biology requires an increase in the diversity of available tools and further efforts to combine multiple developmental processes into one system.
Collapse
Affiliation(s)
| | | | - Miki Ebisuya
- European Molecular Biology Laboratory (EMBL) Barcelona, 08003 Barcelona, Spain
| |
Collapse
|
10
|
Glykofrydis F, Elfick A. Exploring standards for multicellular mammalian synthetic biology. Trends Biotechnol 2022; 40:1299-1312. [PMID: 35803769 DOI: 10.1016/j.tibtech.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 01/21/2023]
Abstract
Synthetic biology is moving towards bioengineering multicellular mammalian systems that are poised to advance tissue engineering, biomedicine, and the food industry. Despite progress, the field lacks a framework of standards that could greatly accelerate further development. Here, we explore the landscape of standards for multicellular mammalian synthetic biology. We discuss the limits of current technical standards and categorise unaddressed parameters into an abstraction hierarchy. We then define the concept of a 'synthetic multicellular mammalian system' and apply our standard hierarchy framework to illustrate how it could aid bioengineering endeavours. We conclude with promising areas that could shape the future of the field, flagging the need for a critical and holistic consideration of standards that requires cross-disciplinary dialogue.
Collapse
Affiliation(s)
- Fokion Glykofrydis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK; UK Centre for Mammalian Synthetic Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BD, UK
| | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK; UK Centre for Mammalian Synthetic Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BD, UK.
| |
Collapse
|
11
|
Deneer A, Fleck C. Mathematical Modelling in Plant Synthetic Biology. Methods Mol Biol 2022; 2379:209-251. [PMID: 35188665 DOI: 10.1007/978-1-0716-1791-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mathematical modelling techniques are integral to current research in plant synthetic biology. Modelling approaches can provide mechanistic understanding of a system, allowing predictions of behaviour and thus providing a tool to help design and analyse biological circuits. In this chapter, we provide an overview of mathematical modelling methods and their significance for plant synthetic biology. Starting with the basics of dynamics, we describe the process of constructing a model over both temporal and spatial scales and highlight crucial approaches, such as stochastic modelling and model-based design. Next, we focus on the model parameters and the techniques required in parameter analysis. We then describe the process of selecting a model based on tests and criteria and proceed to methods that allow closer analysis of the system's behaviour. Finally, we highlight the importance of uncertainty in modelling approaches and how to deal with a lack of knowledge, noisy data, and biological variability; all aspects that play a crucial role in the cooperation between the experimental and modelling components. Overall, this chapter aims to illustrate the importance of mathematical modelling in plant synthetic biology, providing an introduction for those researchers who are working with or working on modelling techniques.
Collapse
Affiliation(s)
- Anna Deneer
- Biometris, Department of Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands
| | - Christian Fleck
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland.
- Freiburg Institute for Data Analysis and Mathematical Modelling, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
12
|
Saleh J, Mercier B, Xi W. Bioengineering methods for organoid systems. Biol Cell 2021; 113:475-491. [PMID: 34580889 DOI: 10.1111/boc.202000119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 08/05/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022]
Abstract
Organoids have been widely used in fundamental, biomimetic, and therapeutic studies. These multicellular systems form via cell-autonomous self-organization where a cohort of stem cells undergoes in vivo-like proliferation, differentiation, and morphogenesis. They also recapitulate a series of physiological cell organization, complexity and functions that are untouchable by conventional bio-model systems using immortal cell lines. However, the development of organoids is often not easily controlled and their shape and size are yet fully physiological. Recent research has demonstrated that multiple bioengineering tools could be harnessed to control important internal and external cues that dictate stem cell behavior and stem-cell based organoid development. In this review, we introduce the current development of organoid systems and their potentials, as well as their limitations that impede their further utility in research and clinical fields. In comparison to conventional autonomous organoid system, we then review bioengineering approaches that offer improved control over organoid growth and development. We focus on the genetic editing tools that allow the program of build-in responses and phenotypes for organoid systems with enhanced physiological relevance. We also highlight the advances in bioengineering methods to modify cellular external milieus to generate desirable cell composition, 3D micro-architectures, and complex microfluidic systems. We conclude that the emerging biomimetic methods that employ multidisciplinary approaches could prevail in the future development of organoid systems.
Collapse
Affiliation(s)
- Jad Saleh
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Barbara Mercier
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Wang Xi
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| |
Collapse
|
13
|
Abstract
Increased control of biological growth and form is an essential gateway to transformative medical advances. Repairing of birth defects, restoring lost or damaged organs, normalizing tumors, all depend on understanding how cells cooperate to make specific, functional large-scale structures. Despite advances in molecular genetics, significant gaps remain in our understanding of the meso-scale rules of morphogenesis. An engineering approach to this problem is the creation of novel synthetic living forms, greatly extending available model systems beyond evolved plant and animal lineages. Here, we review recent advances in the emerging field of synthetic morphogenesis, the bioengineering of novel multicellular living bodies. Emphasizing emergent self-organization, tissue-level guided self-assembly, and active functionality, this work is the essential next generation of synthetic biology. Aside from useful living machines for specific functions, the rational design and analysis of new, coherent anatomies will greatly increase our understanding of foundational questions in evolutionary developmental and cell biology.
Collapse
Affiliation(s)
- Mo R. Ebrahimkhani
- Department of Pathology, School of Medicine, University of Pittsburgh, A809B Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
14
|
Ho C, Morsut L. Novel synthetic biology approaches for developmental systems. Stem Cell Reports 2021; 16:1051-1064. [PMID: 33979593 PMCID: PMC8185972 DOI: 10.1016/j.stemcr.2021.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, developmental systems are investigated with increasing technological power. Still, open questions remain, especially concerning self-organization capacity and its control. Here, we present three areas where synthetic biology tools are used in top-down and bottom-up approaches for studying and constructing developmental systems. First, we discuss how synthetic biology tools can improve stem cell-based organoid models. Second, we discuss recent studies employing user-defined perturbations to study embryonic patterning in model species. Third, we present "toy models" of patterning and morphogenesis using synthetic genetic circuits in non-developmental systems. Finally, we discuss how these tools and approaches can specifically benefit the field of embryo models.
Collapse
Affiliation(s)
- Christine Ho
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Leonardo Morsut
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
15
|
Gough A, Soto-Gutierrez A, Vernetti L, Ebrahimkhani MR, Stern AM, Taylor DL. Human biomimetic liver microphysiology systems in drug development and precision medicine. Nat Rev Gastroenterol Hepatol 2021; 18:252-268. [PMID: 33335282 PMCID: PMC9106093 DOI: 10.1038/s41575-020-00386-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Microphysiology systems (MPS), also called organs-on-chips and tissue chips, are miniaturized functional units of organs constructed with multiple cell types under a variety of physical and biochemical environmental cues that complement animal models as part of a new paradigm of drug discovery and development. Biomimetic human liver MPS have evolved from simpler 2D cell models, spheroids and organoids to address the increasing need to understand patient-specific mechanisms of complex and rare diseases, the response to therapeutic treatments, and the absorption, distribution, metabolism, excretion and toxicity of potential therapeutics. The parallel development and application of transdisciplinary technologies, including microfluidic devices, bioprinting, engineered matrix materials, defined physiological and pathophysiological media, patient-derived primary cells, and pluripotent stem cells as well as synthetic biology to engineer cell genes and functions, have created the potential to produce patient-specific, biomimetic MPS for detailed mechanistic studies. It is projected that success in the development and maturation of patient-derived MPS with known genotypes and fully matured adult phenotypes will lead to advanced applications in precision medicine. In this Review, we examine human biomimetic liver MPS that are designed to recapitulate the liver acinus structure and functions to enhance our knowledge of the mechanisms of disease progression and of the absorption, distribution, metabolism, excretion and toxicity of therapeutic candidates and drugs as well as to evaluate their mechanisms of action and their application in precision medicine and preclinical trials.
Collapse
Affiliation(s)
- Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alejandro Soto-Gutierrez
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Velazquez JJ, LeGraw R, Moghadam F, Tan Y, Kilbourne J, Maggiore JC, Hislop J, Liu S, Cats D, Chuva de Sousa Lopes SM, Plaisier C, Cahan P, Kiani S, Ebrahimkhani MR. Gene Regulatory Network Analysis and Engineering Directs Development and Vascularization of Multilineage Human Liver Organoids. Cell Syst 2020; 12:41-55.e11. [PMID: 33290741 PMCID: PMC8164844 DOI: 10.1016/j.cels.2020.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
Pluripotent stem cell (PSC)-derived organoids have emerged as novel multicellular models of human tissue development but display immature phenotypes, aberrant tissue fates, and a limited subset of cells. Here, we demonstrate that integrated analysis and engineering of gene regulatory networks (GRNs) in PSC-derived multilineage human liver organoids direct maturation and vascular morphogenesis in vitro. Overexpression of PROX1 and ATF5, combined with targeted CRISPR-based transcriptional activation of endogenous CYP3A4, reprograms tissue GRNs and improves native liver functions, such as FXR signaling, CYP3A4 enzymatic activity, and stromal cell reactivity. The engineered tissues possess superior liver identity when compared with other PSC-derived liver organoids and show the presence of hepatocyte, biliary, endothelial, and stellate-like cell populations in single-cell RNA-seq analysis. Finally, they show hepatic functions when studied in vivo. Collectively, our approach provides an experimental framework to direct organogenesis in vitro by systematically probing molecular pathways and transcriptional networks that promote tissue development.
Collapse
Affiliation(s)
- Jeremy J Velazquez
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Ryan LeGraw
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Farzaneh Moghadam
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Yuqi Tan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Joseph C Maggiore
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Joshua Hislop
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Silvia Liu
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Davy Cats
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Einthovenweg, 2333 ZC Leiden, the Netherlands
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg, 2333 ZC Leiden, the Netherlands
| | - Christopher Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Patrick Cahan
- Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Samira Kiani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA; Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Phoenix, AZ 85054, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
17
|
Zúñiga A, Guiziou S, Mayonove P, Meriem ZB, Camacho M, Moreau V, Ciandrini L, Hersen P, Bonnet J. Rational programming of history-dependent logic in cellular populations. Nat Commun 2020; 11:4758. [PMID: 32958811 PMCID: PMC7506022 DOI: 10.1038/s41467-020-18455-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Genetic programs operating in a history-dependent fashion are ubiquitous in nature and govern sophisticated processes such as development and differentiation. The ability to systematically and predictably encode such programs would advance the engineering of synthetic organisms and ecosystems with rich signal processing abilities. Here we implement robust, scalable history-dependent programs by distributing the computational labor across a cellular population. Our design is based on standardized recombinase-driven DNA scaffolds expressing different genes according to the order of occurrence of inputs. These multicellular computing systems are highly modular, do not require cell-cell communication channels, and any program can be built by differential composition of strains containing well-characterized logic scaffolds. We developed automated workflows that researchers can use to streamline program design and optimization. We anticipate that the history-dependent programs presented here will support many applications using cellular populations for material engineering, biomanufacturing and healthcare.
Collapse
Affiliation(s)
- Ana Zúñiga
- Centre de Biochimie Structurale (CBS), INSERM U154, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Sarah Guiziou
- Centre de Biochimie Structurale (CBS), INSERM U154, CNRS UMR5048, University of Montpellier, Montpellier, France
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Pauline Mayonove
- Centre de Biochimie Structurale (CBS), INSERM U154, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Zachary Ben Meriem
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS & Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
| | - Miguel Camacho
- Centre de Biochimie Structurale (CBS), INSERM U154, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Violaine Moreau
- Centre de Biochimie Structurale (CBS), INSERM U154, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Luca Ciandrini
- Centre de Biochimie Structurale (CBS), INSERM U154, CNRS UMR5048, University of Montpellier, Montpellier, France
- Laboratoire Charles Coulomb (L2C), University of Montpellier & CNRS, Montpellier, France
| | - Pascal Hersen
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS & Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
- Laboratoire Physico Chimie Curie, UMR168, Institut Curie, Paris, France
| | - Jerome Bonnet
- Centre de Biochimie Structurale (CBS), INSERM U154, CNRS UMR5048, University of Montpellier, Montpellier, France.
| |
Collapse
|
18
|
Abstract
Organoids form through self-organization processes in which initially homogeneous populations of stem cells spontaneously break symmetry and undergo in-vivo-like pattern formation and morphogenesis, though the processes controlling this are poorly characterized. While these in vitro self-organized tissues far exceed the microscopic and functional complexity obtained by current tissue engineering technologies, they are non-physiological in shape and size and have limited function and lifespan. Here, we discuss how engineering efforts for guiding stem-cell-based development at multiple stages can form the basis for the assembly of highly complex and rationally designed self-organizing multicellular systems with increased robustness and physiological relevance.
Collapse
|
19
|
Gorochowski TE, Hauert S, Kreft JU, Marucci L, Stillman NR, Tang TYD, Bandiera L, Bartoli V, Dixon DOR, Fedorec AJH, Fellermann H, Fletcher AG, Foster T, Giuggioli L, Matyjaszkiewicz A, McCormick S, Montes Olivas S, Naylor J, Rubio Denniss A, Ward D. Toward Engineering Biosystems With Emergent Collective Functions. Front Bioeng Biotechnol 2020; 8:705. [PMID: 32671054 PMCID: PMC7332988 DOI: 10.3389/fbioe.2020.00705] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022] Open
Abstract
Many complex behaviors in biological systems emerge from large populations of interacting molecules or cells, generating functions that go beyond the capabilities of the individual parts. Such collective phenomena are of great interest to bioengineers due to their robustness and scalability. However, engineering emergent collective functions is difficult because they arise as a consequence of complex multi-level feedback, which often spans many length-scales. Here, we present a perspective on how some of these challenges could be overcome by using multi-agent modeling as a design framework within synthetic biology. Using case studies covering the construction of synthetic ecologies to biological computation and synthetic cellularity, we show how multi-agent modeling can capture the core features of complex multi-scale systems and provide novel insights into the underlying mechanisms which guide emergent functionalities across scales. The ability to unravel design rules underpinning these behaviors offers a means to take synthetic biology beyond single molecules or cells and toward the creation of systems with functions that can only emerge from collectives at multiple scales.
Collapse
Affiliation(s)
| | - Sabine Hauert
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Jan-Ulrich Kreft
- School of Biosciences and Institute of Microbiology and Infection and Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Namid R. Stillman
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - T.-Y. Dora Tang
- Max Plank Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Physics of Life, Cluster of Excellence, Technische Universität Dresden, Dresden, Germany
| | - Lucia Bandiera
- School of Engineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Vittorio Bartoli
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | | | - Alex J. H. Fedorec
- Division of Biosciences, University College London, London, United Kingdom
| | - Harold Fellermann
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alexander G. Fletcher
- Bateson Centre and School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom
| | - Tim Foster
- School of Biosciences and Institute of Microbiology and Infection and Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
| | - Luca Giuggioli
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | | | - Scott McCormick
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Sandra Montes Olivas
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Jonathan Naylor
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana Rubio Denniss
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Daniel Ward
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
20
|
Cervera J, Meseguer S, Levin M, Mafe S. Bioelectrical model of head-tail patterning based on cell ion channels and intercellular gap junctions. Bioelectrochemistry 2020; 132:107410. [DOI: 10.1016/j.bioelechem.2019.107410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 02/09/2023]
|
21
|
Huang NF, Chaudhuri O, Cahan P, Wang A, Engler AJ, Wang Y, Kumar S, Khademhosseini A, Li S. Multi-scale cellular engineering: From molecules to organ-on-a-chip. APL Bioeng 2020; 4:010906. [PMID: 32161833 PMCID: PMC7054123 DOI: 10.1063/1.5129788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Recent technological advances in cellular and molecular engineering have provided new
insights into biology and enabled the design, manufacturing, and manipulation of complex
living systems. Here, we summarize the state of advances at the molecular, cellular, and
multi-cellular levels using experimental and computational tools. The areas of focus
include intrinsically disordered proteins, synthetic proteins, spatiotemporally dynamic
extracellular matrices, organ-on-a-chip approaches, and computational modeling, which all
have tremendous potential for advancing fundamental and translational science.
Perspectives on the current limitations and future directions are also described, with the
goal of stimulating interest to overcome these hurdles using multi-disciplinary
approaches.
Collapse
Affiliation(s)
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | - Adam J Engler
- Department of Bioengineering, Jacob School of Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Yingxiao Wang
- Department of Bioengineering, Jacob School of Engineering, University of California San Diego, La Jolla, California 92093, USA
| | | | | | - Song Li
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
22
|
Santorelli M, Lam C, Morsut L. Synthetic development: building mammalian multicellular structures with artificial genetic programs. Curr Opin Biotechnol 2019; 59:130-140. [PMID: 31128430 PMCID: PMC6778502 DOI: 10.1016/j.copbio.2019.03.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/08/2019] [Accepted: 03/24/2019] [Indexed: 12/28/2022]
Abstract
Synthetic biology efforts began in simple single-cell systems, which were relatively easy to manipulate genetically (Cameron et al., 2014). The field grew exponentially in the last two decades, and one of the latest frontiers are synthetic developmental programs for multicellular mammalian systems (Black et al., 2017; Wieland and Fussenegger, 2012) to genetically control features such as patterning or morphogenesis. These programs rely on engineered cell-cell communications, multicellular gene regulatory networks and effector genes. Here, we contextualize the first of these synthetic developmental programs, examine molecular and computational tools that can be used to generate next generation versions, and present the general logic that underpins these approaches. These advances are exciting as they represent a novel way to address both control and understanding in the field of developmental biology and tissue development (Elowitz and Lim, 2010; Velazquez et al., 2018; White et al., 2018; Morsut, 2017). This field is just at the beginning, and it promises to be of major interest in the upcoming years of biomedical research.
Collapse
Affiliation(s)
- Marco Santorelli
- The Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, United States
| | - Calvin Lam
- The Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, United States
| | - Leonardo Morsut
- The Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, United States.
| |
Collapse
|
23
|
Miller WB, Torday JS, Baluška F. The N-space Episenome unifies cellular information space-time within cognition-based evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 150:112-139. [PMID: 31415772 DOI: 10.1016/j.pbiomolbio.2019.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Self-referential cellular homeostasis is maintained by the measured assessment of both internal status and external conditions based within an integrated cellular information field. This cellular field attachment to biologic information space-time coordinates environmental inputs by connecting the cellular senome, as the sum of the sensory experiences of the cell, with its genome and epigenome. In multicellular organisms, individual cellular information fields aggregate into a collective information architectural matrix, termed a N-space Episenome, that enables mutualized organism-wide information management. It is hypothesized that biological organization represents a dual heritable system constituted by both its biological materiality and a conjoining N-space Episenome. It is further proposed that morphogenesis derives from reciprocations between these inter-related facets to yield coordinated multicellular growth and development. The N-space Episenome is conceived as a whole cell informational projection that is heritable, transferable via cell division and essential for the synchronous integration of the diverse self-referential cells that constitute holobionts.
Collapse
Affiliation(s)
| | - John S Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, USA.
| | | |
Collapse
|
24
|
Manicka S, Levin M. The Cognitive Lens: a primer on conceptual tools for analysing information processing in developmental and regenerative morphogenesis. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180369. [PMID: 31006373 PMCID: PMC6553590 DOI: 10.1098/rstb.2018.0369] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
Brains exhibit plasticity, multi-scale integration of information, computation and memory, having evolved by specialization of non-neural cells that already possessed many of the same molecular components and functions. The emerging field of basal cognition provides many examples of decision-making throughout a wide range of non-neural systems. How can biological information processing across scales of size and complexity be quantitatively characterized and exploited in biomedical settings? We use pattern regulation as a context in which to introduce the Cognitive Lens-a strategy using well-established concepts from cognitive and computer science to complement mechanistic investigation in biology. To facilitate the assimilation and application of these approaches across biology, we review tools from various quantitative disciplines, including dynamical systems, information theory and least-action principles. We propose that these tools can be extended beyond neural settings to predict and control systems-level outcomes, and to understand biological patterning as a form of primitive cognition. We hypothesize that a cognitive-level information-processing view of the functions of living systems can complement reductive perspectives, improving efficient top-down control of organism-level outcomes. Exploration of the deep parallels across diverse quantitative paradigms will drive integrative advances in evolutionary biology, regenerative medicine, synthetic bioengineering, cognitive neuroscience and artificial intelligence. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.
Collapse
Affiliation(s)
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
25
|
Ebrahimkhani MR, Ebisuya M. Synthetic developmental biology: build and control multicellular systems. Curr Opin Chem Biol 2019; 52:9-15. [PMID: 31102790 DOI: 10.1016/j.cbpa.2019.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 02/08/2023]
Abstract
Synthetic biology offers a bottom-up engineering approach that intends to understand complex systems via design-build-test cycles. Embryonic development comprises complex processes that originate at the level of gene regulatory networks in a cell and emerge into collective cellular behaviors with multicellular forms and functions. Here, we review synthetic biology approaches to development that involve building de novo developmental trajectories or engineering control in stem cell-derived multicellular systems. The field of synthetic developmental biology is rapidly growing with the help of recent advances in artificial gene circuits, self-organizing organoids, and controllable tissue microenvironments. The outcome will be a blueprint to decode principles of morphogenesis and to create programmable organoids with novel designs or improved functions.
Collapse
Affiliation(s)
- Mo R Ebrahimkhani
- Biodesign Institute, Arizona State Tempe, AZ, USA; School of Biological and Health Systems Engineering, Arizona State Tempe, AZ, USA; Mayo Clinic College of Medicine and Science, Phoenix, AZ, USA.
| | - Miki Ebisuya
- European Molecular Biology Laboratory (EMBL) Barcelona, Dr. Aiguader, 88, 08003, Barcelona, Spain.
| |
Collapse
|
26
|
Weber EL, Woolley TE, Yeh CY, Ou KL, Maini PK, Chuong CM. Self-organizing hair peg-like structures from dissociated skin progenitor cells: New insights for human hair follicle organoid engineering and Turing patterning in an asymmetric morphogenetic field. Exp Dermatol 2019; 28:355-366. [PMID: 30681746 PMCID: PMC6488368 DOI: 10.1111/exd.13891] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
Abstract
Human skin progenitor cells will form new hair follicles, although at a low efficiency, when injected into nude mouse skin. To better study and improve upon this regenerative process, we developed an in vitro system to analyse the morphogenetic cell behaviour in detail and modulate physical-chemical parameters to more effectively generate hair primordia. In this three-dimensional culture, dissociated human neonatal foreskin keratinocytes self-assembled into a planar epidermal layer while fetal scalp dermal cells coalesced into stripes, then large clusters, and finally small clusters resembling dermal condensations. At sites of dermal clustering, subjacent epidermal cells protruded to form hair peg-like structures, molecularly resembling hair pegs within the sequence of follicular development. The hair peg-like structures emerged in a coordinated, formative wave, moving from periphery to centre, suggesting that the droplet culture constitutes a microcosm with an asymmetric morphogenetic field. In vivo, hair follicle populations also form in a progressive wave, implying the summation of local periodic patterning events with an asymmetric global influence. To further understand this global patterning process, we developed a mathematical simulation using Turing activator-inhibitor principles in an asymmetric morphogenetic field. Together, our culture system provides a suitable platform to (a) analyse the self-assembly behaviour of hair progenitor cells into periodically arranged hair primordia and (b) identify parameters that impact the formation of hair primordia in an asymmetric morphogenetic field. This understanding will enhance our future ability to successfully engineer human hair follicle organoids.
Collapse
Affiliation(s)
- Erin L. Weber
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Thomas E. Woolley
- Cardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, UK
| | - Chao-Yuan Yeh
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Kuang-Ling Ou
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Philip K. Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, Oxford, OX2 6GG, UK
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- Integrative Stem Cell Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
27
|
Frankel NW, Lim WA. Building a Stable Relationship: Ensuring Homeostasis among Cell Types within a Tissue. Cell 2019; 172:638-640. [PMID: 29425483 DOI: 10.1016/j.cell.2018.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many processes controlling cell growth and death are well characterized for individual cell lineages, but how ensembles of different cell types in a tissue regulate collective size and composition remains unclear. In this issue of Cell, Zhou et al. employ experiments and theory to uncover design principles of tissue homeostasis arising from cross-talk between fibroblasts and macrophages.
Collapse
Affiliation(s)
- Nicholas W Frankel
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, Center for Systems and Synthetic Biology, University of California, San Francisco, CA 94158, USA
| | - Wendell A Lim
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, Center for Systems and Synthetic Biology, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
28
|
Santos‐Moreno J, Schaerli Y. Using Synthetic Biology to Engineer Spatial Patterns. ACTA ACUST UNITED AC 2018; 3:e1800280. [DOI: 10.1002/adbi.201800280] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/14/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Javier Santos‐Moreno
- Department of Fundamental MicrobiologyUniversity of LausanneBiophore Building 1015 Lausanne Switzerland
| | - Yolanda Schaerli
- Department of Fundamental MicrobiologyUniversity of LausanneBiophore Building 1015 Lausanne Switzerland
| |
Collapse
|
29
|
Kamm RD, Bashir R, Arora N, Dar RD, Gillette MU, Griffith LG, Kemp ML, Kinlaw K, Levin M, Martin AC, McDevitt TC, Nerem RM, Powers MJ, Saif TA, Sharpe J, Takayama S, Takeuchi S, Weiss R, Ye K, Yevick HG, Zaman MH. Perspective: The promise of multi-cellular engineered living systems. APL Bioeng 2018; 2:040901. [PMID: 31069321 PMCID: PMC6481725 DOI: 10.1063/1.5038337] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Recent technological breakthroughs in our ability to derive and differentiate induced pluripotent stem cells, organoid biology, organ-on-chip assays, and 3-D bioprinting have all contributed to a heightened interest in the design, assembly, and manufacture of living systems with a broad range of potential uses. This white paper summarizes the state of the emerging field of "multi-cellular engineered living systems," which are composed of interacting cell populations. Recent accomplishments are described, focusing on current and potential applications, as well as barriers to future advances, and the outlook for longer term benefits and potential ethical issues that need to be considered.
Collapse
Affiliation(s)
- Roger D. Kamm
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Rashid Bashir
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, USA
| | - Natasha Arora
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Roy D. Dar
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, USA
| | | | - Linda G. Griffith
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Melissa L. Kemp
- Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | - Adam C. Martin
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | | | - Robert M. Nerem
- Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Mark J. Powers
- Thermo Fisher Scientific, Frederick, Maryland 21704, USA
| | - Taher A. Saif
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, USA
| | - James Sharpe
- EMBL Barcelona, European Molecular Biology Laboratory, Barcelona 08003, Spain
| | | | | | - Ron Weiss
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Kaiming Ye
- Binghamton University, Binghamton, New York 13902, USA
| | - Hannah G. Yevick
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | | |
Collapse
|