1
|
Vafadar A, AlaviManesh S, Maddahi ME, Alizadeh M, Movahedpour A, Savardashtaki A. Exosome biosensors for detection of prostate cancer. Clin Chim Acta 2025; 571:120243. [PMID: 40090566 DOI: 10.1016/j.cca.2025.120243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Prostate cancer (PCa) is a highly life-threatening disease in men, causing numerous deaths worldwide. As PCa is often diagnosed at a late stage, current diagnostic methods can be invasive and sometimes lead to unnecessary treatments. Therefore, new non-invasive approaches are needed to detect biomarkers for more rapid and accurate PCa diagnosis. Exosomes, extracellular vesicles, provide valuable insights into cellular health and disease progression. Recent studies have indicated the potential use of exosomes as biomarkers for diagnosing PCa. Developing fast, reliable, and sensitive methods for exosome detection is essential. Biosensors, powerful analytical tools for biological samples, have become increasingly crucial in exosome analysis. This review summarizes recent advancements in biosensor technology for exosome detection and provides insights into future perspectives. The goal is to encourage innovative biosensor-based approaches for exosome detection and contribute to the early diagnosis and clinical monitoring of various diseases.
Collapse
Affiliation(s)
- Asma Vafadar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad AlaviManesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Ehsan Maddahi
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Li C, Du M, Han Y, Sun W, Chen Z, Liu Q, Zhu H, Zhao L, Li S, Wang J. Microalgae in health care and functional foods: β-glucan applications, innovations in drug delivery and synthetic biology. Front Pharmacol 2025; 16:1557298. [PMID: 40103595 PMCID: PMC11913682 DOI: 10.3389/fphar.2025.1557298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Microalgae are emerging as a key player in healthcare, functional foods, and sustainable biotech due to their capacity to produce bioactive compounds like β-glucans, omega-3 fatty acids, and antioxidants in an eco-friendly manner. This review comprehensively discusses the role of microalgae in healthcare and functional foods, focusing particularly on β-glucan therapeutics, drug delivery innovations, and synthetic biology applications. In healthcare, microalgae-derived compounds show immense promise for treating diseases, boosting immunity, and tackling oxidative stress. Euglena-derived paramylon, a type of β-glucan, has shown potential in various medical applications, including immunomodulation and anticancer therapy. Synthetic biology and bioprocess engineering are enhancing microalgae's therapeutic and nutritional value, with applications in drug delivery and personalized medicine. To maximize the potential of microalgae, further research and development are needed to address scalability, regulatory alignment, and consumer acceptance, with a focus on interdisciplinary collaboration and sustainable practices to align healthcare innovation with environmental conservation.
Collapse
Affiliation(s)
- Chao Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong, China
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ming Du
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yujie Han
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Wentao Sun
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zixi Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hui Zhu
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong, China
| | - Liqing Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
El-Sheekh MM, El-Kassas HY, Ali SS. Microalgae-based bioremediation of refractory pollutants: an approach towards environmental sustainability. Microb Cell Fact 2025; 24:19. [PMID: 39810167 PMCID: PMC11734528 DOI: 10.1186/s12934-024-02638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025] Open
Abstract
Extensive anthropogenic activity has led to the accumulation of organic and inorganic contaminants in diverse ecosystems, which presents significant challenges for the environment and its inhabitants. Utilizing microalgae as a bioremediation tool can present a potential solution to these challenges. Microalgae have gained significant attention as a promising biotechnological solution for detoxifying environmental pollutants. This is due to their advantages, such as rapid growth rate, cost-effectiveness, high oil-rich biomass production, and ease of implementation. Moreover, microalgae-based remediation is more environmentally sustainable for not generating additional waste sludge, capturing atmospheric CO2, and being efficient for nutrient recycling and sustainable algal biomass production for biofuels and high-value-added products generation. Hence, microalgae can achieve sustainability's three main pillars (environmental, economic, and social). Microalgal biomass can mediate contaminated wastewater effectively through accumulation, adsorption, and metabolism. These mechanisms enable the microalgae to reduce the concentration of heavy metals and organic contaminants to levels that are considered non-toxic. However, several factors, such as microalgal strain, cultivation technique, and the type of pollutants, limit the understanding of the microalgal removal mechanism and efficiency. Furthermore, adopting novel technological advancements (e.g., nanotechnology) may serve as a viable approach to address the challenge of refractory pollutants and bioremediation process sustainability. Therefore, this review discusses the mechanism and the ability of different microalgal species to mitigate persistent refractory pollutants, such as industrial effluents, dyes, pesticides, and pharmaceuticals. Also, this review paper provided insight into the production of nanomaterials, nanoparticles, and nanoparticle-based biosensors from microalgae and the immobilization of microalgae on nanomaterials to enhance bioremediation process efficiency. This review may open a new avenue for future advancing research regarding a sustainable biodegradation process of refractory pollutants.
Collapse
Affiliation(s)
- Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Hala Y El-Kassas
- National Institute of Oceanography and Fisheries, NIOF, Alexandria, 21556, Egypt
| | - Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
4
|
Meliana C, Liu J, Show PL, Low SS. Biosensor in smart food traceability system for food safety and security. Bioengineered 2024; 15:2310908. [PMID: 38303521 PMCID: PMC10841032 DOI: 10.1080/21655979.2024.2310908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
The burden of food contamination and food wastage has significantly contributed to the increased prevalence of foodborne disease and food insecurity all over the world. Due to this, there is an urgent need to develop a smarter food traceability system. Recent advancements in biosensors that are easy-to-use, rapid yet selective, sensitive, and cost-effective have shown great promise to meet the critical demand for onsite and immediate diagnosis and treatment of food safety and quality control (i.e. point-of-care technology). This review article focuses on the recent development of different biosensors for food safety and quality monitoring. In general, the application of biosensors in agriculture (i.e. pre-harvest stage) for early detection and routine control of plant infections or stress is discussed. Afterward, a more detailed advancement of biosensors in the past five years within the food supply chain (i.e. post-harvest stage) to detect different types of food contaminants and smart food packaging is highlighted. A section that discusses perspectives for the development of biosensors in the future is also mentioned.
Collapse
Affiliation(s)
- Catarina Meliana
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, Zhejiang Province, China
| | - Jingjing Liu
- College of Automation Engineering, Northeast Electric Power University, Jilin, Jilin Province, China
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, Abu Dhabi Municipality, United Arab Emirates
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sze Shin Low
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, Zhejiang Province, China
| |
Collapse
|
5
|
Testa G, Ciaramella BR, Fernando AL, Kotoula D, Scordia D, Gomes LA, Cosentino SL, Alexopoulou E, Papazoglou EG. Harnessing Lignocellulosic Crops for Phytomanagement of Contaminated Soils: A Multi-Country Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:2671. [PMID: 39409541 PMCID: PMC11478524 DOI: 10.3390/plants13192671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024]
Abstract
The dwindling availability of agricultural land, caused by factors such as rapid population growth, urban expansion, and soil contamination, has significantly increased the pressure on food production. To address this challenge, cultivating non-food crops on contaminated land has emerged as a promising solution. This approach not only frees up fertile soil for food production but also mitigates human exposure to contaminants. This work aimed to examine the impact of soil contamination with Cd, Pb, Ni, and Zn on the growth, productivity, metal accumulation, and the tolerance of five lignocellulosic non-food crops: switchgrass (Panicum virgatum L.), biomass sorghum (Sorghum bicolor L. Moench), giant reed (Arundo donax L.), African fodder cane (Saccharum spontaneum L. spp. aegyptiacum Willd. Hackel), and miscanthus (Miscanthus × giganteus Greef et Deu.). A two-year pot experiment was conducted in Greece, Italy, and Portugal, following the same protocols and applying various levels of metals: Cd (0, 4, 8 mg kg-1), Pb and Zn (0, 450, 900 mg kg-1), and Ni (0, 110, 220 mg kg-1). The experimental design was completely randomized, with three replicates for each treatment. The results showed that switchgrass and sorghum generally maintained their height and productivity under Cd and Pb stress but were adversely affected by high Zn and Ni concentrations. Giant reed and African fodder cane showed reduced height and productivity at higher Ni and Zn levels. Miscanthus exhibited resilience in height but experienced productivity reductions only at the highest Zn concentration. Heavy metal uptake varied among crops, with switchgrass and sorghum showing high Cd and Pb uptake, while giant reed accumulated the most Cd and Zn. Miscanthus had the highest Ni accumulation. The tolerance indices indicated that switchgrass and sorghum were more tolerant to Cd and Zn at lower concentrations, whereas miscanthus had lower tolerance to Cd but a higher tolerance to Zn at higher concentrations. Giant reed and African fodder cane demonstrated stable tolerance across most heavy metals. Accumulation indices highlighted the effectiveness of switchgrass and sorghum in Cd and Pb uptake, while miscanthus excelled in Ni and Zn accumulation. The cluster analysis revealed similar responses to heavy metal stress between African fodder cane and giant reed, as well as between sorghum and miscanthus, with switchgrass displaying distinct behavior. Overall, the study highlights the differential tolerance and accumulation capacities of these crops, indicating the potential for phytoremediation applications and biomass production in heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Giorgio Testa
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (B.R.C.); (S.L.C.)
| | - Barbara Rachele Ciaramella
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (B.R.C.); (S.L.C.)
| | - Ana Luisa Fernando
- MEtRICs, CubicB, Chemistry Department (DQ), NOVA School of Science and Technology|NOVA FCT, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Danai Kotoula
- Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Danilo Scordia
- Dipartimento di Scienze Veterinarie, University of Messina, Via G. Palatucci s.n., 98168 Messina, Italy;
| | | | - Salvatore Luciano Cosentino
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (B.R.C.); (S.L.C.)
| | - Efthymia Alexopoulou
- Center for Renewable Energy Sources, Biomass Department, 19009 Pikermi Attiki, Greece;
| | - Eleni G. Papazoglou
- Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece;
| |
Collapse
|
6
|
Liu X, Tang K, Hu J. Application of Cyanobacteria as Chassis Cells in Synthetic Biology. Microorganisms 2024; 12:1375. [PMID: 39065143 PMCID: PMC11278661 DOI: 10.3390/microorganisms12071375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Synthetic biology is an exciting new area of research that combines science and engineering to design and build new biological functions and systems. Predictably, with the development of synthetic biology, more efficient and economical photosynthetic microalgae chassis will be successfully constructed, making it possible to break through laboratory research into large-scale industrial applications. The synthesis of a range of biochemicals has been demonstrated in cyanobacteria; however, low product titers are the biggest barrier to the commercialization of cyanobacterial biotechnology. This review summarizes the applied improvement strategies from the perspectives of cyanobacteria chassis cells and synthetic biology. The harvest advantages of cyanobacterial products and the latest progress in improving production strategies are discussed according to the product status. As cyanobacteria synthetic biology is still in its infancy, apart from the achievements made, the difficulties and challenges in the application and development of cyanobacteria genetic tool kits in biochemical synthesis, environmental monitoring, and remediation were assessed.
Collapse
Affiliation(s)
| | | | - Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.L.); (K.T.)
| |
Collapse
|
7
|
Taha BA, Ahmed NM, Talreja RK, Haider AJ, Al Mashhadany Y, Al-Jubouri Q, Huddin AB, Mokhtar MHH, Rustagi S, Kaushik A, Chaudhary V, Arsad N. Synergizing Nanomaterials and Artificial Intelligence in Advanced Optical Biosensors for Precision Antimicrobial Resistance Diagnosis. ACS Synth Biol 2024; 13:1600-1620. [PMID: 38842483 DOI: 10.1021/acssynbio.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Antimicrobial resistance (AMR) poses a critical global One Health concern, ensuing from unintentional and continuous exposure to antibiotics, as well as challenges in accurate contagion diagnostics. Addressing AMR requires a strategic approach that emphasizes early stage prevention through screening in clinical, environmental, farming, and livestock settings to identify nonvulnerable antimicrobial agents and the associated genes. Conventional AMR diagnostics, like antibiotic susceptibility testing, possess drawbacks, including high costs, time-consuming processes, and significant manpower requirements, underscoring the need for intelligent, prompt, and on-site diagnostic techniques. Nanoenabled artificial intelligence (AI)-supported smart optical biosensors present a potential solution by facilitating rapid point-of-care AMR detection with real-time, sensitive, and portable capabilities. This Review comprehensively explores various types of optical nanobiosensors, such as surface plasmon resonance sensors, whispering-gallery mode sensors, optical coherence tomography, interference reflection imaging sensors, surface-enhanced Raman spectroscopy, fluorescence spectroscopy, microring resonance sensors, and optical tweezer biosensors, for AMR diagnostics. By harnessing the unique advantages of these nanoenabled smart biosensors, a revolutionary paradigm shift in AMR diagnostics can be achieved, characterized by rapid results, high sensitivity, portability, and integration with Internet-of-Things (IoT) technologies. Moreover, nanoenabled optical biosensors enable personalized monitoring and on-site detection, significantly reducing turnaround time and eliminating the human resources needed for sample preservation and transportation. Their potential for holistic environmental surveillance further enhances monitoring capabilities in diverse settings, leading to improved modern-age healthcare practices and more effective management of antimicrobial treatments. Embracing these advanced diagnostic tools promises to bolster global healthcare capacity to combat AMR and safeguard One Health.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Malaysia
| | - Naser M Ahmed
- Department of Laser and Optoelectronics Engineering, Dijlah University College, 00964 Baghdad, Iraq
| | - Rishi Kumar Talreja
- Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi 110029, India
| | - Adawiya J Haider
- Applied Sciences Department/Laser Science and Technology Branch, University of Technology, 00964 Baghdad, Iraq
| | - Yousif Al Mashhadany
- Department of Electrical Engineering, College of Engineering, University of Anbar, Anbar 00964, Iraq
| | - Qussay Al-Jubouri
- Department of Communication Engineering, University of Technology, 00964 Baghdad, Iraq
| | - Aqilah Baseri Huddin
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Malaysia
| | - Mohd Hadri Hafiz Mokhtar
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Malaysia
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttrakhand 248007, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida 33805, United States
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, New Delhi 110045, India
| | - Norhana Arsad
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Malaysia
| |
Collapse
|
8
|
Purcarea C, Ruginescu R, Banciu RM, Vasilescu A. Extremozyme-Based Biosensors for Environmental Pollution Monitoring: Recent Developments. BIOSENSORS 2024; 14:143. [PMID: 38534250 PMCID: PMC10968539 DOI: 10.3390/bios14030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Extremozymes combine high specificity and sensitivity with the ability to withstand extreme operational conditions. This work presents an overview of extremozymes that show potential for environmental monitoring devices and outlines the latest advances in biosensors utilizing these unique molecules. The characteristics of various extremozymes described so far are presented, underlining their stability and operational conditions that make them attractive for biosensing. The biosensor design is discussed based on the detection of photosynthesis-inhibiting herbicides as a case study. Several biosensors for the detection of pesticides, heavy metals, and phenols are presented in more detail to highlight interesting substrate specificity, applications or immobilization methods. Compared to mesophilic enzymes, the integration of extremozymes in biosensors faces additional challenges related to lower availability and high production costs. The use of extremozymes in biosensing does not parallel their success in industrial applications. In recent years, the "collection" of recognition elements was enriched by extremozymes with interesting selectivity and by thermostable chimeras. The perspectives for biosensor development are exciting, considering also the progress in genetic editing for the oriented immobilization of enzymes, efficient folding, and better electron transport. Stability, production costs and immobilization at sensing interfaces must be improved to encourage wider applications of extremozymes in biosensors.
Collapse
Affiliation(s)
- Cristina Purcarea
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (C.P.); (R.R.)
| | - Robert Ruginescu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (C.P.); (R.R.)
| | - Roberta Maria Banciu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
| |
Collapse
|
9
|
Fattahi M, Rahdan F, Shaterabadi D, Zamani Sani M, Alizadeh M, Khatami SH, Taheri-Anganeh M, Movahedpour A, Ghasemi H. MicroRNA biosensors for the detection of liver cancer. Clin Chim Acta 2024; 554:117796. [PMID: 38272250 DOI: 10.1016/j.cca.2024.117796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Liver cancer is one of the deadliest types worldwide and early diagnosis is highly important for successful treatment. Therefore, it is necessary to develop rapid, sensitive, simple, and inexpensive analytical tools for its detection. MicroRNAs (miRNA) represent unique biomarkers whose expression in biofluids is strongly associated with cancer in general and miR-21, -31, -122, -145, -146a, -200c, -221, -222, and -223 in liver cancer, specifically. Various biosensors for miRNA detection have been developed. These include electrochemical biosensors based on amperometric, potentiometric, conductometric and impedimetric technology. Furthermore, the use of advanced nanomaterials with enhanced chemical stability, conductivity and electrocatalytic activity have greatly increased the sensitivity and specificity of these devices. The present review focuses on recent advances in electrochemical biosensors for miRNA detection in liver cancer.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Donya Shaterabadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Zamani Sani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | | |
Collapse
|
10
|
Liu L, Du K. A perspective on computer vision in biosensing. BIOMICROFLUIDICS 2024; 18:011301. [PMID: 38223547 PMCID: PMC10787640 DOI: 10.1063/5.0185732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
Computer vision has become a powerful tool in the field of biosensing, aiding in the development of innovative and precise systems for the analysis and interpretation of biological data. This interdisciplinary approach harnesses the capabilities of computer vision algorithms and techniques to extract valuable information from various biosensing applications, including medical diagnostics, environmental monitoring, and food health. Despite years of development, there is still significant room for improvement in this area. In this perspective, we outline how computer vision is applied to raw sensor data in biosensors and its advantages to biosensing applications. We then discuss ongoing research and developments in the field and subsequently explore the challenges and opportunities that computer vision faces in biosensor applications. We also suggest directions for future work, ultimately underscoring the significant impact of computer vision on advancing biosensing technologies and their applications.
Collapse
Affiliation(s)
- Li Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| |
Collapse
|
11
|
Singh S, Singh L, Kumar V, Ali W, Ramamurthy PC, Singh Dhanjal D, Sivaram N, Angurana R, Singh J, Chandra Pandey V, Khan NA. Algae-based approaches for Holistic wastewater management: A low-cost paradigm. CHEMOSPHERE 2023; 345:140470. [PMID: 37858768 DOI: 10.1016/j.chemosphere.2023.140470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/22/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Aquatic algal communities demonstrated their appeal for diverse industrial applications due to their vast availability, ease of harvest, lower production costs, and ability to biosynthesize valuable molecules. Algal biomass is promising because it can multiply in water and on land. Integrated algal systems have a significant advantage in wastewater treatment due to their ability to use phosphorus and nitrogen, simultaneously accumulating heavy metals and toxic substances. Several species of microalgae have adapted to thrive in these harsh environmental circumstances. The potential of algal communities contributes to achieving the United Nations' sustainable development goals in improving aquaculture, combating climate change, reducing carbon dioxide (CO2) emissions, and providing biomass as a biofuel feedstock. Algal-based biomass processing technology facilitates the development of a circular bio-economy that is both commercially and ecologically viable. An integrated bio-refinery process featuring zero waste discharge could be a sustainable solution. In the current review, we will highlight wastewater management by algal species. In addition, designing and optimizing algal bioreactors for wastewater treatment have also been incorporated.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Lav Singh
- Department of Botany, University of Lucknow, Uttar Pradesh, India
| | - Vijay Kumar
- Department of Chemistry, CCRAS-CARI, Jhansi, U.P., 284003, India
| | - Wahid Ali
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Kingdom of Saudi Arabia
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012, India.
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Nikhita Sivaram
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, USA
| | - Ruby Angurana
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India; Department of Botany, Nagaland University, Lumami, Nagaland 798627, India
| | - Vimal Chandra Pandey
- CSIR-National Botanical Research Institute Lucknow, 226001, Uttar Pradesh, India.
| | - Nadeem A Khan
- Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
12
|
Liu Y, Chen L, Yu L, Yang C, Zhu J, Wang J, Zheng J, Wang F, He G, Jiang F, Sun C, Zheng L, Yang Y. Confinement-enhanced microalgal individuals biosensing for digital atrazine assay. Biosens Bioelectron 2023; 241:115647. [PMID: 37688850 DOI: 10.1016/j.bios.2023.115647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
Microalgal sensors are widely recognized for their high sensitivity, accessibility, and low cost. However, the current dilemma of motion-induced spatial phase changes and concentration-related multiple scattering interferes with induced test instability and limited sensitivity, which has hindered their practical applications. Here, a differentiated strategy, named confinement-enhanced microalgal biosensing (C-EMB), is developed and proposed to pave the way. The in-situ printed microgel trap is designed to confine Chlamydomonas reinhardtii individuals, stabilizing their spatial phase. The microgel trap arrays are introduced to eliminate the multiple scattering of microalgae, breaking the existing effective concentration in traditional microalgal sensing and enabling sensitive assays. The integration with lab-on-a-chip technology and a developed digital imaging algorithm empower portable and automated detection. With this system, a microalgae analyzer is developed for atrazine detection, featuring a linear range of 0.04-100 μg/L. We assess the system's performance through practical atrazine assays on commercial food, using a double-blind test against a standard instrument. Our results demonstrate the good accuracy and test stability of this system with the mean bias atrazine detection in corn and sugarcane juice samples (SD) were 1.661 μg/L (3.122 μg/L) and 3.144 μg/L (4.125 μg/L), respectively. This method provides a new paradigm of microalgal sensors and should advance the further applications of microalgal sensors in commercial and practical settings.
Collapse
Affiliation(s)
- Yantong Liu
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Translational Medicine, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Longfei Chen
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Translational Medicine, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Le Yu
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Translational Medicine, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Chen Yang
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Translational Medicine, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Jiaomeng Zhu
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Translational Medicine, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Jian Wang
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Translational Medicine, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Jingjing Zheng
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Translational Medicine, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Fang Wang
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Translational Medicine, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Guoqing He
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Translational Medicine, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Fenghua Jiang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Chengjun Sun
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Li Zheng
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yi Yang
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Translational Medicine, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China.
| |
Collapse
|
13
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate Separating and Sensing for Precision Agriculture and Environmental Protection in the Era of Smart Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37384557 DOI: 10.1021/acs.est.3c01269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The present article critically and comprehensively reviews the most recent reports on smart sensors for determining glyphosate (GLP), an active agent of GLP-based herbicides (GBHs) traditionally used in agriculture over the past decades. Commercialized in 1974, GBHs have now reached 350 million hectares of crops in over 140 countries with an annual turnover of 11 billion USD worldwide. However, rolling exploitation of GLP and GBHs in the last decades has led to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide of farm and companies' workers. Intoxication with these herbicides dysregulates the microbiome-gut-brain axis, cholinergic neurotransmission, and endocrine system, causing paralytic ileus, hyperkalemia, oliguria, pulmonary edema, and cardiogenic shock. Precision agriculture, i.e., an (information technology)-enhanced approach to crop management, including a site-specific determination of agrochemicals, derives from the benefits of smart materials (SMs), data science, and nanosensors. Those typically feature fluorescent molecularly imprinted polymers or immunochemical aptamer artificial receptors integrated with electrochemical transducers. Fabricated as portable or wearable lab-on-chips, smartphones, and soft robotics and connected with SM-based devices that provide machine learning algorithms and online databases, they integrate, process, analyze, and interpret massive amounts of spatiotemporal data in a user-friendly and decision-making manner. Exploited for the ultrasensitive determination of toxins, including GLP, they will become practical tools in farmlands and point-of-care testing. Expectedly, smart sensors can be used for personalized diagnostics, real-time water, food, soil, and air quality monitoring, site-specific herbicide management, and crop control.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Klepacka
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- ENSEMBLE3 sp. z o. o., 01-919 Warsaw, Poland
- Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Włodzimierz Kutner
- Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
- Modified Electrodes for Potential Application in Sensors and Cells Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
14
|
Samal S, Mohanty RP, Mohanty PS, Giri MK, Pati S, Das B. Implications of biosensors and nanobiosensors for the eco-friendly detection of public health and agro-based insecticides: A comprehensive review. Heliyon 2023; 9:e15848. [PMID: 37206035 PMCID: PMC10189192 DOI: 10.1016/j.heliyon.2023.e15848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/21/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023] Open
Abstract
Biosensors, in particular nanobiosensors, have brought a paradigm shift in the detection approaches involved in healthcare, agricultural, and industrial sectors. In accordance with the global expansion in the world population, there has been an increase in the application of specific insecticides for maintaining public health and enhancing agriculture, such as organophosphates, organochlorines, pyrethroids, and carbamates. This has led to the contamination of ground water, besides increasing the chances of biomagnification as most of these insecticides are non-biodegradable. Hence, conventional and more advanced approaches are being devised for the routine monitoring of such insecticides in the environment. This review walks through the implications of biosensors and nanobiosensors, which could offer a wide range of benefits for the detection of the insecticides, quantifying their toxicity status, and versatility in application. Unique eco-friendly nanobiosensors such as microcantilevers, carbon nanotubes, 3D printing organic materials and nylon nano-compounds are some advanced tools that are being employed for the detection of specific insecticides under different conditions. Furthermore, in order to implement a smart agriculture system, nanobiosensors could be integrated into mobile apps and GPS systems for controlling farming in remote areas, which would greatly assist the farmer remotely for crop improvement and maintenance. This review discusses about such tools along with more advanced and eco-friendly approaches that are on the verge of development and could offer a promising alternative for analyte detection in different domains.
Collapse
Affiliation(s)
- Sagnika Samal
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
| | - Rashmi Priya Mohanty
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
| | - Priti Sundar Mohanty
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
- School of Chemical Technology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
| | - Mrunmay Kumar Giri
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
| | - Sanghamitra Pati
- ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, 751024, India
- Corresponding author.
| | - Biswadeep Das
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
- Corresponding author.
| |
Collapse
|
15
|
Rathnayake IVN, Megharaj M, Naidu R. Sol-Gel Immobilized Optical Microalgal Biosensor for Monitoring Cd, Cu and Zn Bioavailability in Freshwater. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:73. [PMID: 37000234 DOI: 10.1007/s00128-023-03709-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
While analytical measurements provide the quantitative estimation of the total amount of metals present in a sample, they do not reflect the truly bioavailable fraction of metal which reflects the adverse biological effect. Hence the development of monitoring tools for detecting bioavailable toxic metals has become a priority in environmental monitoring activities. An optical whole-cell biosensor was constructed using the microalga Scenedesmus subspicatus MM1 immobilizing in inorganic silica hydrogels using the sol-gel technique to detect bioavailable Cadmium (Cd2+), Copper (Cu2+) and Zinc (Zn+) in freshwater. Conditions for optimum biosensor performance have been established regarding effective pH range, cell density, exposure time, and storage stability. The optimum response for the biosensor was dependent on the pH of the matrix, cell concentration and exposure time were derived. The biosensor was operational for four weeks. The limit of detection for the algal biosensor was determined as 9.0 × 10-1, 9.1 × 10-1, and 8.8 × 10-1 mg/L for Cd, Cu and Zn, respectively. Whole-cell cell biosensor will be highly useful since it comprises a single microalgal species able to detect the bioavailable content of Cd2+, Cu2+, and Zn2+ in freshwater.
Collapse
Affiliation(s)
- I V N Rathnayake
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA, 5095, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia.
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya, GQ, 11600, Sri Lanka.
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (G.C.E.R.), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (G.C.E.R.), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
16
|
Masi A, Leonelli F, Scognamiglio V, Gasperuzzo G, Antonacci A, Terzidis MA. Chlamydomonas reinhardtii: A Factory of Nutraceutical and Food Supplements for Human Health. Molecules 2023; 28:molecules28031185. [PMID: 36770853 PMCID: PMC9921279 DOI: 10.3390/molecules28031185] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Chlamydomonas reinhardtii (C. reinhardtii) is one of the most well-studied microalgae organisms that revealed important information for the photosynthetic and metabolic processes of plants and eukaryotes. Numerous extensive studies have also underpinned its great potential as a biochemical factory, capable of producing various highly desired molecules with a direct impact on human health and longevity. Polysaccharides, lipids, functional proteins, pigments, hormones, vaccines, and antibodies are among the valuable biomolecules that are produced spontaneously or under well-defined conditions by C. reinhardtii and can be directly linked to human nutrition and diet. The aim of this review is to highlight the recent advances in the field focusing on the most relevant applications related to the production of important biomolecules for human health that are also linked with human nutrition and diet. The limitations and challenges are critically discussed along with the potential future applications of C. reinhardtii biomass and processed products in the field of nutraceuticals and food supplements. The increasing need for high-value and low-cost biomolecules produced in an environmentally and economy sustainable manner also underline the important role of C. reinhardtii.
Collapse
Affiliation(s)
- Annalisa Masi
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
| | - Francesca Leonelli
- Department of Chemistry, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
| | - Giulia Gasperuzzo
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
| | - Amina Antonacci
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
- Correspondence: (A.A.); (M.A.T.); Tel.: +39-0690675597 (A.A.); +30-2310013224 (M.A.T.)
| | - Michael A. Terzidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
- Correspondence: (A.A.); (M.A.T.); Tel.: +39-0690675597 (A.A.); +30-2310013224 (M.A.T.)
| |
Collapse
|
17
|
Barciela P, Carpena M, Li NY, Liu C, Jafari SM, Simal-Gandara J, Prieto MA. Macroalgae as biofactories of metal nanoparticles; biosynthesis and food applications. Adv Colloid Interface Sci 2023; 311:102829. [PMID: 36603300 DOI: 10.1016/j.cis.2022.102829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Nanotechnology has opened a new frontier in recent years, capable of providing new ways of controlling and structuring products with greater market value and offering significant opportunities for the development of innovative applications in food processing, preservation, and packaging. Macroalgae (MAG) are the major photoautotrophic group of living beings known as a potential source of secondary metabolites, namely phenolic compounds, pigments, and polysaccharides. Biosynthesis based on the abilities of MAG as "nanobiofactories" targets the use of algal secondary metabolites as reducing agents to stabilize nanoparticles (NPs). Nowadays, most of the studies are focused on the use of metal (Ag, Au) and metal-oxide (CuO, ZnO) NPs derived from algae. The eco-friendly biosynthesis of metal NPs reduces the cost and production time and increases their biocompatibility, due to the presence of bioactive compounds in MAG, making them suitable for a wide variety of applications. These compounds have been attributed to the antimicrobial and antioxidant properties responsible for their application through innovative technologies such as nanoencapsulation, nanocomposites, or biosensors in the food industry. Nevertheless, toxicity is a key factor that should be considered, so the applicable regulation needs to guarantee the safe use of metal NPs. Consequently, the aim of this review will be to compile the available information on MAG-mediated metal NPs, their biosynthesis, and potential food applications.
Collapse
Affiliation(s)
- P Barciela
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - M Carpena
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Ning-Yang Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, PR China.
| | - S M Jafari
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain; Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, PR China.
| | - J Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - M A Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal.
| |
Collapse
|
18
|
Ma Z, Meliana C, Munawaroh HSH, Karaman C, Karimi-Maleh H, Low SS, Show PL. Recent advances in the analytical strategies of microbial biosensor for detection of pollutants. CHEMOSPHERE 2022; 306:135515. [PMID: 35772520 DOI: 10.1016/j.chemosphere.2022.135515] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/10/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Microbial biosensor which integrates different types of microorganisms, such as bacteria, microalgae, fungi, and virus have become suitable technologies to address limitations of conventional analytical methods. The main applications of biosensors include the detection of environmental pollutants, pathogenic bacteria and compounds related to illness, and food quality. Each type of microorganisms possesses advantages and disadvantages with different mechanisms to detect the analytes of interest. Furthermore, there is an increasing trend in genetic modifications for the development of microbial biosensors due to potential for high-throughput analysis and portability. Many review articles have discussed the applications of microbial biosensor, but many of them focusing only about bacterial-based biosensor although other microbes also possess many advantages. Additionally, reviews on the applications of all microbes as biosensor especially viral and microbial fuel cell biosensors are also still limited. Therefore, this review summarizes all the current applications of bacterial-, microalgal-, fungal-, viral-based biosensor in regard to environmental, food, and medical-related applications. The underlying mechanism of each microbes to detect the analytes are also discussed. Additionally, microbial fuel cell biosensors which have great potential in the future are also discussed. Although many advantageous microbial-based biosensors have been discovered, other areas such as forensic detection, early detection of bacteria or virus species that can lead to pandemics, and others still need further investigation. With that said, microbial-based biosensors have promising potential for vast applications where the biosensing performance of various microorganisms are presented in this review along with future perspectives to resolve problems related on microbial biosensors.
Collapse
Affiliation(s)
- Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| | - Catarina Meliana
- Department of Food Science and Nutrition, Faculty of Life Science, Indonesia International Institute of Life Sciences, Jakarta, 13210, Indonesia
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Ceren Karaman
- Akdeniz University, Department of Electricity and Energy, Antalya, 07070, Turkey
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Sze Shin Low
- Research Centre of Life Science and Healthcare, China Beacons Institute, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo, 315100, Zhejiang, China.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
19
|
Allouzi MMA, Allouzi S, Al-Salaheen B, Khoo KS, Rajendran S, Sankaran R, Sy-Toan N, Show PL. Current advances and future trend of nanotechnology as microalgae-based biosensor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Antonacci A, Arduini F, Attaallah R, Amine A, Giardi MT, Scognamiglio V. A Proof-of-Concept Electrochemical Cytosensor Based on Chlamydomonas reinhardtii Functionalized Carbon Black Screen-Printed Electrodes: Detection of Escherichia coli in Wastewater as a Case Study. BIOSENSORS 2022; 12:bios12060401. [PMID: 35735549 PMCID: PMC9221097 DOI: 10.3390/bios12060401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 05/30/2023]
Abstract
Herein, we report a proof-of-concept algal cytosensor for the electrochemical quantification of bacteria in wastewater, exploiting the green photosynthetic alga Chlamydomonas reinhardtii immobilized on carbon black (CB) nanomodified screen-printed electrodes. The CB nanoparticles are used as nanomodifiers, as they are able to sense the oxygen produced by the algae and thus the current increases when algae are exposed to increasing concentrations of bacteria. The sensor was tested on both standard solutions and real wastewater samples for the detection Escherichia coli in a linear range of response from 100 to 2000 CFU/100 mL, showing a limit of detection of 92 CFU/100 mL, in agreement with the maximum E. coli concentration established by the Italian law for wastewater (less than 5000 CFU/100 mL). This bacterium was exploited as a case study target of the algal cytosensor to demonstrate its ability as an early warning analytical system to signal heavy loads of pathogens in waters leaving the wastewater treatment plants. Indeed, the cytosensor is not selective towards E. coli but it is capable of sensing all the bacteria that induce the algae oxygen evolution by exploiting the effect of their interaction. Other known toxicants, commonly present in wastewater, were also analyzed to test the cytosensor selectivity, with any significant effect, apart from atrazine, which is a specific target of the D1 protein of the Chlamydomonas photosystem II. However, the latter can also be detected by chlorophyll fluorescence simultaneously to the amperometric measurements. The matrix effect was evaluated, and the recovery values were calculated as 105 ± 8, 83 ± 7, and 88 ± 7% for 1000 CFU/100 mL of E. coli in Lignano, San Giorgio, and Pescara wastewater samples, respectively.
Collapse
Affiliation(s)
- Amina Antonacci
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, 00015 Monterotondo, Italy; (A.A.); (F.A.); (M.T.G.)
| | - Fabiana Arduini
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, 00015 Monterotondo, Italy; (A.A.); (F.A.); (M.T.G.)
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
- SENSE4MED, via Renato Rascel 30, 00128 Rome, Italy
| | - Raouia Attaallah
- Faculty of Sciences and Techniques, Hassan II University of Casablanca, Casablanca 20000, Morocco; (R.A.); (A.A.)
| | - Aziz Amine
- Faculty of Sciences and Techniques, Hassan II University of Casablanca, Casablanca 20000, Morocco; (R.A.); (A.A.)
| | - Maria Teresa Giardi
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, 00015 Monterotondo, Italy; (A.A.); (F.A.); (M.T.G.)
- Biosensors S.r.l., Via degli Olmetti 44, Formello, 00060 Rome, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, 00015 Monterotondo, Italy; (A.A.); (F.A.); (M.T.G.)
| |
Collapse
|
21
|
Phillips N, Mayne R, Adamatzky A. Chlorella sensors in liquid marbles and droplets. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
22
|
Alias AB, Mishra S, Pendharkar G, Chen CS, Liu CH, Liu YJ, Yao DJ. Microfluidic Microalgae System: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061910. [PMID: 35335274 PMCID: PMC8954360 DOI: 10.3390/molecules27061910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/14/2023]
Abstract
Microalgae that have recently captivated interest worldwide are a great source of renewable, sustainable and economical biofuels. The extensive potential application in the renewable energy, biopharmaceutical and nutraceutical industries have made them necessary resources for green energy. Microalgae can substitute liquid fossil fuels based on cost, renewability and environmental concern. Microfluidic-based systems outperform their competitors by executing many functions, such as sorting and analysing small volumes of samples (nanolitre to picolitre) with better sensitivities. In this review, we consider the developing uses of microfluidic technology on microalgal processes such as cell sorting, cultivation, harvesting and applications in biofuels and biosensing.
Collapse
Affiliation(s)
- Anand Baby Alias
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan; (A.B.A.); (S.M.); (C.-H.L.)
| | - Shubhanvit Mishra
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan; (A.B.A.); (S.M.); (C.-H.L.)
| | - Gaurav Pendharkar
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Chi-Shuo Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Cheng-Hsien Liu
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan; (A.B.A.); (S.M.); (C.-H.L.)
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Yi-Ju Liu
- Food Industry Research and Development Institute, Hsinchu 300193, Taiwan;
| | - Da-Jeng Yao
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan; (A.B.A.); (S.M.); (C.-H.L.)
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Correspondence:
| |
Collapse
|
23
|
Lettieri S, Battaglino B, Sacco A, Saracco G, Pagliano C. A green and easy-to-assemble electrochemical biosensor based on thylakoid membranes for photosynthetic herbicides detection. Biosens Bioelectron 2022; 198:113838. [PMID: 34864246 DOI: 10.1016/j.bios.2021.113838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/26/2022]
Abstract
In this study, we report on an easy-to-assemble amperometric electrochemical biosensor incorporating thylakoid membranes for the detection of photosynthetic herbicides. These molecules interfere with the light-induced photosynthetic electron transport occurring at the level of the photosystems within the thylakoid membranes, thus reducing the current of the associated bioelectrode. Thylakoid membranes isolated from pea plants were adsorbed directly on a bare carbon paper working electrode and placed in the measurement cell in the absence of any electrochemical mediator, obtaining a fully environmental-friendly biodevice capable of photocurrent densities up to 14 μA/cm2. Three photosynthetic herbicides inhibiting Photosystem II and belonging to different chemical classes, namely diuron, terbuthylazine and metribuzin, were detected by measuring the electrode photocurrent, which decreased reproducibly in a concentration-dependent manner in a range between 10-7 - 5 × 10-5 M of each herbicide. The limit of detection for the three herbicides was between 4-6 × 10-7 M. Storage stability tests revealed for the biosensor a half-life longer than 15 days at 4 °C and full stability up to 4 months at -80 °C. This study provides a simple, environmental-friendly and cost-effective procedure for the fabrication of a mediatorless carbon paper-based electrochemical biosensor characterized by high photocurrents, long storage stability, reproducible detections and good sensitivity.
Collapse
Affiliation(s)
- Stefania Lettieri
- Istituto Italiano di Tecnologia (IIT), Center for Sustainable Future Technologies - CSFT@POLITO, via Livorno, 60 - 10144 Torino, Italy.
| | - Beatrice Battaglino
- Politecnico di Torino, Applied Science and Technology Department-BioSolar Lab, Environment Park, Via Livorno 60, 10144, Torino, Italy.
| | - Adriano Sacco
- Istituto Italiano di Tecnologia (IIT), Center for Sustainable Future Technologies - CSFT@POLITO, via Livorno, 60 - 10144 Torino, Italy.
| | - Guido Saracco
- Politecnico di Torino, Applied Science and Technology Department-BioSolar Lab, Environment Park, Via Livorno 60, 10144, Torino, Italy.
| | - Cristina Pagliano
- Politecnico di Torino, Applied Science and Technology Department-BioSolar Lab, Environment Park, Via Livorno 60, 10144, Torino, Italy.
| |
Collapse
|
24
|
Pescheck M, Schweizer A, Bláha L. Innovative electrochemical biosensor for toxicological investigations on algae and cyanobacteria. Bioelectrochemistry 2022; 143:107926. [PMID: 34592629 DOI: 10.1016/j.bioelechem.2021.107926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/28/2021] [Accepted: 08/06/2021] [Indexed: 11/02/2022]
Abstract
An electrochemical biosensor is presented that directly reflects the metabolic activity of prokaryotic and eukaryotic cells. This biosensor can be used measure the biological activity of bacteria, yeasts and mammalian cells. This makes the sensor interesting for various applications in industry and science. A possible application is bioprocess control, monitor activities from yeasts, bacteria and fungi to increase the yield. Other applications are starter culture quality studies in the food industry and cytoxicological evaluation with mammalian cells. Our latest investigations additionally indicate the applicability of the electrochemical biosensor to measure algae and cyanobacteria. In our investigations, we were able to show that it was also possible to detect photosynthetic organisms with the electrochemical measurement method, used for investigations on prokaryotic and eukaryotic organisms before. Therefore, this the present study demonstrates an alternative to using this electrochemical biosensor equipped with alga and cyanobacteria for toxicological investigations based on selected test chemicals. The results of this study show a good correlation with those from reference methods, such as the Algal Growth Inhibition Test and the Microtox Test. The advantages of the new electrochemical biosensor are easy handling and shorter measurement time by using different types of test organisms. The evaluation of the sensor signal is based on the current-time curves of a potentiostatic measurement produced by the detection of microbially reduced mediator molecules immobilized in a gel structure. The mediator molecules are reduced during the measurement process. The reduced mediator molecules produce a current signal, which rapidly provides information about the vigor and vitality of living bacteria, yeasts, fungi or cells.
Collapse
Affiliation(s)
- Michael Pescheck
- Masaryk University, Faculty of Science, RECETOX Kamenice 753/5, 625 00 Brno, Czech Republic.
| | - Anne Schweizer
- Hochschule Trier, Umwelt-Campus Birkenfeld, Campusallee, 55768 Neubrücke (Nahe), Germany
| | - Luděk Bláha
- Masaryk University, Faculty of Science, RECETOX Kamenice 753/5, 625 00 Brno, Czech Republic
| |
Collapse
|
25
|
How does the Internet of Things (IoT) help in microalgae biorefinery? Biotechnol Adv 2021; 54:107819. [PMID: 34454007 DOI: 10.1016/j.biotechadv.2021.107819] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/27/2021] [Accepted: 08/22/2021] [Indexed: 12/14/2022]
Abstract
Microalgae biorefinery is a platform for the conversion of microalgal biomass into a variety of value-added products, such as biofuels, bio-based chemicals, biomaterials, and bioactive substances. Commercialization and industrialization of microalgae biorefinery heavily rely on the capability and efficiency of large-scale cultivation of microalgae. Thus, there is an urgent need for novel technologies that can be used to monitor, automatically control, and precisely predict microalgae production. In light of this, innovative applications of the Internet of things (IoT) technologies in microalgae biorefinery have attracted tremendous research efforts. IoT has potential applications in a microalgae biorefinery for the automatic control of microalgae cultivation, monitoring and manipulation of microalgal cultivation parameters, optimization of microalgae productivity, identification of toxic algae species, screening of target microalgae species, classification of microalgae species, and viability detection of microalgal cells. In this critical review, cutting-edge IoT technologies that could be adopted to microalgae biorefinery in the upstream and downstream processing are described comprehensively. The current advances of the integration of IoT with microalgae biorefinery are presented. What this review discussed includes automation, sensors, lab-on-chip, and machine learning, which are the main constituent elements and advanced technologies of IoT. Specifically, future research directions are discussed with special emphasis on the development of sensors, the application of microfluidic technology, robotized microalgae, high-throughput platforms, deep learning, and other innovative techniques. This review could contribute greatly to the novelty and relevance in the field of IoT-based microalgae biorefinery to develop smarter, safer, cleaner, greener, and economically efficient techniques for exhaustive energy recovery during the biorefinery process.
Collapse
|
26
|
Tanvir RU, Zhang J, Canter T, Chen D, Lu J, Hu Z. Harnessing Solar Energy using Phototrophic Microorganisms: A Sustainable Pathway to Bioenergy, Biomaterials, and Environmental Solutions. RENEWABLE & SUSTAINABLE ENERGY REVIEWS 2021; 146:1-111181. [PMID: 34526853 PMCID: PMC8437043 DOI: 10.1016/j.rser.2021.111181] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phototrophic microorganisms (microbial phototrophs) use light as an energy source to carry out various metabolic processes producing biomaterials and bioenergy and supporting their own growth. Among them, microalgae and cyanobacteria have been utilized extensively for bioenergy, biomaterials, and environmental applications. Their superior photosynthetic efficiency, lipid content, and shorter cultivation time compared to terrestrial biomass make them more suitable for efficient production of bioenergy and biomaterials. Other phototrophic microorganisms, especially anoxygenic phototrophs, demonstrated the ability to survive and flourish while producing renewable energy and high-value products under harsh environmental conditions. This review presents a comprehensive overview of microbial phototrophs on their (i) production of bioenergy and biomaterials, (ii) emerging and innovative applications for environmental conservation, mitigation, and remediation, and (iii) physical, genetic, and metabolic pathways to improve light harvesting and biomass/biofuel/biomaterial production. Both physical (e.g., incremental irradiation) and genetic approaches (e.g., truncated antenna) are implemented to increase the light-harvesting efficiency. Increases in biomass yield and metabolic products are possible through the manipulation of metabolic pathways and selection of a proper strain under optimal cultivation conditions and downstream processing, including harvesting, extraction, and purification. Finally, the current barriers in harnessing solar energy using phototrophic microorganisms are presented, and future research perspectives are discussed, such as integrating phototrophic microorganisms with emerging technologies.
Collapse
Affiliation(s)
- Rahamat Ullah Tanvir
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| | - Jianying Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Timothy Canter
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| | - Dick Chen
- Dual Enrollment Program, University of Missouri, Columbia, Missouri, 65211, USA
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency (EPA), Cincinnati, Ohio, 45268, USA
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| |
Collapse
|
27
|
Qi X, Wang S, Jiang Y, Liu P, Hao W, Han J, Zhou Y, Huang X, Liang P. Additional polypyrrole as conductive medium in artificial electrochemically active biofilm (EAB) to increase the sensitivity of EAB based biosensor in water quality early-warning. Biosens Bioelectron 2021; 190:113453. [PMID: 34174528 DOI: 10.1016/j.bios.2021.113453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022]
Abstract
Researchers believe that adding conductive mediums in electrochemically active biofilms (EABs) would improve the sensitivity of EAB-based biosensor for real-time water quality early-warning through facilitating the extracellular electron transfer (EET), which has been hardly evidenced mostly because naturally formed EABs employed in previous biosensor studies were recognized distinct and incapable of delivering comparable electrical signals. By preparing artificial EABs where Shewanella oneidensis MR-1 was encapsulated in sodium alginate (SA), this study solved how polypyrrole (PPy) as conductive medium would affect the sensitivity of EAB-based biosensor, as well as mass transfer of toxicant during this process. Different mass ratios (0.125:1, 0.25:1 and 1:1) of PPy over SA were tested, and the sensitivity promoted by 20%, 15% and 6%, respectively. Results indicated that a small amount of PPy addition (PPy: SA = 0.125: 1 in mass ratio) was more effective to increase the biosensor's sensitivity compared to larger amount of PPy employed in EAB. This was when improved conductivity introduced by PPy would dominate in affecting the sensitivity over contrarily weakened mass transfer in the meantime.
Collapse
Affiliation(s)
- Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Shuyi Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Wen Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Jinbin Han
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yuexi Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
28
|
Qi X, Wang S, Jiang Y, Liu P, Li Q, Hao W, Han J, Zhou Y, Huang X, Liang P. Artificial electrochemically active biofilm for improved sensing performance and quickly devising of water quality early warning biosensors. WATER RESEARCH 2021; 198:117164. [PMID: 33915405 DOI: 10.1016/j.watres.2021.117164] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/29/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
A major challenge for devising an electrochemically active biofilm (EAB)-based biosensor for real-time water quality early-warning is the formation of EAB that requires several days to weeks. Besides the onerous and time-consuming preparation process, the naturally formed EABs are intensively concerned as they can hardly deliver repeatable electrical signals even at identical experimental conditions. To address these concerns, this study employed sodium alginate as immobilization agent to encapsulate Shewanella oneidensis MR-1 and prepared EAB for devising a biosensor in a short period of less than 1 h. The artificial EAB were found capable of delivering highly consistent electrical signals with each other when fed with the same samples. Morphology and bioelectrochemical properties of the artificial EAB were investigated to provide interpretations for these findings. Different concentrations of bacteria and alginate in forming the EAB were investigated for their effects on the biosensor's sensitivity. Results suggested that lower concentration of bacteria would be beneficial until it increased to 0.06 (OD660). Concentration of sodium alginate affected the sensitivity as well and 1% was found an optimum amount to serve in the formation of EAB. A long-term operation of the biosensor with artificial EAB for 110 h was performed. Clear warning signals for incoming toxicants were observed over random signal fluctuations. All results suggested that the artificial EAB electrode would support a rapid devised and highly sensitivity biosensor.
Collapse
Affiliation(s)
- Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Shuyi Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Qingcheng Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Wen Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jinbin Han
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuexi Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
29
|
Scognamiglio V, Giardi MT, Zappi D, Touloupakis E, Antonacci A. Photoautotrophs-Bacteria Co-Cultures: Advances, Challenges and Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3027. [PMID: 34199583 PMCID: PMC8199690 DOI: 10.3390/ma14113027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 01/18/2023]
Abstract
Photosynthetic microorganisms are among the fundamental living organisms exploited for millennia in many industrial applications, including the food chain, thanks to their adaptable behavior and intrinsic proprieties. The great multipotency of these photoautotroph microorganisms has been described through their attitude to become biofarm for the production of value-added compounds to develop functional foods and personalized drugs. Furthermore, such biological systems demonstrated their potential for green energy production (e.g., biofuel and green nanomaterials). In particular, the exploitation of photoautotrophs represents a concrete biorefinery system toward sustainability, currently a highly sought-after concept at the industrial level and for the environmental protection. However, technical and economic issues have been highlighted in the literature, and in particular, challenges and limitations have been identified. In this context, a new perspective has been recently considered to offer solutions and advances for the biomanufacturing of photosynthetic materials: the co-culture of photoautotrophs and bacteria. The rational of this review is to describe the recently released information regarding this microbial consortium, analyzing the critical issues, the strengths and the next challenges to be faced for the intentions attainment.
Collapse
Affiliation(s)
- Viviana Scognamiglio
- Institute of Crystallography, National Research Council, Via Salaria Km 29.300, Monterotondo, 00015 Rome, Italy; (V.S.); (M.T.G.); (D.Z.)
| | - Maria Teresa Giardi
- Institute of Crystallography, National Research Council, Via Salaria Km 29.300, Monterotondo, 00015 Rome, Italy; (V.S.); (M.T.G.); (D.Z.)
- Biosensor S.r.l., Via Olmetti 44, 00060 Formello, Italy
| | - Daniele Zappi
- Institute of Crystallography, National Research Council, Via Salaria Km 29.300, Monterotondo, 00015 Rome, Italy; (V.S.); (M.T.G.); (D.Z.)
| | - Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| | - Amina Antonacci
- Institute of Crystallography, National Research Council, Via Salaria Km 29.300, Monterotondo, 00015 Rome, Italy; (V.S.); (M.T.G.); (D.Z.)
| |
Collapse
|
30
|
Guo H, Ji J, Sun J, Zhang Y, Sun X. Development of a living mammalian cell-based biosensor for the monitoring and evaluation of synergetic toxicity of cadmium and deoxynivalenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144823. [PMID: 33545470 DOI: 10.1016/j.scitotenv.2020.144823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
With increased interest in the toxic interactions of multiple toxins, biotoxicity models have to be urgently developed for joint toxicity evaluation. This study aimed to develop an optical biosensor based on living mammary cells for monitoring of cadmium (Cd)/deoxynivalenol (DON) in water and evaluating their combined toxicity. Our previous survey found that DON and Cd appeared simultaneously in various products, and RNA seq revealed that AP-1 participated in combined toxicity of DON+Cd in HT-29 cells. Thus AP-1 site-mCherry-based biosensors were constructed, optimized, and then tested for their applicability and stable fluorescence response activities. DON+Cd2+, DON, and Cd2+ induced dose-dependent fluorescence signal in the biosensors (at environmental exposure levels). The enhanced fluorescence signal suggested that the toxicity of DON+Cd2+ was enhanced compared with that of single toxin. The advantages of the biosensors include: I) The easy and visual screening of multiple toxins on the basis of environmental exposure levels; II) Potential as a broad-spectrum tool for joint toxicity evaluation of DON+Cd; III) Pollution-free and stable fluorescence response; IV) A slight effect on viability.
Collapse
Affiliation(s)
- Hongyan Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
31
|
Antonacci A, Attaallah R, Arduini F, Amine A, Giardi MT, Scognamiglio V. A dual electro-optical biosensor based on Chlamydomonas reinhardtii immobilised on paper-based nanomodified screen-printed electrodes for herbicide monitoring. J Nanobiotechnology 2021; 19:145. [PMID: 34001124 PMCID: PMC8130446 DOI: 10.1186/s12951-021-00887-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
The indiscriminate use of herbicides in agriculture contributes to soil and water pollution, with important endangering consequences on the ecosystems. Among the available analytical systems, algal biosensors have demonstrated to be valid tools thanks to their high sensitivity, cost-effectiveness, and eco-design. Herein, we report the development of a dual electro-optical biosensor for herbicide monitoring, based on Chlamydomonas reinhardtii whole cells immobilised on paper-based screen-printed electrodes modified with carbon black nanomaterials. To this aim, a systematic study was performed for the selection and characterisation of a collection among 28 different genetic variants of the alga with difference response behaviour towards diverse herbicide classes. Thus, CC125 strain was exploited as case study for the study of the analytical parameters. The biosensor was tested in standard solutions and real samples, providing high sensitivity (detection limit in the pico/nanomolar), high repeatability (RSD of 5% with n = 100), long lasting working (10 h) and storage stability (3 weeks), any interference in the presence of heavy metals and insecticides, and low matrix effect in drinking water and moderate effect in surface one.
![]()
Collapse
Affiliation(s)
- Amina Antonacci
- Department of Chemical Sciences and Materials Technologies, Institute of Crystallography, National Research Council, Via Salaria km 29.300, Monterotondo, 00015, Rome, Italy
| | - Raouia Attaallah
- Faculty of Sciences and Techniques, Hassan II University of Casablanca, Casablanca, Morocco
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133, Rome, Italy.,SENSE4MED, Via Renato Rascel 30, 00128, Rome, Italy
| | - Aziz Amine
- Faculty of Sciences and Techniques, Hassan II University of Casablanca, Casablanca, Morocco
| | - Maria Teresa Giardi
- Department of Chemical Sciences and Materials Technologies, Institute of Crystallography, National Research Council, Via Salaria km 29.300, Monterotondo, 00015, Rome, Italy.,Biosensor Srl, Via degli Olmetti 44, Formello, 00060, Rome, Italy
| | - Viviana Scognamiglio
- Department of Chemical Sciences and Materials Technologies, Institute of Crystallography, National Research Council, Via Salaria km 29.300, Monterotondo, 00015, Rome, Italy.
| |
Collapse
|
32
|
Ajarem JS, Maodaa SN, Allam AA, Taher MM, Khalaf M. Benign Synthesis of Cobalt Oxide Nanoparticles Containing Red Algae Extract: Antioxidant, Antimicrobial, Anticancer, and Anticoagulant Activity. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02004-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Qi X, Wang S, Li T, Wang X, Jiang Y, Zhou Y, Zhou X, Huang X, Liang P. An electroactive biofilm-based biosensor for water safety: Pollutants detection and early-warning. Biosens Bioelectron 2020; 173:112822. [PMID: 33221512 DOI: 10.1016/j.bios.2020.112822] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 01/24/2023]
Abstract
Besides serving in wastewater treatment and energy generation fields, electroactive biofilm (EAB) has been employed as a sensitive bio-elements in a biosensor to monitor water quality by delivering electrical signals without additional mediators. Increasing studies have applied EAB-based biosensor in specific pollutant detection, typically biochemical oxygen demand (BOD) detection, as well as in early-warning of composite pollutants. Based on a comprehensive review of literatures, this study reveals how EAB outputs electrical signal, how we can evaluate and improve this performance, and what information we can expect from EAB-based biosensor. Since BOD detection and early-warning are normally confusing, this study manages to differentiate these two applications through distinguished purposes and metrics. Based on the introductions of progresses and applications of EAB-based biosensors so far, several novel strategies toward the future development of EAB-based biosensors are proposed.
Collapse
Affiliation(s)
- Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Shuyi Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
34
|
Novel atrazine-binding biomimetics inspired to the D1 protein from the photosystem II of Chlamydomonas reinhardtii. Int J Biol Macromol 2020; 163:817-823. [PMID: 32653377 DOI: 10.1016/j.ijbiomac.2020.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 01/22/2023]
Abstract
Biomimetic design represents an emerging field for improving knowledge of natural molecules, as well as to project novel artificial tools with specific functions for biosensing. Effective strategies have been exploited to design artificial bioreceptors, taking inspiration from complex supramolecular assemblies. Among them, size-minimization strategy sounds promising to provide bioreceptors with tuned sensitivity, stability, and selectivity, through the ad hoc manipulation of chemical species at the molecular scale. Herein, a novel biomimetic peptide enabling herbicide binding was designed bioinspired to the D1 protein of the Photosystem II of the green alga Chlamydomonas reinhardtii. The D1 protein portion corresponding to the QB plastoquinone binding niche is capable of interacting with photosynthetic herbicides. A 50-mer peptide in the region of D1 protein from the residue 211 to 280 was designed in silico, and molecular dynamic simulations were performed alone and in complex with atrazine. An equilibrated structure was obtained with a stable pocked for atrazine binding by three H-bonds with SER222, ASN247, and HIS272 residues. Computational data were confirmed by fluorescence spectroscopy and circular dichroism on the peptide obtained by automated synthesis. Atrazine binding at nanomolar concentrations was followed by fluorescence spectroscopy, highlighting peptide suitability for optical sensing of herbicides at safety limits.
Collapse
|
35
|
Recent advances in synthetic biology-enabled and natural whole-cell optical biosensing of heavy metals. Anal Bioanal Chem 2020; 413:73-82. [PMID: 32959111 DOI: 10.1007/s00216-020-02953-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
A large number of scientific works have been published on whole-cell heavy metal biosensing based on optical transduction. The advances in the application of biotechnological tools not only have continuously improved the sensitivity, selectivity, and detection range for biosensors but also have simultaneously unveiled new challenges and restrictions for further improvements. This review highlights selected aspects of whole-cell biosensing of heavy metals using optical transducers. We have focused on the progress in genetic modulation in regulatory and reporter modules of recombinant plasmids that has enabled improvement of biosensor performance. Simultaneously, an attempt has been made to present newer platforms such as microfluidics that have generated promising results and might give a new turn to the optical biosensing field.
Collapse
|
36
|
Jaiswal S, Shukla P. Alternative Strategies for Microbial Remediation of Pollutants via Synthetic Biology. Front Microbiol 2020; 11:808. [PMID: 32508759 PMCID: PMC7249858 DOI: 10.3389/fmicb.2020.00808] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Continuous contamination of the environment with xenobiotics and related recalcitrant compounds has emerged as a serious pollution threat. Bioremediation is the key to eliminating persistent contaminants from the environment. Traditional bioremediation processes show limitations, therefore it is necessary to discover new bioremediation technologies for better results. In this review we provide an outlook of alternative strategies for bioremediation via synthetic biology, including exploring the prerequisites for analysis of research data for developing synthetic biological models of microbial bioremediation. Moreover, cell coordination in synthetic microbial community, cell signaling, and quorum sensing as engineered for enhanced bioremediation strategies are described, along with promising gene editing tools for obtaining the host with target gene sequences responsible for the degradation of recalcitrant compounds. The synthetic genetic circuit and two-component regulatory system (TCRS)-based microbial biosensors for detection and bioremediation are also briefly explained. These developments are expected to increase the efficiency of bioremediation strategies for best results.
Collapse
|
37
|
Attaallah R, Antonacci A, Mazzaracchio V, Moscone D, Palleschi G, Arduini F, Amine A, Scognamiglio V. Carbon black nanoparticles to sense algae oxygen evolution for herbicides detection: Atrazine as a case study. Biosens Bioelectron 2020; 159:112203. [PMID: 32364935 DOI: 10.1016/j.bios.2020.112203] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 11/28/2022]
Abstract
A novel amperometric algae-based biosensor was developed for the detection of photosynthetic herbicides in river water. The green photosynthetic algae Chlamydomonas reinhardtii was immobilized on carbon black modified screen-printed electrodes, exploiting carbon black as smart nanomaterial to monitor changes in algae oxygen evolution during the photosynthetic process. The decrease of oxygen evolution, occurring in the presence of herbicides, results in a decrease of current signals by means of amperometric measurements, in an analyte concentration dependent manner. Atrazine as case study herbicide was detected in a concentration range of 0.1 and 50 μM, with a linear range from 0.1 to 5 μM and a detection limit of 1 nM. No interference was observed in presence of 100 ppb arsenic, 20 ppb copper, 5 ppb cadmium, 10 ppb lead, 10 ppb bisphenol A, and 1 ppb paraoxon, tested as safety limits. A ~25% matrix effect and satisfactory recovery values of 107 ± 10% and 96 ± 8% were obtained in river water for 3 and 5 μM of atrazine, respectively. Stability studies were also performed obtaining a high working stability up to 10 h and repeatability with an RSD of 1.1% (n = 12), as well as a good storage stability up to 3 weeks.
Collapse
Affiliation(s)
- Raouia Attaallah
- Faculty of Sciences and Techniques, Hassan II University of Casablanca, Morocco
| | - Amina Antonacci
- Institute of Crystallography (IC-CNR), Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, 00015, Monterotondo, Italy
| | - Vincenzo Mazzaracchio
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Danila Moscone
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Giuseppe Palleschi
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133, Rome, Italy; SENSE4MED, via Renato Rascel 30, 00128, Rome, Italy
| | - Aziz Amine
- Faculty of Sciences and Techniques, Hassan II University of Casablanca, Morocco
| | - Viviana Scognamiglio
- Institute of Crystallography (IC-CNR), Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, 00015, Monterotondo, Italy.
| |
Collapse
|